1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to mapping data to requests
4 */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15 bool is_our_pages : 1;
16 bool is_null_mapped : 1;
17 struct iov_iter iter;
18 struct iovec iov[];
19 };
20
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 gfp_t gfp_mask)
23 {
24 struct bio_map_data *bmd;
25
26 if (data->nr_segs > UIO_MAXIOV)
27 return NULL;
28
29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 if (!bmd)
31 return NULL;
32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 bmd->iter = *data;
34 bmd->iter.iov = bmd->iov;
35 return bmd;
36 }
37
38 /**
39 * bio_copy_from_iter - copy all pages from iov_iter to bio
40 * @bio: The &struct bio which describes the I/O as destination
41 * @iter: iov_iter as source
42 *
43 * Copy all pages from iov_iter to bio.
44 * Returns 0 on success, or error on failure.
45 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 struct bio_vec *bvec;
49 struct bvec_iter_all iter_all;
50
51 bio_for_each_segment_all(bvec, bio, iter_all) {
52 ssize_t ret;
53
54 ret = copy_page_from_iter(bvec->bv_page,
55 bvec->bv_offset,
56 bvec->bv_len,
57 iter);
58
59 if (!iov_iter_count(iter))
60 break;
61
62 if (ret < bvec->bv_len)
63 return -EFAULT;
64 }
65
66 return 0;
67 }
68
69 /**
70 * bio_copy_to_iter - copy all pages from bio to iov_iter
71 * @bio: The &struct bio which describes the I/O as source
72 * @iter: iov_iter as destination
73 *
74 * Copy all pages from bio to iov_iter.
75 * Returns 0 on success, or error on failure.
76 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 struct bio_vec *bvec;
80 struct bvec_iter_all iter_all;
81
82 bio_for_each_segment_all(bvec, bio, iter_all) {
83 ssize_t ret;
84
85 ret = copy_page_to_iter(bvec->bv_page,
86 bvec->bv_offset,
87 bvec->bv_len,
88 &iter);
89
90 if (!iov_iter_count(&iter))
91 break;
92
93 if (ret < bvec->bv_len)
94 return -EFAULT;
95 }
96
97 return 0;
98 }
99
100 /**
101 * bio_uncopy_user - finish previously mapped bio
102 * @bio: bio being terminated
103 *
104 * Free pages allocated from bio_copy_user_iov() and write back data
105 * to user space in case of a read.
106 */
bio_uncopy_user(struct bio * bio)107 static int bio_uncopy_user(struct bio *bio)
108 {
109 struct bio_map_data *bmd = bio->bi_private;
110 int ret = 0;
111
112 if (!bmd->is_null_mapped) {
113 /*
114 * if we're in a workqueue, the request is orphaned, so
115 * don't copy into a random user address space, just free
116 * and return -EINTR so user space doesn't expect any data.
117 */
118 if (!current->mm)
119 ret = -EINTR;
120 else if (bio_data_dir(bio) == READ)
121 ret = bio_copy_to_iter(bio, bmd->iter);
122 if (bmd->is_our_pages)
123 bio_free_pages(bio);
124 }
125 kfree(bmd);
126 return ret;
127 }
128
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 struct bio_map_data *bmd;
133 struct page *page;
134 struct bio *bio;
135 int i = 0, ret;
136 int nr_pages;
137 unsigned int len = iter->count;
138 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139
140 bmd = bio_alloc_map_data(iter, gfp_mask);
141 if (!bmd)
142 return -ENOMEM;
143
144 /*
145 * We need to do a deep copy of the iov_iter including the iovecs.
146 * The caller provided iov might point to an on-stack or otherwise
147 * shortlived one.
148 */
149 bmd->is_our_pages = !map_data;
150 bmd->is_null_mapped = (map_data && map_data->null_mapped);
151
152 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153
154 ret = -ENOMEM;
155 bio = bio_kmalloc(nr_pages, gfp_mask);
156 if (!bio)
157 goto out_bmd;
158 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159
160 if (map_data) {
161 nr_pages = 1 << map_data->page_order;
162 i = map_data->offset / PAGE_SIZE;
163 }
164 while (len) {
165 unsigned int bytes = PAGE_SIZE;
166
167 bytes -= offset;
168
169 if (bytes > len)
170 bytes = len;
171
172 if (map_data) {
173 if (i == map_data->nr_entries * nr_pages) {
174 ret = -ENOMEM;
175 goto cleanup;
176 }
177
178 page = map_data->pages[i / nr_pages];
179 page += (i % nr_pages);
180
181 i++;
182 } else {
183 page = alloc_page(GFP_NOIO | gfp_mask);
184 if (!page) {
185 ret = -ENOMEM;
186 goto cleanup;
187 }
188 }
189
190 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 if (!map_data)
192 __free_page(page);
193 break;
194 }
195
196 len -= bytes;
197 offset = 0;
198 }
199
200 if (map_data)
201 map_data->offset += bio->bi_iter.bi_size;
202
203 /*
204 * success
205 */
206 if ((iov_iter_rw(iter) == WRITE &&
207 (!map_data || !map_data->null_mapped)) ||
208 (map_data && map_data->from_user)) {
209 ret = bio_copy_from_iter(bio, iter);
210 if (ret)
211 goto cleanup;
212 } else {
213 if (bmd->is_our_pages)
214 zero_fill_bio(bio);
215 iov_iter_advance(iter, bio->bi_iter.bi_size);
216 }
217
218 bio->bi_private = bmd;
219
220 ret = blk_rq_append_bio(rq, bio);
221 if (ret)
222 goto cleanup;
223 return 0;
224 cleanup:
225 if (!map_data)
226 bio_free_pages(bio);
227 bio_uninit(bio);
228 kfree(bio);
229 out_bmd:
230 kfree(bmd);
231 return ret;
232 }
233
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)234 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
235 gfp_t gfp_mask)
236 {
237 unsigned int max_sectors = queue_max_hw_sectors(rq->q);
238 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
239 struct bio *bio;
240 int ret;
241 int j;
242
243 if (!iov_iter_count(iter))
244 return -EINVAL;
245
246 bio = bio_kmalloc(nr_vecs, gfp_mask);
247 if (!bio)
248 return -ENOMEM;
249 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
250
251 while (iov_iter_count(iter)) {
252 struct page **pages;
253 ssize_t bytes;
254 size_t offs, added = 0;
255 int npages;
256
257 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
258 if (unlikely(bytes <= 0)) {
259 ret = bytes ? bytes : -EFAULT;
260 goto out_unmap;
261 }
262
263 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
264
265 if (unlikely(offs & queue_dma_alignment(rq->q)))
266 j = 0;
267 else {
268 for (j = 0; j < npages; j++) {
269 struct page *page = pages[j];
270 unsigned int n = PAGE_SIZE - offs;
271 bool same_page = false;
272
273 if (n > bytes)
274 n = bytes;
275
276 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
277 max_sectors, &same_page)) {
278 if (same_page)
279 put_page(page);
280 break;
281 }
282
283 added += n;
284 bytes -= n;
285 offs = 0;
286 }
287 iov_iter_advance(iter, added);
288 }
289 /*
290 * release the pages we didn't map into the bio, if any
291 */
292 while (j < npages)
293 put_page(pages[j++]);
294 kvfree(pages);
295 /* couldn't stuff something into bio? */
296 if (bytes)
297 break;
298 }
299
300 ret = blk_rq_append_bio(rq, bio);
301 if (ret)
302 goto out_unmap;
303 return 0;
304
305 out_unmap:
306 bio_release_pages(bio, false);
307 bio_uninit(bio);
308 kfree(bio);
309 return ret;
310 }
311
bio_invalidate_vmalloc_pages(struct bio * bio)312 static void bio_invalidate_vmalloc_pages(struct bio *bio)
313 {
314 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
315 if (bio->bi_private && !op_is_write(bio_op(bio))) {
316 unsigned long i, len = 0;
317
318 for (i = 0; i < bio->bi_vcnt; i++)
319 len += bio->bi_io_vec[i].bv_len;
320 invalidate_kernel_vmap_range(bio->bi_private, len);
321 }
322 #endif
323 }
324
bio_map_kern_endio(struct bio * bio)325 static void bio_map_kern_endio(struct bio *bio)
326 {
327 bio_invalidate_vmalloc_pages(bio);
328 bio_uninit(bio);
329 kfree(bio);
330 }
331
332 /**
333 * bio_map_kern - map kernel address into bio
334 * @q: the struct request_queue for the bio
335 * @data: pointer to buffer to map
336 * @len: length in bytes
337 * @gfp_mask: allocation flags for bio allocation
338 *
339 * Map the kernel address into a bio suitable for io to a block
340 * device. Returns an error pointer in case of error.
341 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)342 static struct bio *bio_map_kern(struct request_queue *q, void *data,
343 unsigned int len, gfp_t gfp_mask)
344 {
345 unsigned long kaddr = (unsigned long)data;
346 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
347 unsigned long start = kaddr >> PAGE_SHIFT;
348 const int nr_pages = end - start;
349 bool is_vmalloc = is_vmalloc_addr(data);
350 struct page *page;
351 int offset, i;
352 struct bio *bio;
353
354 bio = bio_kmalloc(nr_pages, gfp_mask);
355 if (!bio)
356 return ERR_PTR(-ENOMEM);
357 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
358
359 if (is_vmalloc) {
360 flush_kernel_vmap_range(data, len);
361 bio->bi_private = data;
362 }
363
364 offset = offset_in_page(kaddr);
365 for (i = 0; i < nr_pages; i++) {
366 unsigned int bytes = PAGE_SIZE - offset;
367
368 if (len <= 0)
369 break;
370
371 if (bytes > len)
372 bytes = len;
373
374 if (!is_vmalloc)
375 page = virt_to_page(data);
376 else
377 page = vmalloc_to_page(data);
378 if (bio_add_pc_page(q, bio, page, bytes,
379 offset) < bytes) {
380 /* we don't support partial mappings */
381 bio_uninit(bio);
382 kfree(bio);
383 return ERR_PTR(-EINVAL);
384 }
385
386 data += bytes;
387 len -= bytes;
388 offset = 0;
389 }
390
391 bio->bi_end_io = bio_map_kern_endio;
392 return bio;
393 }
394
bio_copy_kern_endio(struct bio * bio)395 static void bio_copy_kern_endio(struct bio *bio)
396 {
397 bio_free_pages(bio);
398 bio_uninit(bio);
399 kfree(bio);
400 }
401
bio_copy_kern_endio_read(struct bio * bio)402 static void bio_copy_kern_endio_read(struct bio *bio)
403 {
404 char *p = bio->bi_private;
405 struct bio_vec *bvec;
406 struct bvec_iter_all iter_all;
407
408 bio_for_each_segment_all(bvec, bio, iter_all) {
409 memcpy_from_bvec(p, bvec);
410 p += bvec->bv_len;
411 }
412
413 bio_copy_kern_endio(bio);
414 }
415
416 /**
417 * bio_copy_kern - copy kernel address into bio
418 * @q: the struct request_queue for the bio
419 * @data: pointer to buffer to copy
420 * @len: length in bytes
421 * @gfp_mask: allocation flags for bio and page allocation
422 * @reading: data direction is READ
423 *
424 * copy the kernel address into a bio suitable for io to a block
425 * device. Returns an error pointer in case of error.
426 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)427 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
428 unsigned int len, gfp_t gfp_mask, int reading)
429 {
430 unsigned long kaddr = (unsigned long)data;
431 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
432 unsigned long start = kaddr >> PAGE_SHIFT;
433 struct bio *bio;
434 void *p = data;
435 int nr_pages = 0;
436
437 /*
438 * Overflow, abort
439 */
440 if (end < start)
441 return ERR_PTR(-EINVAL);
442
443 nr_pages = end - start;
444 bio = bio_kmalloc(nr_pages, gfp_mask);
445 if (!bio)
446 return ERR_PTR(-ENOMEM);
447 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
448
449 while (len) {
450 struct page *page;
451 unsigned int bytes = PAGE_SIZE;
452
453 if (bytes > len)
454 bytes = len;
455
456 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
457 if (!page)
458 goto cleanup;
459
460 if (!reading)
461 memcpy(page_address(page), p, bytes);
462
463 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
464 break;
465
466 len -= bytes;
467 p += bytes;
468 }
469
470 if (reading) {
471 bio->bi_end_io = bio_copy_kern_endio_read;
472 bio->bi_private = data;
473 } else {
474 bio->bi_end_io = bio_copy_kern_endio;
475 }
476
477 return bio;
478
479 cleanup:
480 bio_free_pages(bio);
481 bio_uninit(bio);
482 kfree(bio);
483 return ERR_PTR(-ENOMEM);
484 }
485
486 /*
487 * Append a bio to a passthrough request. Only works if the bio can be merged
488 * into the request based on the driver constraints.
489 */
blk_rq_append_bio(struct request * rq,struct bio * bio)490 int blk_rq_append_bio(struct request *rq, struct bio *bio)
491 {
492 struct bvec_iter iter;
493 struct bio_vec bv;
494 unsigned int nr_segs = 0;
495
496 bio_for_each_bvec(bv, bio, iter)
497 nr_segs++;
498
499 if (!rq->bio) {
500 blk_rq_bio_prep(rq, bio, nr_segs);
501 } else {
502 if (!ll_back_merge_fn(rq, bio, nr_segs))
503 return -EINVAL;
504 rq->biotail->bi_next = bio;
505 rq->biotail = bio;
506 rq->__data_len += (bio)->bi_iter.bi_size;
507 bio_crypt_free_ctx(bio);
508 }
509
510 return 0;
511 }
512 EXPORT_SYMBOL(blk_rq_append_bio);
513
514 /**
515 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
516 * @q: request queue where request should be inserted
517 * @rq: request to map data to
518 * @map_data: pointer to the rq_map_data holding pages (if necessary)
519 * @iter: iovec iterator
520 * @gfp_mask: memory allocation flags
521 *
522 * Description:
523 * Data will be mapped directly for zero copy I/O, if possible. Otherwise
524 * a kernel bounce buffer is used.
525 *
526 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while
527 * still in process context.
528 */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)529 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
530 struct rq_map_data *map_data,
531 const struct iov_iter *iter, gfp_t gfp_mask)
532 {
533 bool copy = false;
534 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
535 struct bio *bio = NULL;
536 struct iov_iter i;
537 int ret = -EINVAL;
538
539 if (!iter_is_iovec(iter))
540 goto fail;
541
542 if (map_data)
543 copy = true;
544 else if (blk_queue_may_bounce(q))
545 copy = true;
546 else if (iov_iter_alignment(iter) & align)
547 copy = true;
548 else if (queue_virt_boundary(q))
549 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
550
551 i = *iter;
552 do {
553 if (copy)
554 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
555 else
556 ret = bio_map_user_iov(rq, &i, gfp_mask);
557 if (ret)
558 goto unmap_rq;
559 if (!bio)
560 bio = rq->bio;
561 } while (iov_iter_count(&i));
562
563 return 0;
564
565 unmap_rq:
566 blk_rq_unmap_user(bio);
567 fail:
568 rq->bio = NULL;
569 return ret;
570 }
571 EXPORT_SYMBOL(blk_rq_map_user_iov);
572
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)573 int blk_rq_map_user(struct request_queue *q, struct request *rq,
574 struct rq_map_data *map_data, void __user *ubuf,
575 unsigned long len, gfp_t gfp_mask)
576 {
577 struct iovec iov;
578 struct iov_iter i;
579 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
580
581 if (unlikely(ret < 0))
582 return ret;
583
584 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
585 }
586 EXPORT_SYMBOL(blk_rq_map_user);
587
588 /**
589 * blk_rq_unmap_user - unmap a request with user data
590 * @bio: start of bio list
591 *
592 * Description:
593 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
594 * supply the original rq->bio from the blk_rq_map_user() return, since
595 * the I/O completion may have changed rq->bio.
596 */
blk_rq_unmap_user(struct bio * bio)597 int blk_rq_unmap_user(struct bio *bio)
598 {
599 struct bio *next_bio;
600 int ret = 0, ret2;
601
602 while (bio) {
603 if (bio->bi_private) {
604 ret2 = bio_uncopy_user(bio);
605 if (ret2 && !ret)
606 ret = ret2;
607 } else {
608 bio_release_pages(bio, bio_data_dir(bio) == READ);
609 }
610
611 next_bio = bio;
612 bio = bio->bi_next;
613 bio_uninit(next_bio);
614 kfree(next_bio);
615 }
616
617 return ret;
618 }
619 EXPORT_SYMBOL(blk_rq_unmap_user);
620
621 /**
622 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
623 * @q: request queue where request should be inserted
624 * @rq: request to fill
625 * @kbuf: the kernel buffer
626 * @len: length of user data
627 * @gfp_mask: memory allocation flags
628 *
629 * Description:
630 * Data will be mapped directly if possible. Otherwise a bounce
631 * buffer is used. Can be called multiple times to append multiple
632 * buffers.
633 */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)634 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
635 unsigned int len, gfp_t gfp_mask)
636 {
637 int reading = rq_data_dir(rq) == READ;
638 unsigned long addr = (unsigned long) kbuf;
639 struct bio *bio;
640 int ret;
641
642 if (len > (queue_max_hw_sectors(q) << 9))
643 return -EINVAL;
644 if (!len || !kbuf)
645 return -EINVAL;
646
647 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
648 blk_queue_may_bounce(q))
649 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
650 else
651 bio = bio_map_kern(q, kbuf, len, gfp_mask);
652
653 if (IS_ERR(bio))
654 return PTR_ERR(bio);
655
656 bio->bi_opf &= ~REQ_OP_MASK;
657 bio->bi_opf |= req_op(rq);
658
659 ret = blk_rq_append_bio(rq, bio);
660 if (unlikely(ret)) {
661 bio_uninit(bio);
662 kfree(bio);
663 }
664 return ret;
665 }
666 EXPORT_SYMBOL(blk_rq_map_kern);
667