1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block rq-qos base io controller
4 *
5 * This works similar to wbt with a few exceptions
6 *
7 * - It's bio based, so the latency covers the whole block layer in addition to
8 * the actual io.
9 * - We will throttle all IO that comes in here if we need to.
10 * - We use the mean latency over the 100ms window. This is because writes can
11 * be particularly fast, which could give us a false sense of the impact of
12 * other workloads on our protected workload.
13 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
14 * that we can have as many outstanding bio's as we're allowed to. Only at
15 * throttle time do we pay attention to the actual queue depth.
16 *
17 * The hierarchy works like the cpu controller does, we track the latency at
18 * every configured node, and each configured node has it's own independent
19 * queue depth. This means that we only care about our latency targets at the
20 * peer level. Some group at the bottom of the hierarchy isn't going to affect
21 * a group at the end of some other path if we're only configred at leaf level.
22 *
23 * Consider the following
24 *
25 * root blkg
26 * / \
27 * fast (target=5ms) slow (target=10ms)
28 * / \ / \
29 * a b normal(15ms) unloved
30 *
31 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
32 * an average latency of 5ms. If it does then we will throttle the "slow"
33 * group. In the case of "normal", if it exceeds its 15ms target, we will
34 * throttle "unloved", but nobody else.
35 *
36 * In this example "fast", "slow", and "normal" will be the only groups actually
37 * accounting their io latencies. We have to walk up the heirarchy to the root
38 * on every submit and complete so we can do the appropriate stat recording and
39 * adjust the queue depth of ourselves if needed.
40 *
41 * There are 2 ways we throttle IO.
42 *
43 * 1) Queue depth throttling. As we throttle down we will adjust the maximum
44 * number of IO's we're allowed to have in flight. This starts at (u64)-1 down
45 * to 1. If the group is only ever submitting IO for itself then this is the
46 * only way we throttle.
47 *
48 * 2) Induced delay throttling. This is for the case that a group is generating
49 * IO that has to be issued by the root cg to avoid priority inversion. So think
50 * REQ_META or REQ_SWAP. If we are already at qd == 1 and we're getting a lot
51 * of work done for us on behalf of the root cg and are being asked to scale
52 * down more then we induce a latency at userspace return. We accumulate the
53 * total amount of time we need to be punished by doing
54 *
55 * total_time += min_lat_nsec - actual_io_completion
56 *
57 * and then at throttle time will do
58 *
59 * throttle_time = min(total_time, NSEC_PER_SEC)
60 *
61 * This induced delay will throttle back the activity that is generating the
62 * root cg issued io's, wethere that's some metadata intensive operation or the
63 * group is using so much memory that it is pushing us into swap.
64 *
65 * Copyright (C) 2018 Josef Bacik
66 */
67 #include <linux/kernel.h>
68 #include <linux/blk_types.h>
69 #include <linux/backing-dev.h>
70 #include <linux/module.h>
71 #include <linux/timer.h>
72 #include <linux/memcontrol.h>
73 #include <linux/sched/loadavg.h>
74 #include <linux/sched/signal.h>
75 #include <trace/events/block.h>
76 #include <linux/blk-mq.h>
77 #include "blk-rq-qos.h"
78 #include "blk-stat.h"
79 #include "blk-cgroup.h"
80 #include "blk.h"
81
82 #define DEFAULT_SCALE_COOKIE 1000000U
83
84 static struct blkcg_policy blkcg_policy_iolatency;
85 struct iolatency_grp;
86
87 struct blk_iolatency {
88 struct rq_qos rqos;
89 struct timer_list timer;
90
91 /*
92 * ->enabled is the master enable switch gating the throttling logic and
93 * inflight tracking. The number of cgroups which have iolat enabled is
94 * tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
95 * from ->enable_work with the request_queue frozen. For details, See
96 * blkiolatency_enable_work_fn().
97 */
98 bool enabled;
99 atomic_t enable_cnt;
100 struct work_struct enable_work;
101 };
102
BLKIOLATENCY(struct rq_qos * rqos)103 static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
104 {
105 return container_of(rqos, struct blk_iolatency, rqos);
106 }
107
108 struct child_latency_info {
109 spinlock_t lock;
110
111 /* Last time we adjusted the scale of everybody. */
112 u64 last_scale_event;
113
114 /* The latency that we missed. */
115 u64 scale_lat;
116
117 /* Total io's from all of our children for the last summation. */
118 u64 nr_samples;
119
120 /* The guy who actually changed the latency numbers. */
121 struct iolatency_grp *scale_grp;
122
123 /* Cookie to tell if we need to scale up or down. */
124 atomic_t scale_cookie;
125 };
126
127 struct percentile_stats {
128 u64 total;
129 u64 missed;
130 };
131
132 struct latency_stat {
133 union {
134 struct percentile_stats ps;
135 struct blk_rq_stat rqs;
136 };
137 };
138
139 struct iolatency_grp {
140 struct blkg_policy_data pd;
141 struct latency_stat __percpu *stats;
142 struct latency_stat cur_stat;
143 struct blk_iolatency *blkiolat;
144 struct rq_depth rq_depth;
145 struct rq_wait rq_wait;
146 atomic64_t window_start;
147 atomic_t scale_cookie;
148 u64 min_lat_nsec;
149 u64 cur_win_nsec;
150
151 /* total running average of our io latency. */
152 u64 lat_avg;
153
154 /* Our current number of IO's for the last summation. */
155 u64 nr_samples;
156
157 bool ssd;
158 struct child_latency_info child_lat;
159 };
160
161 #define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
162 #define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
163 /*
164 * These are the constants used to fake the fixed-point moving average
165 * calculation just like load average. The call to calc_load() folds
166 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg. The sampling
167 * window size is bucketed to try to approximately calculate average
168 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
169 * elapse immediately. Note, windows only elapse with IO activity. Idle
170 * periods extend the most recent window.
171 */
172 #define BLKIOLATENCY_NR_EXP_FACTORS 5
173 #define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
174 (BLKIOLATENCY_NR_EXP_FACTORS - 1))
175 static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
176 2045, // exp(1/600) - 600 samples
177 2039, // exp(1/240) - 240 samples
178 2031, // exp(1/120) - 120 samples
179 2023, // exp(1/80) - 80 samples
180 2014, // exp(1/60) - 60 samples
181 };
182
pd_to_lat(struct blkg_policy_data * pd)183 static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
184 {
185 return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
186 }
187
blkg_to_lat(struct blkcg_gq * blkg)188 static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
189 {
190 return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
191 }
192
lat_to_blkg(struct iolatency_grp * iolat)193 static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
194 {
195 return pd_to_blkg(&iolat->pd);
196 }
197
latency_stat_init(struct iolatency_grp * iolat,struct latency_stat * stat)198 static inline void latency_stat_init(struct iolatency_grp *iolat,
199 struct latency_stat *stat)
200 {
201 if (iolat->ssd) {
202 stat->ps.total = 0;
203 stat->ps.missed = 0;
204 } else
205 blk_rq_stat_init(&stat->rqs);
206 }
207
latency_stat_sum(struct iolatency_grp * iolat,struct latency_stat * sum,struct latency_stat * stat)208 static inline void latency_stat_sum(struct iolatency_grp *iolat,
209 struct latency_stat *sum,
210 struct latency_stat *stat)
211 {
212 if (iolat->ssd) {
213 sum->ps.total += stat->ps.total;
214 sum->ps.missed += stat->ps.missed;
215 } else
216 blk_rq_stat_sum(&sum->rqs, &stat->rqs);
217 }
218
latency_stat_record_time(struct iolatency_grp * iolat,u64 req_time)219 static inline void latency_stat_record_time(struct iolatency_grp *iolat,
220 u64 req_time)
221 {
222 struct latency_stat *stat = get_cpu_ptr(iolat->stats);
223 if (iolat->ssd) {
224 if (req_time >= iolat->min_lat_nsec)
225 stat->ps.missed++;
226 stat->ps.total++;
227 } else
228 blk_rq_stat_add(&stat->rqs, req_time);
229 put_cpu_ptr(stat);
230 }
231
latency_sum_ok(struct iolatency_grp * iolat,struct latency_stat * stat)232 static inline bool latency_sum_ok(struct iolatency_grp *iolat,
233 struct latency_stat *stat)
234 {
235 if (iolat->ssd) {
236 u64 thresh = div64_u64(stat->ps.total, 10);
237 thresh = max(thresh, 1ULL);
238 return stat->ps.missed < thresh;
239 }
240 return stat->rqs.mean <= iolat->min_lat_nsec;
241 }
242
latency_stat_samples(struct iolatency_grp * iolat,struct latency_stat * stat)243 static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
244 struct latency_stat *stat)
245 {
246 if (iolat->ssd)
247 return stat->ps.total;
248 return stat->rqs.nr_samples;
249 }
250
iolat_update_total_lat_avg(struct iolatency_grp * iolat,struct latency_stat * stat)251 static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
252 struct latency_stat *stat)
253 {
254 int exp_idx;
255
256 if (iolat->ssd)
257 return;
258
259 /*
260 * calc_load() takes in a number stored in fixed point representation.
261 * Because we are using this for IO time in ns, the values stored
262 * are significantly larger than the FIXED_1 denominator (2048).
263 * Therefore, rounding errors in the calculation are negligible and
264 * can be ignored.
265 */
266 exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
267 div64_u64(iolat->cur_win_nsec,
268 BLKIOLATENCY_EXP_BUCKET_SIZE));
269 iolat->lat_avg = calc_load(iolat->lat_avg,
270 iolatency_exp_factors[exp_idx],
271 stat->rqs.mean);
272 }
273
iolat_cleanup_cb(struct rq_wait * rqw,void * private_data)274 static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
275 {
276 atomic_dec(&rqw->inflight);
277 wake_up(&rqw->wait);
278 }
279
iolat_acquire_inflight(struct rq_wait * rqw,void * private_data)280 static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
281 {
282 struct iolatency_grp *iolat = private_data;
283 return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
284 }
285
__blkcg_iolatency_throttle(struct rq_qos * rqos,struct iolatency_grp * iolat,bool issue_as_root,bool use_memdelay)286 static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
287 struct iolatency_grp *iolat,
288 bool issue_as_root,
289 bool use_memdelay)
290 {
291 struct rq_wait *rqw = &iolat->rq_wait;
292 unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
293
294 if (use_delay)
295 blkcg_schedule_throttle(rqos->q, use_memdelay);
296
297 /*
298 * To avoid priority inversions we want to just take a slot if we are
299 * issuing as root. If we're being killed off there's no point in
300 * delaying things, we may have been killed by OOM so throttling may
301 * make recovery take even longer, so just let the IO's through so the
302 * task can go away.
303 */
304 if (issue_as_root || fatal_signal_pending(current)) {
305 atomic_inc(&rqw->inflight);
306 return;
307 }
308
309 rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
310 }
311
312 #define SCALE_DOWN_FACTOR 2
313 #define SCALE_UP_FACTOR 4
314
scale_amount(unsigned long qd,bool up)315 static inline unsigned long scale_amount(unsigned long qd, bool up)
316 {
317 return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
318 }
319
320 /*
321 * We scale the qd down faster than we scale up, so we need to use this helper
322 * to adjust the scale_cookie accordingly so we don't prematurely get
323 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
324 *
325 * Each group has their own local copy of the last scale cookie they saw, so if
326 * the global scale cookie goes up or down they know which way they need to go
327 * based on their last knowledge of it.
328 */
scale_cookie_change(struct blk_iolatency * blkiolat,struct child_latency_info * lat_info,bool up)329 static void scale_cookie_change(struct blk_iolatency *blkiolat,
330 struct child_latency_info *lat_info,
331 bool up)
332 {
333 unsigned long qd = blkiolat->rqos.q->nr_requests;
334 unsigned long scale = scale_amount(qd, up);
335 unsigned long old = atomic_read(&lat_info->scale_cookie);
336 unsigned long max_scale = qd << 1;
337 unsigned long diff = 0;
338
339 if (old < DEFAULT_SCALE_COOKIE)
340 diff = DEFAULT_SCALE_COOKIE - old;
341
342 if (up) {
343 if (scale + old > DEFAULT_SCALE_COOKIE)
344 atomic_set(&lat_info->scale_cookie,
345 DEFAULT_SCALE_COOKIE);
346 else if (diff > qd)
347 atomic_inc(&lat_info->scale_cookie);
348 else
349 atomic_add(scale, &lat_info->scale_cookie);
350 } else {
351 /*
352 * We don't want to dig a hole so deep that it takes us hours to
353 * dig out of it. Just enough that we don't throttle/unthrottle
354 * with jagged workloads but can still unthrottle once pressure
355 * has sufficiently dissipated.
356 */
357 if (diff > qd) {
358 if (diff < max_scale)
359 atomic_dec(&lat_info->scale_cookie);
360 } else {
361 atomic_sub(scale, &lat_info->scale_cookie);
362 }
363 }
364 }
365
366 /*
367 * Change the queue depth of the iolatency_grp. We add/subtract 1/16th of the
368 * queue depth at a time so we don't get wild swings and hopefully dial in to
369 * fairer distribution of the overall queue depth.
370 */
scale_change(struct iolatency_grp * iolat,bool up)371 static void scale_change(struct iolatency_grp *iolat, bool up)
372 {
373 unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
374 unsigned long scale = scale_amount(qd, up);
375 unsigned long old = iolat->rq_depth.max_depth;
376
377 if (old > qd)
378 old = qd;
379
380 if (up) {
381 if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
382 return;
383
384 if (old < qd) {
385 old += scale;
386 old = min(old, qd);
387 iolat->rq_depth.max_depth = old;
388 wake_up_all(&iolat->rq_wait.wait);
389 }
390 } else {
391 old >>= 1;
392 iolat->rq_depth.max_depth = max(old, 1UL);
393 }
394 }
395
396 /* Check our parent and see if the scale cookie has changed. */
check_scale_change(struct iolatency_grp * iolat)397 static void check_scale_change(struct iolatency_grp *iolat)
398 {
399 struct iolatency_grp *parent;
400 struct child_latency_info *lat_info;
401 unsigned int cur_cookie;
402 unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
403 u64 scale_lat;
404 unsigned int old;
405 int direction = 0;
406
407 if (lat_to_blkg(iolat)->parent == NULL)
408 return;
409
410 parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
411 if (!parent)
412 return;
413
414 lat_info = &parent->child_lat;
415 cur_cookie = atomic_read(&lat_info->scale_cookie);
416 scale_lat = READ_ONCE(lat_info->scale_lat);
417
418 if (cur_cookie < our_cookie)
419 direction = -1;
420 else if (cur_cookie > our_cookie)
421 direction = 1;
422 else
423 return;
424
425 old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
426
427 /* Somebody beat us to the punch, just bail. */
428 if (old != our_cookie)
429 return;
430
431 if (direction < 0 && iolat->min_lat_nsec) {
432 u64 samples_thresh;
433
434 if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
435 return;
436
437 /*
438 * Sometimes high priority groups are their own worst enemy, so
439 * instead of taking it out on some poor other group that did 5%
440 * or less of the IO's for the last summation just skip this
441 * scale down event.
442 */
443 samples_thresh = lat_info->nr_samples * 5;
444 samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
445 if (iolat->nr_samples <= samples_thresh)
446 return;
447 }
448
449 /* We're as low as we can go. */
450 if (iolat->rq_depth.max_depth == 1 && direction < 0) {
451 blkcg_use_delay(lat_to_blkg(iolat));
452 return;
453 }
454
455 /* We're back to the default cookie, unthrottle all the things. */
456 if (cur_cookie == DEFAULT_SCALE_COOKIE) {
457 blkcg_clear_delay(lat_to_blkg(iolat));
458 iolat->rq_depth.max_depth = UINT_MAX;
459 wake_up_all(&iolat->rq_wait.wait);
460 return;
461 }
462
463 scale_change(iolat, direction > 0);
464 }
465
blkcg_iolatency_throttle(struct rq_qos * rqos,struct bio * bio)466 static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
467 {
468 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
469 struct blkcg_gq *blkg = bio->bi_blkg;
470 bool issue_as_root = bio_issue_as_root_blkg(bio);
471
472 if (!blkiolat->enabled)
473 return;
474
475 while (blkg && blkg->parent) {
476 struct iolatency_grp *iolat = blkg_to_lat(blkg);
477 if (!iolat) {
478 blkg = blkg->parent;
479 continue;
480 }
481
482 check_scale_change(iolat);
483 __blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
484 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
485 blkg = blkg->parent;
486 }
487 if (!timer_pending(&blkiolat->timer))
488 mod_timer(&blkiolat->timer, jiffies + HZ);
489 }
490
iolatency_record_time(struct iolatency_grp * iolat,struct bio_issue * issue,u64 now,bool issue_as_root)491 static void iolatency_record_time(struct iolatency_grp *iolat,
492 struct bio_issue *issue, u64 now,
493 bool issue_as_root)
494 {
495 u64 start = bio_issue_time(issue);
496 u64 req_time;
497
498 /*
499 * Have to do this so we are truncated to the correct time that our
500 * issue is truncated to.
501 */
502 now = __bio_issue_time(now);
503
504 if (now <= start)
505 return;
506
507 req_time = now - start;
508
509 /*
510 * We don't want to count issue_as_root bio's in the cgroups latency
511 * statistics as it could skew the numbers downwards.
512 */
513 if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
514 u64 sub = iolat->min_lat_nsec;
515 if (req_time < sub)
516 blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
517 return;
518 }
519
520 latency_stat_record_time(iolat, req_time);
521 }
522
523 #define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
524 #define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
525
iolatency_check_latencies(struct iolatency_grp * iolat,u64 now)526 static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
527 {
528 struct blkcg_gq *blkg = lat_to_blkg(iolat);
529 struct iolatency_grp *parent;
530 struct child_latency_info *lat_info;
531 struct latency_stat stat;
532 unsigned long flags;
533 int cpu;
534
535 latency_stat_init(iolat, &stat);
536 preempt_disable();
537 for_each_online_cpu(cpu) {
538 struct latency_stat *s;
539 s = per_cpu_ptr(iolat->stats, cpu);
540 latency_stat_sum(iolat, &stat, s);
541 latency_stat_init(iolat, s);
542 }
543 preempt_enable();
544
545 parent = blkg_to_lat(blkg->parent);
546 if (!parent)
547 return;
548
549 lat_info = &parent->child_lat;
550
551 iolat_update_total_lat_avg(iolat, &stat);
552
553 /* Everything is ok and we don't need to adjust the scale. */
554 if (latency_sum_ok(iolat, &stat) &&
555 atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
556 return;
557
558 /* Somebody beat us to the punch, just bail. */
559 spin_lock_irqsave(&lat_info->lock, flags);
560
561 latency_stat_sum(iolat, &iolat->cur_stat, &stat);
562 lat_info->nr_samples -= iolat->nr_samples;
563 lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
564 iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
565
566 if ((lat_info->last_scale_event >= now ||
567 now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
568 goto out;
569
570 if (latency_sum_ok(iolat, &iolat->cur_stat) &&
571 latency_sum_ok(iolat, &stat)) {
572 if (latency_stat_samples(iolat, &iolat->cur_stat) <
573 BLKIOLATENCY_MIN_GOOD_SAMPLES)
574 goto out;
575 if (lat_info->scale_grp == iolat) {
576 lat_info->last_scale_event = now;
577 scale_cookie_change(iolat->blkiolat, lat_info, true);
578 }
579 } else if (lat_info->scale_lat == 0 ||
580 lat_info->scale_lat >= iolat->min_lat_nsec) {
581 lat_info->last_scale_event = now;
582 if (!lat_info->scale_grp ||
583 lat_info->scale_lat > iolat->min_lat_nsec) {
584 WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
585 lat_info->scale_grp = iolat;
586 }
587 scale_cookie_change(iolat->blkiolat, lat_info, false);
588 }
589 latency_stat_init(iolat, &iolat->cur_stat);
590 out:
591 spin_unlock_irqrestore(&lat_info->lock, flags);
592 }
593
blkcg_iolatency_done_bio(struct rq_qos * rqos,struct bio * bio)594 static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
595 {
596 struct blkcg_gq *blkg;
597 struct rq_wait *rqw;
598 struct iolatency_grp *iolat;
599 u64 window_start;
600 u64 now;
601 bool issue_as_root = bio_issue_as_root_blkg(bio);
602 int inflight = 0;
603
604 blkg = bio->bi_blkg;
605 if (!blkg || !bio_flagged(bio, BIO_QOS_THROTTLED))
606 return;
607
608 iolat = blkg_to_lat(bio->bi_blkg);
609 if (!iolat)
610 return;
611
612 if (!iolat->blkiolat->enabled)
613 return;
614
615 now = ktime_to_ns(ktime_get());
616 while (blkg && blkg->parent) {
617 iolat = blkg_to_lat(blkg);
618 if (!iolat) {
619 blkg = blkg->parent;
620 continue;
621 }
622 rqw = &iolat->rq_wait;
623
624 inflight = atomic_dec_return(&rqw->inflight);
625 WARN_ON_ONCE(inflight < 0);
626 /*
627 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
628 * submitted, so do not account for it.
629 */
630 if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
631 iolatency_record_time(iolat, &bio->bi_issue, now,
632 issue_as_root);
633 window_start = atomic64_read(&iolat->window_start);
634 if (now > window_start &&
635 (now - window_start) >= iolat->cur_win_nsec) {
636 if (atomic64_cmpxchg(&iolat->window_start,
637 window_start, now) == window_start)
638 iolatency_check_latencies(iolat, now);
639 }
640 }
641 wake_up(&rqw->wait);
642 blkg = blkg->parent;
643 }
644 }
645
blkcg_iolatency_exit(struct rq_qos * rqos)646 static void blkcg_iolatency_exit(struct rq_qos *rqos)
647 {
648 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
649
650 del_timer_sync(&blkiolat->timer);
651 flush_work(&blkiolat->enable_work);
652 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
653 kfree(blkiolat);
654 }
655
656 static struct rq_qos_ops blkcg_iolatency_ops = {
657 .throttle = blkcg_iolatency_throttle,
658 .done_bio = blkcg_iolatency_done_bio,
659 .exit = blkcg_iolatency_exit,
660 };
661
blkiolatency_timer_fn(struct timer_list * t)662 static void blkiolatency_timer_fn(struct timer_list *t)
663 {
664 struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
665 struct blkcg_gq *blkg;
666 struct cgroup_subsys_state *pos_css;
667 u64 now = ktime_to_ns(ktime_get());
668
669 rcu_read_lock();
670 blkg_for_each_descendant_pre(blkg, pos_css,
671 blkiolat->rqos.q->root_blkg) {
672 struct iolatency_grp *iolat;
673 struct child_latency_info *lat_info;
674 unsigned long flags;
675 u64 cookie;
676
677 /*
678 * We could be exiting, don't access the pd unless we have a
679 * ref on the blkg.
680 */
681 if (!blkg_tryget(blkg))
682 continue;
683
684 iolat = blkg_to_lat(blkg);
685 if (!iolat)
686 goto next;
687
688 lat_info = &iolat->child_lat;
689 cookie = atomic_read(&lat_info->scale_cookie);
690
691 if (cookie >= DEFAULT_SCALE_COOKIE)
692 goto next;
693
694 spin_lock_irqsave(&lat_info->lock, flags);
695 if (lat_info->last_scale_event >= now)
696 goto next_lock;
697
698 /*
699 * We scaled down but don't have a scale_grp, scale up and carry
700 * on.
701 */
702 if (lat_info->scale_grp == NULL) {
703 scale_cookie_change(iolat->blkiolat, lat_info, true);
704 goto next_lock;
705 }
706
707 /*
708 * It's been 5 seconds since our last scale event, clear the
709 * scale grp in case the group that needed the scale down isn't
710 * doing any IO currently.
711 */
712 if (now - lat_info->last_scale_event >=
713 ((u64)NSEC_PER_SEC * 5))
714 lat_info->scale_grp = NULL;
715 next_lock:
716 spin_unlock_irqrestore(&lat_info->lock, flags);
717 next:
718 blkg_put(blkg);
719 }
720 rcu_read_unlock();
721 }
722
723 /**
724 * blkiolatency_enable_work_fn - Enable or disable iolatency on the device
725 * @work: enable_work of the blk_iolatency of interest
726 *
727 * iolatency needs to keep track of the number of in-flight IOs per cgroup. This
728 * is relatively expensive as it involves walking up the hierarchy twice for
729 * every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
730 * want to disable the in-flight tracking.
731 *
732 * We have to make sure that the counting is balanced - we don't want to leak
733 * the in-flight counts by disabling accounting in the completion path while IOs
734 * are in flight. This is achieved by ensuring that no IO is in flight by
735 * freezing the queue while flipping ->enabled. As this requires a sleepable
736 * context, ->enabled flipping is punted to this work function.
737 */
blkiolatency_enable_work_fn(struct work_struct * work)738 static void blkiolatency_enable_work_fn(struct work_struct *work)
739 {
740 struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
741 enable_work);
742 bool enabled;
743
744 /*
745 * There can only be one instance of this function running for @blkiolat
746 * and it's guaranteed to be executed at least once after the latest
747 * ->enabled_cnt modification. Acting on the latest ->enable_cnt is
748 * sufficient.
749 *
750 * Also, we know @blkiolat is safe to access as ->enable_work is flushed
751 * in blkcg_iolatency_exit().
752 */
753 enabled = atomic_read(&blkiolat->enable_cnt);
754 if (enabled != blkiolat->enabled) {
755 blk_mq_freeze_queue(blkiolat->rqos.q);
756 blkiolat->enabled = enabled;
757 blk_mq_unfreeze_queue(blkiolat->rqos.q);
758 }
759 }
760
blk_iolatency_init(struct request_queue * q)761 int blk_iolatency_init(struct request_queue *q)
762 {
763 struct blk_iolatency *blkiolat;
764 struct rq_qos *rqos;
765 int ret;
766
767 blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
768 if (!blkiolat)
769 return -ENOMEM;
770
771 rqos = &blkiolat->rqos;
772 rqos->id = RQ_QOS_LATENCY;
773 rqos->ops = &blkcg_iolatency_ops;
774 rqos->q = q;
775
776 ret = rq_qos_add(q, rqos);
777 if (ret)
778 goto err_free;
779 ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
780 if (ret)
781 goto err_qos_del;
782
783 timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
784 INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
785
786 return 0;
787
788 err_qos_del:
789 rq_qos_del(q, rqos);
790 err_free:
791 kfree(blkiolat);
792 return ret;
793 }
794
iolatency_set_min_lat_nsec(struct blkcg_gq * blkg,u64 val)795 static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
796 {
797 struct iolatency_grp *iolat = blkg_to_lat(blkg);
798 struct blk_iolatency *blkiolat = iolat->blkiolat;
799 u64 oldval = iolat->min_lat_nsec;
800
801 iolat->min_lat_nsec = val;
802 iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
803 iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
804 BLKIOLATENCY_MAX_WIN_SIZE);
805
806 if (!oldval && val) {
807 if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
808 schedule_work(&blkiolat->enable_work);
809 }
810 if (oldval && !val) {
811 blkcg_clear_delay(blkg);
812 if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
813 schedule_work(&blkiolat->enable_work);
814 }
815 }
816
iolatency_clear_scaling(struct blkcg_gq * blkg)817 static void iolatency_clear_scaling(struct blkcg_gq *blkg)
818 {
819 if (blkg->parent) {
820 struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
821 struct child_latency_info *lat_info;
822 if (!iolat)
823 return;
824
825 lat_info = &iolat->child_lat;
826 spin_lock(&lat_info->lock);
827 atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
828 lat_info->last_scale_event = 0;
829 lat_info->scale_grp = NULL;
830 lat_info->scale_lat = 0;
831 spin_unlock(&lat_info->lock);
832 }
833 }
834
iolatency_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)835 static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
836 size_t nbytes, loff_t off)
837 {
838 struct blkcg *blkcg = css_to_blkcg(of_css(of));
839 struct blkcg_gq *blkg;
840 struct blkg_conf_ctx ctx;
841 struct iolatency_grp *iolat;
842 char *p, *tok;
843 u64 lat_val = 0;
844 u64 oldval;
845 int ret;
846
847 ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
848 if (ret)
849 return ret;
850
851 iolat = blkg_to_lat(ctx.blkg);
852 p = ctx.body;
853
854 ret = -EINVAL;
855 while ((tok = strsep(&p, " "))) {
856 char key[16];
857 char val[21]; /* 18446744073709551616 */
858
859 if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
860 goto out;
861
862 if (!strcmp(key, "target")) {
863 u64 v;
864
865 if (!strcmp(val, "max"))
866 lat_val = 0;
867 else if (sscanf(val, "%llu", &v) == 1)
868 lat_val = v * NSEC_PER_USEC;
869 else
870 goto out;
871 } else {
872 goto out;
873 }
874 }
875
876 /* Walk up the tree to see if our new val is lower than it should be. */
877 blkg = ctx.blkg;
878 oldval = iolat->min_lat_nsec;
879
880 iolatency_set_min_lat_nsec(blkg, lat_val);
881 if (oldval != iolat->min_lat_nsec)
882 iolatency_clear_scaling(blkg);
883 ret = 0;
884 out:
885 blkg_conf_finish(&ctx);
886 return ret ?: nbytes;
887 }
888
iolatency_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)889 static u64 iolatency_prfill_limit(struct seq_file *sf,
890 struct blkg_policy_data *pd, int off)
891 {
892 struct iolatency_grp *iolat = pd_to_lat(pd);
893 const char *dname = blkg_dev_name(pd->blkg);
894
895 if (!dname || !iolat->min_lat_nsec)
896 return 0;
897 seq_printf(sf, "%s target=%llu\n",
898 dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
899 return 0;
900 }
901
iolatency_print_limit(struct seq_file * sf,void * v)902 static int iolatency_print_limit(struct seq_file *sf, void *v)
903 {
904 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
905 iolatency_prfill_limit,
906 &blkcg_policy_iolatency, seq_cft(sf)->private, false);
907 return 0;
908 }
909
iolatency_ssd_stat(struct iolatency_grp * iolat,struct seq_file * s)910 static void iolatency_ssd_stat(struct iolatency_grp *iolat, struct seq_file *s)
911 {
912 struct latency_stat stat;
913 int cpu;
914
915 latency_stat_init(iolat, &stat);
916 preempt_disable();
917 for_each_online_cpu(cpu) {
918 struct latency_stat *s;
919 s = per_cpu_ptr(iolat->stats, cpu);
920 latency_stat_sum(iolat, &stat, s);
921 }
922 preempt_enable();
923
924 if (iolat->rq_depth.max_depth == UINT_MAX)
925 seq_printf(s, " missed=%llu total=%llu depth=max",
926 (unsigned long long)stat.ps.missed,
927 (unsigned long long)stat.ps.total);
928 else
929 seq_printf(s, " missed=%llu total=%llu depth=%u",
930 (unsigned long long)stat.ps.missed,
931 (unsigned long long)stat.ps.total,
932 iolat->rq_depth.max_depth);
933 }
934
iolatency_pd_stat(struct blkg_policy_data * pd,struct seq_file * s)935 static void iolatency_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
936 {
937 struct iolatency_grp *iolat = pd_to_lat(pd);
938 unsigned long long avg_lat;
939 unsigned long long cur_win;
940
941 if (!blkcg_debug_stats)
942 return;
943
944 if (iolat->ssd)
945 return iolatency_ssd_stat(iolat, s);
946
947 avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
948 cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
949 if (iolat->rq_depth.max_depth == UINT_MAX)
950 seq_printf(s, " depth=max avg_lat=%llu win=%llu",
951 avg_lat, cur_win);
952 else
953 seq_printf(s, " depth=%u avg_lat=%llu win=%llu",
954 iolat->rq_depth.max_depth, avg_lat, cur_win);
955 }
956
iolatency_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)957 static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
958 struct request_queue *q,
959 struct blkcg *blkcg)
960 {
961 struct iolatency_grp *iolat;
962
963 iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
964 if (!iolat)
965 return NULL;
966 iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
967 __alignof__(struct latency_stat), gfp);
968 if (!iolat->stats) {
969 kfree(iolat);
970 return NULL;
971 }
972 return &iolat->pd;
973 }
974
iolatency_pd_init(struct blkg_policy_data * pd)975 static void iolatency_pd_init(struct blkg_policy_data *pd)
976 {
977 struct iolatency_grp *iolat = pd_to_lat(pd);
978 struct blkcg_gq *blkg = lat_to_blkg(iolat);
979 struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
980 struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
981 u64 now = ktime_to_ns(ktime_get());
982 int cpu;
983
984 if (blk_queue_nonrot(blkg->q))
985 iolat->ssd = true;
986 else
987 iolat->ssd = false;
988
989 for_each_possible_cpu(cpu) {
990 struct latency_stat *stat;
991 stat = per_cpu_ptr(iolat->stats, cpu);
992 latency_stat_init(iolat, stat);
993 }
994
995 latency_stat_init(iolat, &iolat->cur_stat);
996 rq_wait_init(&iolat->rq_wait);
997 spin_lock_init(&iolat->child_lat.lock);
998 iolat->rq_depth.queue_depth = blkg->q->nr_requests;
999 iolat->rq_depth.max_depth = UINT_MAX;
1000 iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
1001 iolat->blkiolat = blkiolat;
1002 iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
1003 atomic64_set(&iolat->window_start, now);
1004
1005 /*
1006 * We init things in list order, so the pd for the parent may not be
1007 * init'ed yet for whatever reason.
1008 */
1009 if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
1010 struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
1011 atomic_set(&iolat->scale_cookie,
1012 atomic_read(&parent->child_lat.scale_cookie));
1013 } else {
1014 atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
1015 }
1016
1017 atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
1018 }
1019
iolatency_pd_offline(struct blkg_policy_data * pd)1020 static void iolatency_pd_offline(struct blkg_policy_data *pd)
1021 {
1022 struct iolatency_grp *iolat = pd_to_lat(pd);
1023 struct blkcg_gq *blkg = lat_to_blkg(iolat);
1024
1025 iolatency_set_min_lat_nsec(blkg, 0);
1026 iolatency_clear_scaling(blkg);
1027 }
1028
iolatency_pd_free(struct blkg_policy_data * pd)1029 static void iolatency_pd_free(struct blkg_policy_data *pd)
1030 {
1031 struct iolatency_grp *iolat = pd_to_lat(pd);
1032 free_percpu(iolat->stats);
1033 kfree(iolat);
1034 }
1035
1036 static struct cftype iolatency_files[] = {
1037 {
1038 .name = "latency",
1039 .flags = CFTYPE_NOT_ON_ROOT,
1040 .seq_show = iolatency_print_limit,
1041 .write = iolatency_set_limit,
1042 },
1043 {}
1044 };
1045
1046 static struct blkcg_policy blkcg_policy_iolatency = {
1047 .dfl_cftypes = iolatency_files,
1048 .pd_alloc_fn = iolatency_pd_alloc,
1049 .pd_init_fn = iolatency_pd_init,
1050 .pd_offline_fn = iolatency_pd_offline,
1051 .pd_free_fn = iolatency_pd_free,
1052 .pd_stat_fn = iolatency_pd_stat,
1053 };
1054
iolatency_init(void)1055 static int __init iolatency_init(void)
1056 {
1057 return blkcg_policy_register(&blkcg_policy_iolatency);
1058 }
1059
iolatency_exit(void)1060 static void __exit iolatency_exit(void)
1061 {
1062 blkcg_policy_unregister(&blkcg_policy_iolatency);
1063 }
1064
1065 module_init(iolatency_init);
1066 module_exit(iolatency_exit);
1067