1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/module.h>
3 #include <linux/i2c.h>
4 #include <linux/dmi.h>
5 #include <linux/efi.h>
6 #include <linux/pci.h>
7 #include <linux/acpi.h>
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <media/v4l2-subdev.h>
11 #include <linux/mfd/intel_soc_pmic.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio.h>
15 #include <linux/platform_device.h>
16 #include "../../include/linux/atomisp_platform.h"
17 #include "../../include/linux/atomisp_gmin_platform.h"
18
19 #define MAX_SUBDEVS 8
20
21 enum clock_rate {
22 VLV2_CLK_XTAL_25_0MHz = 0,
23 VLV2_CLK_PLL_19P2MHZ = 1
24 };
25
26 #define CLK_RATE_19_2MHZ 19200000
27 #define CLK_RATE_25_0MHZ 25000000
28
29 /* Valid clock number range from 0 to 5 */
30 #define MAX_CLK_COUNT 5
31
32 /* X-Powers AXP288 register set */
33 #define ALDO1_SEL_REG 0x28
34 #define ALDO1_CTRL3_REG 0x13
35 #define ALDO1_2P8V 0x16
36 #define ALDO1_CTRL3_SHIFT 0x05
37
38 #define ELDO_CTRL_REG 0x12
39
40 #define ELDO1_SEL_REG 0x19
41 #define ELDO1_1P6V 0x12
42 #define ELDO1_CTRL_SHIFT 0x00
43
44 #define ELDO2_SEL_REG 0x1a
45 #define ELDO2_1P8V 0x16
46 #define ELDO2_CTRL_SHIFT 0x01
47
48 /* TI SND9039 PMIC register set */
49 #define LDO9_REG 0x49
50 #define LDO10_REG 0x4a
51 #define LDO11_REG 0x4b
52
53 #define LDO_2P8V_ON 0x2f /* 0x2e selects 2.85V ... */
54 #define LDO_2P8V_OFF 0x2e /* ... bottom bit is "enabled" */
55
56 #define LDO_1P8V_ON 0x59 /* 0x58 selects 1.80V ... */
57 #define LDO_1P8V_OFF 0x58 /* ... bottom bit is "enabled" */
58
59 /* CRYSTAL COVE PMIC register set */
60 #define CRYSTAL_1P8V_REG 0x57
61 #define CRYSTAL_2P8V_REG 0x5d
62 #define CRYSTAL_ON 0x63
63 #define CRYSTAL_OFF 0x62
64
65 struct gmin_subdev {
66 struct v4l2_subdev *subdev;
67 enum clock_rate clock_src;
68 struct clk *pmc_clk;
69 struct gpio_desc *gpio0;
70 struct gpio_desc *gpio1;
71 struct regulator *v1p8_reg;
72 struct regulator *v2p8_reg;
73 struct regulator *v1p2_reg;
74 struct regulator *v2p8_vcm_reg;
75 enum atomisp_camera_port csi_port;
76 unsigned int csi_lanes;
77 enum atomisp_input_format csi_fmt;
78 enum atomisp_bayer_order csi_bayer;
79
80 bool clock_on;
81 bool v1p8_on;
82 bool v2p8_on;
83 bool v1p2_on;
84 bool v2p8_vcm_on;
85
86 int v1p8_gpio;
87 int v2p8_gpio;
88
89 u8 pwm_i2c_addr;
90
91 /* For PMIC AXP */
92 int eldo1_sel_reg, eldo1_1p6v, eldo1_ctrl_shift;
93 int eldo2_sel_reg, eldo2_1p8v, eldo2_ctrl_shift;
94 };
95
96 static struct gmin_subdev gmin_subdevs[MAX_SUBDEVS];
97
98 /* ACPI HIDs for the PMICs that could be used by this driver */
99 #define PMIC_ACPI_AXP "INT33F4" /* XPower AXP288 PMIC */
100 #define PMIC_ACPI_TI "INT33F5" /* Dollar Cove TI PMIC */
101 #define PMIC_ACPI_CRYSTALCOVE "INT33FD" /* Crystal Cove PMIC */
102
103 #define PMIC_PLATFORM_TI "intel_soc_pmic_chtdc_ti"
104
105 static enum {
106 PMIC_UNSET = 0,
107 PMIC_REGULATOR,
108 PMIC_AXP,
109 PMIC_TI,
110 PMIC_CRYSTALCOVE
111 } pmic_id;
112
113 static const char *pmic_name[] = {
114 [PMIC_UNSET] = "ACPI device PM",
115 [PMIC_REGULATOR] = "regulator driver",
116 [PMIC_AXP] = "XPower AXP288 PMIC",
117 [PMIC_TI] = "Dollar Cove TI PMIC",
118 [PMIC_CRYSTALCOVE] = "Crystal Cove PMIC",
119 };
120
121 static DEFINE_MUTEX(gmin_regulator_mutex);
122 static int gmin_v1p8_enable_count;
123 static int gmin_v2p8_enable_count;
124
125 /* The atomisp uses type==0 for the end-of-list marker, so leave space. */
126 static struct intel_v4l2_subdev_table pdata_subdevs[MAX_SUBDEVS + 1];
127
128 static const struct atomisp_platform_data pdata = {
129 .subdevs = pdata_subdevs,
130 };
131
132 static LIST_HEAD(vcm_devices);
133 static DEFINE_MUTEX(vcm_lock);
134
135 static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev);
136
137 /*
138 * Legacy/stub behavior copied from upstream platform_camera.c. The
139 * atomisp driver relies on these values being non-NULL in a few
140 * places, even though they are hard-coded in all current
141 * implementations.
142 */
atomisp_get_default_camera_caps(void)143 const struct atomisp_camera_caps *atomisp_get_default_camera_caps(void)
144 {
145 static const struct atomisp_camera_caps caps = {
146 .sensor_num = 1,
147 .sensor = {
148 { .stream_num = 1, },
149 },
150 };
151 return ∩︀
152 }
153 EXPORT_SYMBOL_GPL(atomisp_get_default_camera_caps);
154
atomisp_get_platform_data(void)155 const struct atomisp_platform_data *atomisp_get_platform_data(void)
156 {
157 return &pdata;
158 }
159 EXPORT_SYMBOL_GPL(atomisp_get_platform_data);
160
atomisp_register_i2c_module(struct v4l2_subdev * subdev,struct camera_sensor_platform_data * plat_data,enum intel_v4l2_subdev_type type)161 int atomisp_register_i2c_module(struct v4l2_subdev *subdev,
162 struct camera_sensor_platform_data *plat_data,
163 enum intel_v4l2_subdev_type type)
164 {
165 int i;
166 struct i2c_board_info *bi;
167 struct gmin_subdev *gs;
168 struct i2c_client *client = v4l2_get_subdevdata(subdev);
169 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
170
171 dev_info(&client->dev, "register atomisp i2c module type %d\n", type);
172
173 /* The windows driver model (and thus most BIOSes by default)
174 * uses ACPI runtime power management for camera devices, but
175 * we don't. Disable it, or else the rails will be needlessly
176 * tickled during suspend/resume. This has caused power and
177 * performance issues on multiple devices.
178 */
179 adev->power.flags.power_resources = 0;
180
181 for (i = 0; i < MAX_SUBDEVS; i++)
182 if (!pdata.subdevs[i].type)
183 break;
184
185 if (pdata.subdevs[i].type)
186 return -ENOMEM;
187
188 /* Note subtlety of initialization order: at the point where
189 * this registration API gets called, the platform data
190 * callbacks have probably already been invoked, so the
191 * gmin_subdev struct is already initialized for us.
192 */
193 gs = find_gmin_subdev(subdev);
194 if (!gs)
195 return -ENODEV;
196
197 pdata.subdevs[i].type = type;
198 pdata.subdevs[i].port = gs->csi_port;
199 pdata.subdevs[i].subdev = subdev;
200 pdata.subdevs[i].v4l2_subdev.i2c_adapter_id = client->adapter->nr;
201
202 /* Convert i2c_client to i2c_board_info */
203 bi = &pdata.subdevs[i].v4l2_subdev.board_info;
204 memcpy(bi->type, client->name, I2C_NAME_SIZE);
205 bi->flags = client->flags;
206 bi->addr = client->addr;
207 bi->irq = client->irq;
208 bi->platform_data = plat_data;
209
210 return 0;
211 }
212 EXPORT_SYMBOL_GPL(atomisp_register_i2c_module);
213
atomisp_gmin_find_subdev(struct i2c_adapter * adapter,struct i2c_board_info * board_info)214 struct v4l2_subdev *atomisp_gmin_find_subdev(struct i2c_adapter *adapter,
215 struct i2c_board_info *board_info)
216 {
217 int i;
218
219 for (i = 0; i < MAX_SUBDEVS && pdata.subdevs[i].type; i++) {
220 struct intel_v4l2_subdev_table *sd = &pdata.subdevs[i];
221
222 if (sd->v4l2_subdev.i2c_adapter_id == adapter->nr &&
223 sd->v4l2_subdev.board_info.addr == board_info->addr)
224 return sd->subdev;
225 }
226 return NULL;
227 }
228 EXPORT_SYMBOL_GPL(atomisp_gmin_find_subdev);
229
atomisp_gmin_remove_subdev(struct v4l2_subdev * sd)230 int atomisp_gmin_remove_subdev(struct v4l2_subdev *sd)
231 {
232 int i, j;
233
234 if (!sd)
235 return 0;
236
237 for (i = 0; i < MAX_SUBDEVS; i++) {
238 if (pdata.subdevs[i].subdev == sd) {
239 for (j = i + 1; j <= MAX_SUBDEVS; j++)
240 pdata.subdevs[j - 1] = pdata.subdevs[j];
241 }
242 if (gmin_subdevs[i].subdev == sd) {
243 if (gmin_subdevs[i].gpio0)
244 gpiod_put(gmin_subdevs[i].gpio0);
245 gmin_subdevs[i].gpio0 = NULL;
246 if (gmin_subdevs[i].gpio1)
247 gpiod_put(gmin_subdevs[i].gpio1);
248 gmin_subdevs[i].gpio1 = NULL;
249 if (pmic_id == PMIC_REGULATOR) {
250 regulator_put(gmin_subdevs[i].v1p8_reg);
251 regulator_put(gmin_subdevs[i].v2p8_reg);
252 regulator_put(gmin_subdevs[i].v1p2_reg);
253 regulator_put(gmin_subdevs[i].v2p8_vcm_reg);
254 }
255 gmin_subdevs[i].subdev = NULL;
256 }
257 }
258 return 0;
259 }
260 EXPORT_SYMBOL_GPL(atomisp_gmin_remove_subdev);
261
262 struct gmin_cfg_var {
263 const char *name, *val;
264 };
265
266 static struct gmin_cfg_var ffrd8_vars[] = {
267 { "INTCF1B:00_ImxId", "0x134" },
268 { "INTCF1B:00_CsiPort", "1" },
269 { "INTCF1B:00_CsiLanes", "4" },
270 { "INTCF1B:00_CamClk", "0" },
271 {},
272 };
273
274 /* Cribbed from MCG defaults in the mt9m114 driver, not actually verified
275 * vs. T100 hardware
276 */
277 static struct gmin_cfg_var t100_vars[] = {
278 { "INT33F0:00_CsiPort", "0" },
279 { "INT33F0:00_CsiLanes", "1" },
280 { "INT33F0:00_CamClk", "1" },
281 {},
282 };
283
284 static struct gmin_cfg_var mrd7_vars[] = {
285 {"INT33F8:00_CamType", "1"},
286 {"INT33F8:00_CsiPort", "1"},
287 {"INT33F8:00_CsiLanes", "2"},
288 {"INT33F8:00_CsiFmt", "13"},
289 {"INT33F8:00_CsiBayer", "0"},
290 {"INT33F8:00_CamClk", "0"},
291
292 {"INT33F9:00_CamType", "1"},
293 {"INT33F9:00_CsiPort", "0"},
294 {"INT33F9:00_CsiLanes", "1"},
295 {"INT33F9:00_CsiFmt", "13"},
296 {"INT33F9:00_CsiBayer", "0"},
297 {"INT33F9:00_CamClk", "1"},
298 {},
299 };
300
301 static struct gmin_cfg_var ecs7_vars[] = {
302 {"INT33BE:00_CsiPort", "1"},
303 {"INT33BE:00_CsiLanes", "2"},
304 {"INT33BE:00_CsiFmt", "13"},
305 {"INT33BE:00_CsiBayer", "2"},
306 {"INT33BE:00_CamClk", "0"},
307
308 {"INT33F0:00_CsiPort", "0"},
309 {"INT33F0:00_CsiLanes", "1"},
310 {"INT33F0:00_CsiFmt", "13"},
311 {"INT33F0:00_CsiBayer", "0"},
312 {"INT33F0:00_CamClk", "1"},
313 {"gmin_V2P8GPIO", "402"},
314 {},
315 };
316
317 static struct gmin_cfg_var i8880_vars[] = {
318 {"XXOV2680:00_CsiPort", "1"},
319 {"XXOV2680:00_CsiLanes", "1"},
320 {"XXOV2680:00_CamClk", "0"},
321
322 {"XXGC0310:00_CsiPort", "0"},
323 {"XXGC0310:00_CsiLanes", "1"},
324 {"XXGC0310:00_CamClk", "1"},
325 {},
326 };
327
328 /*
329 * Surface 3 does not describe CsiPort/CsiLanes in both DSDT and EFI.
330 */
331 static struct gmin_cfg_var surface3_vars[] = {
332 {"APTA0330:00_CsiPort", "0"},
333 {"APTA0330:00_CsiLanes", "2"},
334
335 {"OVTI8835:00_CsiPort", "1"},
336 {"OVTI8835:00_CsiLanes", "4"},
337 {},
338 };
339
340 static const struct dmi_system_id gmin_vars[] = {
341 {
342 .ident = "BYT-T FFD8",
343 .matches = {
344 DMI_MATCH(DMI_BOARD_NAME, "BYT-T FFD8"),
345 },
346 .driver_data = ffrd8_vars,
347 },
348 {
349 .ident = "T100TA",
350 .matches = {
351 DMI_MATCH(DMI_BOARD_NAME, "T100TA"),
352 },
353 .driver_data = t100_vars,
354 },
355 {
356 .ident = "MRD7",
357 .matches = {
358 DMI_MATCH(DMI_BOARD_NAME, "TABLET"),
359 DMI_MATCH(DMI_BOARD_VERSION, "MRD 7"),
360 },
361 .driver_data = mrd7_vars,
362 },
363 {
364 .ident = "ST70408",
365 .matches = {
366 DMI_MATCH(DMI_BOARD_NAME, "ST70408"),
367 },
368 .driver_data = ecs7_vars,
369 },
370 {
371 .ident = "VTA0803",
372 .matches = {
373 DMI_MATCH(DMI_BOARD_NAME, "VTA0803"),
374 },
375 .driver_data = i8880_vars,
376 },
377 {
378 .ident = "Surface 3",
379 .matches = {
380 DMI_MATCH(DMI_BOARD_NAME, "Surface 3"),
381 },
382 .driver_data = surface3_vars,
383 },
384 {}
385 };
386
387 #define GMIN_CFG_VAR_EFI_GUID EFI_GUID(0xecb54cd9, 0xe5ae, 0x4fdc, \
388 0xa9, 0x71, 0xe8, 0x77, \
389 0x75, 0x60, 0x68, 0xf7)
390
391 static const guid_t atomisp_dsm_guid = GUID_INIT(0xdc2f6c4f, 0x045b, 0x4f1d,
392 0x97, 0xb9, 0x88, 0x2a,
393 0x68, 0x60, 0xa4, 0xbe);
394
395 #define CFG_VAR_NAME_MAX 64
396
397 #define GMIN_PMC_CLK_NAME 14 /* "pmc_plt_clk_[0..5]" */
398 static char gmin_pmc_clk_name[GMIN_PMC_CLK_NAME];
399
gmin_i2c_dev_exists(struct device * dev,char * name,struct i2c_client ** client)400 static struct i2c_client *gmin_i2c_dev_exists(struct device *dev, char *name,
401 struct i2c_client **client)
402 {
403 struct acpi_device *adev;
404 struct device *d;
405
406 adev = acpi_dev_get_first_match_dev(name, NULL, -1);
407 if (!adev)
408 return NULL;
409
410 d = bus_find_device_by_acpi_dev(&i2c_bus_type, adev);
411 acpi_dev_put(adev);
412 if (!d)
413 return NULL;
414
415 *client = i2c_verify_client(d);
416 put_device(d);
417
418 dev_dbg(dev, "found '%s' at address 0x%02x, adapter %d\n",
419 (*client)->name, (*client)->addr, (*client)->adapter->nr);
420 return *client;
421 }
422
gmin_i2c_write(struct device * dev,u16 i2c_addr,u8 reg,u32 value,u32 mask)423 static int gmin_i2c_write(struct device *dev, u16 i2c_addr, u8 reg,
424 u32 value, u32 mask)
425 {
426 int ret;
427
428 /*
429 * FIXME: Right now, the intel_pmic driver just write values
430 * directly at the regmap, instead of properly implementing
431 * i2c_transfer() mechanism. Let's use the same interface here,
432 * as otherwise we may face issues.
433 */
434
435 dev_dbg(dev,
436 "I2C write, addr: 0x%02x, reg: 0x%02x, value: 0x%02x, mask: 0x%02x\n",
437 i2c_addr, reg, value, mask);
438
439 ret = intel_soc_pmic_exec_mipi_pmic_seq_element(i2c_addr, reg, value, mask);
440 if (ret == -EOPNOTSUPP)
441 dev_err(dev,
442 "ACPI didn't mapped the OpRegion needed to access I2C address 0x%02x.\n"
443 "Need to compile the kernel using CONFIG_*_PMIC_OPREGION settings\n",
444 i2c_addr);
445
446 return ret;
447 }
448
atomisp_get_acpi_power(struct device * dev)449 static int atomisp_get_acpi_power(struct device *dev)
450 {
451 char name[5];
452 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
453 struct acpi_buffer b_name = { sizeof(name), name };
454 union acpi_object *package, *element;
455 acpi_handle handle = ACPI_HANDLE(dev);
456 acpi_handle rhandle;
457 acpi_status status;
458 int clock_num = -1;
459 int i;
460
461 status = acpi_evaluate_object(handle, "_PR0", NULL, &buffer);
462 if (!ACPI_SUCCESS(status))
463 return -1;
464
465 package = buffer.pointer;
466
467 if (!buffer.length || !package
468 || package->type != ACPI_TYPE_PACKAGE
469 || !package->package.count)
470 goto fail;
471
472 for (i = 0; i < package->package.count; i++) {
473 element = &package->package.elements[i];
474
475 if (element->type != ACPI_TYPE_LOCAL_REFERENCE)
476 continue;
477
478 rhandle = element->reference.handle;
479 if (!rhandle)
480 goto fail;
481
482 acpi_get_name(rhandle, ACPI_SINGLE_NAME, &b_name);
483
484 dev_dbg(dev, "Found PM resource '%s'\n", name);
485 if (strlen(name) == 4 && !strncmp(name, "CLK", 3)) {
486 if (name[3] >= '0' && name[3] <= '4')
487 clock_num = name[3] - '0';
488 #if 0
489 /*
490 * We could abort here, but let's parse all resources,
491 * as this is helpful for debugging purposes
492 */
493 if (clock_num >= 0)
494 break;
495 #endif
496 }
497 }
498
499 fail:
500 ACPI_FREE(buffer.pointer);
501
502 return clock_num;
503 }
504
gmin_get_pmic_id_and_addr(struct device * dev)505 static u8 gmin_get_pmic_id_and_addr(struct device *dev)
506 {
507 struct i2c_client *power = NULL;
508 static u8 pmic_i2c_addr;
509
510 if (pmic_id)
511 return pmic_i2c_addr;
512
513 if (gmin_i2c_dev_exists(dev, PMIC_ACPI_TI, &power))
514 pmic_id = PMIC_TI;
515 else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_AXP, &power))
516 pmic_id = PMIC_AXP;
517 else if (gmin_i2c_dev_exists(dev, PMIC_ACPI_CRYSTALCOVE, &power))
518 pmic_id = PMIC_CRYSTALCOVE;
519 else
520 pmic_id = PMIC_REGULATOR;
521
522 pmic_i2c_addr = power ? power->addr : 0;
523 return pmic_i2c_addr;
524 }
525
gmin_detect_pmic(struct v4l2_subdev * subdev)526 static int gmin_detect_pmic(struct v4l2_subdev *subdev)
527 {
528 struct i2c_client *client = v4l2_get_subdevdata(subdev);
529 struct device *dev = &client->dev;
530 u8 pmic_i2c_addr;
531
532 pmic_i2c_addr = gmin_get_pmic_id_and_addr(dev);
533 dev_info(dev, "gmin: power management provided via %s (i2c addr 0x%02x)\n",
534 pmic_name[pmic_id], pmic_i2c_addr);
535 return pmic_i2c_addr;
536 }
537
gmin_subdev_add(struct gmin_subdev * gs)538 static int gmin_subdev_add(struct gmin_subdev *gs)
539 {
540 struct i2c_client *client = v4l2_get_subdevdata(gs->subdev);
541 struct device *dev = &client->dev;
542 struct acpi_device *adev = ACPI_COMPANION(dev);
543 int ret, default_val, clock_num = -1;
544
545 dev_info(dev, "%s: ACPI path is %pfw\n", __func__, dev_fwnode(dev));
546
547 /*WA:CHT requires XTAL clock as PLL is not stable.*/
548 gs->clock_src = gmin_get_var_int(dev, false, "ClkSrc",
549 VLV2_CLK_PLL_19P2MHZ);
550
551 /*
552 * Get ACPI _PR0 derived clock here already because it is used
553 * to determine the csi_port default.
554 */
555 if (acpi_device_power_manageable(adev))
556 clock_num = atomisp_get_acpi_power(dev);
557
558 /* Compare clock to CsiPort 1 pmc-clock used in the CHT/BYT reference designs */
559 if (IS_ISP2401)
560 default_val = clock_num == 4 ? 1 : 0;
561 else
562 default_val = clock_num == 0 ? 1 : 0;
563
564 gs->csi_port = gmin_get_var_int(dev, false, "CsiPort", default_val);
565 gs->csi_lanes = gmin_get_var_int(dev, false, "CsiLanes", 1);
566
567 gs->gpio0 = gpiod_get_index(dev, NULL, 0, GPIOD_OUT_LOW);
568 if (IS_ERR(gs->gpio0))
569 gs->gpio0 = NULL;
570 else
571 dev_info(dev, "will handle gpio0 via ACPI\n");
572
573 gs->gpio1 = gpiod_get_index(dev, NULL, 1, GPIOD_OUT_LOW);
574 if (IS_ERR(gs->gpio1))
575 gs->gpio1 = NULL;
576 else
577 dev_info(dev, "will handle gpio1 via ACPI\n");
578
579 /*
580 * Those are used only when there is an external regulator apart
581 * from the PMIC that would be providing power supply, like on the
582 * two cases below:
583 *
584 * The ECS E7 board drives camera 2.8v from an external regulator
585 * instead of the PMIC. There's a gmin_CamV2P8 config variable
586 * that specifies the GPIO to handle this particular case,
587 * but this needs a broader architecture for handling camera power.
588 *
589 * The CHT RVP board drives camera 1.8v from an* external regulator
590 * instead of the PMIC just like ECS E7 board.
591 */
592
593 gs->v1p8_gpio = gmin_get_var_int(dev, true, "V1P8GPIO", -1);
594 gs->v2p8_gpio = gmin_get_var_int(dev, true, "V2P8GPIO", -1);
595
596 /*
597 * FIXME:
598 *
599 * The ACPI handling code checks for the _PR? tables in order to
600 * know what is required to switch the device from power state
601 * D0 (_PR0) up to D3COLD (_PR3).
602 *
603 * The adev->flags.power_manageable is set to true if the device
604 * has a _PR0 table, which can be checked by calling
605 * acpi_device_power_manageable(adev).
606 *
607 * However, this only says that the device can be set to power off
608 * mode.
609 *
610 * At least on the DSDT tables we've seen so far, there's no _PR3,
611 * nor _PS3 (which would have a somewhat similar effect).
612 * So, using ACPI for power management won't work, except if adding
613 * an ACPI override logic somewhere.
614 *
615 * So, at least for the existing devices we know, the check below
616 * will always be false.
617 */
618 if (acpi_device_can_wakeup(adev) &&
619 acpi_device_can_poweroff(adev)) {
620 dev_info(dev,
621 "gmin: power management provided via device PM\n");
622 return 0;
623 }
624
625 /*
626 * The code below is here due to backward compatibility with devices
627 * whose ACPI BIOS may not contain everything that would be needed
628 * in order to set clocks and do power management.
629 */
630
631 /*
632 * According with :
633 * https://github.com/projectceladon/hardware-intel-kernelflinger/blob/master/doc/fastboot.md
634 *
635 * The "CamClk" EFI var is set via fastboot on some Android devices,
636 * and seems to contain the number of the clock used to feed the
637 * sensor.
638 *
639 * On systems with a proper ACPI table, this is given via the _PR0
640 * power resource table. The logic below should first check if there
641 * is a power resource already, falling back to the EFI vars detection
642 * otherwise.
643 */
644
645 /* If getting the clock from _PR0 above failed, fall-back to EFI and/or DMI match */
646 if (clock_num < 0)
647 clock_num = gmin_get_var_int(dev, false, "CamClk", 0);
648
649 if (clock_num < 0 || clock_num > MAX_CLK_COUNT) {
650 dev_err(dev, "Invalid clock number\n");
651 return -EINVAL;
652 }
653
654 snprintf(gmin_pmc_clk_name, sizeof(gmin_pmc_clk_name),
655 "%s_%d", "pmc_plt_clk", clock_num);
656
657 gs->pmc_clk = devm_clk_get(dev, gmin_pmc_clk_name);
658 if (IS_ERR(gs->pmc_clk)) {
659 ret = PTR_ERR(gs->pmc_clk);
660 dev_err(dev, "Failed to get clk from %s: %d\n", gmin_pmc_clk_name, ret);
661 return ret;
662 }
663 dev_info(dev, "Will use CLK%d (%s)\n", clock_num, gmin_pmc_clk_name);
664
665 /*
666 * The firmware might enable the clock at
667 * boot (this information may or may not
668 * be reflected in the enable clock register).
669 * To change the rate we must disable the clock
670 * first to cover these cases. Due to common
671 * clock framework restrictions that do not allow
672 * to disable a clock that has not been enabled,
673 * we need to enable the clock first.
674 */
675 ret = clk_prepare_enable(gs->pmc_clk);
676 if (!ret)
677 clk_disable_unprepare(gs->pmc_clk);
678
679 switch (pmic_id) {
680 case PMIC_REGULATOR:
681 gs->v1p8_reg = regulator_get(dev, "V1P8SX");
682 gs->v2p8_reg = regulator_get(dev, "V2P8SX");
683
684 gs->v1p2_reg = regulator_get(dev, "V1P2A");
685 gs->v2p8_vcm_reg = regulator_get(dev, "VPROG4B");
686
687 /* Note: ideally we would initialize v[12]p8_on to the
688 * output of regulator_is_enabled(), but sadly that
689 * API is broken with the current drivers, returning
690 * "1" for a regulator that will then emit a
691 * "unbalanced disable" WARNing if we try to disable
692 * it.
693 */
694 break;
695
696 case PMIC_AXP:
697 gs->eldo1_1p6v = gmin_get_var_int(dev, false,
698 "eldo1_1p8v",
699 ELDO1_1P6V);
700 gs->eldo1_sel_reg = gmin_get_var_int(dev, false,
701 "eldo1_sel_reg",
702 ELDO1_SEL_REG);
703 gs->eldo1_ctrl_shift = gmin_get_var_int(dev, false,
704 "eldo1_ctrl_shift",
705 ELDO1_CTRL_SHIFT);
706 gs->eldo2_1p8v = gmin_get_var_int(dev, false,
707 "eldo2_1p8v",
708 ELDO2_1P8V);
709 gs->eldo2_sel_reg = gmin_get_var_int(dev, false,
710 "eldo2_sel_reg",
711 ELDO2_SEL_REG);
712 gs->eldo2_ctrl_shift = gmin_get_var_int(dev, false,
713 "eldo2_ctrl_shift",
714 ELDO2_CTRL_SHIFT);
715 break;
716
717 default:
718 break;
719 }
720
721 return 0;
722 }
723
find_gmin_subdev(struct v4l2_subdev * subdev)724 static struct gmin_subdev *find_gmin_subdev(struct v4l2_subdev *subdev)
725 {
726 int i;
727
728 for (i = 0; i < MAX_SUBDEVS; i++)
729 if (gmin_subdevs[i].subdev == subdev)
730 return &gmin_subdevs[i];
731 return NULL;
732 }
733
find_free_gmin_subdev_slot(void)734 static struct gmin_subdev *find_free_gmin_subdev_slot(void)
735 {
736 unsigned int i;
737
738 for (i = 0; i < MAX_SUBDEVS; i++)
739 if (gmin_subdevs[i].subdev == NULL)
740 return &gmin_subdevs[i];
741 return NULL;
742 }
743
axp_regulator_set(struct device * dev,struct gmin_subdev * gs,int sel_reg,u8 setting,int ctrl_reg,int shift,bool on)744 static int axp_regulator_set(struct device *dev, struct gmin_subdev *gs,
745 int sel_reg, u8 setting,
746 int ctrl_reg, int shift, bool on)
747 {
748 int ret;
749 int val;
750
751 ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, sel_reg, setting, 0xff);
752 if (ret)
753 return ret;
754
755 val = on ? 1 << shift : 0;
756
757 ret = gmin_i2c_write(dev, gs->pwm_i2c_addr, ctrl_reg, val, 1 << shift);
758 if (ret)
759 return ret;
760
761 return 0;
762 }
763
764 /*
765 * Some boards contain a hw-bug where turning eldo2 back on after having turned
766 * it off causes the CPLM3218 ambient-light-sensor on the image-sensor's I2C bus
767 * to crash, hanging the bus. Do not turn eldo2 off on these systems.
768 */
769 static const struct dmi_system_id axp_leave_eldo2_on_ids[] = {
770 {
771 .matches = {
772 DMI_MATCH(DMI_SYS_VENDOR, "TrekStor"),
773 DMI_MATCH(DMI_PRODUCT_NAME, "SurfTab duo W1 10.1 (VT4)"),
774 },
775 },
776 { }
777 };
778
axp_v1p8_on(struct device * dev,struct gmin_subdev * gs)779 static int axp_v1p8_on(struct device *dev, struct gmin_subdev *gs)
780 {
781 int ret;
782
783 ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
784 ELDO_CTRL_REG, gs->eldo2_ctrl_shift, true);
785 if (ret)
786 return ret;
787
788 /*
789 * This sleep comes out of the gc2235 driver, which is the
790 * only one I currently see that wants to set both 1.8v rails.
791 */
792 usleep_range(110, 150);
793
794 ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
795 ELDO_CTRL_REG, gs->eldo1_ctrl_shift, true);
796 return ret;
797 }
798
axp_v1p8_off(struct device * dev,struct gmin_subdev * gs)799 static int axp_v1p8_off(struct device *dev, struct gmin_subdev *gs)
800 {
801 int ret;
802
803 ret = axp_regulator_set(dev, gs, gs->eldo1_sel_reg, gs->eldo1_1p6v,
804 ELDO_CTRL_REG, gs->eldo1_ctrl_shift, false);
805 if (ret)
806 return ret;
807
808 if (dmi_check_system(axp_leave_eldo2_on_ids))
809 return 0;
810
811 ret = axp_regulator_set(dev, gs, gs->eldo2_sel_reg, gs->eldo2_1p8v,
812 ELDO_CTRL_REG, gs->eldo2_ctrl_shift, false);
813 return ret;
814 }
815
gmin_gpio0_ctrl(struct v4l2_subdev * subdev,int on)816 static int gmin_gpio0_ctrl(struct v4l2_subdev *subdev, int on)
817 {
818 struct gmin_subdev *gs = find_gmin_subdev(subdev);
819
820 if (gs) {
821 gpiod_set_value(gs->gpio0, on);
822 return 0;
823 }
824 return -EINVAL;
825 }
826
gmin_gpio1_ctrl(struct v4l2_subdev * subdev,int on)827 static int gmin_gpio1_ctrl(struct v4l2_subdev *subdev, int on)
828 {
829 struct gmin_subdev *gs = find_gmin_subdev(subdev);
830
831 if (gs) {
832 gpiod_set_value(gs->gpio1, on);
833 return 0;
834 }
835 return -EINVAL;
836 }
837
gmin_v1p2_ctrl(struct v4l2_subdev * subdev,int on)838 static int gmin_v1p2_ctrl(struct v4l2_subdev *subdev, int on)
839 {
840 struct gmin_subdev *gs = find_gmin_subdev(subdev);
841
842 if (!gs || gs->v1p2_on == on)
843 return 0;
844 gs->v1p2_on = on;
845
846 /* use regulator for PMIC */
847 if (gs->v1p2_reg) {
848 if (on)
849 return regulator_enable(gs->v1p2_reg);
850 else
851 return regulator_disable(gs->v1p2_reg);
852 }
853
854 /* TODO:v1p2 may need to extend to other PMICs */
855
856 return -EINVAL;
857 }
858
gmin_v1p8_ctrl(struct v4l2_subdev * subdev,int on)859 static int gmin_v1p8_ctrl(struct v4l2_subdev *subdev, int on)
860 {
861 struct gmin_subdev *gs = find_gmin_subdev(subdev);
862 int ret;
863 int value;
864
865 if (!gs || gs->v1p8_on == on)
866 return 0;
867
868 if (gs->v1p8_gpio >= 0) {
869 pr_info("atomisp_gmin_platform: 1.8v power on GPIO %d\n",
870 gs->v1p8_gpio);
871 ret = gpio_request(gs->v1p8_gpio, "camera_v1p8_en");
872 if (!ret)
873 ret = gpio_direction_output(gs->v1p8_gpio, 0);
874 if (ret)
875 pr_err("V1P8 GPIO initialization failed\n");
876 }
877
878 gs->v1p8_on = on;
879
880 ret = 0;
881 mutex_lock(&gmin_regulator_mutex);
882 if (on) {
883 gmin_v1p8_enable_count++;
884 if (gmin_v1p8_enable_count > 1)
885 goto out; /* Already on */
886 } else {
887 gmin_v1p8_enable_count--;
888 if (gmin_v1p8_enable_count > 0)
889 goto out; /* Still needed */
890 }
891
892 if (gs->v1p8_gpio >= 0)
893 gpio_set_value(gs->v1p8_gpio, on);
894
895 if (gs->v1p8_reg) {
896 regulator_set_voltage(gs->v1p8_reg, 1800000, 1800000);
897 if (on)
898 ret = regulator_enable(gs->v1p8_reg);
899 else
900 ret = regulator_disable(gs->v1p8_reg);
901
902 goto out;
903 }
904
905 switch (pmic_id) {
906 case PMIC_AXP:
907 if (on)
908 ret = axp_v1p8_on(subdev->dev, gs);
909 else
910 ret = axp_v1p8_off(subdev->dev, gs);
911 break;
912 case PMIC_TI:
913 value = on ? LDO_1P8V_ON : LDO_1P8V_OFF;
914
915 ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
916 LDO10_REG, value, 0xff);
917 break;
918 case PMIC_CRYSTALCOVE:
919 value = on ? CRYSTAL_ON : CRYSTAL_OFF;
920
921 ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
922 CRYSTAL_1P8V_REG, value, 0xff);
923 break;
924 default:
925 dev_err(subdev->dev, "Couldn't set power mode for v1p8\n");
926 ret = -EINVAL;
927 }
928
929 out:
930 mutex_unlock(&gmin_regulator_mutex);
931 return ret;
932 }
933
gmin_v2p8_ctrl(struct v4l2_subdev * subdev,int on)934 static int gmin_v2p8_ctrl(struct v4l2_subdev *subdev, int on)
935 {
936 struct gmin_subdev *gs = find_gmin_subdev(subdev);
937 int ret;
938 int value;
939
940 if (WARN_ON(!gs))
941 return -ENODEV;
942
943 if (gs->v2p8_gpio >= 0) {
944 pr_info("atomisp_gmin_platform: 2.8v power on GPIO %d\n",
945 gs->v2p8_gpio);
946 ret = gpio_request(gs->v2p8_gpio, "camera_v2p8");
947 if (!ret)
948 ret = gpio_direction_output(gs->v2p8_gpio, 0);
949 if (ret)
950 pr_err("V2P8 GPIO initialization failed\n");
951 }
952
953 if (gs->v2p8_on == on)
954 return 0;
955 gs->v2p8_on = on;
956
957 ret = 0;
958 mutex_lock(&gmin_regulator_mutex);
959 if (on) {
960 gmin_v2p8_enable_count++;
961 if (gmin_v2p8_enable_count > 1)
962 goto out; /* Already on */
963 } else {
964 gmin_v2p8_enable_count--;
965 if (gmin_v2p8_enable_count > 0)
966 goto out; /* Still needed */
967 }
968
969 if (gs->v2p8_gpio >= 0)
970 gpio_set_value(gs->v2p8_gpio, on);
971
972 if (gs->v2p8_reg) {
973 regulator_set_voltage(gs->v2p8_reg, 2900000, 2900000);
974 if (on)
975 ret = regulator_enable(gs->v2p8_reg);
976 else
977 ret = regulator_disable(gs->v2p8_reg);
978
979 goto out;
980 }
981
982 switch (pmic_id) {
983 case PMIC_AXP:
984 ret = axp_regulator_set(subdev->dev, gs, ALDO1_SEL_REG,
985 ALDO1_2P8V, ALDO1_CTRL3_REG,
986 ALDO1_CTRL3_SHIFT, on);
987 break;
988 case PMIC_TI:
989 value = on ? LDO_2P8V_ON : LDO_2P8V_OFF;
990
991 ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
992 LDO9_REG, value, 0xff);
993 break;
994 case PMIC_CRYSTALCOVE:
995 value = on ? CRYSTAL_ON : CRYSTAL_OFF;
996
997 ret = gmin_i2c_write(subdev->dev, gs->pwm_i2c_addr,
998 CRYSTAL_2P8V_REG, value, 0xff);
999 break;
1000 default:
1001 dev_err(subdev->dev, "Couldn't set power mode for v2p8\n");
1002 ret = -EINVAL;
1003 }
1004
1005 out:
1006 mutex_unlock(&gmin_regulator_mutex);
1007 return ret;
1008 }
1009
gmin_acpi_pm_ctrl(struct v4l2_subdev * subdev,int on)1010 static int gmin_acpi_pm_ctrl(struct v4l2_subdev *subdev, int on)
1011 {
1012 int ret = 0;
1013 struct gmin_subdev *gs = find_gmin_subdev(subdev);
1014 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1015 struct acpi_device *adev = ACPI_COMPANION(&client->dev);
1016
1017 /* Use the ACPI power management to control it */
1018 on = !!on;
1019 if (gs->clock_on == on)
1020 return 0;
1021
1022 dev_dbg(subdev->dev, "Setting power state to %s\n",
1023 on ? "on" : "off");
1024
1025 if (on)
1026 ret = acpi_device_set_power(adev,
1027 ACPI_STATE_D0);
1028 else
1029 ret = acpi_device_set_power(adev,
1030 ACPI_STATE_D3_COLD);
1031
1032 if (!ret)
1033 gs->clock_on = on;
1034 else
1035 dev_err(subdev->dev, "Couldn't set power state to %s\n",
1036 on ? "on" : "off");
1037
1038 return ret;
1039 }
1040
gmin_flisclk_ctrl(struct v4l2_subdev * subdev,int on)1041 static int gmin_flisclk_ctrl(struct v4l2_subdev *subdev, int on)
1042 {
1043 int ret = 0;
1044 struct gmin_subdev *gs = find_gmin_subdev(subdev);
1045 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1046
1047 if (gs->clock_on == !!on)
1048 return 0;
1049
1050 if (on) {
1051 ret = clk_set_rate(gs->pmc_clk,
1052 gs->clock_src ? CLK_RATE_19_2MHZ : CLK_RATE_25_0MHZ);
1053
1054 if (ret)
1055 dev_err(&client->dev, "unable to set PMC rate %d\n",
1056 gs->clock_src);
1057
1058 ret = clk_prepare_enable(gs->pmc_clk);
1059 if (ret == 0)
1060 gs->clock_on = true;
1061 } else {
1062 clk_disable_unprepare(gs->pmc_clk);
1063 gs->clock_on = false;
1064 }
1065
1066 return ret;
1067 }
1068
gmin_csi_cfg(struct v4l2_subdev * sd,int flag)1069 static int gmin_csi_cfg(struct v4l2_subdev *sd, int flag)
1070 {
1071 struct i2c_client *client = v4l2_get_subdevdata(sd);
1072 struct gmin_subdev *gs = find_gmin_subdev(sd);
1073
1074 if (!client || !gs)
1075 return -ENODEV;
1076
1077 return camera_sensor_csi(sd, gs->csi_port, gs->csi_lanes,
1078 gs->csi_fmt, gs->csi_bayer, flag);
1079 }
1080
gmin_get_vcm_ctrl(struct v4l2_subdev * subdev,char * camera_module)1081 static struct camera_vcm_control *gmin_get_vcm_ctrl(struct v4l2_subdev *subdev,
1082 char *camera_module)
1083 {
1084 struct i2c_client *client = v4l2_get_subdevdata(subdev);
1085 struct gmin_subdev *gs = find_gmin_subdev(subdev);
1086 struct camera_vcm_control *vcm;
1087
1088 if (!client || !gs)
1089 return NULL;
1090
1091 if (!camera_module)
1092 return NULL;
1093
1094 mutex_lock(&vcm_lock);
1095 list_for_each_entry(vcm, &vcm_devices, list) {
1096 if (!strcmp(camera_module, vcm->camera_module)) {
1097 mutex_unlock(&vcm_lock);
1098 return vcm;
1099 }
1100 }
1101
1102 mutex_unlock(&vcm_lock);
1103 return NULL;
1104 }
1105
1106 static struct camera_sensor_platform_data pmic_gmin_plat = {
1107 .gpio0_ctrl = gmin_gpio0_ctrl,
1108 .gpio1_ctrl = gmin_gpio1_ctrl,
1109 .v1p8_ctrl = gmin_v1p8_ctrl,
1110 .v2p8_ctrl = gmin_v2p8_ctrl,
1111 .v1p2_ctrl = gmin_v1p2_ctrl,
1112 .flisclk_ctrl = gmin_flisclk_ctrl,
1113 .csi_cfg = gmin_csi_cfg,
1114 .get_vcm_ctrl = gmin_get_vcm_ctrl,
1115 };
1116
1117 static struct camera_sensor_platform_data acpi_gmin_plat = {
1118 .gpio0_ctrl = gmin_gpio0_ctrl,
1119 .gpio1_ctrl = gmin_gpio1_ctrl,
1120 .v1p8_ctrl = gmin_acpi_pm_ctrl,
1121 .v2p8_ctrl = gmin_acpi_pm_ctrl,
1122 .v1p2_ctrl = gmin_acpi_pm_ctrl,
1123 .flisclk_ctrl = gmin_acpi_pm_ctrl,
1124 .csi_cfg = gmin_csi_cfg,
1125 .get_vcm_ctrl = gmin_get_vcm_ctrl,
1126 };
1127
1128 struct camera_sensor_platform_data *
gmin_camera_platform_data(struct v4l2_subdev * subdev,enum atomisp_input_format csi_format,enum atomisp_bayer_order csi_bayer)1129 gmin_camera_platform_data(struct v4l2_subdev *subdev,
1130 enum atomisp_input_format csi_format,
1131 enum atomisp_bayer_order csi_bayer)
1132 {
1133 u8 pmic_i2c_addr = gmin_detect_pmic(subdev);
1134 struct gmin_subdev *gs;
1135
1136 gs = find_free_gmin_subdev_slot();
1137 gs->subdev = subdev;
1138 gs->csi_fmt = csi_format;
1139 gs->csi_bayer = csi_bayer;
1140 gs->pwm_i2c_addr = pmic_i2c_addr;
1141
1142 gmin_subdev_add(gs);
1143 if (gs->pmc_clk)
1144 return &pmic_gmin_plat;
1145 else
1146 return &acpi_gmin_plat;
1147 }
1148 EXPORT_SYMBOL_GPL(gmin_camera_platform_data);
1149
atomisp_gmin_register_vcm_control(struct camera_vcm_control * vcmCtrl)1150 int atomisp_gmin_register_vcm_control(struct camera_vcm_control *vcmCtrl)
1151 {
1152 if (!vcmCtrl)
1153 return -EINVAL;
1154
1155 mutex_lock(&vcm_lock);
1156 list_add_tail(&vcmCtrl->list, &vcm_devices);
1157 mutex_unlock(&vcm_lock);
1158
1159 return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(atomisp_gmin_register_vcm_control);
1162
gmin_get_hardcoded_var(struct device * dev,struct gmin_cfg_var * varlist,const char * var8,char * out,size_t * out_len)1163 static int gmin_get_hardcoded_var(struct device *dev,
1164 struct gmin_cfg_var *varlist,
1165 const char *var8, char *out, size_t *out_len)
1166 {
1167 struct gmin_cfg_var *gv;
1168
1169 for (gv = varlist; gv->name; gv++) {
1170 size_t vl;
1171
1172 if (strcmp(var8, gv->name))
1173 continue;
1174
1175 dev_info(dev, "Found DMI entry for '%s'\n", var8);
1176
1177 vl = strlen(gv->val);
1178 if (vl > *out_len - 1)
1179 return -ENOSPC;
1180
1181 strscpy(out, gv->val, *out_len);
1182 *out_len = vl;
1183 return 0;
1184 }
1185
1186 return -EINVAL;
1187 }
1188
1189
gmin_get_config_dsm_var(struct device * dev,const char * var,char * out,size_t * out_len)1190 static int gmin_get_config_dsm_var(struct device *dev,
1191 const char *var,
1192 char *out, size_t *out_len)
1193 {
1194 acpi_handle handle = ACPI_HANDLE(dev);
1195 union acpi_object *obj, *cur = NULL;
1196 int i;
1197
1198 /*
1199 * The data reported by "CamClk" seems to be either 0 or 1 at the
1200 * _DSM table.
1201 *
1202 * At the ACPI tables we looked so far, this is not related to the
1203 * actual clock source for the sensor, which is given by the
1204 * _PR0 ACPI table. So, ignore it, as otherwise this will be
1205 * set to a wrong value.
1206 */
1207 if (!strcmp(var, "CamClk"))
1208 return -EINVAL;
1209
1210 obj = acpi_evaluate_dsm(handle, &atomisp_dsm_guid, 0, 0, NULL);
1211 if (!obj) {
1212 dev_info_once(dev, "Didn't find ACPI _DSM table.\n");
1213 return -EINVAL;
1214 }
1215
1216 /* Return on unexpected object type */
1217 if (obj->type != ACPI_TYPE_PACKAGE)
1218 return -EINVAL;
1219
1220 #if 0 /* Just for debugging purposes */
1221 for (i = 0; i < obj->package.count; i++) {
1222 union acpi_object *cur = &obj->package.elements[i];
1223
1224 if (cur->type == ACPI_TYPE_INTEGER)
1225 dev_info(dev, "object #%d, type %d, value: %lld\n",
1226 i, cur->type, cur->integer.value);
1227 else if (cur->type == ACPI_TYPE_STRING)
1228 dev_info(dev, "object #%d, type %d, string: %s\n",
1229 i, cur->type, cur->string.pointer);
1230 else
1231 dev_info(dev, "object #%d, type %d\n",
1232 i, cur->type);
1233 }
1234 #endif
1235
1236 /* Seek for the desired var */
1237 for (i = 0; i < obj->package.count - 1; i += 2) {
1238 if (obj->package.elements[i].type == ACPI_TYPE_STRING &&
1239 !strcmp(obj->package.elements[i].string.pointer, var)) {
1240 /* Next element should be the required value */
1241 cur = &obj->package.elements[i + 1];
1242 break;
1243 }
1244 }
1245
1246 if (!cur) {
1247 dev_info(dev, "didn't found _DSM entry for '%s'\n", var);
1248 ACPI_FREE(obj);
1249 return -EINVAL;
1250 }
1251
1252 /*
1253 * While it could be possible to have an ACPI_TYPE_INTEGER,
1254 * and read the value from cur->integer.value, the table
1255 * seen so far uses the string type. So, produce a warning
1256 * if it founds something different than string, letting it
1257 * to fall back to the old code.
1258 */
1259 if (cur && cur->type != ACPI_TYPE_STRING) {
1260 dev_info(dev, "found non-string _DSM entry for '%s'\n", var);
1261 ACPI_FREE(obj);
1262 return -EINVAL;
1263 }
1264
1265 dev_info(dev, "found _DSM entry for '%s': %s\n", var,
1266 cur->string.pointer);
1267 strscpy(out, cur->string.pointer, *out_len);
1268 *out_len = strlen(cur->string.pointer);
1269
1270 ACPI_FREE(obj);
1271 return 0;
1272 }
1273
1274 /* Retrieves a device-specific configuration variable. The dev
1275 * argument should be a device with an ACPI companion, as all
1276 * configuration is based on firmware ID.
1277 */
gmin_get_config_var(struct device * maindev,bool is_gmin,const char * var,char * out,size_t * out_len)1278 static int gmin_get_config_var(struct device *maindev,
1279 bool is_gmin,
1280 const char *var,
1281 char *out, size_t *out_len)
1282 {
1283 efi_char16_t var16[CFG_VAR_NAME_MAX];
1284 const struct dmi_system_id *id;
1285 struct device *dev = maindev;
1286 char var8[CFG_VAR_NAME_MAX];
1287 struct efivar_entry *ev;
1288 int i, ret;
1289
1290 /* For sensors, try first to use the _DSM table */
1291 if (!is_gmin) {
1292 ret = gmin_get_config_dsm_var(maindev, var, out, out_len);
1293 if (!ret)
1294 return 0;
1295 }
1296
1297 /* Fall-back to other approaches */
1298
1299 if (!is_gmin && ACPI_COMPANION(dev))
1300 dev = &ACPI_COMPANION(dev)->dev;
1301
1302 if (!is_gmin)
1303 ret = snprintf(var8, sizeof(var8), "%s_%s", dev_name(dev), var);
1304 else
1305 ret = snprintf(var8, sizeof(var8), "gmin_%s", var);
1306
1307 if (ret < 0 || ret >= sizeof(var8) - 1)
1308 return -EINVAL;
1309
1310 /* First check a hard-coded list of board-specific variables.
1311 * Some device firmwares lack the ability to set EFI variables at
1312 * runtime.
1313 */
1314 id = dmi_first_match(gmin_vars);
1315 if (id) {
1316 ret = gmin_get_hardcoded_var(maindev, id->driver_data, var8,
1317 out, out_len);
1318 if (!ret)
1319 return 0;
1320 }
1321
1322 /* Our variable names are ASCII by construction, but EFI names
1323 * are wide chars. Convert and zero-pad.
1324 */
1325 memset(var16, 0, sizeof(var16));
1326 for (i = 0; i < sizeof(var8) && var8[i]; i++)
1327 var16[i] = var8[i];
1328
1329 /* Not sure this API usage is kosher; efivar_entry_get()'s
1330 * implementation simply uses VariableName and VendorGuid from
1331 * the struct and ignores the rest, but it seems like there
1332 * ought to be an "official" efivar_entry registered
1333 * somewhere?
1334 */
1335 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1336 if (!ev)
1337 return -ENOMEM;
1338 memcpy(&ev->var.VariableName, var16, sizeof(var16));
1339 ev->var.VendorGuid = GMIN_CFG_VAR_EFI_GUID;
1340 ev->var.DataSize = *out_len;
1341
1342 ret = efivar_entry_get(ev, &ev->var.Attributes,
1343 &ev->var.DataSize, ev->var.Data);
1344 if (ret == 0) {
1345 memcpy(out, ev->var.Data, ev->var.DataSize);
1346 *out_len = ev->var.DataSize;
1347 dev_info(maindev, "found EFI entry for '%s'\n", var8);
1348 } else if (is_gmin) {
1349 dev_info(maindev, "Failed to find EFI gmin variable %s\n", var8);
1350 } else {
1351 dev_info(maindev, "Failed to find EFI variable %s\n", var8);
1352 }
1353
1354 kfree(ev);
1355
1356 return ret;
1357 }
1358
gmin_get_var_int(struct device * dev,bool is_gmin,const char * var,int def)1359 int gmin_get_var_int(struct device *dev, bool is_gmin, const char *var, int def)
1360 {
1361 char val[CFG_VAR_NAME_MAX];
1362 size_t len = sizeof(val);
1363 long result;
1364 int ret;
1365
1366 ret = gmin_get_config_var(dev, is_gmin, var, val, &len);
1367 if (!ret) {
1368 val[len] = 0;
1369 ret = kstrtol(val, 0, &result);
1370 } else {
1371 dev_info(dev, "%s: using default (%d)\n", var, def);
1372 }
1373
1374 return ret ? def : result;
1375 }
1376 EXPORT_SYMBOL_GPL(gmin_get_var_int);
1377
camera_sensor_csi(struct v4l2_subdev * sd,u32 port,u32 lanes,u32 format,u32 bayer_order,int flag)1378 int camera_sensor_csi(struct v4l2_subdev *sd, u32 port,
1379 u32 lanes, u32 format, u32 bayer_order, int flag)
1380 {
1381 struct i2c_client *client = v4l2_get_subdevdata(sd);
1382 struct camera_mipi_info *csi = NULL;
1383
1384 if (flag) {
1385 csi = kzalloc(sizeof(*csi), GFP_KERNEL);
1386 if (!csi)
1387 return -ENOMEM;
1388 csi->port = port;
1389 csi->num_lanes = lanes;
1390 csi->input_format = format;
1391 csi->raw_bayer_order = bayer_order;
1392 v4l2_set_subdev_hostdata(sd, (void *)csi);
1393 csi->metadata_format = ATOMISP_INPUT_FORMAT_EMBEDDED;
1394 csi->metadata_effective_width = NULL;
1395 dev_info(&client->dev,
1396 "camera pdata: port: %d lanes: %d order: %8.8x\n",
1397 port, lanes, bayer_order);
1398 } else {
1399 csi = v4l2_get_subdev_hostdata(sd);
1400 kfree(csi);
1401 }
1402
1403 return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(camera_sensor_csi);
1406
1407 /* PCI quirk: The BYT ISP advertises PCI runtime PM but it doesn't
1408 * work. Disable so the kernel framework doesn't hang the device
1409 * trying. The driver itself does direct calls to the PUNIT to manage
1410 * ISP power.
1411 */
isp_pm_cap_fixup(struct pci_dev * pdev)1412 static void isp_pm_cap_fixup(struct pci_dev *pdev)
1413 {
1414 dev_info(&pdev->dev, "Disabling PCI power management on camera ISP\n");
1415 pdev->pm_cap = 0;
1416 }
1417 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x0f38, isp_pm_cap_fixup);
1418
1419 MODULE_DESCRIPTION("Ancillary routines for binding ACPI devices");
1420 MODULE_LICENSE("GPL");
1421