1 /*
2  * Lockless get_user_pages_fast for x86
3  *
4  * Copyright (C) 2008 Nick Piggin
5  * Copyright (C) 2008 Novell Inc.
6  */
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/vmstat.h>
10 #include <linux/highmem.h>
11 #include <linux/swap.h>
12 
13 #include <asm/pgtable.h>
14 
gup_get_pte(pte_t * ptep)15 static inline pte_t gup_get_pte(pte_t *ptep)
16 {
17 #ifndef CONFIG_X86_PAE
18 	return ACCESS_ONCE(*ptep);
19 #else
20 	/*
21 	 * With get_user_pages_fast, we walk down the pagetables without taking
22 	 * any locks.  For this we would like to load the pointers atomically,
23 	 * but that is not possible (without expensive cmpxchg8b) on PAE.  What
24 	 * we do have is the guarantee that a pte will only either go from not
25 	 * present to present, or present to not present or both -- it will not
26 	 * switch to a completely different present page without a TLB flush in
27 	 * between; something that we are blocking by holding interrupts off.
28 	 *
29 	 * Setting ptes from not present to present goes:
30 	 * ptep->pte_high = h;
31 	 * smp_wmb();
32 	 * ptep->pte_low = l;
33 	 *
34 	 * And present to not present goes:
35 	 * ptep->pte_low = 0;
36 	 * smp_wmb();
37 	 * ptep->pte_high = 0;
38 	 *
39 	 * We must ensure here that the load of pte_low sees l iff pte_high
40 	 * sees h. We load pte_high *after* loading pte_low, which ensures we
41 	 * don't see an older value of pte_high.  *Then* we recheck pte_low,
42 	 * which ensures that we haven't picked up a changed pte high. We might
43 	 * have got rubbish values from pte_low and pte_high, but we are
44 	 * guaranteed that pte_low will not have the present bit set *unless*
45 	 * it is 'l'. And get_user_pages_fast only operates on present ptes, so
46 	 * we're safe.
47 	 *
48 	 * gup_get_pte should not be used or copied outside gup.c without being
49 	 * very careful -- it does not atomically load the pte or anything that
50 	 * is likely to be useful for you.
51 	 */
52 	pte_t pte;
53 
54 retry:
55 	pte.pte_low = ptep->pte_low;
56 	smp_rmb();
57 	pte.pte_high = ptep->pte_high;
58 	smp_rmb();
59 	if (unlikely(pte.pte_low != ptep->pte_low))
60 		goto retry;
61 
62 	return pte;
63 #endif
64 }
65 
66 /*
67  * The performance critical leaf functions are made noinline otherwise gcc
68  * inlines everything into a single function which results in too much
69  * register pressure.
70  */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)71 static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
72 		unsigned long end, int write, struct page **pages, int *nr)
73 {
74 	unsigned long mask;
75 	pte_t *ptep;
76 
77 	mask = _PAGE_PRESENT|_PAGE_USER;
78 	if (write)
79 		mask |= _PAGE_RW;
80 
81 	ptep = pte_offset_map(&pmd, addr);
82 	do {
83 		pte_t pte = gup_get_pte(ptep);
84 		struct page *page;
85 
86 		if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
87 			pte_unmap(ptep);
88 			return 0;
89 		}
90 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
91 		page = pte_page(pte);
92 		get_page(page);
93 		SetPageReferenced(page);
94 		pages[*nr] = page;
95 		(*nr)++;
96 
97 	} while (ptep++, addr += PAGE_SIZE, addr != end);
98 	pte_unmap(ptep - 1);
99 
100 	return 1;
101 }
102 
get_head_page_multiple(struct page * page,int nr)103 static inline void get_head_page_multiple(struct page *page, int nr)
104 {
105 	VM_BUG_ON(page != compound_head(page));
106 	VM_BUG_ON(page_count(page) == 0);
107 	atomic_add(nr, &page->_count);
108 	SetPageReferenced(page);
109 }
110 
gup_huge_pmd(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)111 static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
112 		unsigned long end, int write, struct page **pages, int *nr)
113 {
114 	unsigned long mask;
115 	pte_t pte = *(pte_t *)&pmd;
116 	struct page *head, *page;
117 	int refs;
118 
119 	mask = _PAGE_PRESENT|_PAGE_USER;
120 	if (write)
121 		mask |= _PAGE_RW;
122 	if ((pte_flags(pte) & mask) != mask)
123 		return 0;
124 	/* hugepages are never "special" */
125 	VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
126 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
127 
128 	refs = 0;
129 	head = pte_page(pte);
130 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
131 	do {
132 		VM_BUG_ON(compound_head(page) != head);
133 		pages[*nr] = page;
134 		if (PageTail(page))
135 			get_huge_page_tail(page);
136 		(*nr)++;
137 		page++;
138 		refs++;
139 	} while (addr += PAGE_SIZE, addr != end);
140 	get_head_page_multiple(head, refs);
141 
142 	return 1;
143 }
144 
gup_pmd_range(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)145 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
146 		int write, struct page **pages, int *nr)
147 {
148 	unsigned long next;
149 	pmd_t *pmdp;
150 
151 	pmdp = pmd_offset(&pud, addr);
152 	do {
153 		pmd_t pmd = *pmdp;
154 
155 		next = pmd_addr_end(addr, end);
156 		/*
157 		 * The pmd_trans_splitting() check below explains why
158 		 * pmdp_splitting_flush has to flush the tlb, to stop
159 		 * this gup-fast code from running while we set the
160 		 * splitting bit in the pmd. Returning zero will take
161 		 * the slow path that will call wait_split_huge_page()
162 		 * if the pmd is still in splitting state. gup-fast
163 		 * can't because it has irq disabled and
164 		 * wait_split_huge_page() would never return as the
165 		 * tlb flush IPI wouldn't run.
166 		 */
167 		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
168 			return 0;
169 		if (unlikely(pmd_large(pmd))) {
170 			if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
171 				return 0;
172 		} else {
173 			if (!gup_pte_range(pmd, addr, next, write, pages, nr))
174 				return 0;
175 		}
176 	} while (pmdp++, addr = next, addr != end);
177 
178 	return 1;
179 }
180 
gup_huge_pud(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)181 static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
182 		unsigned long end, int write, struct page **pages, int *nr)
183 {
184 	unsigned long mask;
185 	pte_t pte = *(pte_t *)&pud;
186 	struct page *head, *page;
187 	int refs;
188 
189 	mask = _PAGE_PRESENT|_PAGE_USER;
190 	if (write)
191 		mask |= _PAGE_RW;
192 	if ((pte_flags(pte) & mask) != mask)
193 		return 0;
194 	/* hugepages are never "special" */
195 	VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
196 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
197 
198 	refs = 0;
199 	head = pte_page(pte);
200 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
201 	do {
202 		VM_BUG_ON(compound_head(page) != head);
203 		pages[*nr] = page;
204 		if (PageTail(page))
205 			get_huge_page_tail(page);
206 		(*nr)++;
207 		page++;
208 		refs++;
209 	} while (addr += PAGE_SIZE, addr != end);
210 	get_head_page_multiple(head, refs);
211 
212 	return 1;
213 }
214 
gup_pud_range(pgd_t pgd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)215 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
216 			int write, struct page **pages, int *nr)
217 {
218 	unsigned long next;
219 	pud_t *pudp;
220 
221 	pudp = pud_offset(&pgd, addr);
222 	do {
223 		pud_t pud = *pudp;
224 
225 		next = pud_addr_end(addr, end);
226 		if (pud_none(pud))
227 			return 0;
228 		if (unlikely(pud_large(pud))) {
229 			if (!gup_huge_pud(pud, addr, next, write, pages, nr))
230 				return 0;
231 		} else {
232 			if (!gup_pmd_range(pud, addr, next, write, pages, nr))
233 				return 0;
234 		}
235 	} while (pudp++, addr = next, addr != end);
236 
237 	return 1;
238 }
239 
240 /*
241  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
242  * back to the regular GUP.
243  */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)244 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
245 			  struct page **pages)
246 {
247 	struct mm_struct *mm = current->mm;
248 	unsigned long addr, len, end;
249 	unsigned long next;
250 	unsigned long flags;
251 	pgd_t *pgdp;
252 	int nr = 0;
253 
254 	start &= PAGE_MASK;
255 	addr = start;
256 	len = (unsigned long) nr_pages << PAGE_SHIFT;
257 	end = start + len;
258 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
259 					(void __user *)start, len)))
260 		return 0;
261 
262 	/*
263 	 * XXX: batch / limit 'nr', to avoid large irq off latency
264 	 * needs some instrumenting to determine the common sizes used by
265 	 * important workloads (eg. DB2), and whether limiting the batch size
266 	 * will decrease performance.
267 	 *
268 	 * It seems like we're in the clear for the moment. Direct-IO is
269 	 * the main guy that batches up lots of get_user_pages, and even
270 	 * they are limited to 64-at-a-time which is not so many.
271 	 */
272 	/*
273 	 * This doesn't prevent pagetable teardown, but does prevent
274 	 * the pagetables and pages from being freed on x86.
275 	 *
276 	 * So long as we atomically load page table pointers versus teardown
277 	 * (which we do on x86, with the above PAE exception), we can follow the
278 	 * address down to the the page and take a ref on it.
279 	 */
280 	local_irq_save(flags);
281 	pgdp = pgd_offset(mm, addr);
282 	do {
283 		pgd_t pgd = *pgdp;
284 
285 		next = pgd_addr_end(addr, end);
286 		if (pgd_none(pgd))
287 			break;
288 		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
289 			break;
290 	} while (pgdp++, addr = next, addr != end);
291 	local_irq_restore(flags);
292 
293 	return nr;
294 }
295 
296 /**
297  * get_user_pages_fast() - pin user pages in memory
298  * @start:	starting user address
299  * @nr_pages:	number of pages from start to pin
300  * @write:	whether pages will be written to
301  * @pages:	array that receives pointers to the pages pinned.
302  * 		Should be at least nr_pages long.
303  *
304  * Attempt to pin user pages in memory without taking mm->mmap_sem.
305  * If not successful, it will fall back to taking the lock and
306  * calling get_user_pages().
307  *
308  * Returns number of pages pinned. This may be fewer than the number
309  * requested. If nr_pages is 0 or negative, returns 0. If no pages
310  * were pinned, returns -errno.
311  */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)312 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
313 			struct page **pages)
314 {
315 	struct mm_struct *mm = current->mm;
316 	unsigned long addr, len, end;
317 	unsigned long next;
318 	pgd_t *pgdp;
319 	int nr = 0;
320 
321 	start &= PAGE_MASK;
322 	addr = start;
323 	len = (unsigned long) nr_pages << PAGE_SHIFT;
324 
325 	end = start + len;
326 	if (end < start)
327 		goto slow_irqon;
328 
329 #ifdef CONFIG_X86_64
330 	if (end >> __VIRTUAL_MASK_SHIFT)
331 		goto slow_irqon;
332 #endif
333 
334 	/*
335 	 * XXX: batch / limit 'nr', to avoid large irq off latency
336 	 * needs some instrumenting to determine the common sizes used by
337 	 * important workloads (eg. DB2), and whether limiting the batch size
338 	 * will decrease performance.
339 	 *
340 	 * It seems like we're in the clear for the moment. Direct-IO is
341 	 * the main guy that batches up lots of get_user_pages, and even
342 	 * they are limited to 64-at-a-time which is not so many.
343 	 */
344 	/*
345 	 * This doesn't prevent pagetable teardown, but does prevent
346 	 * the pagetables and pages from being freed on x86.
347 	 *
348 	 * So long as we atomically load page table pointers versus teardown
349 	 * (which we do on x86, with the above PAE exception), we can follow the
350 	 * address down to the the page and take a ref on it.
351 	 */
352 	local_irq_disable();
353 	pgdp = pgd_offset(mm, addr);
354 	do {
355 		pgd_t pgd = *pgdp;
356 
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none(pgd))
359 			goto slow;
360 		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
361 			goto slow;
362 	} while (pgdp++, addr = next, addr != end);
363 	local_irq_enable();
364 
365 	VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
366 	return nr;
367 
368 	{
369 		int ret;
370 
371 slow:
372 		local_irq_enable();
373 slow_irqon:
374 		/* Try to get the remaining pages with get_user_pages */
375 		start += nr << PAGE_SHIFT;
376 		pages += nr;
377 
378 		down_read(&mm->mmap_sem);
379 		ret = get_user_pages(current, mm, start,
380 			(end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
381 		up_read(&mm->mmap_sem);
382 
383 		/* Have to be a bit careful with return values */
384 		if (nr > 0) {
385 			if (ret < 0)
386 				ret = nr;
387 			else
388 				ret += nr;
389 		}
390 
391 		return ret;
392 	}
393 }
394