1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  * 		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  * 		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  * 		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  * 		unified x86 kprobes code.
41  */
42 
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 
54 #include <asm/cacheflush.h>
55 #include <asm/desc.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
59 #include <asm/insn.h>
60 #include <asm/debugreg.h>
61 
62 void jprobe_return_end(void);
63 
64 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
66 
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
68 
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
71 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
72 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
73 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
74 	 << (row % 32))
75 	/*
76 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 	 * Groups, and some special opcodes can not boost.
78 	 */
79 static const u32 twobyte_is_boostable[256 / 32] = {
80 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
81 	/*      ----------------------------------------------          */
82 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
83 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
84 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
85 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
86 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
87 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
88 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
89 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
90 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
91 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
92 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
93 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
94 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
95 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
96 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
97 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
98 	/*      -----------------------------------------------         */
99 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
100 };
101 #undef W
102 
103 struct kretprobe_blackpoint kretprobe_blacklist[] = {
104 	{"__switch_to", }, /* This function switches only current task, but
105 			      doesn't switch kernel stack.*/
106 	{NULL, NULL}	/* Terminator */
107 };
108 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
109 
__synthesize_relative_insn(void * from,void * to,u8 op)110 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
111 {
112 	struct __arch_relative_insn {
113 		u8 op;
114 		s32 raddr;
115 	} __attribute__((packed)) *insn;
116 
117 	insn = (struct __arch_relative_insn *)from;
118 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 	insn->op = op;
120 }
121 
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)123 static void __kprobes synthesize_reljump(void *from, void *to)
124 {
125 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
126 }
127 
128 /*
129  * Skip the prefixes of the instruction.
130  */
skip_prefixes(kprobe_opcode_t * insn)131 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
132 {
133 	insn_attr_t attr;
134 
135 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
136 	while (inat_is_legacy_prefix(attr)) {
137 		insn++;
138 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
139 	}
140 #ifdef CONFIG_X86_64
141 	if (inat_is_rex_prefix(attr))
142 		insn++;
143 #endif
144 	return insn;
145 }
146 
147 /*
148  * Returns non-zero if opcode is boostable.
149  * RIP relative instructions are adjusted at copying time in 64 bits mode
150  */
can_boost(kprobe_opcode_t * opcodes)151 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
152 {
153 	kprobe_opcode_t opcode;
154 	kprobe_opcode_t *orig_opcodes = opcodes;
155 
156 	if (search_exception_tables((unsigned long)opcodes))
157 		return 0;	/* Page fault may occur on this address. */
158 
159 retry:
160 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
161 		return 0;
162 	opcode = *(opcodes++);
163 
164 	/* 2nd-byte opcode */
165 	if (opcode == 0x0f) {
166 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
167 			return 0;
168 		return test_bit(*opcodes,
169 				(unsigned long *)twobyte_is_boostable);
170 	}
171 
172 	switch (opcode & 0xf0) {
173 #ifdef CONFIG_X86_64
174 	case 0x40:
175 		goto retry; /* REX prefix is boostable */
176 #endif
177 	case 0x60:
178 		if (0x63 < opcode && opcode < 0x67)
179 			goto retry; /* prefixes */
180 		/* can't boost Address-size override and bound */
181 		return (opcode != 0x62 && opcode != 0x67);
182 	case 0x70:
183 		return 0; /* can't boost conditional jump */
184 	case 0xc0:
185 		/* can't boost software-interruptions */
186 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
187 	case 0xd0:
188 		/* can boost AA* and XLAT */
189 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
190 	case 0xe0:
191 		/* can boost in/out and absolute jmps */
192 		return ((opcode & 0x04) || opcode == 0xea);
193 	case 0xf0:
194 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
195 			goto retry; /* lock/rep(ne) prefix */
196 		/* clear and set flags are boostable */
197 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 	default:
199 		/* segment override prefixes are boostable */
200 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
201 			goto retry; /* prefixes */
202 		/* CS override prefix and call are not boostable */
203 		return (opcode != 0x2e && opcode != 0x9a);
204 	}
205 }
206 
207 /* Recover the probed instruction at addr for further analysis. */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)208 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
209 {
210 	struct kprobe *kp;
211 	kp = get_kprobe((void *)addr);
212 	if (!kp)
213 		return -EINVAL;
214 
215 	/*
216 	 *  Basically, kp->ainsn.insn has an original instruction.
217 	 *  However, RIP-relative instruction can not do single-stepping
218 	 *  at different place, __copy_instruction() tweaks the displacement of
219 	 *  that instruction. In that case, we can't recover the instruction
220 	 *  from the kp->ainsn.insn.
221 	 *
222 	 *  On the other hand, kp->opcode has a copy of the first byte of
223 	 *  the probed instruction, which is overwritten by int3. And
224 	 *  the instruction at kp->addr is not modified by kprobes except
225 	 *  for the first byte, we can recover the original instruction
226 	 *  from it and kp->opcode.
227 	 */
228 	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
229 	buf[0] = kp->opcode;
230 	return 0;
231 }
232 
233 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)234 static int __kprobes can_probe(unsigned long paddr)
235 {
236 	int ret;
237 	unsigned long addr, offset = 0;
238 	struct insn insn;
239 	kprobe_opcode_t buf[MAX_INSN_SIZE];
240 
241 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
242 		return 0;
243 
244 	/* Decode instructions */
245 	addr = paddr - offset;
246 	while (addr < paddr) {
247 		kernel_insn_init(&insn, (void *)addr);
248 		insn_get_opcode(&insn);
249 
250 		/*
251 		 * Check if the instruction has been modified by another
252 		 * kprobe, in which case we replace the breakpoint by the
253 		 * original instruction in our buffer.
254 		 */
255 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
256 			ret = recover_probed_instruction(buf, addr);
257 			if (ret)
258 				/*
259 				 * Another debugging subsystem might insert
260 				 * this breakpoint. In that case, we can't
261 				 * recover it.
262 				 */
263 				return 0;
264 			kernel_insn_init(&insn, buf);
265 		}
266 		insn_get_length(&insn);
267 		addr += insn.length;
268 	}
269 
270 	return (addr == paddr);
271 }
272 
273 /*
274  * Returns non-zero if opcode modifies the interrupt flag.
275  */
is_IF_modifier(kprobe_opcode_t * insn)276 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
277 {
278 	/* Skip prefixes */
279 	insn = skip_prefixes(insn);
280 
281 	switch (*insn) {
282 	case 0xfa:		/* cli */
283 	case 0xfb:		/* sti */
284 	case 0xcf:		/* iret/iretd */
285 	case 0x9d:		/* popf/popfd */
286 		return 1;
287 	}
288 
289 	return 0;
290 }
291 
292 /*
293  * Copy an instruction and adjust the displacement if the instruction
294  * uses the %rip-relative addressing mode.
295  * If it does, Return the address of the 32-bit displacement word.
296  * If not, return null.
297  * Only applicable to 64-bit x86.
298  */
__copy_instruction(u8 * dest,u8 * src,int recover)299 static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
300 {
301 	struct insn insn;
302 	int ret;
303 	kprobe_opcode_t buf[MAX_INSN_SIZE];
304 
305 	kernel_insn_init(&insn, src);
306 	if (recover) {
307 		insn_get_opcode(&insn);
308 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
309 			ret = recover_probed_instruction(buf,
310 							 (unsigned long)src);
311 			if (ret)
312 				return 0;
313 			kernel_insn_init(&insn, buf);
314 		}
315 	}
316 	insn_get_length(&insn);
317 	memcpy(dest, insn.kaddr, insn.length);
318 
319 #ifdef CONFIG_X86_64
320 	if (insn_rip_relative(&insn)) {
321 		s64 newdisp;
322 		u8 *disp;
323 		kernel_insn_init(&insn, dest);
324 		insn_get_displacement(&insn);
325 		/*
326 		 * The copied instruction uses the %rip-relative addressing
327 		 * mode.  Adjust the displacement for the difference between
328 		 * the original location of this instruction and the location
329 		 * of the copy that will actually be run.  The tricky bit here
330 		 * is making sure that the sign extension happens correctly in
331 		 * this calculation, since we need a signed 32-bit result to
332 		 * be sign-extended to 64 bits when it's added to the %rip
333 		 * value and yield the same 64-bit result that the sign-
334 		 * extension of the original signed 32-bit displacement would
335 		 * have given.
336 		 */
337 		newdisp = (u8 *) src + (s64) insn.displacement.value -
338 			  (u8 *) dest;
339 		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
340 		disp = (u8 *) dest + insn_offset_displacement(&insn);
341 		*(s32 *) disp = (s32) newdisp;
342 	}
343 #endif
344 	return insn.length;
345 }
346 
arch_copy_kprobe(struct kprobe * p)347 static void __kprobes arch_copy_kprobe(struct kprobe *p)
348 {
349 	/*
350 	 * Copy an instruction without recovering int3, because it will be
351 	 * put by another subsystem.
352 	 */
353 	__copy_instruction(p->ainsn.insn, p->addr, 0);
354 
355 	if (can_boost(p->addr))
356 		p->ainsn.boostable = 0;
357 	else
358 		p->ainsn.boostable = -1;
359 
360 	p->opcode = *p->addr;
361 }
362 
arch_prepare_kprobe(struct kprobe * p)363 int __kprobes arch_prepare_kprobe(struct kprobe *p)
364 {
365 	if (alternatives_text_reserved(p->addr, p->addr))
366 		return -EINVAL;
367 
368 	if (!can_probe((unsigned long)p->addr))
369 		return -EILSEQ;
370 	/* insn: must be on special executable page on x86. */
371 	p->ainsn.insn = get_insn_slot();
372 	if (!p->ainsn.insn)
373 		return -ENOMEM;
374 	arch_copy_kprobe(p);
375 	return 0;
376 }
377 
arch_arm_kprobe(struct kprobe * p)378 void __kprobes arch_arm_kprobe(struct kprobe *p)
379 {
380 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
381 }
382 
arch_disarm_kprobe(struct kprobe * p)383 void __kprobes arch_disarm_kprobe(struct kprobe *p)
384 {
385 	text_poke(p->addr, &p->opcode, 1);
386 }
387 
arch_remove_kprobe(struct kprobe * p)388 void __kprobes arch_remove_kprobe(struct kprobe *p)
389 {
390 	if (p->ainsn.insn) {
391 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
392 		p->ainsn.insn = NULL;
393 	}
394 }
395 
save_previous_kprobe(struct kprobe_ctlblk * kcb)396 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
397 {
398 	kcb->prev_kprobe.kp = kprobe_running();
399 	kcb->prev_kprobe.status = kcb->kprobe_status;
400 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
401 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
402 }
403 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)404 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
405 {
406 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
407 	kcb->kprobe_status = kcb->prev_kprobe.status;
408 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
409 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
410 }
411 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)412 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
413 				struct kprobe_ctlblk *kcb)
414 {
415 	__this_cpu_write(current_kprobe, p);
416 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
417 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
418 	if (is_IF_modifier(p->ainsn.insn))
419 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
420 }
421 
clear_btf(void)422 static void __kprobes clear_btf(void)
423 {
424 	if (test_thread_flag(TIF_BLOCKSTEP)) {
425 		unsigned long debugctl = get_debugctlmsr();
426 
427 		debugctl &= ~DEBUGCTLMSR_BTF;
428 		update_debugctlmsr(debugctl);
429 	}
430 }
431 
restore_btf(void)432 static void __kprobes restore_btf(void)
433 {
434 	if (test_thread_flag(TIF_BLOCKSTEP)) {
435 		unsigned long debugctl = get_debugctlmsr();
436 
437 		debugctl |= DEBUGCTLMSR_BTF;
438 		update_debugctlmsr(debugctl);
439 	}
440 }
441 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)442 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
443 				      struct pt_regs *regs)
444 {
445 	unsigned long *sara = stack_addr(regs);
446 
447 	ri->ret_addr = (kprobe_opcode_t *) *sara;
448 
449 	/* Replace the return addr with trampoline addr */
450 	*sara = (unsigned long) &kretprobe_trampoline;
451 }
452 
453 #ifdef CONFIG_OPTPROBES
454 static int  __kprobes setup_detour_execution(struct kprobe *p,
455 					     struct pt_regs *regs,
456 					     int reenter);
457 #else
458 #define setup_detour_execution(p, regs, reenter) (0)
459 #endif
460 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)461 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
462 				       struct kprobe_ctlblk *kcb, int reenter)
463 {
464 	if (setup_detour_execution(p, regs, reenter))
465 		return;
466 
467 #if !defined(CONFIG_PREEMPT)
468 	if (p->ainsn.boostable == 1 && !p->post_handler) {
469 		/* Boost up -- we can execute copied instructions directly */
470 		if (!reenter)
471 			reset_current_kprobe();
472 		/*
473 		 * Reentering boosted probe doesn't reset current_kprobe,
474 		 * nor set current_kprobe, because it doesn't use single
475 		 * stepping.
476 		 */
477 		regs->ip = (unsigned long)p->ainsn.insn;
478 		preempt_enable_no_resched();
479 		return;
480 	}
481 #endif
482 	if (reenter) {
483 		save_previous_kprobe(kcb);
484 		set_current_kprobe(p, regs, kcb);
485 		kcb->kprobe_status = KPROBE_REENTER;
486 	} else
487 		kcb->kprobe_status = KPROBE_HIT_SS;
488 	/* Prepare real single stepping */
489 	clear_btf();
490 	regs->flags |= X86_EFLAGS_TF;
491 	regs->flags &= ~X86_EFLAGS_IF;
492 	/* single step inline if the instruction is an int3 */
493 	if (p->opcode == BREAKPOINT_INSTRUCTION)
494 		regs->ip = (unsigned long)p->addr;
495 	else
496 		regs->ip = (unsigned long)p->ainsn.insn;
497 }
498 
499 /*
500  * We have reentered the kprobe_handler(), since another probe was hit while
501  * within the handler. We save the original kprobes variables and just single
502  * step on the instruction of the new probe without calling any user handlers.
503  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)504 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
505 				    struct kprobe_ctlblk *kcb)
506 {
507 	switch (kcb->kprobe_status) {
508 	case KPROBE_HIT_SSDONE:
509 	case KPROBE_HIT_ACTIVE:
510 		kprobes_inc_nmissed_count(p);
511 		setup_singlestep(p, regs, kcb, 1);
512 		break;
513 	case KPROBE_HIT_SS:
514 		/* A probe has been hit in the codepath leading up to, or just
515 		 * after, single-stepping of a probed instruction. This entire
516 		 * codepath should strictly reside in .kprobes.text section.
517 		 * Raise a BUG or we'll continue in an endless reentering loop
518 		 * and eventually a stack overflow.
519 		 */
520 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
521 		       p->addr);
522 		dump_kprobe(p);
523 		BUG();
524 	default:
525 		/* impossible cases */
526 		WARN_ON(1);
527 		return 0;
528 	}
529 
530 	return 1;
531 }
532 
533 /*
534  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
535  * remain disabled throughout this function.
536  */
kprobe_handler(struct pt_regs * regs)537 static int __kprobes kprobe_handler(struct pt_regs *regs)
538 {
539 	kprobe_opcode_t *addr;
540 	struct kprobe *p;
541 	struct kprobe_ctlblk *kcb;
542 
543 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
544 	/*
545 	 * We don't want to be preempted for the entire
546 	 * duration of kprobe processing. We conditionally
547 	 * re-enable preemption at the end of this function,
548 	 * and also in reenter_kprobe() and setup_singlestep().
549 	 */
550 	preempt_disable();
551 
552 	kcb = get_kprobe_ctlblk();
553 	p = get_kprobe(addr);
554 
555 	if (p) {
556 		if (kprobe_running()) {
557 			if (reenter_kprobe(p, regs, kcb))
558 				return 1;
559 		} else {
560 			set_current_kprobe(p, regs, kcb);
561 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
562 
563 			/*
564 			 * If we have no pre-handler or it returned 0, we
565 			 * continue with normal processing.  If we have a
566 			 * pre-handler and it returned non-zero, it prepped
567 			 * for calling the break_handler below on re-entry
568 			 * for jprobe processing, so get out doing nothing
569 			 * more here.
570 			 */
571 			if (!p->pre_handler || !p->pre_handler(p, regs))
572 				setup_singlestep(p, regs, kcb, 0);
573 			return 1;
574 		}
575 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
576 		/*
577 		 * The breakpoint instruction was removed right
578 		 * after we hit it.  Another cpu has removed
579 		 * either a probepoint or a debugger breakpoint
580 		 * at this address.  In either case, no further
581 		 * handling of this interrupt is appropriate.
582 		 * Back up over the (now missing) int3 and run
583 		 * the original instruction.
584 		 */
585 		regs->ip = (unsigned long)addr;
586 		preempt_enable_no_resched();
587 		return 1;
588 	} else if (kprobe_running()) {
589 		p = __this_cpu_read(current_kprobe);
590 		if (p->break_handler && p->break_handler(p, regs)) {
591 			setup_singlestep(p, regs, kcb, 0);
592 			return 1;
593 		}
594 	} /* else: not a kprobe fault; let the kernel handle it */
595 
596 	preempt_enable_no_resched();
597 	return 0;
598 }
599 
600 #ifdef CONFIG_X86_64
601 #define SAVE_REGS_STRING		\
602 	/* Skip cs, ip, orig_ax. */	\
603 	"	subq $24, %rsp\n"	\
604 	"	pushq %rdi\n"		\
605 	"	pushq %rsi\n"		\
606 	"	pushq %rdx\n"		\
607 	"	pushq %rcx\n"		\
608 	"	pushq %rax\n"		\
609 	"	pushq %r8\n"		\
610 	"	pushq %r9\n"		\
611 	"	pushq %r10\n"		\
612 	"	pushq %r11\n"		\
613 	"	pushq %rbx\n"		\
614 	"	pushq %rbp\n"		\
615 	"	pushq %r12\n"		\
616 	"	pushq %r13\n"		\
617 	"	pushq %r14\n"		\
618 	"	pushq %r15\n"
619 #define RESTORE_REGS_STRING		\
620 	"	popq %r15\n"		\
621 	"	popq %r14\n"		\
622 	"	popq %r13\n"		\
623 	"	popq %r12\n"		\
624 	"	popq %rbp\n"		\
625 	"	popq %rbx\n"		\
626 	"	popq %r11\n"		\
627 	"	popq %r10\n"		\
628 	"	popq %r9\n"		\
629 	"	popq %r8\n"		\
630 	"	popq %rax\n"		\
631 	"	popq %rcx\n"		\
632 	"	popq %rdx\n"		\
633 	"	popq %rsi\n"		\
634 	"	popq %rdi\n"		\
635 	/* Skip orig_ax, ip, cs */	\
636 	"	addq $24, %rsp\n"
637 #else
638 #define SAVE_REGS_STRING		\
639 	/* Skip cs, ip, orig_ax and gs. */	\
640 	"	subl $16, %esp\n"	\
641 	"	pushl %fs\n"		\
642 	"	pushl %es\n"		\
643 	"	pushl %ds\n"		\
644 	"	pushl %eax\n"		\
645 	"	pushl %ebp\n"		\
646 	"	pushl %edi\n"		\
647 	"	pushl %esi\n"		\
648 	"	pushl %edx\n"		\
649 	"	pushl %ecx\n"		\
650 	"	pushl %ebx\n"
651 #define RESTORE_REGS_STRING		\
652 	"	popl %ebx\n"		\
653 	"	popl %ecx\n"		\
654 	"	popl %edx\n"		\
655 	"	popl %esi\n"		\
656 	"	popl %edi\n"		\
657 	"	popl %ebp\n"		\
658 	"	popl %eax\n"		\
659 	/* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
660 	"	addl $24, %esp\n"
661 #endif
662 
663 /*
664  * When a retprobed function returns, this code saves registers and
665  * calls trampoline_handler() runs, which calls the kretprobe's handler.
666  */
kretprobe_trampoline_holder(void)667 static void __used __kprobes kretprobe_trampoline_holder(void)
668 {
669 	asm volatile (
670 			".global kretprobe_trampoline\n"
671 			"kretprobe_trampoline: \n"
672 #ifdef CONFIG_X86_64
673 			/* We don't bother saving the ss register */
674 			"	pushq %rsp\n"
675 			"	pushfq\n"
676 			SAVE_REGS_STRING
677 			"	movq %rsp, %rdi\n"
678 			"	call trampoline_handler\n"
679 			/* Replace saved sp with true return address. */
680 			"	movq %rax, 152(%rsp)\n"
681 			RESTORE_REGS_STRING
682 			"	popfq\n"
683 #else
684 			"	pushf\n"
685 			SAVE_REGS_STRING
686 			"	movl %esp, %eax\n"
687 			"	call trampoline_handler\n"
688 			/* Move flags to cs */
689 			"	movl 56(%esp), %edx\n"
690 			"	movl %edx, 52(%esp)\n"
691 			/* Replace saved flags with true return address. */
692 			"	movl %eax, 56(%esp)\n"
693 			RESTORE_REGS_STRING
694 			"	popf\n"
695 #endif
696 			"	ret\n");
697 }
698 
699 /*
700  * Called from kretprobe_trampoline
701  */
trampoline_handler(struct pt_regs * regs)702 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
703 {
704 	struct kretprobe_instance *ri = NULL;
705 	struct hlist_head *head, empty_rp;
706 	struct hlist_node *node, *tmp;
707 	unsigned long flags, orig_ret_address = 0;
708 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
709 	kprobe_opcode_t *correct_ret_addr = NULL;
710 
711 	INIT_HLIST_HEAD(&empty_rp);
712 	kretprobe_hash_lock(current, &head, &flags);
713 	/* fixup registers */
714 #ifdef CONFIG_X86_64
715 	regs->cs = __KERNEL_CS;
716 #else
717 	regs->cs = __KERNEL_CS | get_kernel_rpl();
718 	regs->gs = 0;
719 #endif
720 	regs->ip = trampoline_address;
721 	regs->orig_ax = ~0UL;
722 
723 	/*
724 	 * It is possible to have multiple instances associated with a given
725 	 * task either because multiple functions in the call path have
726 	 * return probes installed on them, and/or more than one
727 	 * return probe was registered for a target function.
728 	 *
729 	 * We can handle this because:
730 	 *     - instances are always pushed into the head of the list
731 	 *     - when multiple return probes are registered for the same
732 	 *	 function, the (chronologically) first instance's ret_addr
733 	 *	 will be the real return address, and all the rest will
734 	 *	 point to kretprobe_trampoline.
735 	 */
736 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
737 		if (ri->task != current)
738 			/* another task is sharing our hash bucket */
739 			continue;
740 
741 		orig_ret_address = (unsigned long)ri->ret_addr;
742 
743 		if (orig_ret_address != trampoline_address)
744 			/*
745 			 * This is the real return address. Any other
746 			 * instances associated with this task are for
747 			 * other calls deeper on the call stack
748 			 */
749 			break;
750 	}
751 
752 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
753 
754 	correct_ret_addr = ri->ret_addr;
755 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
756 		if (ri->task != current)
757 			/* another task is sharing our hash bucket */
758 			continue;
759 
760 		orig_ret_address = (unsigned long)ri->ret_addr;
761 		if (ri->rp && ri->rp->handler) {
762 			__this_cpu_write(current_kprobe, &ri->rp->kp);
763 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
764 			ri->ret_addr = correct_ret_addr;
765 			ri->rp->handler(ri, regs);
766 			__this_cpu_write(current_kprobe, NULL);
767 		}
768 
769 		recycle_rp_inst(ri, &empty_rp);
770 
771 		if (orig_ret_address != trampoline_address)
772 			/*
773 			 * This is the real return address. Any other
774 			 * instances associated with this task are for
775 			 * other calls deeper on the call stack
776 			 */
777 			break;
778 	}
779 
780 	kretprobe_hash_unlock(current, &flags);
781 
782 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
783 		hlist_del(&ri->hlist);
784 		kfree(ri);
785 	}
786 	return (void *)orig_ret_address;
787 }
788 
789 /*
790  * Called after single-stepping.  p->addr is the address of the
791  * instruction whose first byte has been replaced by the "int 3"
792  * instruction.  To avoid the SMP problems that can occur when we
793  * temporarily put back the original opcode to single-step, we
794  * single-stepped a copy of the instruction.  The address of this
795  * copy is p->ainsn.insn.
796  *
797  * This function prepares to return from the post-single-step
798  * interrupt.  We have to fix up the stack as follows:
799  *
800  * 0) Except in the case of absolute or indirect jump or call instructions,
801  * the new ip is relative to the copied instruction.  We need to make
802  * it relative to the original instruction.
803  *
804  * 1) If the single-stepped instruction was pushfl, then the TF and IF
805  * flags are set in the just-pushed flags, and may need to be cleared.
806  *
807  * 2) If the single-stepped instruction was a call, the return address
808  * that is atop the stack is the address following the copied instruction.
809  * We need to make it the address following the original instruction.
810  *
811  * If this is the first time we've single-stepped the instruction at
812  * this probepoint, and the instruction is boostable, boost it: add a
813  * jump instruction after the copied instruction, that jumps to the next
814  * instruction after the probepoint.
815  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)816 static void __kprobes resume_execution(struct kprobe *p,
817 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
818 {
819 	unsigned long *tos = stack_addr(regs);
820 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
821 	unsigned long orig_ip = (unsigned long)p->addr;
822 	kprobe_opcode_t *insn = p->ainsn.insn;
823 
824 	/* Skip prefixes */
825 	insn = skip_prefixes(insn);
826 
827 	regs->flags &= ~X86_EFLAGS_TF;
828 	switch (*insn) {
829 	case 0x9c:	/* pushfl */
830 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
831 		*tos |= kcb->kprobe_old_flags;
832 		break;
833 	case 0xc2:	/* iret/ret/lret */
834 	case 0xc3:
835 	case 0xca:
836 	case 0xcb:
837 	case 0xcf:
838 	case 0xea:	/* jmp absolute -- ip is correct */
839 		/* ip is already adjusted, no more changes required */
840 		p->ainsn.boostable = 1;
841 		goto no_change;
842 	case 0xe8:	/* call relative - Fix return addr */
843 		*tos = orig_ip + (*tos - copy_ip);
844 		break;
845 #ifdef CONFIG_X86_32
846 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
847 		*tos = orig_ip + (*tos - copy_ip);
848 		goto no_change;
849 #endif
850 	case 0xff:
851 		if ((insn[1] & 0x30) == 0x10) {
852 			/*
853 			 * call absolute, indirect
854 			 * Fix return addr; ip is correct.
855 			 * But this is not boostable
856 			 */
857 			*tos = orig_ip + (*tos - copy_ip);
858 			goto no_change;
859 		} else if (((insn[1] & 0x31) == 0x20) ||
860 			   ((insn[1] & 0x31) == 0x21)) {
861 			/*
862 			 * jmp near and far, absolute indirect
863 			 * ip is correct. And this is boostable
864 			 */
865 			p->ainsn.boostable = 1;
866 			goto no_change;
867 		}
868 	default:
869 		break;
870 	}
871 
872 	if (p->ainsn.boostable == 0) {
873 		if ((regs->ip > copy_ip) &&
874 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
875 			/*
876 			 * These instructions can be executed directly if it
877 			 * jumps back to correct address.
878 			 */
879 			synthesize_reljump((void *)regs->ip,
880 				(void *)orig_ip + (regs->ip - copy_ip));
881 			p->ainsn.boostable = 1;
882 		} else {
883 			p->ainsn.boostable = -1;
884 		}
885 	}
886 
887 	regs->ip += orig_ip - copy_ip;
888 
889 no_change:
890 	restore_btf();
891 }
892 
893 /*
894  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
895  * remain disabled throughout this function.
896  */
post_kprobe_handler(struct pt_regs * regs)897 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
898 {
899 	struct kprobe *cur = kprobe_running();
900 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
901 
902 	if (!cur)
903 		return 0;
904 
905 	resume_execution(cur, regs, kcb);
906 	regs->flags |= kcb->kprobe_saved_flags;
907 
908 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
909 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
910 		cur->post_handler(cur, regs, 0);
911 	}
912 
913 	/* Restore back the original saved kprobes variables and continue. */
914 	if (kcb->kprobe_status == KPROBE_REENTER) {
915 		restore_previous_kprobe(kcb);
916 		goto out;
917 	}
918 	reset_current_kprobe();
919 out:
920 	preempt_enable_no_resched();
921 
922 	/*
923 	 * if somebody else is singlestepping across a probe point, flags
924 	 * will have TF set, in which case, continue the remaining processing
925 	 * of do_debug, as if this is not a probe hit.
926 	 */
927 	if (regs->flags & X86_EFLAGS_TF)
928 		return 0;
929 
930 	return 1;
931 }
932 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)933 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
934 {
935 	struct kprobe *cur = kprobe_running();
936 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
937 
938 	switch (kcb->kprobe_status) {
939 	case KPROBE_HIT_SS:
940 	case KPROBE_REENTER:
941 		/*
942 		 * We are here because the instruction being single
943 		 * stepped caused a page fault. We reset the current
944 		 * kprobe and the ip points back to the probe address
945 		 * and allow the page fault handler to continue as a
946 		 * normal page fault.
947 		 */
948 		regs->ip = (unsigned long)cur->addr;
949 		regs->flags |= kcb->kprobe_old_flags;
950 		if (kcb->kprobe_status == KPROBE_REENTER)
951 			restore_previous_kprobe(kcb);
952 		else
953 			reset_current_kprobe();
954 		preempt_enable_no_resched();
955 		break;
956 	case KPROBE_HIT_ACTIVE:
957 	case KPROBE_HIT_SSDONE:
958 		/*
959 		 * We increment the nmissed count for accounting,
960 		 * we can also use npre/npostfault count for accounting
961 		 * these specific fault cases.
962 		 */
963 		kprobes_inc_nmissed_count(cur);
964 
965 		/*
966 		 * We come here because instructions in the pre/post
967 		 * handler caused the page_fault, this could happen
968 		 * if handler tries to access user space by
969 		 * copy_from_user(), get_user() etc. Let the
970 		 * user-specified handler try to fix it first.
971 		 */
972 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
973 			return 1;
974 
975 		/*
976 		 * In case the user-specified fault handler returned
977 		 * zero, try to fix up.
978 		 */
979 		if (fixup_exception(regs))
980 			return 1;
981 
982 		/*
983 		 * fixup routine could not handle it,
984 		 * Let do_page_fault() fix it.
985 		 */
986 		break;
987 	default:
988 		break;
989 	}
990 	return 0;
991 }
992 
993 /*
994  * Wrapper routine for handling exceptions.
995  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)996 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
997 				       unsigned long val, void *data)
998 {
999 	struct die_args *args = data;
1000 	int ret = NOTIFY_DONE;
1001 
1002 	if (args->regs && user_mode_vm(args->regs))
1003 		return ret;
1004 
1005 	switch (val) {
1006 	case DIE_INT3:
1007 		if (kprobe_handler(args->regs))
1008 			ret = NOTIFY_STOP;
1009 		break;
1010 	case DIE_DEBUG:
1011 		if (post_kprobe_handler(args->regs)) {
1012 			/*
1013 			 * Reset the BS bit in dr6 (pointed by args->err) to
1014 			 * denote completion of processing
1015 			 */
1016 			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1017 			ret = NOTIFY_STOP;
1018 		}
1019 		break;
1020 	case DIE_GPF:
1021 		/*
1022 		 * To be potentially processing a kprobe fault and to
1023 		 * trust the result from kprobe_running(), we have
1024 		 * be non-preemptible.
1025 		 */
1026 		if (!preemptible() && kprobe_running() &&
1027 		    kprobe_fault_handler(args->regs, args->trapnr))
1028 			ret = NOTIFY_STOP;
1029 		break;
1030 	default:
1031 		break;
1032 	}
1033 	return ret;
1034 }
1035 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1036 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1037 {
1038 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1039 	unsigned long addr;
1040 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1041 
1042 	kcb->jprobe_saved_regs = *regs;
1043 	kcb->jprobe_saved_sp = stack_addr(regs);
1044 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1045 
1046 	/*
1047 	 * As Linus pointed out, gcc assumes that the callee
1048 	 * owns the argument space and could overwrite it, e.g.
1049 	 * tailcall optimization. So, to be absolutely safe
1050 	 * we also save and restore enough stack bytes to cover
1051 	 * the argument area.
1052 	 */
1053 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1054 	       MIN_STACK_SIZE(addr));
1055 	regs->flags &= ~X86_EFLAGS_IF;
1056 	trace_hardirqs_off();
1057 	regs->ip = (unsigned long)(jp->entry);
1058 	return 1;
1059 }
1060 
jprobe_return(void)1061 void __kprobes jprobe_return(void)
1062 {
1063 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1064 
1065 	asm volatile (
1066 #ifdef CONFIG_X86_64
1067 			"       xchg   %%rbx,%%rsp	\n"
1068 #else
1069 			"       xchgl   %%ebx,%%esp	\n"
1070 #endif
1071 			"       int3			\n"
1072 			"       .globl jprobe_return_end\n"
1073 			"       jprobe_return_end:	\n"
1074 			"       nop			\n"::"b"
1075 			(kcb->jprobe_saved_sp):"memory");
1076 }
1077 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1078 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1079 {
1080 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1081 	u8 *addr = (u8 *) (regs->ip - 1);
1082 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1083 
1084 	if ((addr > (u8 *) jprobe_return) &&
1085 	    (addr < (u8 *) jprobe_return_end)) {
1086 		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1087 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1088 			printk(KERN_ERR
1089 			       "current sp %p does not match saved sp %p\n",
1090 			       stack_addr(regs), kcb->jprobe_saved_sp);
1091 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1092 			show_registers(saved_regs);
1093 			printk(KERN_ERR "Current registers\n");
1094 			show_registers(regs);
1095 			BUG();
1096 		}
1097 		*regs = kcb->jprobe_saved_regs;
1098 		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1099 		       kcb->jprobes_stack,
1100 		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1101 		preempt_enable_no_resched();
1102 		return 1;
1103 	}
1104 	return 0;
1105 }
1106 
1107 
1108 #ifdef CONFIG_OPTPROBES
1109 
1110 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)1111 static void __kprobes synthesize_relcall(void *from, void *to)
1112 {
1113 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1114 }
1115 
1116 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
synthesize_set_arg1(kprobe_opcode_t * addr,unsigned long val)1117 static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1118 					  unsigned long val)
1119 {
1120 #ifdef CONFIG_X86_64
1121 	*addr++ = 0x48;
1122 	*addr++ = 0xbf;
1123 #else
1124 	*addr++ = 0xb8;
1125 #endif
1126 	*(unsigned long *)addr = val;
1127 }
1128 
kprobes_optinsn_template_holder(void)1129 static void __used __kprobes kprobes_optinsn_template_holder(void)
1130 {
1131 	asm volatile (
1132 			".global optprobe_template_entry\n"
1133 			"optprobe_template_entry: \n"
1134 #ifdef CONFIG_X86_64
1135 			/* We don't bother saving the ss register */
1136 			"	pushq %rsp\n"
1137 			"	pushfq\n"
1138 			SAVE_REGS_STRING
1139 			"	movq %rsp, %rsi\n"
1140 			".global optprobe_template_val\n"
1141 			"optprobe_template_val: \n"
1142 			ASM_NOP5
1143 			ASM_NOP5
1144 			".global optprobe_template_call\n"
1145 			"optprobe_template_call: \n"
1146 			ASM_NOP5
1147 			/* Move flags to rsp */
1148 			"	movq 144(%rsp), %rdx\n"
1149 			"	movq %rdx, 152(%rsp)\n"
1150 			RESTORE_REGS_STRING
1151 			/* Skip flags entry */
1152 			"	addq $8, %rsp\n"
1153 			"	popfq\n"
1154 #else /* CONFIG_X86_32 */
1155 			"	pushf\n"
1156 			SAVE_REGS_STRING
1157 			"	movl %esp, %edx\n"
1158 			".global optprobe_template_val\n"
1159 			"optprobe_template_val: \n"
1160 			ASM_NOP5
1161 			".global optprobe_template_call\n"
1162 			"optprobe_template_call: \n"
1163 			ASM_NOP5
1164 			RESTORE_REGS_STRING
1165 			"	addl $4, %esp\n"	/* skip cs */
1166 			"	popf\n"
1167 #endif
1168 			".global optprobe_template_end\n"
1169 			"optprobe_template_end: \n");
1170 }
1171 
1172 #define TMPL_MOVE_IDX \
1173 	((long)&optprobe_template_val - (long)&optprobe_template_entry)
1174 #define TMPL_CALL_IDX \
1175 	((long)&optprobe_template_call - (long)&optprobe_template_entry)
1176 #define TMPL_END_IDX \
1177 	((long)&optprobe_template_end - (long)&optprobe_template_entry)
1178 
1179 #define INT3_SIZE sizeof(kprobe_opcode_t)
1180 
1181 /* Optimized kprobe call back function: called from optinsn */
optimized_callback(struct optimized_kprobe * op,struct pt_regs * regs)1182 static void __kprobes optimized_callback(struct optimized_kprobe *op,
1183 					 struct pt_regs *regs)
1184 {
1185 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1186 	unsigned long flags;
1187 
1188 	/* This is possible if op is under delayed unoptimizing */
1189 	if (kprobe_disabled(&op->kp))
1190 		return;
1191 
1192 	local_irq_save(flags);
1193 	if (kprobe_running()) {
1194 		kprobes_inc_nmissed_count(&op->kp);
1195 	} else {
1196 		/* Save skipped registers */
1197 #ifdef CONFIG_X86_64
1198 		regs->cs = __KERNEL_CS;
1199 #else
1200 		regs->cs = __KERNEL_CS | get_kernel_rpl();
1201 		regs->gs = 0;
1202 #endif
1203 		regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1204 		regs->orig_ax = ~0UL;
1205 
1206 		__this_cpu_write(current_kprobe, &op->kp);
1207 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1208 		opt_pre_handler(&op->kp, regs);
1209 		__this_cpu_write(current_kprobe, NULL);
1210 	}
1211 	local_irq_restore(flags);
1212 }
1213 
copy_optimized_instructions(u8 * dest,u8 * src)1214 static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1215 {
1216 	int len = 0, ret;
1217 
1218 	while (len < RELATIVEJUMP_SIZE) {
1219 		ret = __copy_instruction(dest + len, src + len, 1);
1220 		if (!ret || !can_boost(dest + len))
1221 			return -EINVAL;
1222 		len += ret;
1223 	}
1224 	/* Check whether the address range is reserved */
1225 	if (ftrace_text_reserved(src, src + len - 1) ||
1226 	    alternatives_text_reserved(src, src + len - 1) ||
1227 	    jump_label_text_reserved(src, src + len - 1))
1228 		return -EBUSY;
1229 
1230 	return len;
1231 }
1232 
1233 /* Check whether insn is indirect jump */
insn_is_indirect_jump(struct insn * insn)1234 static int __kprobes insn_is_indirect_jump(struct insn *insn)
1235 {
1236 	return ((insn->opcode.bytes[0] == 0xff &&
1237 		(X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1238 		insn->opcode.bytes[0] == 0xea);	/* Segment based jump */
1239 }
1240 
1241 /* Check whether insn jumps into specified address range */
insn_jump_into_range(struct insn * insn,unsigned long start,int len)1242 static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1243 {
1244 	unsigned long target = 0;
1245 
1246 	switch (insn->opcode.bytes[0]) {
1247 	case 0xe0:	/* loopne */
1248 	case 0xe1:	/* loope */
1249 	case 0xe2:	/* loop */
1250 	case 0xe3:	/* jcxz */
1251 	case 0xe9:	/* near relative jump */
1252 	case 0xeb:	/* short relative jump */
1253 		break;
1254 	case 0x0f:
1255 		if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1256 			break;
1257 		return 0;
1258 	default:
1259 		if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1260 			break;
1261 		return 0;
1262 	}
1263 	target = (unsigned long)insn->next_byte + insn->immediate.value;
1264 
1265 	return (start <= target && target <= start + len);
1266 }
1267 
1268 /* Decode whole function to ensure any instructions don't jump into target */
can_optimize(unsigned long paddr)1269 static int __kprobes can_optimize(unsigned long paddr)
1270 {
1271 	int ret;
1272 	unsigned long addr, size = 0, offset = 0;
1273 	struct insn insn;
1274 	kprobe_opcode_t buf[MAX_INSN_SIZE];
1275 
1276 	/* Lookup symbol including addr */
1277 	if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
1278 		return 0;
1279 
1280 	/*
1281 	 * Do not optimize in the entry code due to the unstable
1282 	 * stack handling.
1283 	 */
1284 	if ((paddr >= (unsigned long )__entry_text_start) &&
1285 	    (paddr <  (unsigned long )__entry_text_end))
1286 		return 0;
1287 
1288 	/* Check there is enough space for a relative jump. */
1289 	if (size - offset < RELATIVEJUMP_SIZE)
1290 		return 0;
1291 
1292 	/* Decode instructions */
1293 	addr = paddr - offset;
1294 	while (addr < paddr - offset + size) { /* Decode until function end */
1295 		if (search_exception_tables(addr))
1296 			/*
1297 			 * Since some fixup code will jumps into this function,
1298 			 * we can't optimize kprobe in this function.
1299 			 */
1300 			return 0;
1301 		kernel_insn_init(&insn, (void *)addr);
1302 		insn_get_opcode(&insn);
1303 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1304 			ret = recover_probed_instruction(buf, addr);
1305 			if (ret)
1306 				return 0;
1307 			kernel_insn_init(&insn, buf);
1308 		}
1309 		insn_get_length(&insn);
1310 		/* Recover address */
1311 		insn.kaddr = (void *)addr;
1312 		insn.next_byte = (void *)(addr + insn.length);
1313 		/* Check any instructions don't jump into target */
1314 		if (insn_is_indirect_jump(&insn) ||
1315 		    insn_jump_into_range(&insn, paddr + INT3_SIZE,
1316 					 RELATIVE_ADDR_SIZE))
1317 			return 0;
1318 		addr += insn.length;
1319 	}
1320 
1321 	return 1;
1322 }
1323 
1324 /* Check optimized_kprobe can actually be optimized. */
arch_check_optimized_kprobe(struct optimized_kprobe * op)1325 int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1326 {
1327 	int i;
1328 	struct kprobe *p;
1329 
1330 	for (i = 1; i < op->optinsn.size; i++) {
1331 		p = get_kprobe(op->kp.addr + i);
1332 		if (p && !kprobe_disabled(p))
1333 			return -EEXIST;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 /* Check the addr is within the optimized instructions. */
arch_within_optimized_kprobe(struct optimized_kprobe * op,unsigned long addr)1340 int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1341 					   unsigned long addr)
1342 {
1343 	return ((unsigned long)op->kp.addr <= addr &&
1344 		(unsigned long)op->kp.addr + op->optinsn.size > addr);
1345 }
1346 
1347 /* Free optimized instruction slot */
1348 static __kprobes
__arch_remove_optimized_kprobe(struct optimized_kprobe * op,int dirty)1349 void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1350 {
1351 	if (op->optinsn.insn) {
1352 		free_optinsn_slot(op->optinsn.insn, dirty);
1353 		op->optinsn.insn = NULL;
1354 		op->optinsn.size = 0;
1355 	}
1356 }
1357 
arch_remove_optimized_kprobe(struct optimized_kprobe * op)1358 void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1359 {
1360 	__arch_remove_optimized_kprobe(op, 1);
1361 }
1362 
1363 /*
1364  * Copy replacing target instructions
1365  * Target instructions MUST be relocatable (checked inside)
1366  */
arch_prepare_optimized_kprobe(struct optimized_kprobe * op)1367 int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1368 {
1369 	u8 *buf;
1370 	int ret;
1371 	long rel;
1372 
1373 	if (!can_optimize((unsigned long)op->kp.addr))
1374 		return -EILSEQ;
1375 
1376 	op->optinsn.insn = get_optinsn_slot();
1377 	if (!op->optinsn.insn)
1378 		return -ENOMEM;
1379 
1380 	/*
1381 	 * Verify if the address gap is in 2GB range, because this uses
1382 	 * a relative jump.
1383 	 */
1384 	rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1385 	if (abs(rel) > 0x7fffffff)
1386 		return -ERANGE;
1387 
1388 	buf = (u8 *)op->optinsn.insn;
1389 
1390 	/* Copy instructions into the out-of-line buffer */
1391 	ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1392 	if (ret < 0) {
1393 		__arch_remove_optimized_kprobe(op, 0);
1394 		return ret;
1395 	}
1396 	op->optinsn.size = ret;
1397 
1398 	/* Copy arch-dep-instance from template */
1399 	memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1400 
1401 	/* Set probe information */
1402 	synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1403 
1404 	/* Set probe function call */
1405 	synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1406 
1407 	/* Set returning jmp instruction at the tail of out-of-line buffer */
1408 	synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1409 			   (u8 *)op->kp.addr + op->optinsn.size);
1410 
1411 	flush_icache_range((unsigned long) buf,
1412 			   (unsigned long) buf + TMPL_END_IDX +
1413 			   op->optinsn.size + RELATIVEJUMP_SIZE);
1414 	return 0;
1415 }
1416 
1417 #define MAX_OPTIMIZE_PROBES 256
1418 static struct text_poke_param *jump_poke_params;
1419 static struct jump_poke_buffer {
1420 	u8 buf[RELATIVEJUMP_SIZE];
1421 } *jump_poke_bufs;
1422 
setup_optimize_kprobe(struct text_poke_param * tprm,u8 * insn_buf,struct optimized_kprobe * op)1423 static void __kprobes setup_optimize_kprobe(struct text_poke_param *tprm,
1424 					    u8 *insn_buf,
1425 					    struct optimized_kprobe *op)
1426 {
1427 	s32 rel = (s32)((long)op->optinsn.insn -
1428 			((long)op->kp.addr + RELATIVEJUMP_SIZE));
1429 
1430 	/* Backup instructions which will be replaced by jump address */
1431 	memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1432 	       RELATIVE_ADDR_SIZE);
1433 
1434 	insn_buf[0] = RELATIVEJUMP_OPCODE;
1435 	*(s32 *)(&insn_buf[1]) = rel;
1436 
1437 	tprm->addr = op->kp.addr;
1438 	tprm->opcode = insn_buf;
1439 	tprm->len = RELATIVEJUMP_SIZE;
1440 }
1441 
1442 /*
1443  * Replace breakpoints (int3) with relative jumps.
1444  * Caller must call with locking kprobe_mutex and text_mutex.
1445  */
arch_optimize_kprobes(struct list_head * oplist)1446 void __kprobes arch_optimize_kprobes(struct list_head *oplist)
1447 {
1448 	struct optimized_kprobe *op, *tmp;
1449 	int c = 0;
1450 
1451 	list_for_each_entry_safe(op, tmp, oplist, list) {
1452 		WARN_ON(kprobe_disabled(&op->kp));
1453 		/* Setup param */
1454 		setup_optimize_kprobe(&jump_poke_params[c],
1455 				      jump_poke_bufs[c].buf, op);
1456 		list_del_init(&op->list);
1457 		if (++c >= MAX_OPTIMIZE_PROBES)
1458 			break;
1459 	}
1460 
1461 	/*
1462 	 * text_poke_smp doesn't support NMI/MCE code modifying.
1463 	 * However, since kprobes itself also doesn't support NMI/MCE
1464 	 * code probing, it's not a problem.
1465 	 */
1466 	text_poke_smp_batch(jump_poke_params, c);
1467 }
1468 
setup_unoptimize_kprobe(struct text_poke_param * tprm,u8 * insn_buf,struct optimized_kprobe * op)1469 static void __kprobes setup_unoptimize_kprobe(struct text_poke_param *tprm,
1470 					      u8 *insn_buf,
1471 					      struct optimized_kprobe *op)
1472 {
1473 	/* Set int3 to first byte for kprobes */
1474 	insn_buf[0] = BREAKPOINT_INSTRUCTION;
1475 	memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1476 
1477 	tprm->addr = op->kp.addr;
1478 	tprm->opcode = insn_buf;
1479 	tprm->len = RELATIVEJUMP_SIZE;
1480 }
1481 
1482 /*
1483  * Recover original instructions and breakpoints from relative jumps.
1484  * Caller must call with locking kprobe_mutex.
1485  */
arch_unoptimize_kprobes(struct list_head * oplist,struct list_head * done_list)1486 extern void arch_unoptimize_kprobes(struct list_head *oplist,
1487 				    struct list_head *done_list)
1488 {
1489 	struct optimized_kprobe *op, *tmp;
1490 	int c = 0;
1491 
1492 	list_for_each_entry_safe(op, tmp, oplist, list) {
1493 		/* Setup param */
1494 		setup_unoptimize_kprobe(&jump_poke_params[c],
1495 					jump_poke_bufs[c].buf, op);
1496 		list_move(&op->list, done_list);
1497 		if (++c >= MAX_OPTIMIZE_PROBES)
1498 			break;
1499 	}
1500 
1501 	/*
1502 	 * text_poke_smp doesn't support NMI/MCE code modifying.
1503 	 * However, since kprobes itself also doesn't support NMI/MCE
1504 	 * code probing, it's not a problem.
1505 	 */
1506 	text_poke_smp_batch(jump_poke_params, c);
1507 }
1508 
1509 /* Replace a relative jump with a breakpoint (int3).  */
arch_unoptimize_kprobe(struct optimized_kprobe * op)1510 void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1511 {
1512 	u8 buf[RELATIVEJUMP_SIZE];
1513 
1514 	/* Set int3 to first byte for kprobes */
1515 	buf[0] = BREAKPOINT_INSTRUCTION;
1516 	memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1517 	text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1518 }
1519 
setup_detour_execution(struct kprobe * p,struct pt_regs * regs,int reenter)1520 static int  __kprobes setup_detour_execution(struct kprobe *p,
1521 					     struct pt_regs *regs,
1522 					     int reenter)
1523 {
1524 	struct optimized_kprobe *op;
1525 
1526 	if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1527 		/* This kprobe is really able to run optimized path. */
1528 		op = container_of(p, struct optimized_kprobe, kp);
1529 		/* Detour through copied instructions */
1530 		regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1531 		if (!reenter)
1532 			reset_current_kprobe();
1533 		preempt_enable_no_resched();
1534 		return 1;
1535 	}
1536 	return 0;
1537 }
1538 
init_poke_params(void)1539 static int __kprobes init_poke_params(void)
1540 {
1541 	/* Allocate code buffer and parameter array */
1542 	jump_poke_bufs = kmalloc(sizeof(struct jump_poke_buffer) *
1543 				 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1544 	if (!jump_poke_bufs)
1545 		return -ENOMEM;
1546 
1547 	jump_poke_params = kmalloc(sizeof(struct text_poke_param) *
1548 				   MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1549 	if (!jump_poke_params) {
1550 		kfree(jump_poke_bufs);
1551 		jump_poke_bufs = NULL;
1552 		return -ENOMEM;
1553 	}
1554 
1555 	return 0;
1556 }
1557 #else	/* !CONFIG_OPTPROBES */
init_poke_params(void)1558 static int __kprobes init_poke_params(void)
1559 {
1560 	return 0;
1561 }
1562 #endif
1563 
arch_init_kprobes(void)1564 int __init arch_init_kprobes(void)
1565 {
1566 	return init_poke_params();
1567 }
1568 
arch_trampoline_kprobe(struct kprobe * p)1569 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1570 {
1571 	return 0;
1572 }
1573