1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #ifdef CONFIG_PPC32
33 #include <linux/module.h>
34 #endif
35 #include <linux/hw_breakpoint.h>
36 #include <linux/perf_event.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/system.h>
42
43 /*
44 * The parameter save area on the stack is used to store arguments being passed
45 * to callee function and is located at fixed offset from stack pointer.
46 */
47 #ifdef CONFIG_PPC32
48 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
49 #else /* CONFIG_PPC32 */
50 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
51 #endif
52
53 struct pt_regs_offset {
54 const char *name;
55 int offset;
56 };
57
58 #define STR(s) #s /* convert to string */
59 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
60 #define GPR_OFFSET_NAME(num) \
61 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
62 #define REG_OFFSET_END {.name = NULL, .offset = 0}
63
64 static const struct pt_regs_offset regoffset_table[] = {
65 GPR_OFFSET_NAME(0),
66 GPR_OFFSET_NAME(1),
67 GPR_OFFSET_NAME(2),
68 GPR_OFFSET_NAME(3),
69 GPR_OFFSET_NAME(4),
70 GPR_OFFSET_NAME(5),
71 GPR_OFFSET_NAME(6),
72 GPR_OFFSET_NAME(7),
73 GPR_OFFSET_NAME(8),
74 GPR_OFFSET_NAME(9),
75 GPR_OFFSET_NAME(10),
76 GPR_OFFSET_NAME(11),
77 GPR_OFFSET_NAME(12),
78 GPR_OFFSET_NAME(13),
79 GPR_OFFSET_NAME(14),
80 GPR_OFFSET_NAME(15),
81 GPR_OFFSET_NAME(16),
82 GPR_OFFSET_NAME(17),
83 GPR_OFFSET_NAME(18),
84 GPR_OFFSET_NAME(19),
85 GPR_OFFSET_NAME(20),
86 GPR_OFFSET_NAME(21),
87 GPR_OFFSET_NAME(22),
88 GPR_OFFSET_NAME(23),
89 GPR_OFFSET_NAME(24),
90 GPR_OFFSET_NAME(25),
91 GPR_OFFSET_NAME(26),
92 GPR_OFFSET_NAME(27),
93 GPR_OFFSET_NAME(28),
94 GPR_OFFSET_NAME(29),
95 GPR_OFFSET_NAME(30),
96 GPR_OFFSET_NAME(31),
97 REG_OFFSET_NAME(nip),
98 REG_OFFSET_NAME(msr),
99 REG_OFFSET_NAME(ctr),
100 REG_OFFSET_NAME(link),
101 REG_OFFSET_NAME(xer),
102 REG_OFFSET_NAME(ccr),
103 #ifdef CONFIG_PPC64
104 REG_OFFSET_NAME(softe),
105 #else
106 REG_OFFSET_NAME(mq),
107 #endif
108 REG_OFFSET_NAME(trap),
109 REG_OFFSET_NAME(dar),
110 REG_OFFSET_NAME(dsisr),
111 REG_OFFSET_END,
112 };
113
114 /**
115 * regs_query_register_offset() - query register offset from its name
116 * @name: the name of a register
117 *
118 * regs_query_register_offset() returns the offset of a register in struct
119 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
120 */
regs_query_register_offset(const char * name)121 int regs_query_register_offset(const char *name)
122 {
123 const struct pt_regs_offset *roff;
124 for (roff = regoffset_table; roff->name != NULL; roff++)
125 if (!strcmp(roff->name, name))
126 return roff->offset;
127 return -EINVAL;
128 }
129
130 /**
131 * regs_query_register_name() - query register name from its offset
132 * @offset: the offset of a register in struct pt_regs.
133 *
134 * regs_query_register_name() returns the name of a register from its
135 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
136 */
regs_query_register_name(unsigned int offset)137 const char *regs_query_register_name(unsigned int offset)
138 {
139 const struct pt_regs_offset *roff;
140 for (roff = regoffset_table; roff->name != NULL; roff++)
141 if (roff->offset == offset)
142 return roff->name;
143 return NULL;
144 }
145
146 /*
147 * does not yet catch signals sent when the child dies.
148 * in exit.c or in signal.c.
149 */
150
151 /*
152 * Set of msr bits that gdb can change on behalf of a process.
153 */
154 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
155 #define MSR_DEBUGCHANGE 0
156 #else
157 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
158 #endif
159
160 /*
161 * Max register writeable via put_reg
162 */
163 #ifdef CONFIG_PPC32
164 #define PT_MAX_PUT_REG PT_MQ
165 #else
166 #define PT_MAX_PUT_REG PT_CCR
167 #endif
168
get_user_msr(struct task_struct * task)169 static unsigned long get_user_msr(struct task_struct *task)
170 {
171 return task->thread.regs->msr | task->thread.fpexc_mode;
172 }
173
set_user_msr(struct task_struct * task,unsigned long msr)174 static int set_user_msr(struct task_struct *task, unsigned long msr)
175 {
176 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
177 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
178 return 0;
179 }
180
181 /*
182 * We prevent mucking around with the reserved area of trap
183 * which are used internally by the kernel.
184 */
set_user_trap(struct task_struct * task,unsigned long trap)185 static int set_user_trap(struct task_struct *task, unsigned long trap)
186 {
187 task->thread.regs->trap = trap & 0xfff0;
188 return 0;
189 }
190
191 /*
192 * Get contents of register REGNO in task TASK.
193 */
ptrace_get_reg(struct task_struct * task,int regno)194 unsigned long ptrace_get_reg(struct task_struct *task, int regno)
195 {
196 if (task->thread.regs == NULL)
197 return -EIO;
198
199 if (regno == PT_MSR)
200 return get_user_msr(task);
201
202 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long)))
203 return ((unsigned long *)task->thread.regs)[regno];
204
205 return -EIO;
206 }
207
208 /*
209 * Write contents of register REGNO in task TASK.
210 */
ptrace_put_reg(struct task_struct * task,int regno,unsigned long data)211 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
212 {
213 if (task->thread.regs == NULL)
214 return -EIO;
215
216 if (regno == PT_MSR)
217 return set_user_msr(task, data);
218 if (regno == PT_TRAP)
219 return set_user_trap(task, data);
220
221 if (regno <= PT_MAX_PUT_REG) {
222 ((unsigned long *)task->thread.regs)[regno] = data;
223 return 0;
224 }
225 return -EIO;
226 }
227
gpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)228 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
229 unsigned int pos, unsigned int count,
230 void *kbuf, void __user *ubuf)
231 {
232 int i, ret;
233
234 if (target->thread.regs == NULL)
235 return -EIO;
236
237 if (!FULL_REGS(target->thread.regs)) {
238 /* We have a partial register set. Fill 14-31 with bogus values */
239 for (i = 14; i < 32; i++)
240 target->thread.regs->gpr[i] = NV_REG_POISON;
241 }
242
243 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
244 target->thread.regs,
245 0, offsetof(struct pt_regs, msr));
246 if (!ret) {
247 unsigned long msr = get_user_msr(target);
248 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
249 offsetof(struct pt_regs, msr),
250 offsetof(struct pt_regs, msr) +
251 sizeof(msr));
252 }
253
254 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
255 offsetof(struct pt_regs, msr) + sizeof(long));
256
257 if (!ret)
258 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
259 &target->thread.regs->orig_gpr3,
260 offsetof(struct pt_regs, orig_gpr3),
261 sizeof(struct pt_regs));
262 if (!ret)
263 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
264 sizeof(struct pt_regs), -1);
265
266 return ret;
267 }
268
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)269 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
270 unsigned int pos, unsigned int count,
271 const void *kbuf, const void __user *ubuf)
272 {
273 unsigned long reg;
274 int ret;
275
276 if (target->thread.regs == NULL)
277 return -EIO;
278
279 CHECK_FULL_REGS(target->thread.regs);
280
281 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
282 target->thread.regs,
283 0, PT_MSR * sizeof(reg));
284
285 if (!ret && count > 0) {
286 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
287 PT_MSR * sizeof(reg),
288 (PT_MSR + 1) * sizeof(reg));
289 if (!ret)
290 ret = set_user_msr(target, reg);
291 }
292
293 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
294 offsetof(struct pt_regs, msr) + sizeof(long));
295
296 if (!ret)
297 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
298 &target->thread.regs->orig_gpr3,
299 PT_ORIG_R3 * sizeof(reg),
300 (PT_MAX_PUT_REG + 1) * sizeof(reg));
301
302 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
303 ret = user_regset_copyin_ignore(
304 &pos, &count, &kbuf, &ubuf,
305 (PT_MAX_PUT_REG + 1) * sizeof(reg),
306 PT_TRAP * sizeof(reg));
307
308 if (!ret && count > 0) {
309 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
310 PT_TRAP * sizeof(reg),
311 (PT_TRAP + 1) * sizeof(reg));
312 if (!ret)
313 ret = set_user_trap(target, reg);
314 }
315
316 if (!ret)
317 ret = user_regset_copyin_ignore(
318 &pos, &count, &kbuf, &ubuf,
319 (PT_TRAP + 1) * sizeof(reg), -1);
320
321 return ret;
322 }
323
fpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)324 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
325 unsigned int pos, unsigned int count,
326 void *kbuf, void __user *ubuf)
327 {
328 #ifdef CONFIG_VSX
329 double buf[33];
330 int i;
331 #endif
332 flush_fp_to_thread(target);
333
334 #ifdef CONFIG_VSX
335 /* copy to local buffer then write that out */
336 for (i = 0; i < 32 ; i++)
337 buf[i] = target->thread.TS_FPR(i);
338 memcpy(&buf[32], &target->thread.fpscr, sizeof(double));
339 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
340
341 #else
342 BUILD_BUG_ON(offsetof(struct thread_struct, fpscr) !=
343 offsetof(struct thread_struct, TS_FPR(32)));
344
345 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
346 &target->thread.fpr, 0, -1);
347 #endif
348 }
349
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)350 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
351 unsigned int pos, unsigned int count,
352 const void *kbuf, const void __user *ubuf)
353 {
354 #ifdef CONFIG_VSX
355 double buf[33];
356 int i;
357 #endif
358 flush_fp_to_thread(target);
359
360 #ifdef CONFIG_VSX
361 /* copy to local buffer then write that out */
362 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
363 if (i)
364 return i;
365 for (i = 0; i < 32 ; i++)
366 target->thread.TS_FPR(i) = buf[i];
367 memcpy(&target->thread.fpscr, &buf[32], sizeof(double));
368 return 0;
369 #else
370 BUILD_BUG_ON(offsetof(struct thread_struct, fpscr) !=
371 offsetof(struct thread_struct, TS_FPR(32)));
372
373 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
374 &target->thread.fpr, 0, -1);
375 #endif
376 }
377
378 #ifdef CONFIG_ALTIVEC
379 /*
380 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
381 * The transfer totals 34 quadword. Quadwords 0-31 contain the
382 * corresponding vector registers. Quadword 32 contains the vscr as the
383 * last word (offset 12) within that quadword. Quadword 33 contains the
384 * vrsave as the first word (offset 0) within the quadword.
385 *
386 * This definition of the VMX state is compatible with the current PPC32
387 * ptrace interface. This allows signal handling and ptrace to use the
388 * same structures. This also simplifies the implementation of a bi-arch
389 * (combined (32- and 64-bit) gdb.
390 */
391
vr_active(struct task_struct * target,const struct user_regset * regset)392 static int vr_active(struct task_struct *target,
393 const struct user_regset *regset)
394 {
395 flush_altivec_to_thread(target);
396 return target->thread.used_vr ? regset->n : 0;
397 }
398
vr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)399 static int vr_get(struct task_struct *target, const struct user_regset *regset,
400 unsigned int pos, unsigned int count,
401 void *kbuf, void __user *ubuf)
402 {
403 int ret;
404
405 flush_altivec_to_thread(target);
406
407 BUILD_BUG_ON(offsetof(struct thread_struct, vscr) !=
408 offsetof(struct thread_struct, vr[32]));
409
410 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
411 &target->thread.vr, 0,
412 33 * sizeof(vector128));
413 if (!ret) {
414 /*
415 * Copy out only the low-order word of vrsave.
416 */
417 union {
418 elf_vrreg_t reg;
419 u32 word;
420 } vrsave;
421 memset(&vrsave, 0, sizeof(vrsave));
422 vrsave.word = target->thread.vrsave;
423 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
424 33 * sizeof(vector128), -1);
425 }
426
427 return ret;
428 }
429
vr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)430 static int vr_set(struct task_struct *target, const struct user_regset *regset,
431 unsigned int pos, unsigned int count,
432 const void *kbuf, const void __user *ubuf)
433 {
434 int ret;
435
436 flush_altivec_to_thread(target);
437
438 BUILD_BUG_ON(offsetof(struct thread_struct, vscr) !=
439 offsetof(struct thread_struct, vr[32]));
440
441 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
442 &target->thread.vr, 0, 33 * sizeof(vector128));
443 if (!ret && count > 0) {
444 /*
445 * We use only the first word of vrsave.
446 */
447 union {
448 elf_vrreg_t reg;
449 u32 word;
450 } vrsave;
451 memset(&vrsave, 0, sizeof(vrsave));
452 vrsave.word = target->thread.vrsave;
453 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
454 33 * sizeof(vector128), -1);
455 if (!ret)
456 target->thread.vrsave = vrsave.word;
457 }
458
459 return ret;
460 }
461 #endif /* CONFIG_ALTIVEC */
462
463 #ifdef CONFIG_VSX
464 /*
465 * Currently to set and and get all the vsx state, you need to call
466 * the fp and VMX calls as well. This only get/sets the lower 32
467 * 128bit VSX registers.
468 */
469
vsr_active(struct task_struct * target,const struct user_regset * regset)470 static int vsr_active(struct task_struct *target,
471 const struct user_regset *regset)
472 {
473 flush_vsx_to_thread(target);
474 return target->thread.used_vsr ? regset->n : 0;
475 }
476
vsr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)477 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
478 unsigned int pos, unsigned int count,
479 void *kbuf, void __user *ubuf)
480 {
481 double buf[32];
482 int ret, i;
483
484 flush_vsx_to_thread(target);
485
486 for (i = 0; i < 32 ; i++)
487 buf[i] = target->thread.fpr[i][TS_VSRLOWOFFSET];
488 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
489 buf, 0, 32 * sizeof(double));
490
491 return ret;
492 }
493
vsr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)494 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
495 unsigned int pos, unsigned int count,
496 const void *kbuf, const void __user *ubuf)
497 {
498 double buf[32];
499 int ret,i;
500
501 flush_vsx_to_thread(target);
502
503 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
504 buf, 0, 32 * sizeof(double));
505 for (i = 0; i < 32 ; i++)
506 target->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
507
508
509 return ret;
510 }
511 #endif /* CONFIG_VSX */
512
513 #ifdef CONFIG_SPE
514
515 /*
516 * For get_evrregs/set_evrregs functions 'data' has the following layout:
517 *
518 * struct {
519 * u32 evr[32];
520 * u64 acc;
521 * u32 spefscr;
522 * }
523 */
524
evr_active(struct task_struct * target,const struct user_regset * regset)525 static int evr_active(struct task_struct *target,
526 const struct user_regset *regset)
527 {
528 flush_spe_to_thread(target);
529 return target->thread.used_spe ? regset->n : 0;
530 }
531
evr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)532 static int evr_get(struct task_struct *target, const struct user_regset *regset,
533 unsigned int pos, unsigned int count,
534 void *kbuf, void __user *ubuf)
535 {
536 int ret;
537
538 flush_spe_to_thread(target);
539
540 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
541 &target->thread.evr,
542 0, sizeof(target->thread.evr));
543
544 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
545 offsetof(struct thread_struct, spefscr));
546
547 if (!ret)
548 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
549 &target->thread.acc,
550 sizeof(target->thread.evr), -1);
551
552 return ret;
553 }
554
evr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)555 static int evr_set(struct task_struct *target, const struct user_regset *regset,
556 unsigned int pos, unsigned int count,
557 const void *kbuf, const void __user *ubuf)
558 {
559 int ret;
560
561 flush_spe_to_thread(target);
562
563 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
564 &target->thread.evr,
565 0, sizeof(target->thread.evr));
566
567 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
568 offsetof(struct thread_struct, spefscr));
569
570 if (!ret)
571 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
572 &target->thread.acc,
573 sizeof(target->thread.evr), -1);
574
575 return ret;
576 }
577 #endif /* CONFIG_SPE */
578
579
580 /*
581 * These are our native regset flavors.
582 */
583 enum powerpc_regset {
584 REGSET_GPR,
585 REGSET_FPR,
586 #ifdef CONFIG_ALTIVEC
587 REGSET_VMX,
588 #endif
589 #ifdef CONFIG_VSX
590 REGSET_VSX,
591 #endif
592 #ifdef CONFIG_SPE
593 REGSET_SPE,
594 #endif
595 };
596
597 static const struct user_regset native_regsets[] = {
598 [REGSET_GPR] = {
599 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
600 .size = sizeof(long), .align = sizeof(long),
601 .get = gpr_get, .set = gpr_set
602 },
603 [REGSET_FPR] = {
604 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
605 .size = sizeof(double), .align = sizeof(double),
606 .get = fpr_get, .set = fpr_set
607 },
608 #ifdef CONFIG_ALTIVEC
609 [REGSET_VMX] = {
610 .core_note_type = NT_PPC_VMX, .n = 34,
611 .size = sizeof(vector128), .align = sizeof(vector128),
612 .active = vr_active, .get = vr_get, .set = vr_set
613 },
614 #endif
615 #ifdef CONFIG_VSX
616 [REGSET_VSX] = {
617 .core_note_type = NT_PPC_VSX, .n = 32,
618 .size = sizeof(double), .align = sizeof(double),
619 .active = vsr_active, .get = vsr_get, .set = vsr_set
620 },
621 #endif
622 #ifdef CONFIG_SPE
623 [REGSET_SPE] = {
624 .n = 35,
625 .size = sizeof(u32), .align = sizeof(u32),
626 .active = evr_active, .get = evr_get, .set = evr_set
627 },
628 #endif
629 };
630
631 static const struct user_regset_view user_ppc_native_view = {
632 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
633 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
634 };
635
636 #ifdef CONFIG_PPC64
637 #include <linux/compat.h>
638
gpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)639 static int gpr32_get(struct task_struct *target,
640 const struct user_regset *regset,
641 unsigned int pos, unsigned int count,
642 void *kbuf, void __user *ubuf)
643 {
644 const unsigned long *regs = &target->thread.regs->gpr[0];
645 compat_ulong_t *k = kbuf;
646 compat_ulong_t __user *u = ubuf;
647 compat_ulong_t reg;
648 int i;
649
650 if (target->thread.regs == NULL)
651 return -EIO;
652
653 if (!FULL_REGS(target->thread.regs)) {
654 /* We have a partial register set. Fill 14-31 with bogus values */
655 for (i = 14; i < 32; i++)
656 target->thread.regs->gpr[i] = NV_REG_POISON;
657 }
658
659 pos /= sizeof(reg);
660 count /= sizeof(reg);
661
662 if (kbuf)
663 for (; count > 0 && pos < PT_MSR; --count)
664 *k++ = regs[pos++];
665 else
666 for (; count > 0 && pos < PT_MSR; --count)
667 if (__put_user((compat_ulong_t) regs[pos++], u++))
668 return -EFAULT;
669
670 if (count > 0 && pos == PT_MSR) {
671 reg = get_user_msr(target);
672 if (kbuf)
673 *k++ = reg;
674 else if (__put_user(reg, u++))
675 return -EFAULT;
676 ++pos;
677 --count;
678 }
679
680 if (kbuf)
681 for (; count > 0 && pos < PT_REGS_COUNT; --count)
682 *k++ = regs[pos++];
683 else
684 for (; count > 0 && pos < PT_REGS_COUNT; --count)
685 if (__put_user((compat_ulong_t) regs[pos++], u++))
686 return -EFAULT;
687
688 kbuf = k;
689 ubuf = u;
690 pos *= sizeof(reg);
691 count *= sizeof(reg);
692 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
693 PT_REGS_COUNT * sizeof(reg), -1);
694 }
695
gpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)696 static int gpr32_set(struct task_struct *target,
697 const struct user_regset *regset,
698 unsigned int pos, unsigned int count,
699 const void *kbuf, const void __user *ubuf)
700 {
701 unsigned long *regs = &target->thread.regs->gpr[0];
702 const compat_ulong_t *k = kbuf;
703 const compat_ulong_t __user *u = ubuf;
704 compat_ulong_t reg;
705
706 if (target->thread.regs == NULL)
707 return -EIO;
708
709 CHECK_FULL_REGS(target->thread.regs);
710
711 pos /= sizeof(reg);
712 count /= sizeof(reg);
713
714 if (kbuf)
715 for (; count > 0 && pos < PT_MSR; --count)
716 regs[pos++] = *k++;
717 else
718 for (; count > 0 && pos < PT_MSR; --count) {
719 if (__get_user(reg, u++))
720 return -EFAULT;
721 regs[pos++] = reg;
722 }
723
724
725 if (count > 0 && pos == PT_MSR) {
726 if (kbuf)
727 reg = *k++;
728 else if (__get_user(reg, u++))
729 return -EFAULT;
730 set_user_msr(target, reg);
731 ++pos;
732 --count;
733 }
734
735 if (kbuf) {
736 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
737 regs[pos++] = *k++;
738 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
739 ++k;
740 } else {
741 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
742 if (__get_user(reg, u++))
743 return -EFAULT;
744 regs[pos++] = reg;
745 }
746 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
747 if (__get_user(reg, u++))
748 return -EFAULT;
749 }
750
751 if (count > 0 && pos == PT_TRAP) {
752 if (kbuf)
753 reg = *k++;
754 else if (__get_user(reg, u++))
755 return -EFAULT;
756 set_user_trap(target, reg);
757 ++pos;
758 --count;
759 }
760
761 kbuf = k;
762 ubuf = u;
763 pos *= sizeof(reg);
764 count *= sizeof(reg);
765 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
766 (PT_TRAP + 1) * sizeof(reg), -1);
767 }
768
769 /*
770 * These are the regset flavors matching the CONFIG_PPC32 native set.
771 */
772 static const struct user_regset compat_regsets[] = {
773 [REGSET_GPR] = {
774 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
775 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
776 .get = gpr32_get, .set = gpr32_set
777 },
778 [REGSET_FPR] = {
779 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
780 .size = sizeof(double), .align = sizeof(double),
781 .get = fpr_get, .set = fpr_set
782 },
783 #ifdef CONFIG_ALTIVEC
784 [REGSET_VMX] = {
785 .core_note_type = NT_PPC_VMX, .n = 34,
786 .size = sizeof(vector128), .align = sizeof(vector128),
787 .active = vr_active, .get = vr_get, .set = vr_set
788 },
789 #endif
790 #ifdef CONFIG_SPE
791 [REGSET_SPE] = {
792 .core_note_type = NT_PPC_SPE, .n = 35,
793 .size = sizeof(u32), .align = sizeof(u32),
794 .active = evr_active, .get = evr_get, .set = evr_set
795 },
796 #endif
797 };
798
799 static const struct user_regset_view user_ppc_compat_view = {
800 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
801 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
802 };
803 #endif /* CONFIG_PPC64 */
804
task_user_regset_view(struct task_struct * task)805 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
806 {
807 #ifdef CONFIG_PPC64
808 if (test_tsk_thread_flag(task, TIF_32BIT))
809 return &user_ppc_compat_view;
810 #endif
811 return &user_ppc_native_view;
812 }
813
814
user_enable_single_step(struct task_struct * task)815 void user_enable_single_step(struct task_struct *task)
816 {
817 struct pt_regs *regs = task->thread.regs;
818
819 if (regs != NULL) {
820 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
821 task->thread.dbcr0 &= ~DBCR0_BT;
822 task->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
823 regs->msr |= MSR_DE;
824 #else
825 regs->msr &= ~MSR_BE;
826 regs->msr |= MSR_SE;
827 #endif
828 }
829 set_tsk_thread_flag(task, TIF_SINGLESTEP);
830 }
831
user_enable_block_step(struct task_struct * task)832 void user_enable_block_step(struct task_struct *task)
833 {
834 struct pt_regs *regs = task->thread.regs;
835
836 if (regs != NULL) {
837 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
838 task->thread.dbcr0 &= ~DBCR0_IC;
839 task->thread.dbcr0 = DBCR0_IDM | DBCR0_BT;
840 regs->msr |= MSR_DE;
841 #else
842 regs->msr &= ~MSR_SE;
843 regs->msr |= MSR_BE;
844 #endif
845 }
846 set_tsk_thread_flag(task, TIF_SINGLESTEP);
847 }
848
user_disable_single_step(struct task_struct * task)849 void user_disable_single_step(struct task_struct *task)
850 {
851 struct pt_regs *regs = task->thread.regs;
852
853 if (regs != NULL) {
854 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
855 /*
856 * The logic to disable single stepping should be as
857 * simple as turning off the Instruction Complete flag.
858 * And, after doing so, if all debug flags are off, turn
859 * off DBCR0(IDM) and MSR(DE) .... Torez
860 */
861 task->thread.dbcr0 &= ~DBCR0_IC;
862 /*
863 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
864 */
865 if (!DBCR_ACTIVE_EVENTS(task->thread.dbcr0,
866 task->thread.dbcr1)) {
867 /*
868 * All debug events were off.....
869 */
870 task->thread.dbcr0 &= ~DBCR0_IDM;
871 regs->msr &= ~MSR_DE;
872 }
873 #else
874 regs->msr &= ~(MSR_SE | MSR_BE);
875 #endif
876 }
877 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
878 }
879
880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
ptrace_triggered(struct perf_event * bp,int nmi,struct perf_sample_data * data,struct pt_regs * regs)881 void ptrace_triggered(struct perf_event *bp, int nmi,
882 struct perf_sample_data *data, struct pt_regs *regs)
883 {
884 struct perf_event_attr attr;
885
886 /*
887 * Disable the breakpoint request here since ptrace has defined a
888 * one-shot behaviour for breakpoint exceptions in PPC64.
889 * The SIGTRAP signal is generated automatically for us in do_dabr().
890 * We don't have to do anything about that here
891 */
892 attr = bp->attr;
893 attr.disabled = true;
894 modify_user_hw_breakpoint(bp, &attr);
895 }
896 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
897
ptrace_set_debugreg(struct task_struct * task,unsigned long addr,unsigned long data)898 int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
899 unsigned long data)
900 {
901 #ifdef CONFIG_HAVE_HW_BREAKPOINT
902 int ret;
903 struct thread_struct *thread = &(task->thread);
904 struct perf_event *bp;
905 struct perf_event_attr attr;
906 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
907
908 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
909 * For embedded processors we support one DAC and no IAC's at the
910 * moment.
911 */
912 if (addr > 0)
913 return -EINVAL;
914
915 /* The bottom 3 bits in dabr are flags */
916 if ((data & ~0x7UL) >= TASK_SIZE)
917 return -EIO;
918
919 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
920 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
921 * It was assumed, on previous implementations, that 3 bits were
922 * passed together with the data address, fitting the design of the
923 * DABR register, as follows:
924 *
925 * bit 0: Read flag
926 * bit 1: Write flag
927 * bit 2: Breakpoint translation
928 *
929 * Thus, we use them here as so.
930 */
931
932 /* Ensure breakpoint translation bit is set */
933 if (data && !(data & DABR_TRANSLATION))
934 return -EIO;
935 #ifdef CONFIG_HAVE_HW_BREAKPOINT
936 if (ptrace_get_breakpoints(task) < 0)
937 return -ESRCH;
938
939 bp = thread->ptrace_bps[0];
940 if ((!data) || !(data & (DABR_DATA_WRITE | DABR_DATA_READ))) {
941 if (bp) {
942 unregister_hw_breakpoint(bp);
943 thread->ptrace_bps[0] = NULL;
944 }
945 ptrace_put_breakpoints(task);
946 return 0;
947 }
948 if (bp) {
949 attr = bp->attr;
950 attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
951 arch_bp_generic_fields(data &
952 (DABR_DATA_WRITE | DABR_DATA_READ),
953 &attr.bp_type);
954 ret = modify_user_hw_breakpoint(bp, &attr);
955 if (ret) {
956 ptrace_put_breakpoints(task);
957 return ret;
958 }
959 thread->ptrace_bps[0] = bp;
960 ptrace_put_breakpoints(task);
961 thread->dabr = data;
962 return 0;
963 }
964
965 /* Create a new breakpoint request if one doesn't exist already */
966 hw_breakpoint_init(&attr);
967 attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
968 arch_bp_generic_fields(data & (DABR_DATA_WRITE | DABR_DATA_READ),
969 &attr.bp_type);
970
971 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
972 ptrace_triggered, task);
973 if (IS_ERR(bp)) {
974 thread->ptrace_bps[0] = NULL;
975 ptrace_put_breakpoints(task);
976 return PTR_ERR(bp);
977 }
978
979 ptrace_put_breakpoints(task);
980
981 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
982
983 /* Move contents to the DABR register */
984 task->thread.dabr = data;
985 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
986 /* As described above, it was assumed 3 bits were passed with the data
987 * address, but we will assume only the mode bits will be passed
988 * as to not cause alignment restrictions for DAC-based processors.
989 */
990
991 /* DAC's hold the whole address without any mode flags */
992 task->thread.dac1 = data & ~0x3UL;
993
994 if (task->thread.dac1 == 0) {
995 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
996 if (!DBCR_ACTIVE_EVENTS(task->thread.dbcr0,
997 task->thread.dbcr1)) {
998 task->thread.regs->msr &= ~MSR_DE;
999 task->thread.dbcr0 &= ~DBCR0_IDM;
1000 }
1001 return 0;
1002 }
1003
1004 /* Read or Write bits must be set */
1005
1006 if (!(data & 0x3UL))
1007 return -EINVAL;
1008
1009 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1010 register */
1011 task->thread.dbcr0 |= DBCR0_IDM;
1012
1013 /* Check for write and read flags and set DBCR0
1014 accordingly */
1015 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
1016 if (data & 0x1UL)
1017 dbcr_dac(task) |= DBCR_DAC1R;
1018 if (data & 0x2UL)
1019 dbcr_dac(task) |= DBCR_DAC1W;
1020 task->thread.regs->msr |= MSR_DE;
1021 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1022 return 0;
1023 }
1024
1025 /*
1026 * Called by kernel/ptrace.c when detaching..
1027 *
1028 * Make sure single step bits etc are not set.
1029 */
ptrace_disable(struct task_struct * child)1030 void ptrace_disable(struct task_struct *child)
1031 {
1032 /* make sure the single step bit is not set. */
1033 user_disable_single_step(child);
1034 }
1035
1036 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
set_intruction_bp(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)1037 static long set_intruction_bp(struct task_struct *child,
1038 struct ppc_hw_breakpoint *bp_info)
1039 {
1040 int slot;
1041 int slot1_in_use = ((child->thread.dbcr0 & DBCR0_IAC1) != 0);
1042 int slot2_in_use = ((child->thread.dbcr0 & DBCR0_IAC2) != 0);
1043 int slot3_in_use = ((child->thread.dbcr0 & DBCR0_IAC3) != 0);
1044 int slot4_in_use = ((child->thread.dbcr0 & DBCR0_IAC4) != 0);
1045
1046 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1047 slot2_in_use = 1;
1048 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1049 slot4_in_use = 1;
1050
1051 if (bp_info->addr >= TASK_SIZE)
1052 return -EIO;
1053
1054 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1055
1056 /* Make sure range is valid. */
1057 if (bp_info->addr2 >= TASK_SIZE)
1058 return -EIO;
1059
1060 /* We need a pair of IAC regsisters */
1061 if ((!slot1_in_use) && (!slot2_in_use)) {
1062 slot = 1;
1063 child->thread.iac1 = bp_info->addr;
1064 child->thread.iac2 = bp_info->addr2;
1065 child->thread.dbcr0 |= DBCR0_IAC1;
1066 if (bp_info->addr_mode ==
1067 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1068 dbcr_iac_range(child) |= DBCR_IAC12X;
1069 else
1070 dbcr_iac_range(child) |= DBCR_IAC12I;
1071 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1072 } else if ((!slot3_in_use) && (!slot4_in_use)) {
1073 slot = 3;
1074 child->thread.iac3 = bp_info->addr;
1075 child->thread.iac4 = bp_info->addr2;
1076 child->thread.dbcr0 |= DBCR0_IAC3;
1077 if (bp_info->addr_mode ==
1078 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1079 dbcr_iac_range(child) |= DBCR_IAC34X;
1080 else
1081 dbcr_iac_range(child) |= DBCR_IAC34I;
1082 #endif
1083 } else
1084 return -ENOSPC;
1085 } else {
1086 /* We only need one. If possible leave a pair free in
1087 * case a range is needed later
1088 */
1089 if (!slot1_in_use) {
1090 /*
1091 * Don't use iac1 if iac1-iac2 are free and either
1092 * iac3 or iac4 (but not both) are free
1093 */
1094 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1095 slot = 1;
1096 child->thread.iac1 = bp_info->addr;
1097 child->thread.dbcr0 |= DBCR0_IAC1;
1098 goto out;
1099 }
1100 }
1101 if (!slot2_in_use) {
1102 slot = 2;
1103 child->thread.iac2 = bp_info->addr;
1104 child->thread.dbcr0 |= DBCR0_IAC2;
1105 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1106 } else if (!slot3_in_use) {
1107 slot = 3;
1108 child->thread.iac3 = bp_info->addr;
1109 child->thread.dbcr0 |= DBCR0_IAC3;
1110 } else if (!slot4_in_use) {
1111 slot = 4;
1112 child->thread.iac4 = bp_info->addr;
1113 child->thread.dbcr0 |= DBCR0_IAC4;
1114 #endif
1115 } else
1116 return -ENOSPC;
1117 }
1118 out:
1119 child->thread.dbcr0 |= DBCR0_IDM;
1120 child->thread.regs->msr |= MSR_DE;
1121
1122 return slot;
1123 }
1124
del_instruction_bp(struct task_struct * child,int slot)1125 static int del_instruction_bp(struct task_struct *child, int slot)
1126 {
1127 switch (slot) {
1128 case 1:
1129 if ((child->thread.dbcr0 & DBCR0_IAC1) == 0)
1130 return -ENOENT;
1131
1132 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1133 /* address range - clear slots 1 & 2 */
1134 child->thread.iac2 = 0;
1135 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1136 }
1137 child->thread.iac1 = 0;
1138 child->thread.dbcr0 &= ~DBCR0_IAC1;
1139 break;
1140 case 2:
1141 if ((child->thread.dbcr0 & DBCR0_IAC2) == 0)
1142 return -ENOENT;
1143
1144 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1145 /* used in a range */
1146 return -EINVAL;
1147 child->thread.iac2 = 0;
1148 child->thread.dbcr0 &= ~DBCR0_IAC2;
1149 break;
1150 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1151 case 3:
1152 if ((child->thread.dbcr0 & DBCR0_IAC3) == 0)
1153 return -ENOENT;
1154
1155 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1156 /* address range - clear slots 3 & 4 */
1157 child->thread.iac4 = 0;
1158 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1159 }
1160 child->thread.iac3 = 0;
1161 child->thread.dbcr0 &= ~DBCR0_IAC3;
1162 break;
1163 case 4:
1164 if ((child->thread.dbcr0 & DBCR0_IAC4) == 0)
1165 return -ENOENT;
1166
1167 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1168 /* Used in a range */
1169 return -EINVAL;
1170 child->thread.iac4 = 0;
1171 child->thread.dbcr0 &= ~DBCR0_IAC4;
1172 break;
1173 #endif
1174 default:
1175 return -EINVAL;
1176 }
1177 return 0;
1178 }
1179
set_dac(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)1180 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1181 {
1182 int byte_enable =
1183 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1184 & 0xf;
1185 int condition_mode =
1186 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1187 int slot;
1188
1189 if (byte_enable && (condition_mode == 0))
1190 return -EINVAL;
1191
1192 if (bp_info->addr >= TASK_SIZE)
1193 return -EIO;
1194
1195 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1196 slot = 1;
1197 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1198 dbcr_dac(child) |= DBCR_DAC1R;
1199 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1200 dbcr_dac(child) |= DBCR_DAC1W;
1201 child->thread.dac1 = (unsigned long)bp_info->addr;
1202 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1203 if (byte_enable) {
1204 child->thread.dvc1 =
1205 (unsigned long)bp_info->condition_value;
1206 child->thread.dbcr2 |=
1207 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
1208 (condition_mode << DBCR2_DVC1M_SHIFT));
1209 }
1210 #endif
1211 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1212 } else if (child->thread.dbcr2 & DBCR2_DAC12MODE) {
1213 /* Both dac1 and dac2 are part of a range */
1214 return -ENOSPC;
1215 #endif
1216 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1217 slot = 2;
1218 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1219 dbcr_dac(child) |= DBCR_DAC2R;
1220 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1221 dbcr_dac(child) |= DBCR_DAC2W;
1222 child->thread.dac2 = (unsigned long)bp_info->addr;
1223 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1224 if (byte_enable) {
1225 child->thread.dvc2 =
1226 (unsigned long)bp_info->condition_value;
1227 child->thread.dbcr2 |=
1228 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
1229 (condition_mode << DBCR2_DVC2M_SHIFT));
1230 }
1231 #endif
1232 } else
1233 return -ENOSPC;
1234 child->thread.dbcr0 |= DBCR0_IDM;
1235 child->thread.regs->msr |= MSR_DE;
1236
1237 return slot + 4;
1238 }
1239
del_dac(struct task_struct * child,int slot)1240 static int del_dac(struct task_struct *child, int slot)
1241 {
1242 if (slot == 1) {
1243 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
1244 return -ENOENT;
1245
1246 child->thread.dac1 = 0;
1247 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1248 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1249 if (child->thread.dbcr2 & DBCR2_DAC12MODE) {
1250 child->thread.dac2 = 0;
1251 child->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1252 }
1253 child->thread.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
1254 #endif
1255 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1256 child->thread.dvc1 = 0;
1257 #endif
1258 } else if (slot == 2) {
1259 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
1260 return -ENOENT;
1261
1262 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1263 if (child->thread.dbcr2 & DBCR2_DAC12MODE)
1264 /* Part of a range */
1265 return -EINVAL;
1266 child->thread.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
1267 #endif
1268 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1269 child->thread.dvc2 = 0;
1270 #endif
1271 child->thread.dac2 = 0;
1272 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1273 } else
1274 return -EINVAL;
1275
1276 return 0;
1277 }
1278 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1279
1280 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
set_dac_range(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)1281 static int set_dac_range(struct task_struct *child,
1282 struct ppc_hw_breakpoint *bp_info)
1283 {
1284 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1285
1286 /* We don't allow range watchpoints to be used with DVC */
1287 if (bp_info->condition_mode)
1288 return -EINVAL;
1289
1290 /*
1291 * Best effort to verify the address range. The user/supervisor bits
1292 * prevent trapping in kernel space, but let's fail on an obvious bad
1293 * range. The simple test on the mask is not fool-proof, and any
1294 * exclusive range will spill over into kernel space.
1295 */
1296 if (bp_info->addr >= TASK_SIZE)
1297 return -EIO;
1298 if (mode == PPC_BREAKPOINT_MODE_MASK) {
1299 /*
1300 * dac2 is a bitmask. Don't allow a mask that makes a
1301 * kernel space address from a valid dac1 value
1302 */
1303 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1304 return -EIO;
1305 } else {
1306 /*
1307 * For range breakpoints, addr2 must also be a valid address
1308 */
1309 if (bp_info->addr2 >= TASK_SIZE)
1310 return -EIO;
1311 }
1312
1313 if (child->thread.dbcr0 &
1314 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1315 return -ENOSPC;
1316
1317 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1318 child->thread.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
1319 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1320 child->thread.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1321 child->thread.dac1 = bp_info->addr;
1322 child->thread.dac2 = bp_info->addr2;
1323 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
1324 child->thread.dbcr2 |= DBCR2_DAC12M;
1325 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1326 child->thread.dbcr2 |= DBCR2_DAC12MX;
1327 else /* PPC_BREAKPOINT_MODE_MASK */
1328 child->thread.dbcr2 |= DBCR2_DAC12MM;
1329 child->thread.regs->msr |= MSR_DE;
1330
1331 return 5;
1332 }
1333 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1334
ppc_set_hwdebug(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)1335 static long ppc_set_hwdebug(struct task_struct *child,
1336 struct ppc_hw_breakpoint *bp_info)
1337 {
1338 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
1339 unsigned long dabr;
1340 #endif
1341
1342 if (bp_info->version != 1)
1343 return -ENOTSUPP;
1344 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1345 /*
1346 * Check for invalid flags and combinations
1347 */
1348 if ((bp_info->trigger_type == 0) ||
1349 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
1350 PPC_BREAKPOINT_TRIGGER_RW)) ||
1351 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
1352 (bp_info->condition_mode &
1353 ~(PPC_BREAKPOINT_CONDITION_MODE |
1354 PPC_BREAKPOINT_CONDITION_BE_ALL)))
1355 return -EINVAL;
1356 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
1357 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1358 return -EINVAL;
1359 #endif
1360
1361 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
1362 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
1363 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
1364 return -EINVAL;
1365 return set_intruction_bp(child, bp_info);
1366 }
1367 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1368 return set_dac(child, bp_info);
1369
1370 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1371 return set_dac_range(child, bp_info);
1372 #else
1373 return -EINVAL;
1374 #endif
1375 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1376 /*
1377 * We only support one data breakpoint
1378 */
1379 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
1380 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
1381 bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT ||
1382 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1383 return -EINVAL;
1384
1385 if (child->thread.dabr)
1386 return -ENOSPC;
1387
1388 if ((unsigned long)bp_info->addr >= TASK_SIZE)
1389 return -EIO;
1390
1391 dabr = (unsigned long)bp_info->addr & ~7UL;
1392 dabr |= DABR_TRANSLATION;
1393 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1394 dabr |= DABR_DATA_READ;
1395 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1396 dabr |= DABR_DATA_WRITE;
1397
1398 child->thread.dabr = dabr;
1399
1400 return 1;
1401 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1402 }
1403
ppc_del_hwdebug(struct task_struct * child,long addr,long data)1404 static long ppc_del_hwdebug(struct task_struct *child, long addr, long data)
1405 {
1406 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1407 int rc;
1408
1409 if (data <= 4)
1410 rc = del_instruction_bp(child, (int)data);
1411 else
1412 rc = del_dac(child, (int)data - 4);
1413
1414 if (!rc) {
1415 if (!DBCR_ACTIVE_EVENTS(child->thread.dbcr0,
1416 child->thread.dbcr1)) {
1417 child->thread.dbcr0 &= ~DBCR0_IDM;
1418 child->thread.regs->msr &= ~MSR_DE;
1419 }
1420 }
1421 return rc;
1422 #else
1423 if (data != 1)
1424 return -EINVAL;
1425 if (child->thread.dabr == 0)
1426 return -ENOENT;
1427
1428 child->thread.dabr = 0;
1429
1430 return 0;
1431 #endif
1432 }
1433
1434 /*
1435 * Here are the old "legacy" powerpc specific getregs/setregs ptrace calls,
1436 * we mark them as obsolete now, they will be removed in a future version
1437 */
arch_ptrace_old(struct task_struct * child,long request,unsigned long addr,unsigned long data)1438 static long arch_ptrace_old(struct task_struct *child, long request,
1439 unsigned long addr, unsigned long data)
1440 {
1441 void __user *datavp = (void __user *) data;
1442
1443 switch (request) {
1444 case PPC_PTRACE_GETREGS: /* Get GPRs 0 - 31. */
1445 return copy_regset_to_user(child, &user_ppc_native_view,
1446 REGSET_GPR, 0, 32 * sizeof(long),
1447 datavp);
1448
1449 case PPC_PTRACE_SETREGS: /* Set GPRs 0 - 31. */
1450 return copy_regset_from_user(child, &user_ppc_native_view,
1451 REGSET_GPR, 0, 32 * sizeof(long),
1452 datavp);
1453
1454 case PPC_PTRACE_GETFPREGS: /* Get FPRs 0 - 31. */
1455 return copy_regset_to_user(child, &user_ppc_native_view,
1456 REGSET_FPR, 0, 32 * sizeof(double),
1457 datavp);
1458
1459 case PPC_PTRACE_SETFPREGS: /* Set FPRs 0 - 31. */
1460 return copy_regset_from_user(child, &user_ppc_native_view,
1461 REGSET_FPR, 0, 32 * sizeof(double),
1462 datavp);
1463 }
1464
1465 return -EPERM;
1466 }
1467
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1468 long arch_ptrace(struct task_struct *child, long request,
1469 unsigned long addr, unsigned long data)
1470 {
1471 int ret = -EPERM;
1472 void __user *datavp = (void __user *) data;
1473 unsigned long __user *datalp = datavp;
1474
1475 switch (request) {
1476 /* read the word at location addr in the USER area. */
1477 case PTRACE_PEEKUSR: {
1478 unsigned long index, tmp;
1479
1480 ret = -EIO;
1481 /* convert to index and check */
1482 #ifdef CONFIG_PPC32
1483 index = addr >> 2;
1484 if ((addr & 3) || (index > PT_FPSCR)
1485 || (child->thread.regs == NULL))
1486 #else
1487 index = addr >> 3;
1488 if ((addr & 7) || (index > PT_FPSCR))
1489 #endif
1490 break;
1491
1492 CHECK_FULL_REGS(child->thread.regs);
1493 if (index < PT_FPR0) {
1494 tmp = ptrace_get_reg(child, (int) index);
1495 } else {
1496 flush_fp_to_thread(child);
1497 tmp = ((unsigned long *)child->thread.fpr)
1498 [TS_FPRWIDTH * (index - PT_FPR0)];
1499 }
1500 ret = put_user(tmp, datalp);
1501 break;
1502 }
1503
1504 /* write the word at location addr in the USER area */
1505 case PTRACE_POKEUSR: {
1506 unsigned long index;
1507
1508 ret = -EIO;
1509 /* convert to index and check */
1510 #ifdef CONFIG_PPC32
1511 index = addr >> 2;
1512 if ((addr & 3) || (index > PT_FPSCR)
1513 || (child->thread.regs == NULL))
1514 #else
1515 index = addr >> 3;
1516 if ((addr & 7) || (index > PT_FPSCR))
1517 #endif
1518 break;
1519
1520 CHECK_FULL_REGS(child->thread.regs);
1521 if (index < PT_FPR0) {
1522 ret = ptrace_put_reg(child, index, data);
1523 } else {
1524 flush_fp_to_thread(child);
1525 ((unsigned long *)child->thread.fpr)
1526 [TS_FPRWIDTH * (index - PT_FPR0)] = data;
1527 ret = 0;
1528 }
1529 break;
1530 }
1531
1532 case PPC_PTRACE_GETHWDBGINFO: {
1533 struct ppc_debug_info dbginfo;
1534
1535 dbginfo.version = 1;
1536 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1537 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
1538 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
1539 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
1540 dbginfo.data_bp_alignment = 4;
1541 dbginfo.sizeof_condition = 4;
1542 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
1543 PPC_DEBUG_FEATURE_INSN_BP_MASK;
1544 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1545 dbginfo.features |=
1546 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
1547 PPC_DEBUG_FEATURE_DATA_BP_MASK;
1548 #endif
1549 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
1550 dbginfo.num_instruction_bps = 0;
1551 dbginfo.num_data_bps = 1;
1552 dbginfo.num_condition_regs = 0;
1553 #ifdef CONFIG_PPC64
1554 dbginfo.data_bp_alignment = 8;
1555 #else
1556 dbginfo.data_bp_alignment = 4;
1557 #endif
1558 dbginfo.sizeof_condition = 0;
1559 dbginfo.features = 0;
1560 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1561
1562 if (!access_ok(VERIFY_WRITE, datavp,
1563 sizeof(struct ppc_debug_info)))
1564 return -EFAULT;
1565 ret = __copy_to_user(datavp, &dbginfo,
1566 sizeof(struct ppc_debug_info)) ?
1567 -EFAULT : 0;
1568 break;
1569 }
1570
1571 case PPC_PTRACE_SETHWDEBUG: {
1572 struct ppc_hw_breakpoint bp_info;
1573
1574 if (!access_ok(VERIFY_READ, datavp,
1575 sizeof(struct ppc_hw_breakpoint)))
1576 return -EFAULT;
1577 ret = __copy_from_user(&bp_info, datavp,
1578 sizeof(struct ppc_hw_breakpoint)) ?
1579 -EFAULT : 0;
1580 if (!ret)
1581 ret = ppc_set_hwdebug(child, &bp_info);
1582 break;
1583 }
1584
1585 case PPC_PTRACE_DELHWDEBUG: {
1586 ret = ppc_del_hwdebug(child, addr, data);
1587 break;
1588 }
1589
1590 case PTRACE_GET_DEBUGREG: {
1591 ret = -EINVAL;
1592 /* We only support one DABR and no IABRS at the moment */
1593 if (addr > 0)
1594 break;
1595 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1596 ret = put_user(child->thread.dac1, datalp);
1597 #else
1598 ret = put_user(child->thread.dabr, datalp);
1599 #endif
1600 break;
1601 }
1602
1603 case PTRACE_SET_DEBUGREG:
1604 ret = ptrace_set_debugreg(child, addr, data);
1605 break;
1606
1607 #ifdef CONFIG_PPC64
1608 case PTRACE_GETREGS64:
1609 #endif
1610 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
1611 return copy_regset_to_user(child, &user_ppc_native_view,
1612 REGSET_GPR,
1613 0, sizeof(struct pt_regs),
1614 datavp);
1615
1616 #ifdef CONFIG_PPC64
1617 case PTRACE_SETREGS64:
1618 #endif
1619 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1620 return copy_regset_from_user(child, &user_ppc_native_view,
1621 REGSET_GPR,
1622 0, sizeof(struct pt_regs),
1623 datavp);
1624
1625 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
1626 return copy_regset_to_user(child, &user_ppc_native_view,
1627 REGSET_FPR,
1628 0, sizeof(elf_fpregset_t),
1629 datavp);
1630
1631 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
1632 return copy_regset_from_user(child, &user_ppc_native_view,
1633 REGSET_FPR,
1634 0, sizeof(elf_fpregset_t),
1635 datavp);
1636
1637 #ifdef CONFIG_ALTIVEC
1638 case PTRACE_GETVRREGS:
1639 return copy_regset_to_user(child, &user_ppc_native_view,
1640 REGSET_VMX,
1641 0, (33 * sizeof(vector128) +
1642 sizeof(u32)),
1643 datavp);
1644
1645 case PTRACE_SETVRREGS:
1646 return copy_regset_from_user(child, &user_ppc_native_view,
1647 REGSET_VMX,
1648 0, (33 * sizeof(vector128) +
1649 sizeof(u32)),
1650 datavp);
1651 #endif
1652 #ifdef CONFIG_VSX
1653 case PTRACE_GETVSRREGS:
1654 return copy_regset_to_user(child, &user_ppc_native_view,
1655 REGSET_VSX,
1656 0, 32 * sizeof(double),
1657 datavp);
1658
1659 case PTRACE_SETVSRREGS:
1660 return copy_regset_from_user(child, &user_ppc_native_view,
1661 REGSET_VSX,
1662 0, 32 * sizeof(double),
1663 datavp);
1664 #endif
1665 #ifdef CONFIG_SPE
1666 case PTRACE_GETEVRREGS:
1667 /* Get the child spe register state. */
1668 return copy_regset_to_user(child, &user_ppc_native_view,
1669 REGSET_SPE, 0, 35 * sizeof(u32),
1670 datavp);
1671
1672 case PTRACE_SETEVRREGS:
1673 /* Set the child spe register state. */
1674 return copy_regset_from_user(child, &user_ppc_native_view,
1675 REGSET_SPE, 0, 35 * sizeof(u32),
1676 datavp);
1677 #endif
1678
1679 /* Old reverse args ptrace callss */
1680 case PPC_PTRACE_GETREGS: /* Get GPRs 0 - 31. */
1681 case PPC_PTRACE_SETREGS: /* Set GPRs 0 - 31. */
1682 case PPC_PTRACE_GETFPREGS: /* Get FPRs 0 - 31. */
1683 case PPC_PTRACE_SETFPREGS: /* Get FPRs 0 - 31. */
1684 ret = arch_ptrace_old(child, request, addr, data);
1685 break;
1686
1687 default:
1688 ret = ptrace_request(child, request, addr, data);
1689 break;
1690 }
1691 return ret;
1692 }
1693
1694 /*
1695 * We must return the syscall number to actually look up in the table.
1696 * This can be -1L to skip running any syscall at all.
1697 */
do_syscall_trace_enter(struct pt_regs * regs)1698 long do_syscall_trace_enter(struct pt_regs *regs)
1699 {
1700 long ret = 0;
1701
1702 secure_computing(regs->gpr[0]);
1703
1704 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
1705 tracehook_report_syscall_entry(regs))
1706 /*
1707 * Tracing decided this syscall should not happen.
1708 * We'll return a bogus call number to get an ENOSYS
1709 * error, but leave the original number in regs->gpr[0].
1710 */
1711 ret = -1L;
1712
1713 if (unlikely(current->audit_context)) {
1714 #ifdef CONFIG_PPC64
1715 if (!is_32bit_task())
1716 audit_syscall_entry(AUDIT_ARCH_PPC64,
1717 regs->gpr[0],
1718 regs->gpr[3], regs->gpr[4],
1719 regs->gpr[5], regs->gpr[6]);
1720 else
1721 #endif
1722 audit_syscall_entry(AUDIT_ARCH_PPC,
1723 regs->gpr[0],
1724 regs->gpr[3] & 0xffffffff,
1725 regs->gpr[4] & 0xffffffff,
1726 regs->gpr[5] & 0xffffffff,
1727 regs->gpr[6] & 0xffffffff);
1728 }
1729
1730 return ret ?: regs->gpr[0];
1731 }
1732
do_syscall_trace_leave(struct pt_regs * regs)1733 void do_syscall_trace_leave(struct pt_regs *regs)
1734 {
1735 int step;
1736
1737 if (unlikely(current->audit_context))
1738 audit_syscall_exit((regs->ccr&0x10000000)?AUDITSC_FAILURE:AUDITSC_SUCCESS,
1739 regs->result);
1740
1741 step = test_thread_flag(TIF_SINGLESTEP);
1742 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1743 tracehook_report_syscall_exit(regs, step);
1744 }
1745