1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 /*
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 /* Check of existence of legacy devices */
13 extern int check_legacy_ioport(unsigned long base_port);
14 #define I8042_DATA_REG	0x60
15 #define FDC_BASE	0x3f0
16 /* only relevant for PReP */
17 #define _PIDXR		0x279
18 #define _PNPWRP		0xa79
19 #define PNPBIOS_BASE	0xf000
20 
21 #include <linux/device.h>
22 #include <linux/io.h>
23 
24 #include <linux/compiler.h>
25 #include <asm/page.h>
26 #include <asm/byteorder.h>
27 #include <asm/synch.h>
28 #include <asm/delay.h>
29 #include <asm/mmu.h>
30 
31 #include <asm-generic/iomap.h>
32 
33 #ifdef CONFIG_PPC64
34 #include <asm/paca.h>
35 #endif
36 
37 #define SIO_CONFIG_RA	0x398
38 #define SIO_CONFIG_RD	0x399
39 
40 #define SLOW_DOWN_IO
41 
42 /* 32 bits uses slightly different variables for the various IO
43  * bases. Most of this file only uses _IO_BASE though which we
44  * define properly based on the platform
45  */
46 #ifndef CONFIG_PCI
47 #define _IO_BASE	0
48 #define _ISA_MEM_BASE	0
49 #define PCI_DRAM_OFFSET 0
50 #elif defined(CONFIG_PPC32)
51 #define _IO_BASE	isa_io_base
52 #define _ISA_MEM_BASE	isa_mem_base
53 #define PCI_DRAM_OFFSET	pci_dram_offset
54 #else
55 #define _IO_BASE	pci_io_base
56 #define _ISA_MEM_BASE	isa_mem_base
57 #define PCI_DRAM_OFFSET	0
58 #endif
59 
60 extern unsigned long isa_io_base;
61 extern unsigned long pci_io_base;
62 extern unsigned long pci_dram_offset;
63 
64 extern resource_size_t isa_mem_base;
65 
66 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
67 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
68 #endif
69 
70 /*
71  *
72  * Low level MMIO accessors
73  *
74  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
75  * specific and thus shouldn't be used in generic code. The accessors
76  * provided here are:
77  *
78  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
79  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
80  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
81  *
82  * Those operate directly on a kernel virtual address. Note that the prototype
83  * for the out_* accessors has the arguments in opposite order from the usual
84  * linux PCI accessors. Unlike those, they take the address first and the value
85  * next.
86  *
87  * Note: I might drop the _ns suffix on the stream operations soon as it is
88  * simply normal for stream operations to not swap in the first place.
89  *
90  */
91 
92 #ifdef CONFIG_PPC64
93 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
94 #else
95 #define IO_SET_SYNC_FLAG()
96 #endif
97 
98 /* gcc 4.0 and older doesn't have 'Z' constraint */
99 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
100 #define DEF_MMIO_IN_LE(name, size, insn)				\
101 static inline u##size name(const volatile u##size __iomem *addr)	\
102 {									\
103 	u##size ret;							\
104 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
105 		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
106 	return ret;							\
107 }
108 
109 #define DEF_MMIO_OUT_LE(name, size, insn) 				\
110 static inline void name(volatile u##size __iomem *addr, u##size val)	\
111 {									\
112 	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
113 		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
114 	IO_SET_SYNC_FLAG();						\
115 }
116 #else /* newer gcc */
117 #define DEF_MMIO_IN_LE(name, size, insn)				\
118 static inline u##size name(const volatile u##size __iomem *addr)	\
119 {									\
120 	u##size ret;							\
121 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
122 		: "=r" (ret) : "Z" (*addr) : "memory");			\
123 	return ret;							\
124 }
125 
126 #define DEF_MMIO_OUT_LE(name, size, insn) 				\
127 static inline void name(volatile u##size __iomem *addr, u##size val)	\
128 {									\
129 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
130 		: "=Z" (*addr) : "r" (val) : "memory");			\
131 	IO_SET_SYNC_FLAG();						\
132 }
133 #endif
134 
135 #define DEF_MMIO_IN_BE(name, size, insn)				\
136 static inline u##size name(const volatile u##size __iomem *addr)	\
137 {									\
138 	u##size ret;							\
139 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
140 		: "=r" (ret) : "m" (*addr) : "memory");			\
141 	return ret;							\
142 }
143 
144 #define DEF_MMIO_OUT_BE(name, size, insn)				\
145 static inline void name(volatile u##size __iomem *addr, u##size val)	\
146 {									\
147 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
148 		: "=m" (*addr) : "r" (val) : "memory");			\
149 	IO_SET_SYNC_FLAG();						\
150 }
151 
152 
153 DEF_MMIO_IN_BE(in_8,     8, lbz);
154 DEF_MMIO_IN_BE(in_be16, 16, lhz);
155 DEF_MMIO_IN_BE(in_be32, 32, lwz);
156 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
157 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
158 
159 DEF_MMIO_OUT_BE(out_8,     8, stb);
160 DEF_MMIO_OUT_BE(out_be16, 16, sth);
161 DEF_MMIO_OUT_BE(out_be32, 32, stw);
162 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
163 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
164 
165 #ifdef __powerpc64__
166 DEF_MMIO_OUT_BE(out_be64, 64, std);
167 DEF_MMIO_IN_BE(in_be64, 64, ld);
168 
169 /* There is no asm instructions for 64 bits reverse loads and stores */
in_le64(const volatile u64 __iomem * addr)170 static inline u64 in_le64(const volatile u64 __iomem *addr)
171 {
172 	return swab64(in_be64(addr));
173 }
174 
out_le64(volatile u64 __iomem * addr,u64 val)175 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
176 {
177 	out_be64(addr, swab64(val));
178 }
179 #endif /* __powerpc64__ */
180 
181 /*
182  * Low level IO stream instructions are defined out of line for now
183  */
184 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
185 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
186 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
187 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
188 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
189 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
190 
191 /* The _ns naming is historical and will be removed. For now, just #define
192  * the non _ns equivalent names
193  */
194 #define _insw	_insw_ns
195 #define _insl	_insl_ns
196 #define _outsw	_outsw_ns
197 #define _outsl	_outsl_ns
198 
199 
200 /*
201  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
202  */
203 
204 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
205 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
206 			   unsigned long n);
207 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
208 			 unsigned long n);
209 
210 /*
211  *
212  * PCI and standard ISA accessors
213  *
214  * Those are globally defined linux accessors for devices on PCI or ISA
215  * busses. They follow the Linux defined semantics. The current implementation
216  * for PowerPC is as close as possible to the x86 version of these, and thus
217  * provides fairly heavy weight barriers for the non-raw versions
218  *
219  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
220  * allowing the platform to provide its own implementation of some or all
221  * of the accessors.
222  */
223 
224 /*
225  * Include the EEH definitions when EEH is enabled only so they don't get
226  * in the way when building for 32 bits
227  */
228 #ifdef CONFIG_EEH
229 #include <asm/eeh.h>
230 #endif
231 
232 /* Shortcut to the MMIO argument pointer */
233 #define PCI_IO_ADDR	volatile void __iomem *
234 
235 /* Indirect IO address tokens:
236  *
237  * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
238  * on all IOs. (Note that this is all 64 bits only for now)
239  *
240  * To help platforms who may need to differenciate MMIO addresses in
241  * their hooks, a bitfield is reserved for use by the platform near the
242  * top of MMIO addresses (not PIO, those have to cope the hard way).
243  *
244  * This bit field is 12 bits and is at the top of the IO virtual
245  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
246  *
247  * The kernel virtual space is thus:
248  *
249  *  0xD000000000000000		: vmalloc
250  *  0xD000080000000000		: PCI PHB IO space
251  *  0xD000080080000000		: ioremap
252  *  0xD0000fffffffffff		: end of ioremap region
253  *
254  * Since the top 4 bits are reserved as the region ID, we use thus
255  * the next 12 bits and keep 4 bits available for the future if the
256  * virtual address space is ever to be extended.
257  *
258  * The direct IO mapping operations will then mask off those bits
259  * before doing the actual access, though that only happen when
260  * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
261  * mechanism
262  */
263 
264 #ifdef CONFIG_PPC_INDIRECT_IO
265 #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
266 #define PCI_IO_IND_TOKEN_SHIFT	48
267 #define PCI_FIX_ADDR(addr)						\
268 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
269 #define PCI_GET_ADDR_TOKEN(addr)					\
270 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
271 		PCI_IO_IND_TOKEN_SHIFT)
272 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
273 do {									\
274 	unsigned long __a = (unsigned long)(addr);			\
275 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
276 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
277 	(addr) = (void __iomem *)__a;					\
278 } while(0)
279 #else
280 #define PCI_FIX_ADDR(addr) (addr)
281 #endif
282 
283 
284 /*
285  * Non ordered and non-swapping "raw" accessors
286  */
287 
__raw_readb(const volatile void __iomem * addr)288 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
289 {
290 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
291 }
__raw_readw(const volatile void __iomem * addr)292 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
293 {
294 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
295 }
__raw_readl(const volatile void __iomem * addr)296 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
297 {
298 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
299 }
__raw_writeb(unsigned char v,volatile void __iomem * addr)300 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
301 {
302 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
303 }
__raw_writew(unsigned short v,volatile void __iomem * addr)304 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
305 {
306 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
307 }
__raw_writel(unsigned int v,volatile void __iomem * addr)308 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
309 {
310 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
311 }
312 
313 #ifdef __powerpc64__
__raw_readq(const volatile void __iomem * addr)314 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
315 {
316 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
317 }
__raw_writeq(unsigned long v,volatile void __iomem * addr)318 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
319 {
320 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
321 }
322 #endif /* __powerpc64__ */
323 
324 /*
325  *
326  * PCI PIO and MMIO accessors.
327  *
328  *
329  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
330  * machine checks (which they occasionally do when probing non existing
331  * IO ports on some platforms, like PowerMac and 8xx).
332  * I always found it to be of dubious reliability and I am tempted to get
333  * rid of it one of these days. So if you think it's important to keep it,
334  * please voice up asap. We never had it for 64 bits and I do not intend
335  * to port it over
336  */
337 
338 #ifdef CONFIG_PPC32
339 
340 #define __do_in_asm(name, op)				\
341 static inline unsigned int name(unsigned int port)	\
342 {							\
343 	unsigned int x;					\
344 	__asm__ __volatile__(				\
345 		"sync\n"				\
346 		"0:"	op "	%0,0,%1\n"		\
347 		"1:	twi	0,%0,0\n"		\
348 		"2:	isync\n"			\
349 		"3:	nop\n"				\
350 		"4:\n"					\
351 		".section .fixup,\"ax\"\n"		\
352 		"5:	li	%0,-1\n"		\
353 		"	b	4b\n"			\
354 		".previous\n"				\
355 		".section __ex_table,\"a\"\n"		\
356 		"	.align	2\n"			\
357 		"	.long	0b,5b\n"		\
358 		"	.long	1b,5b\n"		\
359 		"	.long	2b,5b\n"		\
360 		"	.long	3b,5b\n"		\
361 		".previous"				\
362 		: "=&r" (x)				\
363 		: "r" (port + _IO_BASE)			\
364 		: "memory");  				\
365 	return x;					\
366 }
367 
368 #define __do_out_asm(name, op)				\
369 static inline void name(unsigned int val, unsigned int port) \
370 {							\
371 	__asm__ __volatile__(				\
372 		"sync\n"				\
373 		"0:" op " %0,0,%1\n"			\
374 		"1:	sync\n"				\
375 		"2:\n"					\
376 		".section __ex_table,\"a\"\n"		\
377 		"	.align	2\n"			\
378 		"	.long	0b,2b\n"		\
379 		"	.long	1b,2b\n"		\
380 		".previous"				\
381 		: : "r" (val), "r" (port + _IO_BASE)	\
382 		: "memory");   	   	   		\
383 }
384 
385 __do_in_asm(_rec_inb, "lbzx")
386 __do_in_asm(_rec_inw, "lhbrx")
387 __do_in_asm(_rec_inl, "lwbrx")
388 __do_out_asm(_rec_outb, "stbx")
389 __do_out_asm(_rec_outw, "sthbrx")
390 __do_out_asm(_rec_outl, "stwbrx")
391 
392 #endif /* CONFIG_PPC32 */
393 
394 /* The "__do_*" operations below provide the actual "base" implementation
395  * for each of the defined acccessor. Some of them use the out_* functions
396  * directly, some of them still use EEH, though we might change that in the
397  * future. Those macros below provide the necessary argument swapping and
398  * handling of the IO base for PIO.
399  *
400  * They are themselves used by the macros that define the actual accessors
401  * and can be used by the hooks if any.
402  *
403  * Note that PIO operations are always defined in terms of their corresonding
404  * MMIO operations. That allows platforms like iSeries who want to modify the
405  * behaviour of both to only hook on the MMIO version and get both. It's also
406  * possible to hook directly at the toplevel PIO operation if they have to
407  * be handled differently
408  */
409 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
410 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
411 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
412 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
413 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
414 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
415 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
416 
417 #ifdef CONFIG_EEH
418 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
419 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
420 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
421 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
422 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
423 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
424 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
425 #else /* CONFIG_EEH */
426 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
427 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
428 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
429 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
430 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
431 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
432 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
433 #endif /* !defined(CONFIG_EEH) */
434 
435 #ifdef CONFIG_PPC32
436 #define __do_outb(val, port)	_rec_outb(val, port)
437 #define __do_outw(val, port)	_rec_outw(val, port)
438 #define __do_outl(val, port)	_rec_outl(val, port)
439 #define __do_inb(port)		_rec_inb(port)
440 #define __do_inw(port)		_rec_inw(port)
441 #define __do_inl(port)		_rec_inl(port)
442 #else /* CONFIG_PPC32 */
443 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
444 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
445 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
446 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
447 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
448 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
449 #endif /* !CONFIG_PPC32 */
450 
451 #ifdef CONFIG_EEH
452 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
453 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
454 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
455 #else /* CONFIG_EEH */
456 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
457 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
458 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
459 #endif /* !CONFIG_EEH */
460 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
461 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
462 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
463 
464 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
465 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
466 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
467 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
468 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
469 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
470 
471 #define __do_memset_io(addr, c, n)	\
472 				_memset_io(PCI_FIX_ADDR(addr), c, n)
473 #define __do_memcpy_toio(dst, src, n)	\
474 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
475 
476 #ifdef CONFIG_EEH
477 #define __do_memcpy_fromio(dst, src, n)	\
478 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
479 #else /* CONFIG_EEH */
480 #define __do_memcpy_fromio(dst, src, n)	\
481 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
482 #endif /* !CONFIG_EEH */
483 
484 #ifdef CONFIG_PPC_INDIRECT_IO
485 #define DEF_PCI_HOOK(x)		x
486 #else
487 #define DEF_PCI_HOOK(x)		NULL
488 #endif
489 
490 /* Structure containing all the hooks */
491 extern struct ppc_pci_io {
492 
493 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
494 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
495 
496 #include <asm/io-defs.h>
497 
498 #undef DEF_PCI_AC_RET
499 #undef DEF_PCI_AC_NORET
500 
501 } ppc_pci_io;
502 
503 /* The inline wrappers */
504 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
505 static inline ret name at					\
506 {								\
507 	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
508 		return ppc_pci_io.name al;			\
509 	return __do_##name al;					\
510 }
511 
512 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
513 static inline void name at					\
514 {								\
515 	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
516 		ppc_pci_io.name al;				\
517 	else							\
518 		__do_##name al;					\
519 }
520 
521 #include <asm/io-defs.h>
522 
523 #undef DEF_PCI_AC_RET
524 #undef DEF_PCI_AC_NORET
525 
526 /* Some drivers check for the presence of readq & writeq with
527  * a #ifdef, so we make them happy here.
528  */
529 #ifdef __powerpc64__
530 #define readq	readq
531 #define writeq	writeq
532 #endif
533 
534 /*
535  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
536  * access
537  */
538 #define xlate_dev_mem_ptr(p)	__va(p)
539 
540 /*
541  * Convert a virtual cached pointer to an uncached pointer
542  */
543 #define xlate_dev_kmem_ptr(p)	p
544 
545 /*
546  * We don't do relaxed operations yet, at least not with this semantic
547  */
548 #define readb_relaxed(addr) readb(addr)
549 #define readw_relaxed(addr) readw(addr)
550 #define readl_relaxed(addr) readl(addr)
551 #define readq_relaxed(addr) readq(addr)
552 
553 #ifdef CONFIG_PPC32
554 #define mmiowb()
555 #else
556 /*
557  * Enforce synchronisation of stores vs. spin_unlock
558  * (this does it explicitly, though our implementation of spin_unlock
559  * does it implicitely too)
560  */
mmiowb(void)561 static inline void mmiowb(void)
562 {
563 	unsigned long tmp;
564 
565 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
566 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
567 	: "memory");
568 }
569 #endif /* !CONFIG_PPC32 */
570 
iosync(void)571 static inline void iosync(void)
572 {
573         __asm__ __volatile__ ("sync" : : : "memory");
574 }
575 
576 /* Enforce in-order execution of data I/O.
577  * No distinction between read/write on PPC; use eieio for all three.
578  * Those are fairly week though. They don't provide a barrier between
579  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
580  * they only provide barriers between 2 __raw MMIO operations and
581  * possibly break write combining.
582  */
583 #define iobarrier_rw() eieio()
584 #define iobarrier_r()  eieio()
585 #define iobarrier_w()  eieio()
586 
587 
588 /*
589  * output pause versions need a delay at least for the
590  * w83c105 ide controller in a p610.
591  */
592 #define inb_p(port)             inb(port)
593 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
594 #define inw_p(port)             inw(port)
595 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
596 #define inl_p(port)             inl(port)
597 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
598 
599 
600 #define IO_SPACE_LIMIT ~(0UL)
601 
602 
603 /**
604  * ioremap     -   map bus memory into CPU space
605  * @address:   bus address of the memory
606  * @size:      size of the resource to map
607  *
608  * ioremap performs a platform specific sequence of operations to
609  * make bus memory CPU accessible via the readb/readw/readl/writeb/
610  * writew/writel functions and the other mmio helpers. The returned
611  * address is not guaranteed to be usable directly as a virtual
612  * address.
613  *
614  * We provide a few variations of it:
615  *
616  * * ioremap is the standard one and provides non-cacheable guarded mappings
617  *   and can be hooked by the platform via ppc_md
618  *
619  * * ioremap_flags allows to specify the page flags as an argument and can
620  *   also be hooked by the platform via ppc_md. ioremap_prot is the exact
621  *   same thing as ioremap_flags.
622  *
623  * * ioremap_nocache is identical to ioremap
624  *
625  * * iounmap undoes such a mapping and can be hooked
626  *
627  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
628  *   create hand-made mappings for use only by the PCI code and cannot
629  *   currently be hooked. Must be page aligned.
630  *
631  * * __ioremap is the low level implementation used by ioremap and
632  *   ioremap_flags and cannot be hooked (but can be used by a hook on one
633  *   of the previous ones)
634  *
635  * * __ioremap_caller is the same as above but takes an explicit caller
636  *   reference rather than using __builtin_return_address(0)
637  *
638  * * __iounmap, is the low level implementation used by iounmap and cannot
639  *   be hooked (but can be used by a hook on iounmap)
640  *
641  */
642 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
643 extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
644 				   unsigned long flags);
645 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
646 #define ioremap_prot(addr, size, prot)	ioremap_flags((addr), (size), (prot))
647 
648 extern void iounmap(volatile void __iomem *addr);
649 
650 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
651 			       unsigned long flags);
652 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
653 				      unsigned long flags, void *caller);
654 
655 extern void __iounmap(volatile void __iomem *addr);
656 
657 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
658 				   unsigned long size, unsigned long flags);
659 extern void __iounmap_at(void *ea, unsigned long size);
660 
661 /*
662  * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
663  * which needs some additional definitions here. They basically allow PIO
664  * space overall to be 1GB. This will work as long as we never try to use
665  * iomap to map MMIO below 1GB which should be fine on ppc64
666  */
667 #define HAVE_ARCH_PIO_SIZE		1
668 #define PIO_OFFSET			0x00000000UL
669 #define PIO_MASK			(FULL_IO_SIZE - 1)
670 #define PIO_RESERVED			(FULL_IO_SIZE)
671 
672 #define mmio_read16be(addr)		readw_be(addr)
673 #define mmio_read32be(addr)		readl_be(addr)
674 #define mmio_write16be(val, addr)	writew_be(val, addr)
675 #define mmio_write32be(val, addr)	writel_be(val, addr)
676 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
677 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
678 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
679 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
680 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
681 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
682 
683 /**
684  *	virt_to_phys	-	map virtual addresses to physical
685  *	@address: address to remap
686  *
687  *	The returned physical address is the physical (CPU) mapping for
688  *	the memory address given. It is only valid to use this function on
689  *	addresses directly mapped or allocated via kmalloc.
690  *
691  *	This function does not give bus mappings for DMA transfers. In
692  *	almost all conceivable cases a device driver should not be using
693  *	this function
694  */
virt_to_phys(volatile void * address)695 static inline unsigned long virt_to_phys(volatile void * address)
696 {
697 	return __pa((unsigned long)address);
698 }
699 
700 /**
701  *	phys_to_virt	-	map physical address to virtual
702  *	@address: address to remap
703  *
704  *	The returned virtual address is a current CPU mapping for
705  *	the memory address given. It is only valid to use this function on
706  *	addresses that have a kernel mapping
707  *
708  *	This function does not handle bus mappings for DMA transfers. In
709  *	almost all conceivable cases a device driver should not be using
710  *	this function
711  */
phys_to_virt(unsigned long address)712 static inline void * phys_to_virt(unsigned long address)
713 {
714 	return (void *)__va(address);
715 }
716 
717 /*
718  * Change "struct page" to physical address.
719  */
720 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
721 
722 /*
723  * 32 bits still uses virt_to_bus() for it's implementation of DMA
724  * mappings se we have to keep it defined here. We also have some old
725  * drivers (shame shame shame) that use bus_to_virt() and haven't been
726  * fixed yet so I need to define it here.
727  */
728 #ifdef CONFIG_PPC32
729 
virt_to_bus(volatile void * address)730 static inline unsigned long virt_to_bus(volatile void * address)
731 {
732         if (address == NULL)
733 		return 0;
734         return __pa(address) + PCI_DRAM_OFFSET;
735 }
736 
bus_to_virt(unsigned long address)737 static inline void * bus_to_virt(unsigned long address)
738 {
739         if (address == 0)
740 		return NULL;
741         return __va(address - PCI_DRAM_OFFSET);
742 }
743 
744 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
745 
746 #endif /* CONFIG_PPC32 */
747 
748 /* access ports */
749 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
750 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
751 
752 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
753 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
754 
755 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
756 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
757 
758 /* Clear and set bits in one shot.  These macros can be used to clear and
759  * set multiple bits in a register using a single read-modify-write.  These
760  * macros can also be used to set a multiple-bit bit pattern using a mask,
761  * by specifying the mask in the 'clear' parameter and the new bit pattern
762  * in the 'set' parameter.
763  */
764 
765 #define clrsetbits(type, addr, clear, set) \
766 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
767 
768 #ifdef __powerpc64__
769 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
770 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
771 #endif
772 
773 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
774 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
775 
776 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
777 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
778 
779 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
780 
781 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
782 				size_t size, unsigned long flags);
783 
784 #endif /* __KERNEL__ */
785 
786 #endif /* _ASM_POWERPC_IO_H */
787