1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      A DMA channel allocator for Au1000. API is modeled loosely off of
5  *      linux/kernel/dma.c.
6  *
7  * Copyright 2000 MontaVista Software Inc.
8  * Author: MontaVista Software, Inc.
9  *         	stevel@mvista.com or source@mvista.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/errno.h>
35 #include <linux/sched.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/delay.h>
39 #include <asm/au1000.h>
40 #include <asm/au1000_dma.h>
41 #include <asm/system.h>
42 
43 #include <linux/module.h>
44 
45 #if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || defined(CONFIG_SOC_AU1100)
46 
47 /*
48  * A note on resource allocation:
49  *
50  * All drivers needing DMA channels, should allocate and release them
51  * through the public routines `request_dma()' and `free_dma()'.
52  *
53  * In order to avoid problems, all processes should allocate resources in
54  * the same sequence and release them in the reverse order.
55  *
56  * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
57  * When releasing them, first release the IRQ, then release the DMA. The
58  * main reason for this order is that, if you are requesting the DMA buffer
59  * done interrupt, you won't know the irq number until the DMA channel is
60  * returned from request_dma.
61  */
62 
63 
64 spinlock_t au1000_dma_spin_lock = SPIN_LOCK_UNLOCKED;
65 
66 struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
67       {dev_id:-1,},
68       {dev_id:-1,},
69       {dev_id:-1,},
70       {dev_id:-1,},
71       {dev_id:-1,},
72       {dev_id:-1,},
73       {dev_id:-1,},
74       {dev_id:-1,}
75 };
76 
77 // Device FIFO addresses and default DMA modes
78 static const struct dma_dev {
79 	unsigned int fifo_addr;
80 	unsigned int dma_mode;
81 } dma_dev_table[DMA_NUM_DEV] = {
82 	{UART0_ADDR + UART_TX, 0},
83 	{UART0_ADDR + UART_RX, 0},
84 	{0, 0},
85 	{0, 0},
86 	{AC97C_DATA, DMA_DW16 },          // coherent
87 	{AC97C_DATA, DMA_DR | DMA_DW16 }, // coherent
88 	{UART3_ADDR + UART_TX, DMA_DW8 | DMA_NC},
89 	{UART3_ADDR + UART_RX, DMA_DR | DMA_DW8 | DMA_NC},
90 	{USBD_EP0RD, DMA_DR | DMA_DW8 | DMA_NC},
91 	{USBD_EP0WR, DMA_DW8 | DMA_NC},
92 	{USBD_EP2WR, DMA_DW8 | DMA_NC},
93 	{USBD_EP3WR, DMA_DW8 | DMA_NC},
94 	{USBD_EP4RD, DMA_DR | DMA_DW8 | DMA_NC},
95 	{USBD_EP5RD, DMA_DR | DMA_DW8 | DMA_NC},
96 	{I2S_DATA, DMA_DW32 | DMA_NC},
97 	{I2S_DATA, DMA_DR | DMA_DW32 | DMA_NC}
98 };
99 
au1000_dma_read_proc(char * buf,char ** start,off_t fpos,int length,int * eof,void * data)100 int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
101 			 int length, int *eof, void *data)
102 {
103 	int i, len = 0;
104 	struct dma_chan *chan;
105 
106 	for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
107 		if ((chan = get_dma_chan(i)) != NULL) {
108 			len += sprintf(buf + len, "%2d: %s\n",
109 				       i, chan->dev_str);
110 		}
111 	}
112 
113 	if (fpos >= len) {
114 		*start = buf;
115 		*eof = 1;
116 		return 0;
117 	}
118 	*start = buf + fpos;
119 	if ((len -= fpos) > length)
120 		return length;
121 	*eof = 1;
122 	return len;
123 }
124 
125 // Device FIFO addresses and default DMA modes - 2nd bank
126 static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
127 	{SD0_XMIT_FIFO, DMA_DS | DMA_DW8},		// coherent
128 	{SD0_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8},	// coherent
129 	{SD1_XMIT_FIFO, DMA_DS | DMA_DW8},		// coherent
130 	{SD1_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8}	// coherent
131 };
132 
dump_au1000_dma_channel(unsigned int dmanr)133 void dump_au1000_dma_channel(unsigned int dmanr)
134 {
135 	struct dma_chan *chan;
136 
137 	if (dmanr >= NUM_AU1000_DMA_CHANNELS)
138 		return;
139 	chan = &au1000_dma_table[dmanr];
140 
141 	printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
142 	printk(KERN_INFO "  mode = 0x%08x\n",
143 	       au_readl(chan->io + DMA_MODE_SET));
144 	printk(KERN_INFO "  addr = 0x%08x\n",
145 	       au_readl(chan->io + DMA_PERIPHERAL_ADDR));
146 	printk(KERN_INFO "  start0 = 0x%08x\n",
147 	       au_readl(chan->io + DMA_BUFFER0_START));
148 	printk(KERN_INFO "  start1 = 0x%08x\n",
149 	       au_readl(chan->io + DMA_BUFFER1_START));
150 	printk(KERN_INFO "  count0 = 0x%08x\n",
151 	       au_readl(chan->io + DMA_BUFFER0_COUNT));
152 	printk(KERN_INFO "  count1 = 0x%08x\n",
153 	       au_readl(chan->io + DMA_BUFFER1_COUNT));
154 }
155 
156 
157 /*
158  * Finds a free channel, and binds the requested device to it.
159  * Returns the allocated channel number, or negative on error.
160  * Requests the DMA done IRQ if irqhandler != NULL.
161  */
request_au1000_dma(int dev_id,const char * dev_str,void (* irqhandler)(int,void *,struct pt_regs *),unsigned long irqflags,void * irq_dev_id)162 int request_au1000_dma(int dev_id, const char *dev_str,
163 		       void (*irqhandler)(int, void *, struct pt_regs *),
164 		       unsigned long irqflags,
165 		       void *irq_dev_id)
166 {
167 	struct dma_chan *chan;
168 	const struct dma_dev *dev;
169 	int i, ret;
170 
171 #if defined(CONFIG_SOC_AU1100)
172 	if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
173 		return -EINVAL;
174 #else
175  	if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
176  		return -EINVAL;
177 #endif
178 
179 	for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
180 		if (au1000_dma_table[i].dev_id < 0)
181 			break;
182 	}
183 	if (i == NUM_AU1000_DMA_CHANNELS)
184 		return -ENODEV;
185 
186 	chan = &au1000_dma_table[i];
187 
188 	if (dev_id >= DMA_NUM_DEV) {
189 		dev_id -= DMA_NUM_DEV;
190 		dev = &dma_dev_table_bank2[dev_id];
191 	} else {
192 		dev = &dma_dev_table[dev_id];
193 	}
194 
195 	if (irqhandler) {
196 		chan->irq = AU1000_DMA_INT_BASE + i;
197 		chan->irq_dev = irq_dev_id;
198 		if ((ret = request_irq(chan->irq, irqhandler, irqflags,
199 				       dev_str, chan->irq_dev))) {
200 			chan->irq = 0;
201 			chan->irq_dev = NULL;
202 			return ret;
203 		}
204 	} else {
205 		chan->irq = 0;
206 		chan->irq_dev = NULL;
207 	}
208 
209 	// fill it in
210 	chan->io = DMA_CHANNEL_BASE + i * DMA_CHANNEL_LEN;
211 	chan->dev_id = dev_id;
212 	chan->dev_str = dev_str;
213 	chan->fifo_addr = dev->fifo_addr;
214 	chan->mode = dev->dma_mode;
215 
216 	/* initialize the channel before returning */
217 	init_dma(i);
218 
219 	return i;
220 }
221 
free_au1000_dma(unsigned int dmanr)222 void free_au1000_dma(unsigned int dmanr)
223 {
224 	struct dma_chan *chan = get_dma_chan(dmanr);
225 	if (!chan) {
226 		printk("Trying to free DMA%d\n", dmanr);
227 		return;
228 	}
229 
230 	disable_dma(dmanr);
231 	if (chan->irq)
232 		free_irq(chan->irq, chan->irq_dev);
233 
234 	chan->irq = 0;
235 	chan->irq_dev = NULL;
236 	chan->dev_id = -1;
237 }
238 
239 EXPORT_SYMBOL(free_au1000_dma);
240 EXPORT_SYMBOL(au1000_dma_table);
241 EXPORT_SYMBOL(request_au1000_dma);
242 
243 #endif // AU1000 AU1500 AU1100
244