1 /*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
23 */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/paravirt.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
57 #include <asm/sal.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
61 #include <asm/sn/arch.h>
62
63 #define SMP_DEBUG 0
64
65 #if SMP_DEBUG
66 #define Dprintk(x...) printk(x)
67 #else
68 #define Dprintk(x...)
69 #endif
70
71 #ifdef CONFIG_HOTPLUG_CPU
72 #ifdef CONFIG_PERMIT_BSP_REMOVE
73 #define bsp_remove_ok 1
74 #else
75 #define bsp_remove_ok 0
76 #endif
77
78 /*
79 * Store all idle threads, this can be reused instead of creating
80 * a new thread. Also avoids complicated thread destroy functionality
81 * for idle threads.
82 */
83 struct task_struct *idle_thread_array[NR_CPUS];
84
85 /*
86 * Global array allocated for NR_CPUS at boot time
87 */
88 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
89
90 /*
91 * start_ap in head.S uses this to store current booting cpu
92 * info.
93 */
94 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95
96 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97
98 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
99 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
100
101 #else
102
103 #define get_idle_for_cpu(x) (NULL)
104 #define set_idle_for_cpu(x,p)
105 #define set_brendez_area(x)
106 #endif
107
108
109 /*
110 * ITC synchronization related stuff:
111 */
112 #define MASTER (0)
113 #define SLAVE (SMP_CACHE_BYTES/8)
114
115 #define NUM_ROUNDS 64 /* magic value */
116 #define NUM_ITERS 5 /* likewise */
117
118 static DEFINE_SPINLOCK(itc_sync_lock);
119 static volatile unsigned long go[SLAVE + 1];
120
121 #define DEBUG_ITC_SYNC 0
122
123 extern void start_ap (void);
124 extern unsigned long ia64_iobase;
125
126 struct task_struct *task_for_booting_cpu;
127
128 /*
129 * State for each CPU
130 */
131 DEFINE_PER_CPU(int, cpu_state);
132
133 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
134 EXPORT_SYMBOL(cpu_core_map);
135 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
136 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
137
138 int smp_num_siblings = 1;
139
140 /* which logical CPU number maps to which CPU (physical APIC ID) */
141 volatile int ia64_cpu_to_sapicid[NR_CPUS];
142 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
143
144 static volatile cpumask_t cpu_callin_map;
145
146 struct smp_boot_data smp_boot_data __initdata;
147
148 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
149
150 char __initdata no_int_routing;
151
152 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
153
154 #ifdef CONFIG_FORCE_CPEI_RETARGET
155 #define CPEI_OVERRIDE_DEFAULT (1)
156 #else
157 #define CPEI_OVERRIDE_DEFAULT (0)
158 #endif
159
160 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
161
162 static int __init
cmdl_force_cpei(char * str)163 cmdl_force_cpei(char *str)
164 {
165 int value=0;
166
167 get_option (&str, &value);
168 force_cpei_retarget = value;
169
170 return 1;
171 }
172
173 __setup("force_cpei=", cmdl_force_cpei);
174
175 static int __init
nointroute(char * str)176 nointroute (char *str)
177 {
178 no_int_routing = 1;
179 printk ("no_int_routing on\n");
180 return 1;
181 }
182
183 __setup("nointroute", nointroute);
184
fix_b0_for_bsp(void)185 static void fix_b0_for_bsp(void)
186 {
187 #ifdef CONFIG_HOTPLUG_CPU
188 int cpuid;
189 static int fix_bsp_b0 = 1;
190
191 cpuid = smp_processor_id();
192
193 /*
194 * Cache the b0 value on the first AP that comes up
195 */
196 if (!(fix_bsp_b0 && cpuid))
197 return;
198
199 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
200 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
201
202 fix_bsp_b0 = 0;
203 #endif
204 }
205
206 void
sync_master(void * arg)207 sync_master (void *arg)
208 {
209 unsigned long flags, i;
210
211 go[MASTER] = 0;
212
213 local_irq_save(flags);
214 {
215 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
216 while (!go[MASTER])
217 cpu_relax();
218 go[MASTER] = 0;
219 go[SLAVE] = ia64_get_itc();
220 }
221 }
222 local_irq_restore(flags);
223 }
224
225 /*
226 * Return the number of cycles by which our itc differs from the itc on the master
227 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
228 * negative that it is behind.
229 */
230 static inline long
get_delta(long * rt,long * master)231 get_delta (long *rt, long *master)
232 {
233 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
234 unsigned long tcenter, t0, t1, tm;
235 long i;
236
237 for (i = 0; i < NUM_ITERS; ++i) {
238 t0 = ia64_get_itc();
239 go[MASTER] = 1;
240 while (!(tm = go[SLAVE]))
241 cpu_relax();
242 go[SLAVE] = 0;
243 t1 = ia64_get_itc();
244
245 if (t1 - t0 < best_t1 - best_t0)
246 best_t0 = t0, best_t1 = t1, best_tm = tm;
247 }
248
249 *rt = best_t1 - best_t0;
250 *master = best_tm - best_t0;
251
252 /* average best_t0 and best_t1 without overflow: */
253 tcenter = (best_t0/2 + best_t1/2);
254 if (best_t0 % 2 + best_t1 % 2 == 2)
255 ++tcenter;
256 return tcenter - best_tm;
257 }
258
259 /*
260 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
261 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
262 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
263 * step). The basic idea is for the slave to ask the master what itc value it has and to
264 * read its own itc before and after the master responds. Each iteration gives us three
265 * timestamps:
266 *
267 * slave master
268 *
269 * t0 ---\
270 * ---\
271 * --->
272 * tm
273 * /---
274 * /---
275 * t1 <---
276 *
277 *
278 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
279 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
280 * between the slave and the master is symmetric. Even if the interconnect were
281 * asymmetric, we would still know that the synchronization error is smaller than the
282 * roundtrip latency (t0 - t1).
283 *
284 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
285 * within one or two cycles. However, we can only *guarantee* that the synchronization is
286 * accurate to within a round-trip time, which is typically in the range of several
287 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
288 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
289 * than half a micro second or so.
290 */
291 void
ia64_sync_itc(unsigned int master)292 ia64_sync_itc (unsigned int master)
293 {
294 long i, delta, adj, adjust_latency = 0, done = 0;
295 unsigned long flags, rt, master_time_stamp, bound;
296 #if DEBUG_ITC_SYNC
297 struct {
298 long rt; /* roundtrip time */
299 long master; /* master's timestamp */
300 long diff; /* difference between midpoint and master's timestamp */
301 long lat; /* estimate of itc adjustment latency */
302 } t[NUM_ROUNDS];
303 #endif
304
305 /*
306 * Make sure local timer ticks are disabled while we sync. If
307 * they were enabled, we'd have to worry about nasty issues
308 * like setting the ITC ahead of (or a long time before) the
309 * next scheduled tick.
310 */
311 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
312
313 go[MASTER] = 1;
314
315 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
316 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
317 return;
318 }
319
320 while (go[MASTER])
321 cpu_relax(); /* wait for master to be ready */
322
323 spin_lock_irqsave(&itc_sync_lock, flags);
324 {
325 for (i = 0; i < NUM_ROUNDS; ++i) {
326 delta = get_delta(&rt, &master_time_stamp);
327 if (delta == 0) {
328 done = 1; /* let's lock on to this... */
329 bound = rt;
330 }
331
332 if (!done) {
333 if (i > 0) {
334 adjust_latency += -delta;
335 adj = -delta + adjust_latency/4;
336 } else
337 adj = -delta;
338
339 ia64_set_itc(ia64_get_itc() + adj);
340 }
341 #if DEBUG_ITC_SYNC
342 t[i].rt = rt;
343 t[i].master = master_time_stamp;
344 t[i].diff = delta;
345 t[i].lat = adjust_latency/4;
346 #endif
347 }
348 }
349 spin_unlock_irqrestore(&itc_sync_lock, flags);
350
351 #if DEBUG_ITC_SYNC
352 for (i = 0; i < NUM_ROUNDS; ++i)
353 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
354 t[i].rt, t[i].master, t[i].diff, t[i].lat);
355 #endif
356
357 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
358 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
359 }
360
361 /*
362 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
363 */
364 static inline void __devinit
smp_setup_percpu_timer(void)365 smp_setup_percpu_timer (void)
366 {
367 }
368
369 static void __cpuinit
smp_callin(void)370 smp_callin (void)
371 {
372 int cpuid, phys_id, itc_master;
373 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
374 extern void ia64_init_itm(void);
375 extern volatile int time_keeper_id;
376
377 #ifdef CONFIG_PERFMON
378 extern void pfm_init_percpu(void);
379 #endif
380
381 cpuid = smp_processor_id();
382 phys_id = hard_smp_processor_id();
383 itc_master = time_keeper_id;
384
385 if (cpu_online(cpuid)) {
386 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
387 phys_id, cpuid);
388 BUG();
389 }
390
391 fix_b0_for_bsp();
392
393 /*
394 * numa_node_id() works after this.
395 */
396 set_numa_node(cpu_to_node_map[cpuid]);
397 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
398
399 ipi_call_lock_irq();
400 spin_lock(&vector_lock);
401 /* Setup the per cpu irq handling data structures */
402 __setup_vector_irq(cpuid);
403 notify_cpu_starting(cpuid);
404 cpu_set(cpuid, cpu_online_map);
405 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
406 spin_unlock(&vector_lock);
407 ipi_call_unlock_irq();
408
409 smp_setup_percpu_timer();
410
411 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
412
413 #ifdef CONFIG_PERFMON
414 pfm_init_percpu();
415 #endif
416
417 local_irq_enable();
418
419 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
420 /*
421 * Synchronize the ITC with the BP. Need to do this after irqs are
422 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
423 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
424 * local_bh_enable(), which bugs out if irqs are not enabled...
425 */
426 Dprintk("Going to syncup ITC with ITC Master.\n");
427 ia64_sync_itc(itc_master);
428 }
429
430 /*
431 * Get our bogomips.
432 */
433 ia64_init_itm();
434
435 /*
436 * Delay calibration can be skipped if new processor is identical to the
437 * previous processor.
438 */
439 last_cpuinfo = cpu_data(cpuid - 1);
440 this_cpuinfo = local_cpu_data;
441 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
442 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
443 last_cpuinfo->features != this_cpuinfo->features ||
444 last_cpuinfo->revision != this_cpuinfo->revision ||
445 last_cpuinfo->family != this_cpuinfo->family ||
446 last_cpuinfo->archrev != this_cpuinfo->archrev ||
447 last_cpuinfo->model != this_cpuinfo->model)
448 calibrate_delay();
449 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
450
451 /*
452 * Allow the master to continue.
453 */
454 cpu_set(cpuid, cpu_callin_map);
455 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
456 }
457
458
459 /*
460 * Activate a secondary processor. head.S calls this.
461 */
462 int __cpuinit
start_secondary(void * unused)463 start_secondary (void *unused)
464 {
465 /* Early console may use I/O ports */
466 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
467 #ifndef CONFIG_PRINTK_TIME
468 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
469 #endif
470 efi_map_pal_code();
471 cpu_init();
472 preempt_disable();
473 smp_callin();
474
475 cpu_idle();
476 return 0;
477 }
478
idle_regs(struct pt_regs * regs)479 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
480 {
481 return NULL;
482 }
483
484 struct create_idle {
485 struct work_struct work;
486 struct task_struct *idle;
487 struct completion done;
488 int cpu;
489 };
490
491 void __cpuinit
do_fork_idle(struct work_struct * work)492 do_fork_idle(struct work_struct *work)
493 {
494 struct create_idle *c_idle =
495 container_of(work, struct create_idle, work);
496
497 c_idle->idle = fork_idle(c_idle->cpu);
498 complete(&c_idle->done);
499 }
500
501 static int __cpuinit
do_boot_cpu(int sapicid,int cpu)502 do_boot_cpu (int sapicid, int cpu)
503 {
504 int timeout;
505 struct create_idle c_idle = {
506 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
507 .cpu = cpu,
508 .done = COMPLETION_INITIALIZER(c_idle.done),
509 };
510
511 /*
512 * We can't use kernel_thread since we must avoid to
513 * reschedule the child.
514 */
515 c_idle.idle = get_idle_for_cpu(cpu);
516 if (c_idle.idle) {
517 init_idle(c_idle.idle, cpu);
518 goto do_rest;
519 }
520
521 schedule_work(&c_idle.work);
522 wait_for_completion(&c_idle.done);
523
524 if (IS_ERR(c_idle.idle))
525 panic("failed fork for CPU %d", cpu);
526
527 set_idle_for_cpu(cpu, c_idle.idle);
528
529 do_rest:
530 task_for_booting_cpu = c_idle.idle;
531
532 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
533
534 set_brendez_area(cpu);
535 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
536
537 /*
538 * Wait 10s total for the AP to start
539 */
540 Dprintk("Waiting on callin_map ...");
541 for (timeout = 0; timeout < 100000; timeout++) {
542 if (cpu_isset(cpu, cpu_callin_map))
543 break; /* It has booted */
544 udelay(100);
545 }
546 Dprintk("\n");
547
548 if (!cpu_isset(cpu, cpu_callin_map)) {
549 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
550 ia64_cpu_to_sapicid[cpu] = -1;
551 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
552 return -EINVAL;
553 }
554 return 0;
555 }
556
557 static int __init
decay(char * str)558 decay (char *str)
559 {
560 int ticks;
561 get_option (&str, &ticks);
562 return 1;
563 }
564
565 __setup("decay=", decay);
566
567 /*
568 * Initialize the logical CPU number to SAPICID mapping
569 */
570 void __init
smp_build_cpu_map(void)571 smp_build_cpu_map (void)
572 {
573 int sapicid, cpu, i;
574 int boot_cpu_id = hard_smp_processor_id();
575
576 for (cpu = 0; cpu < NR_CPUS; cpu++) {
577 ia64_cpu_to_sapicid[cpu] = -1;
578 }
579
580 ia64_cpu_to_sapicid[0] = boot_cpu_id;
581 cpus_clear(cpu_present_map);
582 set_cpu_present(0, true);
583 set_cpu_possible(0, true);
584 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
585 sapicid = smp_boot_data.cpu_phys_id[i];
586 if (sapicid == boot_cpu_id)
587 continue;
588 set_cpu_present(cpu, true);
589 set_cpu_possible(cpu, true);
590 ia64_cpu_to_sapicid[cpu] = sapicid;
591 cpu++;
592 }
593 }
594
595 /*
596 * Cycle through the APs sending Wakeup IPIs to boot each.
597 */
598 void __init
smp_prepare_cpus(unsigned int max_cpus)599 smp_prepare_cpus (unsigned int max_cpus)
600 {
601 int boot_cpu_id = hard_smp_processor_id();
602
603 /*
604 * Initialize the per-CPU profiling counter/multiplier
605 */
606
607 smp_setup_percpu_timer();
608
609 /*
610 * We have the boot CPU online for sure.
611 */
612 cpu_set(0, cpu_online_map);
613 cpu_set(0, cpu_callin_map);
614
615 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
616 ia64_cpu_to_sapicid[0] = boot_cpu_id;
617
618 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
619
620 current_thread_info()->cpu = 0;
621
622 /*
623 * If SMP should be disabled, then really disable it!
624 */
625 if (!max_cpus) {
626 printk(KERN_INFO "SMP mode deactivated.\n");
627 init_cpu_online(cpumask_of(0));
628 init_cpu_present(cpumask_of(0));
629 init_cpu_possible(cpumask_of(0));
630 return;
631 }
632 }
633
smp_prepare_boot_cpu(void)634 void __devinit smp_prepare_boot_cpu(void)
635 {
636 cpu_set(smp_processor_id(), cpu_online_map);
637 cpu_set(smp_processor_id(), cpu_callin_map);
638 set_numa_node(cpu_to_node_map[smp_processor_id()]);
639 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
640 paravirt_post_smp_prepare_boot_cpu();
641 }
642
643 #ifdef CONFIG_HOTPLUG_CPU
644 static inline void
clear_cpu_sibling_map(int cpu)645 clear_cpu_sibling_map(int cpu)
646 {
647 int i;
648
649 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
650 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
651 for_each_cpu_mask(i, cpu_core_map[cpu])
652 cpu_clear(cpu, cpu_core_map[i]);
653
654 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
655 }
656
657 static void
remove_siblinginfo(int cpu)658 remove_siblinginfo(int cpu)
659 {
660 int last = 0;
661
662 if (cpu_data(cpu)->threads_per_core == 1 &&
663 cpu_data(cpu)->cores_per_socket == 1) {
664 cpu_clear(cpu, cpu_core_map[cpu]);
665 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
666 return;
667 }
668
669 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
670
671 /* remove it from all sibling map's */
672 clear_cpu_sibling_map(cpu);
673 }
674
675 extern void fixup_irqs(void);
676
migrate_platform_irqs(unsigned int cpu)677 int migrate_platform_irqs(unsigned int cpu)
678 {
679 int new_cpei_cpu;
680 struct irq_data *data = NULL;
681 const struct cpumask *mask;
682 int retval = 0;
683
684 /*
685 * dont permit CPEI target to removed.
686 */
687 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
688 printk ("CPU (%d) is CPEI Target\n", cpu);
689 if (can_cpei_retarget()) {
690 /*
691 * Now re-target the CPEI to a different processor
692 */
693 new_cpei_cpu = any_online_cpu(cpu_online_map);
694 mask = cpumask_of(new_cpei_cpu);
695 set_cpei_target_cpu(new_cpei_cpu);
696 data = irq_get_irq_data(ia64_cpe_irq);
697 /*
698 * Switch for now, immediately, we need to do fake intr
699 * as other interrupts, but need to study CPEI behaviour with
700 * polling before making changes.
701 */
702 if (data && data->chip) {
703 data->chip->irq_disable(data);
704 data->chip->irq_set_affinity(data, mask, false);
705 data->chip->irq_enable(data);
706 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
707 }
708 }
709 if (!data) {
710 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
711 retval = -EBUSY;
712 }
713 }
714 return retval;
715 }
716
717 /* must be called with cpucontrol mutex held */
__cpu_disable(void)718 int __cpu_disable(void)
719 {
720 int cpu = smp_processor_id();
721
722 /*
723 * dont permit boot processor for now
724 */
725 if (cpu == 0 && !bsp_remove_ok) {
726 printk ("Your platform does not support removal of BSP\n");
727 return (-EBUSY);
728 }
729
730 if (ia64_platform_is("sn2")) {
731 if (!sn_cpu_disable_allowed(cpu))
732 return -EBUSY;
733 }
734
735 cpu_clear(cpu, cpu_online_map);
736
737 if (migrate_platform_irqs(cpu)) {
738 cpu_set(cpu, cpu_online_map);
739 return -EBUSY;
740 }
741
742 remove_siblinginfo(cpu);
743 fixup_irqs();
744 local_flush_tlb_all();
745 cpu_clear(cpu, cpu_callin_map);
746 return 0;
747 }
748
__cpu_die(unsigned int cpu)749 void __cpu_die(unsigned int cpu)
750 {
751 unsigned int i;
752
753 for (i = 0; i < 100; i++) {
754 /* They ack this in play_dead by setting CPU_DEAD */
755 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
756 {
757 printk ("CPU %d is now offline\n", cpu);
758 return;
759 }
760 msleep(100);
761 }
762 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
763 }
764 #endif /* CONFIG_HOTPLUG_CPU */
765
766 void
smp_cpus_done(unsigned int dummy)767 smp_cpus_done (unsigned int dummy)
768 {
769 int cpu;
770 unsigned long bogosum = 0;
771
772 /*
773 * Allow the user to impress friends.
774 */
775
776 for_each_online_cpu(cpu) {
777 bogosum += cpu_data(cpu)->loops_per_jiffy;
778 }
779
780 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
781 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
782 }
783
784 static inline void __devinit
set_cpu_sibling_map(int cpu)785 set_cpu_sibling_map(int cpu)
786 {
787 int i;
788
789 for_each_online_cpu(i) {
790 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
791 cpu_set(i, cpu_core_map[cpu]);
792 cpu_set(cpu, cpu_core_map[i]);
793 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
794 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
795 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
796 }
797 }
798 }
799 }
800
801 int __cpuinit
__cpu_up(unsigned int cpu)802 __cpu_up (unsigned int cpu)
803 {
804 int ret;
805 int sapicid;
806
807 sapicid = ia64_cpu_to_sapicid[cpu];
808 if (sapicid == -1)
809 return -EINVAL;
810
811 /*
812 * Already booted cpu? not valid anymore since we dont
813 * do idle loop tightspin anymore.
814 */
815 if (cpu_isset(cpu, cpu_callin_map))
816 return -EINVAL;
817
818 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
819 /* Processor goes to start_secondary(), sets online flag */
820 ret = do_boot_cpu(sapicid, cpu);
821 if (ret < 0)
822 return ret;
823
824 if (cpu_data(cpu)->threads_per_core == 1 &&
825 cpu_data(cpu)->cores_per_socket == 1) {
826 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
827 cpu_set(cpu, cpu_core_map[cpu]);
828 return 0;
829 }
830
831 set_cpu_sibling_map(cpu);
832
833 return 0;
834 }
835
836 /*
837 * Assume that CPUs have been discovered by some platform-dependent interface. For
838 * SoftSDV/Lion, that would be ACPI.
839 *
840 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
841 */
842 void __init
init_smp_config(void)843 init_smp_config(void)
844 {
845 struct fptr {
846 unsigned long fp;
847 unsigned long gp;
848 } *ap_startup;
849 long sal_ret;
850
851 /* Tell SAL where to drop the APs. */
852 ap_startup = (struct fptr *) start_ap;
853 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
854 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
855 if (sal_ret < 0)
856 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
857 ia64_sal_strerror(sal_ret));
858 }
859
860 /*
861 * identify_siblings(cpu) gets called from identify_cpu. This populates the
862 * information related to logical execution units in per_cpu_data structure.
863 */
864 void __devinit
identify_siblings(struct cpuinfo_ia64 * c)865 identify_siblings(struct cpuinfo_ia64 *c)
866 {
867 long status;
868 u16 pltid;
869 pal_logical_to_physical_t info;
870
871 status = ia64_pal_logical_to_phys(-1, &info);
872 if (status != PAL_STATUS_SUCCESS) {
873 if (status != PAL_STATUS_UNIMPLEMENTED) {
874 printk(KERN_ERR
875 "ia64_pal_logical_to_phys failed with %ld\n",
876 status);
877 return;
878 }
879
880 info.overview_ppid = 0;
881 info.overview_cpp = 1;
882 info.overview_tpc = 1;
883 }
884
885 status = ia64_sal_physical_id_info(&pltid);
886 if (status != PAL_STATUS_SUCCESS) {
887 if (status != PAL_STATUS_UNIMPLEMENTED)
888 printk(KERN_ERR
889 "ia64_sal_pltid failed with %ld\n",
890 status);
891 return;
892 }
893
894 c->socket_id = (pltid << 8) | info.overview_ppid;
895
896 if (info.overview_cpp == 1 && info.overview_tpc == 1)
897 return;
898
899 c->cores_per_socket = info.overview_cpp;
900 c->threads_per_core = info.overview_tpc;
901 c->num_log = info.overview_num_log;
902
903 c->core_id = info.log1_cid;
904 c->thread_id = info.log1_tid;
905 }
906
907 /*
908 * returns non zero, if multi-threading is enabled
909 * on at least one physical package. Due to hotplug cpu
910 * and (maxcpus=), all threads may not necessarily be enabled
911 * even though the processor supports multi-threading.
912 */
is_multithreading_enabled(void)913 int is_multithreading_enabled(void)
914 {
915 int i, j;
916
917 for_each_present_cpu(i) {
918 for_each_present_cpu(j) {
919 if (j == i)
920 continue;
921 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
922 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
923 return 1;
924 }
925 }
926 }
927 return 0;
928 }
929 EXPORT_SYMBOL_GPL(is_multithreading_enabled);
930