1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #define __KERNEL_SYSCALLS__	/* see <asm/unistd.h> */
8 #include <linux/config.h>
9 
10 #include <linux/pm.h>
11 #include <linux/elf.h>
12 #include <linux/errno.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/personality.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/efi.h>
22 
23 #include <asm/delay.h>
24 #include <asm/perfmon.h>
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/sal.h>
28 #include <asm/uaccess.h>
29 #include <asm/unwind.h>
30 #include <asm/user.h>
31 
32 #ifdef CONFIG_IA64_SGI_SN
33 #include <asm/sn/idle.h>
34 #endif
35 
36 #define print_symbol(fmt, addr)	printk(fmt, "(no symbol)");
37 
38 void
ia64_do_show_stack(struct unw_frame_info * info,void * arg)39 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
40 {
41 	unsigned long ip, sp, bsp;
42 	char buf[128];			/* don't make it so big that it overflows the stack! */
43 
44 	printk("\nCall Trace:\n");
45 	do {
46 		unw_get_ip(info, &ip);
47 		if (ip == 0)
48 			break;
49 
50 		unw_get_sp(info, &sp);
51 		unw_get_bsp(info, &bsp);
52 		snprintf(buf, sizeof(buf),
53 			 " [<%016lx>] %%s\n"
54 			 "                                sp=%016lx bsp=%016lx\n",
55 			 ip, sp, bsp);
56 		print_symbol(buf, ip);
57 	} while (unw_unwind(info) >= 0);
58 }
59 
60 void
show_stack(struct task_struct * task)61 show_stack (struct task_struct *task)
62 {
63 	if (!task)
64 		unw_init_running(ia64_do_show_stack, 0);
65 	else {
66 		struct unw_frame_info info;
67 
68 		unw_init_from_blocked_task(&info, task);
69 		ia64_do_show_stack(&info, 0);
70 	}
71 }
72 
73 void
show_trace_task(struct task_struct * task)74 show_trace_task (struct task_struct *task)
75 {
76 	show_stack(task);
77 }
78 
79 void
show_regs(struct pt_regs * regs)80 show_regs (struct pt_regs *regs)
81 {
82 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
83 
84 	printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
85 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s\n",
86 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
87 	print_symbol("ip is at %s\n", ip);
88 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
89 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
90 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
91 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
92 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
93 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
94 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
95 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
96 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
97 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
98 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
99 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
100 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
101 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
102 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
103 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
104 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
105 
106 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
107 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
108 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
109 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
110 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
111 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
112 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
113 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
114 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
115 
116 	if (user_mode(regs)) {
117 		/* print the stacked registers */
118 		unsigned long val, sof, *bsp, ndirty;
119 		int i, is_nat = 0;
120 
121 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
122 		ndirty = (regs->loadrs >> 19);
123 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
124 		for (i = 0; i < sof; ++i) {
125 			get_user(val, ia64_rse_skip_regs(bsp, i));
126 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
127 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
128 		}
129 	}
130 	if (!user_mode(regs))
131 		show_stack(NULL);
132 }
133 
134 /*
135  * We use this if we don't have any better idle routine..
136  */
137 void
default_idle(void)138 default_idle (void)
139 {
140 #ifdef CONFIG_IA64_PAL_IDLE
141 	if (!current->need_resched)
142 		safe_halt();
143 #endif
144 }
145 
146 void __attribute__((noreturn))
cpu_idle(void * unused)147 cpu_idle (void *unused)
148 {
149 	init_idle();
150 	current->nice = 20;
151 	current->counter = -100;
152 
153 
154 	/* endless idle loop with no priority at all */
155 	while (1) {
156 		void (*idle)(void) = pm_idle;
157 		if (!idle)
158 			idle = default_idle;
159 
160 #ifdef CONFIG_SMP
161 		if (!current->need_resched)
162 			min_xtp();
163 #endif
164 
165 		while (!current->need_resched) {
166 #ifdef CONFIG_IA64_SGI_SN
167 			snidle();
168 #endif
169 			(*idle)();
170 		}
171 
172 #ifdef CONFIG_IA64_SGI_SN
173 		snidleoff();
174 #endif
175 
176 #ifdef CONFIG_SMP
177 		normal_xtp();
178 #endif
179 		schedule();
180 		check_pgt_cache();
181 	}
182 }
183 
184 void
ia64_save_extra(struct task_struct * task)185 ia64_save_extra (struct task_struct *task)
186 {
187 #ifdef CONFIG_PERFMON
188 	unsigned long info;
189 #endif
190 
191 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
192 		ia64_save_debug_regs(&task->thread.dbr[0]);
193 
194 #ifdef CONFIG_PERFMON
195 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
196 		pfm_save_regs(task);
197 
198 	info = local_cpu_data->pfm_syst_info;
199 	if (info & PFM_CPUINFO_SYST_WIDE)
200 		pfm_syst_wide_update_task(task, info, 0);
201 #endif
202 
203 #ifdef CONFIG_IA32_SUPPORT
204 	if (IS_IA32_PROCESS(ia64_task_regs(task)))
205 		ia32_save_state(task);
206 #endif
207 }
208 
209 void
ia64_load_extra(struct task_struct * task)210 ia64_load_extra (struct task_struct *task)
211 {
212 #ifdef CONFIG_PERFMON
213 	unsigned long info;
214 #endif
215 
216 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
217 		ia64_load_debug_regs(&task->thread.dbr[0]);
218 
219 #ifdef CONFIG_PERFMON
220 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
221 		pfm_load_regs(task);
222 
223 	info = local_cpu_data->pfm_syst_info;
224 	if (info & PFM_CPUINFO_SYST_WIDE)
225 		pfm_syst_wide_update_task(task, info, 1);
226 #endif
227 
228 #ifdef CONFIG_IA32_SUPPORT
229 	if (IS_IA32_PROCESS(ia64_task_regs(task)))
230 		ia32_load_state(task);
231 #endif
232 }
233 
234 /*
235  * Copy the state of an ia-64 thread.
236  *
237  * We get here through the following  call chain:
238  *
239  *	<clone syscall>
240  *	sys_clone
241  *	do_fork
242  *	copy_thread
243  *
244  * This means that the stack layout is as follows:
245  *
246  *	+---------------------+ (highest addr)
247  *	|   struct pt_regs    |
248  *	+---------------------+
249  *	| struct switch_stack |
250  *	+---------------------+
251  *	|                     |
252  *	|    memory stack     |
253  *	|                     | <-- sp (lowest addr)
254  *	+---------------------+
255  *
256  * Note: if we get called through arch_kernel_thread() then the memory
257  * above "(highest addr)" is valid kernel stack memory that needs to
258  * be copied as well.
259  *
260  * Observe that we copy the unat values that are in pt_regs and
261  * switch_stack.  Spilling an integer to address X causes bit N in
262  * ar.unat to be set to the NaT bit of the register, with N=(X &
263  * 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY
264  * if the pt_regs structure in the parent is congruent to that of the
265  * child, modulo 512.  Since the stack is page aligned and the page
266  * size is at least 4KB, this is always the case, so there is nothing
267  * to worry about.
268  */
269 int
copy_thread(int nr,unsigned long clone_flags,unsigned long user_stack_base,unsigned long user_stack_size,struct task_struct * p,struct pt_regs * regs)270 copy_thread (int nr, unsigned long clone_flags,
271 	     unsigned long user_stack_base, unsigned long user_stack_size,
272 	     struct task_struct *p, struct pt_regs *regs)
273 {
274 	unsigned long rbs, child_rbs, rbs_size, stack_offset, stack_top, stack_used;
275 	struct switch_stack *child_stack, *stack;
276 	extern char ia64_ret_from_clone, ia32_ret_from_clone;
277 	struct pt_regs *child_ptregs;
278 	int retval = 0;
279 
280 #ifdef CONFIG_SMP
281 	/*
282 	 * For SMP idle threads, fork_by_hand() calls do_fork with
283 	 * NULL regs.
284 	 */
285 	if (!regs)
286 		return 0;
287 #endif
288 
289 	stack_top = (unsigned long) current + IA64_STK_OFFSET;
290 	stack = ((struct switch_stack *) regs) - 1;
291 	stack_used = stack_top - (unsigned long) stack;
292 	stack_offset = IA64_STK_OFFSET - stack_used;
293 
294 	child_stack = (struct switch_stack *) ((unsigned long) p + stack_offset);
295 	child_ptregs = (struct pt_regs *) (child_stack + 1);
296 
297 	/* copy parent's switch_stack & pt_regs to child: */
298 	memcpy(child_stack, stack, stack_used);
299 
300 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
301 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
302 	rbs_size = stack->ar_bspstore - rbs;
303 
304 	/* copy the parent's register backing store to the child: */
305 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
306 
307 	if (user_mode(child_ptregs)) {
308 		if (user_stack_base) {
309 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
310 			child_ptregs->ar_bspstore = user_stack_base;
311 			child_ptregs->ar_rnat = 0;
312 			child_ptregs->loadrs = 0;
313 		}
314 	} else {
315 		/*
316 		 * Note: we simply preserve the relative position of
317 		 * the stack pointer here.  There is no need to
318 		 * allocate a scratch area here, since that will have
319 		 * been taken care of by the caller of sys_clone()
320 		 * already.
321 		 */
322 		child_ptregs->r12 = (unsigned long) (child_ptregs + 1); /* kernel sp */
323 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
324 	}
325 	if (IS_IA32_PROCESS(regs))
326 		child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
327 	else
328 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
329 	child_stack->ar_bspstore = child_rbs + rbs_size;
330 
331 	/* copy parts of thread_struct: */
332 	p->thread.ksp = (unsigned long) child_stack - 16;
333 
334 	/* stop some PSR bits from being inherited: */
335 	child_ptregs->cr_ipsr =  ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
336 				  & ~IA64_PSR_BITS_TO_CLEAR);
337 
338 	/*
339 	 * NOTE: The calling convention considers all floating point registers in the high
340 	 * partition (fph) to be scratch.  Since the only way to get to this point is
341 	 * through a system call, we know that the values in fph are all dead.  Hence,
342 	 * there is no need to inherit the fph state from the parent to the child and all
343 	 * we have to do is to make sure that IA64_THREAD_FPH_VALID is cleared in the
344 	 * child.
345 	 *
346 	 * XXX We could push this optimization a bit further by clearing
347 	 * IA64_THREAD_FPH_VALID on ANY system call.  However, it's not clear this is
348 	 * worth doing.  Also, it would be a slight deviation from the normal Linux system
349 	 * call behavior where scratch registers are preserved across system calls (unless
350 	 * used by the system call itself).
351 	 */
352 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
353 					 | IA64_THREAD_PM_VALID)
354 #	define THREAD_FLAGS_TO_SET	0
355 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
356 			   | THREAD_FLAGS_TO_SET);
357 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
358 #ifdef CONFIG_IA32_SUPPORT
359 	/*
360 	 * If we're cloning an IA32 task then save the IA32 extra
361 	 * state from the current task to the new task
362 	 */
363 	if (IS_IA32_PROCESS(ia64_task_regs(current)))
364 		ia32_save_state(p);
365 #endif
366 
367 #ifdef CONFIG_PERFMON
368 	/*
369 	 * reset notifiers and owner check (may not have a perfmon context)
370 	 */
371 	atomic_set(&p->thread.pfm_notifiers_check, 0);
372 	atomic_set(&p->thread.pfm_owners_check, 0);
373 	/* clear list of sampling buffer to free for new task */
374 	p->thread.pfm_smpl_buf_list = NULL;
375 
376 	if (current->thread.pfm_context)
377 		retval = pfm_inherit(p, child_ptregs);
378 #endif
379 	return retval;
380 }
381 
382 void
do_copy_regs(struct unw_frame_info * info,void * arg)383 do_copy_regs (struct unw_frame_info *info, void *arg)
384 {
385 	unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
386 	elf_greg_t *dst = arg;
387 	struct pt_regs *pt;
388 	char nat;
389 	int i;
390 
391 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
392 
393 	if (unw_unwind_to_user(info) < 0)
394 		return;
395 
396 	unw_get_sp(info, &sp);
397 	pt = (struct pt_regs *) (sp + 16);
398 
399 	urbs_end = ia64_get_user_rbs_end(current, pt, &cfm);
400 
401 	if (ia64_sync_user_rbs(current, info->sw, pt->ar_bspstore, urbs_end) < 0)
402 		return;
403 
404 	ia64_peek(current, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
405 		  &ar_rnat);
406 
407 	/*
408 	 * coredump format:
409 	 *	r0-r31
410 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
411 	 *	predicate registers (p0-p63)
412 	 *	b0-b7
413 	 *	ip cfm user-mask
414 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
415 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
416 	 */
417 
418 	/* r0 is zero */
419 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
420 		unw_get_gr(info, i, &dst[i], &nat);
421 		if (nat)
422 			nat_bits |= mask;
423 		mask <<= 1;
424 	}
425 	dst[32] = nat_bits;
426 	unw_get_pr(info, &dst[33]);
427 
428 	for (i = 0; i < 8; ++i)
429 		unw_get_br(info, i, &dst[34 + i]);
430 
431 	unw_get_rp(info, &ip);
432 	dst[42] = ip + ia64_psr(pt)->ri;
433 	dst[43] = cfm;
434 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
435 
436 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
437 	/*
438 	 * For bsp and bspstore, unw_get_ar() would return the kernel
439 	 * addresses, but we need the user-level addresses instead:
440 	 */
441 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
442 	dst[47] = pt->ar_bspstore;
443 	dst[48] = ar_rnat;
444 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
445 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
446 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
447 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
448 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
449 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
450 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
451 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
452 }
453 
454 void
do_dump_fpu(struct unw_frame_info * info,void * arg)455 do_dump_fpu (struct unw_frame_info *info, void *arg)
456 {
457 	elf_fpreg_t *dst = arg;
458 	int i;
459 
460 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
461 
462 	if (unw_unwind_to_user(info) < 0)
463 		return;
464 
465 	/* f0 is 0.0, f1 is 1.0 */
466 
467 	for (i = 2; i < 32; ++i)
468 		unw_get_fr(info, i, dst + i);
469 
470 	ia64_flush_fph(current);
471 	if ((current->thread.flags & IA64_THREAD_FPH_VALID) != 0)
472 		memcpy(dst + 32, current->thread.fph, 96*16);
473 }
474 
475 void
ia64_elf_core_copy_regs(struct pt_regs * pt,elf_gregset_t dst)476 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
477 {
478 	unw_init_running(do_copy_regs, dst);
479 }
480 
481 int
dump_fpu(struct pt_regs * pt,elf_fpregset_t dst)482 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
483 {
484 	unw_init_running(do_dump_fpu, dst);
485 	return 1;	/* f0-f31 are always valid so we always return 1 */
486 }
487 
488 long
sys_execve(char * filename,char ** argv,char ** envp,struct pt_regs * regs)489 sys_execve (char *filename, char **argv, char **envp, struct pt_regs *regs)
490 {
491 	int error;
492 
493 	filename = getname(filename);
494 	error = PTR_ERR(filename);
495 	if (IS_ERR(filename))
496 		goto out;
497 	error = do_execve(filename, argv, envp, regs);
498 	putname(filename);
499 out:
500 	return error;
501 }
502 
503 void
ia64_set_personality(struct elf64_hdr * elf_ex,int ibcs2_interpreter)504 ia64_set_personality (struct elf64_hdr *elf_ex, int ibcs2_interpreter)
505 {
506 	set_personality(PER_LINUX);
507 	if (elf_ex->e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK)
508 		current->thread.flags |= IA64_THREAD_XSTACK;
509 	else
510 		current->thread.flags &= ~IA64_THREAD_XSTACK;
511 }
512 
513 pid_t
arch_kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)514 arch_kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
515 {
516 	struct task_struct *parent = current;
517 	int result, tid;
518 
519 	tid = clone(flags | CLONE_VM, 0);
520 	if (parent != current) {
521 #ifdef CONFIG_IA32_SUPPORT
522 		if (IS_IA32_PROCESS(ia64_task_regs(current))) {
523 			/* A kernel thread is always a 64-bit process. */
524 			current->thread.map_base  = DEFAULT_MAP_BASE;
525 			current->thread.task_size = DEFAULT_TASK_SIZE;
526 			ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
527 			ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
528 		}
529 #endif
530 		result = (*fn)(arg);
531 		_exit(result);
532 	}
533 	return tid;
534 }
535 
536 /*
537  * Flush thread state.  This is called when a thread does an execve().
538  */
539 void
flush_thread(void)540 flush_thread (void)
541 {
542 	/* drop floating-point and debug-register state if it exists: */
543 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
544 	ia64_drop_fpu(current);
545 }
546 
547 #ifdef CONFIG_PERFMON
548 /*
549  * by the time we get here, the task is detached from the tasklist. This is important
550  * because it means that no other tasks can ever find it as a notified task, therfore there
551  * is no race condition between this code and let's say a pfm_context_create().
552  * Conversely, the pfm_cleanup_notifiers() cannot try to access a task's pfm context if this
553  * other task is in the middle of its own pfm_context_exit() because it would already be out of
554  * the task list. Note that this case is very unlikely between a direct child and its parents
555  * (if it is the notified process) because of the way the exit is notified via SIGCHLD.
556  */
557 
558 void
release_thread(struct task_struct * task)559 release_thread (struct task_struct *task)
560 {
561 	if (task->thread.pfm_context)
562 		pfm_context_exit(task);
563 
564 	if (atomic_read(&task->thread.pfm_notifiers_check) > 0)
565 		pfm_cleanup_notifiers(task);
566 
567 	if (atomic_read(&task->thread.pfm_owners_check) > 0)
568 		pfm_cleanup_owners(task);
569 
570 	if (task->thread.pfm_smpl_buf_list)
571 		pfm_cleanup_smpl_buf(task);
572 }
573 #endif
574 
575 /*
576  * Clean up state associated with current thread.  This is called when
577  * the thread calls exit().
578  */
579 void
exit_thread(void)580 exit_thread (void)
581 {
582 	ia64_drop_fpu(current);
583 #ifdef CONFIG_PERFMON
584        /* stop monitoring */
585 	if (current->thread.pfm_context)
586 		pfm_flush_regs(current);
587 
588 	/* free debug register resources */
589 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
590 		pfm_release_debug_registers(current);
591 #endif
592 }
593 
594 unsigned long
get_wchan(struct task_struct * p)595 get_wchan (struct task_struct *p)
596 {
597 	struct unw_frame_info info;
598 	unsigned long ip;
599 	int count = 0;
600 	/*
601 	 * These bracket the sleeping functions..
602 	 */
603 	extern void scheduling_functions_start_here(void);
604 	extern void scheduling_functions_end_here(void);
605 #	define first_sched	((unsigned long) scheduling_functions_start_here)
606 #	define last_sched	((unsigned long) scheduling_functions_end_here)
607 
608 	/*
609 	 * Note: p may not be a blocked task (it could be current or
610 	 * another process running on some other CPU.  Rather than
611 	 * trying to determine if p is really blocked, we just assume
612 	 * it's blocked and rely on the unwind routines to fail
613 	 * gracefully if the process wasn't really blocked after all.
614 	 * --davidm 99/12/15
615 	 */
616 	unw_init_from_blocked_task(&info, p);
617 	do {
618 		if (unw_unwind(&info) < 0)
619 			return 0;
620 		unw_get_ip(&info, &ip);
621 		if (ip < first_sched || ip >= last_sched)
622 			return ip;
623 	} while (count++ < 16);
624 	return 0;
625 #	undef first_sched
626 #	undef last_sched
627 }
628 
629 void
cpu_halt(void)630 cpu_halt (void)
631 {
632 	pal_power_mgmt_info_u_t power_info[8];
633 	unsigned long min_power;
634 	int i, min_power_state;
635 
636 	if (ia64_pal_halt_info(power_info) != 0)
637 		return;
638 
639 	min_power_state = 0;
640 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
641 	for (i = 1; i < 8; ++i)
642 		if (power_info[i].pal_power_mgmt_info_s.im
643 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
644 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
645 			min_power_state = i;
646 		}
647 
648 	while (1)
649 		ia64_pal_halt(min_power_state);
650 }
651 
652 void
machine_restart(char * restart_cmd)653 machine_restart (char *restart_cmd)
654 {
655 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, 0);
656 }
657 
658 void
machine_halt(void)659 machine_halt (void)
660 {
661 	cpu_halt();
662 }
663 
664 void
machine_power_off(void)665 machine_power_off (void)
666 {
667 	if (pm_power_off)
668 		pm_power_off();
669 	machine_halt();
670 }
671