1 /*
2 * Netburst Performance Events (P4, old Xeon)
3 *
4 * Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
5 * Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/perf_event.h>
11
12 #include <asm/perf_event_p4.h>
13 #include <asm/hardirq.h>
14 #include <asm/apic.h>
15
16 #include "../perf_event.h"
17
18 #define P4_CNTR_LIMIT 3
19 /*
20 * array indices: 0,1 - HT threads, used with HT enabled cpu
21 */
22 struct p4_event_bind {
23 unsigned int opcode; /* Event code and ESCR selector */
24 unsigned int escr_msr[2]; /* ESCR MSR for this event */
25 unsigned int escr_emask; /* valid ESCR EventMask bits */
26 unsigned int shared; /* event is shared across threads */
27 signed char cntr[2][P4_CNTR_LIMIT]; /* counter index (offset), -1 on absence */
28 };
29
30 struct p4_pebs_bind {
31 unsigned int metric_pebs;
32 unsigned int metric_vert;
33 };
34
35 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */
36 #define P4_GEN_PEBS_BIND(name, pebs, vert) \
37 [P4_PEBS_METRIC__##name] = { \
38 .metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG, \
39 .metric_vert = vert, \
40 }
41
42 /*
43 * note we have P4_PEBS_ENABLE_UOP_TAG always set here
44 *
45 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
46 * event configuration to find out which values are to be
47 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
48 * registers
49 */
50 static struct p4_pebs_bind p4_pebs_bind_map[] = {
51 P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired, 0x0000001, 0x0000001),
52 P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired, 0x0000002, 0x0000001),
53 P4_GEN_PEBS_BIND(dtlb_load_miss_retired, 0x0000004, 0x0000001),
54 P4_GEN_PEBS_BIND(dtlb_store_miss_retired, 0x0000004, 0x0000002),
55 P4_GEN_PEBS_BIND(dtlb_all_miss_retired, 0x0000004, 0x0000003),
56 P4_GEN_PEBS_BIND(tagged_mispred_branch, 0x0018000, 0x0000010),
57 P4_GEN_PEBS_BIND(mob_load_replay_retired, 0x0000200, 0x0000001),
58 P4_GEN_PEBS_BIND(split_load_retired, 0x0000400, 0x0000001),
59 P4_GEN_PEBS_BIND(split_store_retired, 0x0000400, 0x0000002),
60 };
61
62 /*
63 * Note that we don't use CCCR1 here, there is an
64 * exception for P4_BSQ_ALLOCATION but we just have
65 * no workaround
66 *
67 * consider this binding as resources which particular
68 * event may borrow, it doesn't contain EventMask,
69 * Tags and friends -- they are left to a caller
70 */
71 static struct p4_event_bind p4_event_bind_map[] = {
72 [P4_EVENT_TC_DELIVER_MODE] = {
73 .opcode = P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
74 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
75 .escr_emask =
76 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD) |
77 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB) |
78 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI) |
79 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD) |
80 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB) |
81 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI) |
82 P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
83 .shared = 1,
84 .cntr = { {4, 5, -1}, {6, 7, -1} },
85 },
86 [P4_EVENT_BPU_FETCH_REQUEST] = {
87 .opcode = P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
88 .escr_msr = { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
89 .escr_emask =
90 P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
91 .cntr = { {0, -1, -1}, {2, -1, -1} },
92 },
93 [P4_EVENT_ITLB_REFERENCE] = {
94 .opcode = P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
95 .escr_msr = { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
96 .escr_emask =
97 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT) |
98 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS) |
99 P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
100 .cntr = { {0, -1, -1}, {2, -1, -1} },
101 },
102 [P4_EVENT_MEMORY_CANCEL] = {
103 .opcode = P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
104 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
105 .escr_emask =
106 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL) |
107 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
108 .cntr = { {8, 9, -1}, {10, 11, -1} },
109 },
110 [P4_EVENT_MEMORY_COMPLETE] = {
111 .opcode = P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
112 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
113 .escr_emask =
114 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC) |
115 P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
116 .cntr = { {8, 9, -1}, {10, 11, -1} },
117 },
118 [P4_EVENT_LOAD_PORT_REPLAY] = {
119 .opcode = P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
120 .escr_msr = { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
121 .escr_emask =
122 P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
123 .cntr = { {8, 9, -1}, {10, 11, -1} },
124 },
125 [P4_EVENT_STORE_PORT_REPLAY] = {
126 .opcode = P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
127 .escr_msr = { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
128 .escr_emask =
129 P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
130 .cntr = { {8, 9, -1}, {10, 11, -1} },
131 },
132 [P4_EVENT_MOB_LOAD_REPLAY] = {
133 .opcode = P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
134 .escr_msr = { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
135 .escr_emask =
136 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA) |
137 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD) |
138 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA) |
139 P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
140 .cntr = { {0, -1, -1}, {2, -1, -1} },
141 },
142 [P4_EVENT_PAGE_WALK_TYPE] = {
143 .opcode = P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
144 .escr_msr = { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
145 .escr_emask =
146 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS) |
147 P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
148 .shared = 1,
149 .cntr = { {0, -1, -1}, {2, -1, -1} },
150 },
151 [P4_EVENT_BSQ_CACHE_REFERENCE] = {
152 .opcode = P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
153 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
154 .escr_emask =
155 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) |
156 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) |
157 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) |
158 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) |
159 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) |
160 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM) |
161 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) |
162 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) |
163 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
164 .cntr = { {0, -1, -1}, {2, -1, -1} },
165 },
166 [P4_EVENT_IOQ_ALLOCATION] = {
167 .opcode = P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
168 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
169 .escr_emask =
170 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT) |
171 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ) |
172 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE) |
173 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC) |
174 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC) |
175 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT) |
176 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP) |
177 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB) |
178 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN) |
179 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER) |
180 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
181 .cntr = { {0, -1, -1}, {2, -1, -1} },
182 },
183 [P4_EVENT_IOQ_ACTIVE_ENTRIES] = { /* shared ESCR */
184 .opcode = P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
185 .escr_msr = { MSR_P4_FSB_ESCR1, MSR_P4_FSB_ESCR1 },
186 .escr_emask =
187 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT) |
188 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ) |
189 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE) |
190 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC) |
191 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC) |
192 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT) |
193 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP) |
194 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB) |
195 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN) |
196 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER) |
197 P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
198 .cntr = { {2, -1, -1}, {3, -1, -1} },
199 },
200 [P4_EVENT_FSB_DATA_ACTIVITY] = {
201 .opcode = P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
202 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
203 .escr_emask =
204 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) |
205 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN) |
206 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER) |
207 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV) |
208 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN) |
209 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
210 .shared = 1,
211 .cntr = { {0, -1, -1}, {2, -1, -1} },
212 },
213 [P4_EVENT_BSQ_ALLOCATION] = { /* shared ESCR, broken CCCR1 */
214 .opcode = P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
215 .escr_msr = { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
216 .escr_emask =
217 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0) |
218 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1) |
219 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0) |
220 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1) |
221 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE) |
222 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE) |
223 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE) |
224 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE) |
225 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE) |
226 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE) |
227 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0) |
228 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1) |
229 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
230 .cntr = { {0, -1, -1}, {1, -1, -1} },
231 },
232 [P4_EVENT_BSQ_ACTIVE_ENTRIES] = { /* shared ESCR */
233 .opcode = P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
234 .escr_msr = { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
235 .escr_emask =
236 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0) |
237 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1) |
238 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0) |
239 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1) |
240 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE) |
241 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE) |
242 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE) |
243 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE) |
244 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE) |
245 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE) |
246 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0) |
247 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1) |
248 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
249 .cntr = { {2, -1, -1}, {3, -1, -1} },
250 },
251 [P4_EVENT_SSE_INPUT_ASSIST] = {
252 .opcode = P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
253 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
254 .escr_emask =
255 P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
256 .shared = 1,
257 .cntr = { {8, 9, -1}, {10, 11, -1} },
258 },
259 [P4_EVENT_PACKED_SP_UOP] = {
260 .opcode = P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
261 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
262 .escr_emask =
263 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
264 .shared = 1,
265 .cntr = { {8, 9, -1}, {10, 11, -1} },
266 },
267 [P4_EVENT_PACKED_DP_UOP] = {
268 .opcode = P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
269 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
270 .escr_emask =
271 P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
272 .shared = 1,
273 .cntr = { {8, 9, -1}, {10, 11, -1} },
274 },
275 [P4_EVENT_SCALAR_SP_UOP] = {
276 .opcode = P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
277 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
278 .escr_emask =
279 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
280 .shared = 1,
281 .cntr = { {8, 9, -1}, {10, 11, -1} },
282 },
283 [P4_EVENT_SCALAR_DP_UOP] = {
284 .opcode = P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
285 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
286 .escr_emask =
287 P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
288 .shared = 1,
289 .cntr = { {8, 9, -1}, {10, 11, -1} },
290 },
291 [P4_EVENT_64BIT_MMX_UOP] = {
292 .opcode = P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
293 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
294 .escr_emask =
295 P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
296 .shared = 1,
297 .cntr = { {8, 9, -1}, {10, 11, -1} },
298 },
299 [P4_EVENT_128BIT_MMX_UOP] = {
300 .opcode = P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
301 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
302 .escr_emask =
303 P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
304 .shared = 1,
305 .cntr = { {8, 9, -1}, {10, 11, -1} },
306 },
307 [P4_EVENT_X87_FP_UOP] = {
308 .opcode = P4_OPCODE(P4_EVENT_X87_FP_UOP),
309 .escr_msr = { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
310 .escr_emask =
311 P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
312 .shared = 1,
313 .cntr = { {8, 9, -1}, {10, 11, -1} },
314 },
315 [P4_EVENT_TC_MISC] = {
316 .opcode = P4_OPCODE(P4_EVENT_TC_MISC),
317 .escr_msr = { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
318 .escr_emask =
319 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
320 .cntr = { {4, 5, -1}, {6, 7, -1} },
321 },
322 [P4_EVENT_GLOBAL_POWER_EVENTS] = {
323 .opcode = P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
324 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
325 .escr_emask =
326 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
327 .cntr = { {0, -1, -1}, {2, -1, -1} },
328 },
329 [P4_EVENT_TC_MS_XFER] = {
330 .opcode = P4_OPCODE(P4_EVENT_TC_MS_XFER),
331 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
332 .escr_emask =
333 P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
334 .cntr = { {4, 5, -1}, {6, 7, -1} },
335 },
336 [P4_EVENT_UOP_QUEUE_WRITES] = {
337 .opcode = P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
338 .escr_msr = { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
339 .escr_emask =
340 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD) |
341 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER) |
342 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
343 .cntr = { {4, 5, -1}, {6, 7, -1} },
344 },
345 [P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
346 .opcode = P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
347 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
348 .escr_emask =
349 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL) |
350 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL) |
351 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN) |
352 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
353 .cntr = { {4, 5, -1}, {6, 7, -1} },
354 },
355 [P4_EVENT_RETIRED_BRANCH_TYPE] = {
356 .opcode = P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
357 .escr_msr = { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
358 .escr_emask =
359 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) |
360 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) |
361 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) |
362 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
363 .cntr = { {4, 5, -1}, {6, 7, -1} },
364 },
365 [P4_EVENT_RESOURCE_STALL] = {
366 .opcode = P4_OPCODE(P4_EVENT_RESOURCE_STALL),
367 .escr_msr = { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
368 .escr_emask =
369 P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
370 .cntr = { {12, 13, 16}, {14, 15, 17} },
371 },
372 [P4_EVENT_WC_BUFFER] = {
373 .opcode = P4_OPCODE(P4_EVENT_WC_BUFFER),
374 .escr_msr = { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
375 .escr_emask =
376 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS) |
377 P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
378 .shared = 1,
379 .cntr = { {8, 9, -1}, {10, 11, -1} },
380 },
381 [P4_EVENT_B2B_CYCLES] = {
382 .opcode = P4_OPCODE(P4_EVENT_B2B_CYCLES),
383 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
384 .escr_emask = 0,
385 .cntr = { {0, -1, -1}, {2, -1, -1} },
386 },
387 [P4_EVENT_BNR] = {
388 .opcode = P4_OPCODE(P4_EVENT_BNR),
389 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
390 .escr_emask = 0,
391 .cntr = { {0, -1, -1}, {2, -1, -1} },
392 },
393 [P4_EVENT_SNOOP] = {
394 .opcode = P4_OPCODE(P4_EVENT_SNOOP),
395 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
396 .escr_emask = 0,
397 .cntr = { {0, -1, -1}, {2, -1, -1} },
398 },
399 [P4_EVENT_RESPONSE] = {
400 .opcode = P4_OPCODE(P4_EVENT_RESPONSE),
401 .escr_msr = { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
402 .escr_emask = 0,
403 .cntr = { {0, -1, -1}, {2, -1, -1} },
404 },
405 [P4_EVENT_FRONT_END_EVENT] = {
406 .opcode = P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
407 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
408 .escr_emask =
409 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS) |
410 P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
411 .cntr = { {12, 13, 16}, {14, 15, 17} },
412 },
413 [P4_EVENT_EXECUTION_EVENT] = {
414 .opcode = P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
415 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
416 .escr_emask =
417 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0) |
418 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1) |
419 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2) |
420 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3) |
421 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) |
422 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) |
423 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) |
424 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
425 .cntr = { {12, 13, 16}, {14, 15, 17} },
426 },
427 [P4_EVENT_REPLAY_EVENT] = {
428 .opcode = P4_OPCODE(P4_EVENT_REPLAY_EVENT),
429 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
430 .escr_emask =
431 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS) |
432 P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
433 .cntr = { {12, 13, 16}, {14, 15, 17} },
434 },
435 [P4_EVENT_INSTR_RETIRED] = {
436 .opcode = P4_OPCODE(P4_EVENT_INSTR_RETIRED),
437 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
438 .escr_emask =
439 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) |
440 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG) |
441 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG) |
442 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
443 .cntr = { {12, 13, 16}, {14, 15, 17} },
444 },
445 [P4_EVENT_UOPS_RETIRED] = {
446 .opcode = P4_OPCODE(P4_EVENT_UOPS_RETIRED),
447 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
448 .escr_emask =
449 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS) |
450 P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
451 .cntr = { {12, 13, 16}, {14, 15, 17} },
452 },
453 [P4_EVENT_UOP_TYPE] = {
454 .opcode = P4_OPCODE(P4_EVENT_UOP_TYPE),
455 .escr_msr = { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
456 .escr_emask =
457 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS) |
458 P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
459 .cntr = { {12, 13, 16}, {14, 15, 17} },
460 },
461 [P4_EVENT_BRANCH_RETIRED] = {
462 .opcode = P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
463 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
464 .escr_emask =
465 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP) |
466 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM) |
467 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP) |
468 P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
469 .cntr = { {12, 13, 16}, {14, 15, 17} },
470 },
471 [P4_EVENT_MISPRED_BRANCH_RETIRED] = {
472 .opcode = P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
473 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
474 .escr_emask =
475 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
476 .cntr = { {12, 13, 16}, {14, 15, 17} },
477 },
478 [P4_EVENT_X87_ASSIST] = {
479 .opcode = P4_OPCODE(P4_EVENT_X87_ASSIST),
480 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
481 .escr_emask =
482 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU) |
483 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO) |
484 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO) |
485 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU) |
486 P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
487 .cntr = { {12, 13, 16}, {14, 15, 17} },
488 },
489 [P4_EVENT_MACHINE_CLEAR] = {
490 .opcode = P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
491 .escr_msr = { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
492 .escr_emask =
493 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR) |
494 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR) |
495 P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
496 .cntr = { {12, 13, 16}, {14, 15, 17} },
497 },
498 [P4_EVENT_INSTR_COMPLETED] = {
499 .opcode = P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
500 .escr_msr = { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
501 .escr_emask =
502 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS) |
503 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
504 .cntr = { {12, 13, 16}, {14, 15, 17} },
505 },
506 };
507
508 #define P4_GEN_CACHE_EVENT(event, bit, metric) \
509 p4_config_pack_escr(P4_ESCR_EVENT(event) | \
510 P4_ESCR_EMASK_BIT(event, bit)) | \
511 p4_config_pack_cccr(metric | \
512 P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
513
514 static __initconst const u64 p4_hw_cache_event_ids
515 [PERF_COUNT_HW_CACHE_MAX]
516 [PERF_COUNT_HW_CACHE_OP_MAX]
517 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
518 {
519 [ C(L1D ) ] = {
520 [ C(OP_READ) ] = {
521 [ C(RESULT_ACCESS) ] = 0x0,
522 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
523 P4_PEBS_METRIC__1stl_cache_load_miss_retired),
524 },
525 },
526 [ C(LL ) ] = {
527 [ C(OP_READ) ] = {
528 [ C(RESULT_ACCESS) ] = 0x0,
529 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
530 P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
531 },
532 },
533 [ C(DTLB) ] = {
534 [ C(OP_READ) ] = {
535 [ C(RESULT_ACCESS) ] = 0x0,
536 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
537 P4_PEBS_METRIC__dtlb_load_miss_retired),
538 },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = 0x0,
541 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
542 P4_PEBS_METRIC__dtlb_store_miss_retired),
543 },
544 },
545 [ C(ITLB) ] = {
546 [ C(OP_READ) ] = {
547 [ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
548 P4_PEBS_METRIC__none),
549 [ C(RESULT_MISS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
550 P4_PEBS_METRIC__none),
551 },
552 [ C(OP_WRITE) ] = {
553 [ C(RESULT_ACCESS) ] = -1,
554 [ C(RESULT_MISS) ] = -1,
555 },
556 [ C(OP_PREFETCH) ] = {
557 [ C(RESULT_ACCESS) ] = -1,
558 [ C(RESULT_MISS) ] = -1,
559 },
560 },
561 [ C(NODE) ] = {
562 [ C(OP_READ) ] = {
563 [ C(RESULT_ACCESS) ] = -1,
564 [ C(RESULT_MISS) ] = -1,
565 },
566 [ C(OP_WRITE) ] = {
567 [ C(RESULT_ACCESS) ] = -1,
568 [ C(RESULT_MISS) ] = -1,
569 },
570 [ C(OP_PREFETCH) ] = {
571 [ C(RESULT_ACCESS) ] = -1,
572 [ C(RESULT_MISS) ] = -1,
573 },
574 },
575 };
576
577 /*
578 * Because of Netburst being quite restricted in how many
579 * identical events may run simultaneously, we introduce event aliases,
580 * ie the different events which have the same functionality but
581 * utilize non-intersected resources (ESCR/CCCR/counter registers).
582 *
583 * This allow us to relax restrictions a bit and run two or more
584 * identical events together.
585 *
586 * Never set any custom internal bits such as P4_CONFIG_HT,
587 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
588 * either up to date automatically or not applicable at all.
589 */
590 static struct p4_event_alias {
591 u64 original;
592 u64 alternative;
593 } p4_event_aliases[] = {
594 {
595 /*
596 * Non-halted cycles can be substituted with non-sleeping cycles (see
597 * Intel SDM Vol3b for details). We need this alias to be able
598 * to run nmi-watchdog and 'perf top' (or any other user space tool
599 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
600 * simultaneously.
601 */
602 .original =
603 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) |
604 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
605 .alternative =
606 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT) |
607 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
608 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
609 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
610 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
611 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0) |
612 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1) |
613 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2) |
614 P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
615 p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT |
616 P4_CCCR_COMPARE),
617 },
618 };
619
p4_get_alias_event(u64 config)620 static u64 p4_get_alias_event(u64 config)
621 {
622 u64 config_match;
623 int i;
624
625 /*
626 * Only event with special mark is allowed,
627 * we're to be sure it didn't come as malformed
628 * RAW event.
629 */
630 if (!(config & P4_CONFIG_ALIASABLE))
631 return 0;
632
633 config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
634
635 for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
636 if (config_match == p4_event_aliases[i].original) {
637 config_match = p4_event_aliases[i].alternative;
638 break;
639 } else if (config_match == p4_event_aliases[i].alternative) {
640 config_match = p4_event_aliases[i].original;
641 break;
642 }
643 }
644
645 if (i >= ARRAY_SIZE(p4_event_aliases))
646 return 0;
647
648 return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
649 }
650
651 static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
652 /* non-halted CPU clocks */
653 [PERF_COUNT_HW_CPU_CYCLES] =
654 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS) |
655 P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)) |
656 P4_CONFIG_ALIASABLE,
657
658 /*
659 * retired instructions
660 * in a sake of simplicity we don't use the FSB tagging
661 */
662 [PERF_COUNT_HW_INSTRUCTIONS] =
663 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED) |
664 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG) |
665 P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
666
667 /* cache hits */
668 [PERF_COUNT_HW_CACHE_REFERENCES] =
669 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) |
670 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS) |
671 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE) |
672 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM) |
673 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS) |
674 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE) |
675 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
676
677 /* cache misses */
678 [PERF_COUNT_HW_CACHE_MISSES] =
679 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE) |
680 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS) |
681 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS) |
682 P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
683
684 /* branch instructions retired */
685 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
686 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE) |
687 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL) |
688 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL) |
689 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN) |
690 P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
691
692 /* mispredicted branches retired */
693 [PERF_COUNT_HW_BRANCH_MISSES] =
694 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED) |
695 P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
696
697 /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN): */
698 [PERF_COUNT_HW_BUS_CYCLES] =
699 p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY) |
700 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV) |
701 P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)) |
702 p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
703 };
704
p4_config_get_bind(u64 config)705 static struct p4_event_bind *p4_config_get_bind(u64 config)
706 {
707 unsigned int evnt = p4_config_unpack_event(config);
708 struct p4_event_bind *bind = NULL;
709
710 if (evnt < ARRAY_SIZE(p4_event_bind_map))
711 bind = &p4_event_bind_map[evnt];
712
713 return bind;
714 }
715
p4_pmu_event_map(int hw_event)716 static u64 p4_pmu_event_map(int hw_event)
717 {
718 struct p4_event_bind *bind;
719 unsigned int esel;
720 u64 config;
721
722 config = p4_general_events[hw_event];
723 bind = p4_config_get_bind(config);
724 esel = P4_OPCODE_ESEL(bind->opcode);
725 config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
726
727 return config;
728 }
729
730 /* check cpu model specifics */
p4_event_match_cpu_model(unsigned int event_idx)731 static bool p4_event_match_cpu_model(unsigned int event_idx)
732 {
733 /* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
734 if (event_idx == P4_EVENT_INSTR_COMPLETED) {
735 if (boot_cpu_data.x86_model != 3 &&
736 boot_cpu_data.x86_model != 4 &&
737 boot_cpu_data.x86_model != 6)
738 return false;
739 }
740
741 /*
742 * For info
743 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
744 */
745
746 return true;
747 }
748
p4_validate_raw_event(struct perf_event * event)749 static int p4_validate_raw_event(struct perf_event *event)
750 {
751 unsigned int v, emask;
752
753 /* User data may have out-of-bound event index */
754 v = p4_config_unpack_event(event->attr.config);
755 if (v >= ARRAY_SIZE(p4_event_bind_map))
756 return -EINVAL;
757
758 /* It may be unsupported: */
759 if (!p4_event_match_cpu_model(v))
760 return -EINVAL;
761
762 /*
763 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
764 * in Architectural Performance Monitoring, it means not
765 * on _which_ logical cpu to count but rather _when_, ie it
766 * depends on logical cpu state -- count event if one cpu active,
767 * none, both or any, so we just allow user to pass any value
768 * desired.
769 *
770 * In turn we always set Tx_OS/Tx_USR bits bound to logical
771 * cpu without their propagation to another cpu
772 */
773
774 /*
775 * if an event is shared across the logical threads
776 * the user needs special permissions to be able to use it
777 */
778 if (p4_ht_active() && p4_event_bind_map[v].shared) {
779 v = perf_allow_cpu(&event->attr);
780 if (v)
781 return v;
782 }
783
784 /* ESCR EventMask bits may be invalid */
785 emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
786 if (emask & ~p4_event_bind_map[v].escr_emask)
787 return -EINVAL;
788
789 /*
790 * it may have some invalid PEBS bits
791 */
792 if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
793 return -EINVAL;
794
795 v = p4_config_unpack_metric(event->attr.config);
796 if (v >= ARRAY_SIZE(p4_pebs_bind_map))
797 return -EINVAL;
798
799 return 0;
800 }
801
p4_hw_config(struct perf_event * event)802 static int p4_hw_config(struct perf_event *event)
803 {
804 int cpu = get_cpu();
805 int rc = 0;
806 u32 escr, cccr;
807
808 /*
809 * the reason we use cpu that early is that: if we get scheduled
810 * first time on the same cpu -- we will not need swap thread
811 * specific flags in config (and will save some cpu cycles)
812 */
813
814 cccr = p4_default_cccr_conf(cpu);
815 escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
816 event->attr.exclude_user);
817 event->hw.config = p4_config_pack_escr(escr) |
818 p4_config_pack_cccr(cccr);
819
820 if (p4_ht_active() && p4_ht_thread(cpu))
821 event->hw.config = p4_set_ht_bit(event->hw.config);
822
823 if (event->attr.type == PERF_TYPE_RAW) {
824 struct p4_event_bind *bind;
825 unsigned int esel;
826 /*
827 * Clear bits we reserve to be managed by kernel itself
828 * and never allowed from a user space
829 */
830 event->attr.config &= P4_CONFIG_MASK;
831
832 rc = p4_validate_raw_event(event);
833 if (rc)
834 goto out;
835
836 /*
837 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
838 * bits since we keep additional info here (for cache events and etc)
839 */
840 event->hw.config |= event->attr.config;
841 bind = p4_config_get_bind(event->attr.config);
842 if (!bind) {
843 rc = -EINVAL;
844 goto out;
845 }
846 esel = P4_OPCODE_ESEL(bind->opcode);
847 event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
848 }
849
850 rc = x86_setup_perfctr(event);
851 out:
852 put_cpu();
853 return rc;
854 }
855
p4_pmu_clear_cccr_ovf(struct hw_perf_event * hwc)856 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
857 {
858 u64 v;
859
860 /* an official way for overflow indication */
861 rdmsrl(hwc->config_base, v);
862 if (v & P4_CCCR_OVF) {
863 wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
864 return 1;
865 }
866
867 /*
868 * In some circumstances the overflow might issue an NMI but did
869 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
870 * we simply check for high bit being set, if it's cleared it means
871 * the counter has reached zero value and continued counting before
872 * real NMI signal was received:
873 */
874 rdmsrl(hwc->event_base, v);
875 if (!(v & ARCH_P4_UNFLAGGED_BIT))
876 return 1;
877
878 return 0;
879 }
880
p4_pmu_disable_pebs(void)881 static void p4_pmu_disable_pebs(void)
882 {
883 /*
884 * FIXME
885 *
886 * It's still allowed that two threads setup same cache
887 * events so we can't simply clear metrics until we knew
888 * no one is depending on us, so we need kind of counter
889 * for "ReplayEvent" users.
890 *
891 * What is more complex -- RAW events, if user (for some
892 * reason) will pass some cache event metric with improper
893 * event opcode -- it's fine from hardware point of view
894 * but completely nonsense from "meaning" of such action.
895 *
896 * So at moment let leave metrics turned on forever -- it's
897 * ok for now but need to be revisited!
898 *
899 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
900 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
901 */
902 }
903
p4_pmu_disable_event(struct perf_event * event)904 static inline void p4_pmu_disable_event(struct perf_event *event)
905 {
906 struct hw_perf_event *hwc = &event->hw;
907
908 /*
909 * If event gets disabled while counter is in overflowed
910 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
911 * asserted again and again
912 */
913 (void)wrmsrl_safe(hwc->config_base,
914 p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
915 }
916
p4_pmu_disable_all(void)917 static void p4_pmu_disable_all(void)
918 {
919 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
920 int idx;
921
922 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
923 struct perf_event *event = cpuc->events[idx];
924 if (!test_bit(idx, cpuc->active_mask))
925 continue;
926 p4_pmu_disable_event(event);
927 }
928
929 p4_pmu_disable_pebs();
930 }
931
932 /* configuration must be valid */
p4_pmu_enable_pebs(u64 config)933 static void p4_pmu_enable_pebs(u64 config)
934 {
935 struct p4_pebs_bind *bind;
936 unsigned int idx;
937
938 BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
939
940 idx = p4_config_unpack_metric(config);
941 if (idx == P4_PEBS_METRIC__none)
942 return;
943
944 bind = &p4_pebs_bind_map[idx];
945
946 (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, (u64)bind->metric_pebs);
947 (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, (u64)bind->metric_vert);
948 }
949
__p4_pmu_enable_event(struct perf_event * event)950 static void __p4_pmu_enable_event(struct perf_event *event)
951 {
952 struct hw_perf_event *hwc = &event->hw;
953 int thread = p4_ht_config_thread(hwc->config);
954 u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
955 unsigned int idx = p4_config_unpack_event(hwc->config);
956 struct p4_event_bind *bind;
957 u64 escr_addr, cccr;
958
959 bind = &p4_event_bind_map[idx];
960 escr_addr = bind->escr_msr[thread];
961
962 /*
963 * - we dont support cascaded counters yet
964 * - and counter 1 is broken (erratum)
965 */
966 WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
967 WARN_ON_ONCE(hwc->idx == 1);
968
969 /* we need a real Event value */
970 escr_conf &= ~P4_ESCR_EVENT_MASK;
971 escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
972
973 cccr = p4_config_unpack_cccr(hwc->config);
974
975 /*
976 * it could be Cache event so we need to write metrics
977 * into additional MSRs
978 */
979 p4_pmu_enable_pebs(hwc->config);
980
981 (void)wrmsrl_safe(escr_addr, escr_conf);
982 (void)wrmsrl_safe(hwc->config_base,
983 (cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
984 }
985
986 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running);
987
p4_pmu_enable_event(struct perf_event * event)988 static void p4_pmu_enable_event(struct perf_event *event)
989 {
990 int idx = event->hw.idx;
991
992 __set_bit(idx, per_cpu(p4_running, smp_processor_id()));
993 __p4_pmu_enable_event(event);
994 }
995
p4_pmu_enable_all(int added)996 static void p4_pmu_enable_all(int added)
997 {
998 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
999 int idx;
1000
1001 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1002 struct perf_event *event = cpuc->events[idx];
1003 if (!test_bit(idx, cpuc->active_mask))
1004 continue;
1005 __p4_pmu_enable_event(event);
1006 }
1007 }
1008
p4_pmu_set_period(struct perf_event * event)1009 static int p4_pmu_set_period(struct perf_event *event)
1010 {
1011 struct hw_perf_event *hwc = &event->hw;
1012 s64 left = this_cpu_read(pmc_prev_left[hwc->idx]);
1013 int ret;
1014
1015 ret = x86_perf_event_set_period(event);
1016
1017 if (hwc->event_base) {
1018 /*
1019 * This handles erratum N15 in intel doc 249199-029,
1020 * the counter may not be updated correctly on write
1021 * so we need a second write operation to do the trick
1022 * (the official workaround didn't work)
1023 *
1024 * the former idea is taken from OProfile code
1025 */
1026 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1027 }
1028
1029 return ret;
1030 }
1031
p4_pmu_handle_irq(struct pt_regs * regs)1032 static int p4_pmu_handle_irq(struct pt_regs *regs)
1033 {
1034 struct perf_sample_data data;
1035 struct cpu_hw_events *cpuc;
1036 struct perf_event *event;
1037 struct hw_perf_event *hwc;
1038 int idx, handled = 0;
1039 u64 val;
1040
1041 cpuc = this_cpu_ptr(&cpu_hw_events);
1042
1043 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1044 int overflow;
1045
1046 if (!test_bit(idx, cpuc->active_mask)) {
1047 /* catch in-flight IRQs */
1048 if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id())))
1049 handled++;
1050 continue;
1051 }
1052
1053 event = cpuc->events[idx];
1054 hwc = &event->hw;
1055
1056 WARN_ON_ONCE(hwc->idx != idx);
1057
1058 /* it might be unflagged overflow */
1059 overflow = p4_pmu_clear_cccr_ovf(hwc);
1060
1061 val = x86_perf_event_update(event);
1062 if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1063 continue;
1064
1065 handled += overflow;
1066
1067 /* event overflow for sure */
1068 perf_sample_data_init(&data, 0, hwc->last_period);
1069
1070 if (!static_call(x86_pmu_set_period)(event))
1071 continue;
1072
1073
1074 if (perf_event_overflow(event, &data, regs))
1075 x86_pmu_stop(event, 0);
1076 }
1077
1078 if (handled)
1079 inc_irq_stat(apic_perf_irqs);
1080
1081 /*
1082 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1083 * been observed that the OVF bit flag has to be cleared first _before_
1084 * the LVTPC can be unmasked.
1085 *
1086 * The reason is the NMI line will continue to be asserted while the OVF
1087 * bit is set. This causes a second NMI to generate if the LVTPC is
1088 * unmasked before the OVF bit is cleared, leading to unknown NMI
1089 * messages.
1090 */
1091 apic_write(APIC_LVTPC, APIC_DM_NMI);
1092
1093 return handled;
1094 }
1095
1096 /*
1097 * swap thread specific fields according to a thread
1098 * we are going to run on
1099 */
p4_pmu_swap_config_ts(struct hw_perf_event * hwc,int cpu)1100 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1101 {
1102 u32 escr, cccr;
1103
1104 /*
1105 * we either lucky and continue on same cpu or no HT support
1106 */
1107 if (!p4_should_swap_ts(hwc->config, cpu))
1108 return;
1109
1110 /*
1111 * the event is migrated from an another logical
1112 * cpu, so we need to swap thread specific flags
1113 */
1114
1115 escr = p4_config_unpack_escr(hwc->config);
1116 cccr = p4_config_unpack_cccr(hwc->config);
1117
1118 if (p4_ht_thread(cpu)) {
1119 cccr &= ~P4_CCCR_OVF_PMI_T0;
1120 cccr |= P4_CCCR_OVF_PMI_T1;
1121 if (escr & P4_ESCR_T0_OS) {
1122 escr &= ~P4_ESCR_T0_OS;
1123 escr |= P4_ESCR_T1_OS;
1124 }
1125 if (escr & P4_ESCR_T0_USR) {
1126 escr &= ~P4_ESCR_T0_USR;
1127 escr |= P4_ESCR_T1_USR;
1128 }
1129 hwc->config = p4_config_pack_escr(escr);
1130 hwc->config |= p4_config_pack_cccr(cccr);
1131 hwc->config |= P4_CONFIG_HT;
1132 } else {
1133 cccr &= ~P4_CCCR_OVF_PMI_T1;
1134 cccr |= P4_CCCR_OVF_PMI_T0;
1135 if (escr & P4_ESCR_T1_OS) {
1136 escr &= ~P4_ESCR_T1_OS;
1137 escr |= P4_ESCR_T0_OS;
1138 }
1139 if (escr & P4_ESCR_T1_USR) {
1140 escr &= ~P4_ESCR_T1_USR;
1141 escr |= P4_ESCR_T0_USR;
1142 }
1143 hwc->config = p4_config_pack_escr(escr);
1144 hwc->config |= p4_config_pack_cccr(cccr);
1145 hwc->config &= ~P4_CONFIG_HT;
1146 }
1147 }
1148
1149 /*
1150 * ESCR address hashing is tricky, ESCRs are not sequential
1151 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1152 * the metric between any ESCRs is laid in range [0xa0,0xe1]
1153 *
1154 * so we make ~70% filled hashtable
1155 */
1156
1157 #define P4_ESCR_MSR_BASE 0x000003a0
1158 #define P4_ESCR_MSR_MAX 0x000003e1
1159 #define P4_ESCR_MSR_TABLE_SIZE (P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1160 #define P4_ESCR_MSR_IDX(msr) (msr - P4_ESCR_MSR_BASE)
1161 #define P4_ESCR_MSR_TABLE_ENTRY(msr) [P4_ESCR_MSR_IDX(msr)] = msr
1162
1163 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1164 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
1165 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
1166 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
1167 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
1168 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
1169 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
1170 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
1171 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
1172 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
1173 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
1174 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
1175 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
1176 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
1177 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
1178 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
1179 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
1180 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
1181 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
1182 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
1183 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
1184 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
1185 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
1186 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
1187 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
1188 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
1189 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
1190 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
1191 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
1192 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
1193 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
1194 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
1195 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
1196 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
1197 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
1198 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
1199 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
1200 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
1201 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
1202 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
1203 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
1204 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
1205 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
1206 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
1207 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
1208 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
1209 P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
1210 };
1211
p4_get_escr_idx(unsigned int addr)1212 static int p4_get_escr_idx(unsigned int addr)
1213 {
1214 unsigned int idx = P4_ESCR_MSR_IDX(addr);
1215
1216 if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE ||
1217 !p4_escr_table[idx] ||
1218 p4_escr_table[idx] != addr)) {
1219 WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1220 return -1;
1221 }
1222
1223 return idx;
1224 }
1225
p4_next_cntr(int thread,unsigned long * used_mask,struct p4_event_bind * bind)1226 static int p4_next_cntr(int thread, unsigned long *used_mask,
1227 struct p4_event_bind *bind)
1228 {
1229 int i, j;
1230
1231 for (i = 0; i < P4_CNTR_LIMIT; i++) {
1232 j = bind->cntr[thread][i];
1233 if (j != -1 && !test_bit(j, used_mask))
1234 return j;
1235 }
1236
1237 return -1;
1238 }
1239
p4_pmu_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)1240 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1241 {
1242 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1243 unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1244 int cpu = smp_processor_id();
1245 struct hw_perf_event *hwc;
1246 struct p4_event_bind *bind;
1247 unsigned int i, thread, num;
1248 int cntr_idx, escr_idx;
1249 u64 config_alias;
1250 int pass;
1251
1252 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1253 bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1254
1255 for (i = 0, num = n; i < n; i++, num--) {
1256
1257 hwc = &cpuc->event_list[i]->hw;
1258 thread = p4_ht_thread(cpu);
1259 pass = 0;
1260
1261 again:
1262 /*
1263 * It's possible to hit a circular lock
1264 * between original and alternative events
1265 * if both are scheduled already.
1266 */
1267 if (pass > 2)
1268 goto done;
1269
1270 bind = p4_config_get_bind(hwc->config);
1271 escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1272 if (unlikely(escr_idx == -1))
1273 goto done;
1274
1275 if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1276 cntr_idx = hwc->idx;
1277 if (assign)
1278 assign[i] = hwc->idx;
1279 goto reserve;
1280 }
1281
1282 cntr_idx = p4_next_cntr(thread, used_mask, bind);
1283 if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1284 /*
1285 * Check whether an event alias is still available.
1286 */
1287 config_alias = p4_get_alias_event(hwc->config);
1288 if (!config_alias)
1289 goto done;
1290 hwc->config = config_alias;
1291 pass++;
1292 goto again;
1293 }
1294 /*
1295 * Perf does test runs to see if a whole group can be assigned
1296 * together successfully. There can be multiple rounds of this.
1297 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
1298 * bits, such that the next round of group assignments will
1299 * cause the above p4_should_swap_ts to pass instead of fail.
1300 * This leads to counters exclusive to thread0 being used by
1301 * thread1.
1302 *
1303 * Solve this with a cheap hack, reset the idx back to -1 to
1304 * force a new lookup (p4_next_cntr) to get the right counter
1305 * for the right thread.
1306 *
1307 * This probably doesn't comply with the general spirit of how
1308 * perf wants to work, but P4 is special. :-(
1309 */
1310 if (p4_should_swap_ts(hwc->config, cpu))
1311 hwc->idx = -1;
1312 p4_pmu_swap_config_ts(hwc, cpu);
1313 if (assign)
1314 assign[i] = cntr_idx;
1315 reserve:
1316 set_bit(cntr_idx, used_mask);
1317 set_bit(escr_idx, escr_mask);
1318 }
1319
1320 done:
1321 return num ? -EINVAL : 0;
1322 }
1323
1324 PMU_FORMAT_ATTR(cccr, "config:0-31" );
1325 PMU_FORMAT_ATTR(escr, "config:32-62");
1326 PMU_FORMAT_ATTR(ht, "config:63" );
1327
1328 static struct attribute *intel_p4_formats_attr[] = {
1329 &format_attr_cccr.attr,
1330 &format_attr_escr.attr,
1331 &format_attr_ht.attr,
1332 NULL,
1333 };
1334
1335 static __initconst const struct x86_pmu p4_pmu = {
1336 .name = "Netburst P4/Xeon",
1337 .handle_irq = p4_pmu_handle_irq,
1338 .disable_all = p4_pmu_disable_all,
1339 .enable_all = p4_pmu_enable_all,
1340 .enable = p4_pmu_enable_event,
1341 .disable = p4_pmu_disable_event,
1342
1343 .set_period = p4_pmu_set_period,
1344
1345 .eventsel = MSR_P4_BPU_CCCR0,
1346 .perfctr = MSR_P4_BPU_PERFCTR0,
1347 .event_map = p4_pmu_event_map,
1348 .max_events = ARRAY_SIZE(p4_general_events),
1349 .get_event_constraints = x86_get_event_constraints,
1350 /*
1351 * IF HT disabled we may need to use all
1352 * ARCH_P4_MAX_CCCR counters simultaneously
1353 * though leave it restricted at moment assuming
1354 * HT is on
1355 */
1356 .num_counters = ARCH_P4_MAX_CCCR,
1357 .apic = 1,
1358 .cntval_bits = ARCH_P4_CNTRVAL_BITS,
1359 .cntval_mask = ARCH_P4_CNTRVAL_MASK,
1360 .max_period = (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1361 .hw_config = p4_hw_config,
1362 .schedule_events = p4_pmu_schedule_events,
1363
1364 .format_attrs = intel_p4_formats_attr,
1365 };
1366
p4_pmu_init(void)1367 __init int p4_pmu_init(void)
1368 {
1369 unsigned int low, high;
1370 int i, reg;
1371
1372 /* If we get stripped -- indexing fails */
1373 BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
1374
1375 rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1376 if (!(low & (1 << 7))) {
1377 pr_cont("unsupported Netburst CPU model %d ",
1378 boot_cpu_data.x86_model);
1379 return -ENODEV;
1380 }
1381
1382 memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1383 sizeof(hw_cache_event_ids));
1384
1385 pr_cont("Netburst events, ");
1386
1387 x86_pmu = p4_pmu;
1388
1389 /*
1390 * Even though the counters are configured to interrupt a particular
1391 * logical processor when an overflow happens, testing has shown that
1392 * on kdump kernels (which uses a single cpu), thread1's counter
1393 * continues to run and will report an NMI on thread0. Due to the
1394 * overflow bug, this leads to a stream of unknown NMIs.
1395 *
1396 * Solve this by zero'ing out the registers to mimic a reset.
1397 */
1398 for (i = 0; i < x86_pmu.num_counters; i++) {
1399 reg = x86_pmu_config_addr(i);
1400 wrmsrl_safe(reg, 0ULL);
1401 }
1402
1403 return 0;
1404 }
1405