1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 tcp_scaling_ratio_init(sk);
461
462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466
tcp_tx_timestamp(struct sock * sk,u16 tsflags)467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471 if (tsflags && skb) {
472 struct skb_shared_info *shinfo = skb_shinfo(skb);
473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 tcb->txstamp_ack = 1;
478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 }
481 }
482
tcp_stream_is_readable(struct sock * sk,int target)483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 if (tcp_epollin_ready(sk, target))
486 return true;
487 return sk_is_readable(sk);
488 }
489
490 /*
491 * Wait for a TCP event.
492 *
493 * Note that we don't need to lock the socket, as the upper poll layers
494 * take care of normal races (between the test and the event) and we don't
495 * go look at any of the socket buffers directly.
496 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 __poll_t mask;
500 struct sock *sk = sock->sk;
501 const struct tcp_sock *tp = tcp_sk(sk);
502 u8 shutdown;
503 int state;
504
505 sock_poll_wait(file, sock, wait);
506
507 state = inet_sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * EPOLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that EPOLLHUP is incompatible
524 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 shutdown = READ_ONCE(sk->sk_shutdown);
546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555 u16 urg_data = READ_ONCE(tp->urg_data);
556
557 if (unlikely(urg_data) &&
558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 !sock_flag(sk, SOCK_URGINLINE))
560 target++;
561
562 if (tcp_stream_is_readable(sk, target))
563 mask |= EPOLLIN | EPOLLRDNORM;
564
565 if (!(shutdown & SEND_SHUTDOWN)) {
566 if (__sk_stream_is_writeable(sk, 1)) {
567 mask |= EPOLLOUT | EPOLLWRNORM;
568 } else { /* send SIGIO later */
569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571
572 /* Race breaker. If space is freed after
573 * wspace test but before the flags are set,
574 * IO signal will be lost. Memory barrier
575 * pairs with the input side.
576 */
577 smp_mb__after_atomic();
578 if (__sk_stream_is_writeable(sk, 1))
579 mask |= EPOLLOUT | EPOLLWRNORM;
580 }
581 } else
582 mask |= EPOLLOUT | EPOLLWRNORM;
583
584 if (urg_data & TCP_URG_VALID)
585 mask |= EPOLLPRI;
586 } else if (state == TCP_SYN_SENT &&
587 inet_test_bit(DEFER_CONNECT, sk)) {
588 /* Active TCP fastopen socket with defer_connect
589 * Return EPOLLOUT so application can call write()
590 * in order for kernel to generate SYN+data
591 */
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 /* This barrier is coupled with smp_wmb() in tcp_reset() */
595 smp_rmb();
596 if (READ_ONCE(sk->sk_err) ||
597 !skb_queue_empty_lockless(&sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603
tcp_ioctl(struct sock * sk,int cmd,int * karg)604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = READ_ONCE(tp->urg_data) &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 *karg = answ;
647 return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk_wmem_queued_add(sk, skb->truesize);
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 tcp_skb_can_collapse_to(skb);
703 }
704
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 smp_mb__after_atomic();
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 ret = sk_wait_data(sk, &timeo, NULL);
836 if (ret < 0)
837 break;
838 if (signal_pending(current)) {
839 ret = sock_intr_errno(timeo);
840 break;
841 }
842 continue;
843 }
844 tss.len -= ret;
845 spliced += ret;
846
847 if (!tss.len || !timeo)
848 break;
849 release_sock(sk);
850 lock_sock(sk);
851
852 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 signal_pending(current))
855 break;
856 }
857
858 release_sock(sk);
859
860 if (spliced)
861 return spliced;
862
863 return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868 bool force_schedule)
869 {
870 struct sk_buff *skb;
871
872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873 if (likely(skb)) {
874 bool mem_scheduled;
875
876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 if (force_schedule) {
878 mem_scheduled = true;
879 sk_forced_mem_schedule(sk, skb->truesize);
880 } else {
881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882 }
883 if (likely(mem_scheduled)) {
884 skb_reserve(skb, MAX_TCP_HEADER);
885 skb->ip_summed = CHECKSUM_PARTIAL;
886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887 return skb;
888 }
889 __kfree_skb(skb);
890 } else {
891 sk->sk_prot->enter_memory_pressure(sk);
892 sk_stream_moderate_sndbuf(sk);
893 }
894 return NULL;
895 }
896
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 int large_allowed)
899 {
900 struct tcp_sock *tp = tcp_sk(sk);
901 u32 new_size_goal, size_goal;
902
903 if (!large_allowed)
904 return mss_now;
905
906 /* Note : tcp_tso_autosize() will eventually split this later */
907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908
909 /* We try hard to avoid divides here */
910 size_goal = tp->gso_segs * mss_now;
911 if (unlikely(new_size_goal < size_goal ||
912 new_size_goal >= size_goal + mss_now)) {
913 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 sk->sk_gso_max_segs);
915 size_goal = tp->gso_segs * mss_now;
916 }
917
918 return max(size_goal, mss_now);
919 }
920
tcp_send_mss(struct sock * sk,int * size_goal,int flags)921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 int mss_now;
924
925 mss_now = tcp_current_mss(sk);
926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927
928 return mss_now;
929 }
930
931 /* In some cases, sendmsg() could have added an skb to the write queue,
932 * but failed adding payload on it. We need to remove it to consume less
933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934 * epoll() users. Another reason is that tcp_write_xmit() does not like
935 * finding an empty skb in the write queue.
936 */
tcp_remove_empty_skb(struct sock * sk)937 void tcp_remove_empty_skb(struct sock *sk)
938 {
939 struct sk_buff *skb = tcp_write_queue_tail(sk);
940
941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942 tcp_unlink_write_queue(skb, sk);
943 if (tcp_write_queue_empty(sk))
944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 tcp_wmem_free_skb(sk, skb);
946 }
947 }
948
949 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951 {
952 if (unlikely(skb_zcopy_pure(skb))) {
953 u32 extra = skb->truesize -
954 SKB_TRUESIZE(skb_end_offset(skb));
955
956 if (!sk_wmem_schedule(sk, extra))
957 return -ENOMEM;
958
959 sk_mem_charge(sk, extra);
960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961 }
962 return 0;
963 }
964
965
tcp_wmem_schedule(struct sock * sk,int copy)966 int tcp_wmem_schedule(struct sock *sk, int copy)
967 {
968 int left;
969
970 if (likely(sk_wmem_schedule(sk, copy)))
971 return copy;
972
973 /* We could be in trouble if we have nothing queued.
974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975 * to guarantee some progress.
976 */
977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978 if (left > 0)
979 sk_forced_mem_schedule(sk, min(left, copy));
980 return min(copy, sk->sk_forward_alloc);
981 }
982
tcp_free_fastopen_req(struct tcp_sock * tp)983 void tcp_free_fastopen_req(struct tcp_sock *tp)
984 {
985 if (tp->fastopen_req) {
986 kfree(tp->fastopen_req);
987 tp->fastopen_req = NULL;
988 }
989 }
990
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992 size_t size, struct ubuf_info *uarg)
993 {
994 struct tcp_sock *tp = tcp_sk(sk);
995 struct inet_sock *inet = inet_sk(sk);
996 struct sockaddr *uaddr = msg->msg_name;
997 int err, flags;
998
999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000 TFO_CLIENT_ENABLE) ||
1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002 uaddr->sa_family == AF_UNSPEC))
1003 return -EOPNOTSUPP;
1004 if (tp->fastopen_req)
1005 return -EALREADY; /* Another Fast Open is in progress */
1006
1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 sk->sk_allocation);
1009 if (unlikely(!tp->fastopen_req))
1010 return -ENOBUFS;
1011 tp->fastopen_req->data = msg;
1012 tp->fastopen_req->size = size;
1013 tp->fastopen_req->uarg = uarg;
1014
1015 if (inet_test_bit(DEFER_CONNECT, sk)) {
1016 err = tcp_connect(sk);
1017 /* Same failure procedure as in tcp_v4/6_connect */
1018 if (err) {
1019 tcp_set_state(sk, TCP_CLOSE);
1020 inet->inet_dport = 0;
1021 sk->sk_route_caps = 0;
1022 }
1023 }
1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025 err = __inet_stream_connect(sk->sk_socket, uaddr,
1026 msg->msg_namelen, flags, 1);
1027 /* fastopen_req could already be freed in __inet_stream_connect
1028 * if the connection times out or gets rst
1029 */
1030 if (tp->fastopen_req) {
1031 *copied = tp->fastopen_req->copied;
1032 tcp_free_fastopen_req(tp);
1033 inet_clear_bit(DEFER_CONNECT, sk);
1034 }
1035 return err;
1036 }
1037
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039 {
1040 struct tcp_sock *tp = tcp_sk(sk);
1041 struct ubuf_info *uarg = NULL;
1042 struct sk_buff *skb;
1043 struct sockcm_cookie sockc;
1044 int flags, err, copied = 0;
1045 int mss_now = 0, size_goal, copied_syn = 0;
1046 int process_backlog = 0;
1047 int zc = 0;
1048 long timeo;
1049
1050 flags = msg->msg_flags;
1051
1052 if ((flags & MSG_ZEROCOPY) && size) {
1053 if (msg->msg_ubuf) {
1054 uarg = msg->msg_ubuf;
1055 if (sk->sk_route_caps & NETIF_F_SG)
1056 zc = MSG_ZEROCOPY;
1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058 skb = tcp_write_queue_tail(sk);
1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060 if (!uarg) {
1061 err = -ENOBUFS;
1062 goto out_err;
1063 }
1064 if (sk->sk_route_caps & NETIF_F_SG)
1065 zc = MSG_ZEROCOPY;
1066 else
1067 uarg_to_msgzc(uarg)->zerocopy = 0;
1068 }
1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070 if (sk->sk_route_caps & NETIF_F_SG)
1071 zc = MSG_SPLICE_PAGES;
1072 }
1073
1074 if (unlikely(flags & MSG_FASTOPEN ||
1075 inet_test_bit(DEFER_CONNECT, sk)) &&
1076 !tp->repair) {
1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078 if (err == -EINPROGRESS && copied_syn > 0)
1079 goto out;
1080 else if (err)
1081 goto out_err;
1082 }
1083
1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085
1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1087
1088 /* Wait for a connection to finish. One exception is TCP Fast Open
1089 * (passive side) where data is allowed to be sent before a connection
1090 * is fully established.
1091 */
1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 !tcp_passive_fastopen(sk)) {
1094 err = sk_stream_wait_connect(sk, &timeo);
1095 if (err != 0)
1096 goto do_error;
1097 }
1098
1099 if (unlikely(tp->repair)) {
1100 if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 copied = tcp_send_rcvq(sk, msg, size);
1102 goto out_nopush;
1103 }
1104
1105 err = -EINVAL;
1106 if (tp->repair_queue == TCP_NO_QUEUE)
1107 goto out_err;
1108
1109 /* 'common' sending to sendq */
1110 }
1111
1112 sockcm_init(&sockc, sk);
1113 if (msg->msg_controllen) {
1114 err = sock_cmsg_send(sk, msg, &sockc);
1115 if (unlikely(err)) {
1116 err = -EINVAL;
1117 goto out_err;
1118 }
1119 }
1120
1121 /* This should be in poll */
1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123
1124 /* Ok commence sending. */
1125 copied = 0;
1126
1127 restart:
1128 mss_now = tcp_send_mss(sk, &size_goal, flags);
1129
1130 err = -EPIPE;
1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 goto do_error;
1133
1134 while (msg_data_left(msg)) {
1135 ssize_t copy = 0;
1136
1137 skb = tcp_write_queue_tail(sk);
1138 if (skb)
1139 copy = size_goal - skb->len;
1140
1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142 bool first_skb;
1143
1144 new_segment:
1145 if (!sk_stream_memory_free(sk))
1146 goto wait_for_space;
1147
1148 if (unlikely(process_backlog >= 16)) {
1149 process_backlog = 0;
1150 if (sk_flush_backlog(sk))
1151 goto restart;
1152 }
1153 first_skb = tcp_rtx_and_write_queues_empty(sk);
1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155 first_skb);
1156 if (!skb)
1157 goto wait_for_space;
1158
1159 process_backlog++;
1160
1161 tcp_skb_entail(sk, skb);
1162 copy = size_goal;
1163
1164 /* All packets are restored as if they have
1165 * already been sent. skb_mstamp_ns isn't set to
1166 * avoid wrong rtt estimation.
1167 */
1168 if (tp->repair)
1169 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1170 }
1171
1172 /* Try to append data to the end of skb. */
1173 if (copy > msg_data_left(msg))
1174 copy = msg_data_left(msg);
1175
1176 if (zc == 0) {
1177 bool merge = true;
1178 int i = skb_shinfo(skb)->nr_frags;
1179 struct page_frag *pfrag = sk_page_frag(sk);
1180
1181 if (!sk_page_frag_refill(sk, pfrag))
1182 goto wait_for_space;
1183
1184 if (!skb_can_coalesce(skb, i, pfrag->page,
1185 pfrag->offset)) {
1186 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1187 tcp_mark_push(tp, skb);
1188 goto new_segment;
1189 }
1190 merge = false;
1191 }
1192
1193 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1194
1195 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1196 if (tcp_downgrade_zcopy_pure(sk, skb))
1197 goto wait_for_space;
1198 skb_zcopy_downgrade_managed(skb);
1199 }
1200
1201 copy = tcp_wmem_schedule(sk, copy);
1202 if (!copy)
1203 goto wait_for_space;
1204
1205 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1206 pfrag->page,
1207 pfrag->offset,
1208 copy);
1209 if (err)
1210 goto do_error;
1211
1212 /* Update the skb. */
1213 if (merge) {
1214 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1215 } else {
1216 skb_fill_page_desc(skb, i, pfrag->page,
1217 pfrag->offset, copy);
1218 page_ref_inc(pfrag->page);
1219 }
1220 pfrag->offset += copy;
1221 } else if (zc == MSG_ZEROCOPY) {
1222 /* First append to a fragless skb builds initial
1223 * pure zerocopy skb
1224 */
1225 if (!skb->len)
1226 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1227
1228 if (!skb_zcopy_pure(skb)) {
1229 copy = tcp_wmem_schedule(sk, copy);
1230 if (!copy)
1231 goto wait_for_space;
1232 }
1233
1234 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1235 if (err == -EMSGSIZE || err == -EEXIST) {
1236 tcp_mark_push(tp, skb);
1237 goto new_segment;
1238 }
1239 if (err < 0)
1240 goto do_error;
1241 copy = err;
1242 } else if (zc == MSG_SPLICE_PAGES) {
1243 /* Splice in data if we can; copy if we can't. */
1244 if (tcp_downgrade_zcopy_pure(sk, skb))
1245 goto wait_for_space;
1246 copy = tcp_wmem_schedule(sk, copy);
1247 if (!copy)
1248 goto wait_for_space;
1249
1250 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1251 sk->sk_allocation);
1252 if (err < 0) {
1253 if (err == -EMSGSIZE) {
1254 tcp_mark_push(tp, skb);
1255 goto new_segment;
1256 }
1257 goto do_error;
1258 }
1259 copy = err;
1260
1261 if (!(flags & MSG_NO_SHARED_FRAGS))
1262 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1263
1264 sk_wmem_queued_add(sk, copy);
1265 sk_mem_charge(sk, copy);
1266 }
1267
1268 if (!copied)
1269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1270
1271 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1272 TCP_SKB_CB(skb)->end_seq += copy;
1273 tcp_skb_pcount_set(skb, 0);
1274
1275 copied += copy;
1276 if (!msg_data_left(msg)) {
1277 if (unlikely(flags & MSG_EOR))
1278 TCP_SKB_CB(skb)->eor = 1;
1279 goto out;
1280 }
1281
1282 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1283 continue;
1284
1285 if (forced_push(tp)) {
1286 tcp_mark_push(tp, skb);
1287 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1288 } else if (skb == tcp_send_head(sk))
1289 tcp_push_one(sk, mss_now);
1290 continue;
1291
1292 wait_for_space:
1293 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1294 tcp_remove_empty_skb(sk);
1295 if (copied)
1296 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1297 TCP_NAGLE_PUSH, size_goal);
1298
1299 err = sk_stream_wait_memory(sk, &timeo);
1300 if (err != 0)
1301 goto do_error;
1302
1303 mss_now = tcp_send_mss(sk, &size_goal, flags);
1304 }
1305
1306 out:
1307 if (copied) {
1308 tcp_tx_timestamp(sk, sockc.tsflags);
1309 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1310 }
1311 out_nopush:
1312 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1313 if (uarg && !msg->msg_ubuf)
1314 net_zcopy_put(uarg);
1315 return copied + copied_syn;
1316
1317 do_error:
1318 tcp_remove_empty_skb(sk);
1319
1320 if (copied + copied_syn)
1321 goto out;
1322 out_err:
1323 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1324 if (uarg && !msg->msg_ubuf)
1325 net_zcopy_put_abort(uarg, true);
1326 err = sk_stream_error(sk, flags, err);
1327 /* make sure we wake any epoll edge trigger waiter */
1328 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1329 sk->sk_write_space(sk);
1330 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1331 }
1332 return err;
1333 }
1334 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1335
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1336 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1337 {
1338 int ret;
1339
1340 lock_sock(sk);
1341 ret = tcp_sendmsg_locked(sk, msg, size);
1342 release_sock(sk);
1343
1344 return ret;
1345 }
1346 EXPORT_SYMBOL(tcp_sendmsg);
1347
tcp_splice_eof(struct socket * sock)1348 void tcp_splice_eof(struct socket *sock)
1349 {
1350 struct sock *sk = sock->sk;
1351 struct tcp_sock *tp = tcp_sk(sk);
1352 int mss_now, size_goal;
1353
1354 if (!tcp_write_queue_tail(sk))
1355 return;
1356
1357 lock_sock(sk);
1358 mss_now = tcp_send_mss(sk, &size_goal, 0);
1359 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1360 release_sock(sk);
1361 }
1362 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1363
1364 /*
1365 * Handle reading urgent data. BSD has very simple semantics for
1366 * this, no blocking and very strange errors 8)
1367 */
1368
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1369 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1370 {
1371 struct tcp_sock *tp = tcp_sk(sk);
1372
1373 /* No URG data to read. */
1374 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1375 tp->urg_data == TCP_URG_READ)
1376 return -EINVAL; /* Yes this is right ! */
1377
1378 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1379 return -ENOTCONN;
1380
1381 if (tp->urg_data & TCP_URG_VALID) {
1382 int err = 0;
1383 char c = tp->urg_data;
1384
1385 if (!(flags & MSG_PEEK))
1386 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1387
1388 /* Read urgent data. */
1389 msg->msg_flags |= MSG_OOB;
1390
1391 if (len > 0) {
1392 if (!(flags & MSG_TRUNC))
1393 err = memcpy_to_msg(msg, &c, 1);
1394 len = 1;
1395 } else
1396 msg->msg_flags |= MSG_TRUNC;
1397
1398 return err ? -EFAULT : len;
1399 }
1400
1401 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1402 return 0;
1403
1404 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1405 * the available implementations agree in this case:
1406 * this call should never block, independent of the
1407 * blocking state of the socket.
1408 * Mike <pall@rz.uni-karlsruhe.de>
1409 */
1410 return -EAGAIN;
1411 }
1412
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1413 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1414 {
1415 struct sk_buff *skb;
1416 int copied = 0, err = 0;
1417
1418 /* XXX -- need to support SO_PEEK_OFF */
1419
1420 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1421 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1422 if (err)
1423 return err;
1424 copied += skb->len;
1425 }
1426
1427 skb_queue_walk(&sk->sk_write_queue, skb) {
1428 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1429 if (err)
1430 break;
1431
1432 copied += skb->len;
1433 }
1434
1435 return err ?: copied;
1436 }
1437
1438 /* Clean up the receive buffer for full frames taken by the user,
1439 * then send an ACK if necessary. COPIED is the number of bytes
1440 * tcp_recvmsg has given to the user so far, it speeds up the
1441 * calculation of whether or not we must ACK for the sake of
1442 * a window update.
1443 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1444 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1445 {
1446 struct tcp_sock *tp = tcp_sk(sk);
1447 bool time_to_ack = false;
1448
1449 if (inet_csk_ack_scheduled(sk)) {
1450 const struct inet_connection_sock *icsk = inet_csk(sk);
1451
1452 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1453 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1454 /*
1455 * If this read emptied read buffer, we send ACK, if
1456 * connection is not bidirectional, user drained
1457 * receive buffer and there was a small segment
1458 * in queue.
1459 */
1460 (copied > 0 &&
1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1462 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1463 !inet_csk_in_pingpong_mode(sk))) &&
1464 !atomic_read(&sk->sk_rmem_alloc)))
1465 time_to_ack = true;
1466 }
1467
1468 /* We send an ACK if we can now advertise a non-zero window
1469 * which has been raised "significantly".
1470 *
1471 * Even if window raised up to infinity, do not send window open ACK
1472 * in states, where we will not receive more. It is useless.
1473 */
1474 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1475 __u32 rcv_window_now = tcp_receive_window(tp);
1476
1477 /* Optimize, __tcp_select_window() is not cheap. */
1478 if (2*rcv_window_now <= tp->window_clamp) {
1479 __u32 new_window = __tcp_select_window(sk);
1480
1481 /* Send ACK now, if this read freed lots of space
1482 * in our buffer. Certainly, new_window is new window.
1483 * We can advertise it now, if it is not less than current one.
1484 * "Lots" means "at least twice" here.
1485 */
1486 if (new_window && new_window >= 2 * rcv_window_now)
1487 time_to_ack = true;
1488 }
1489 }
1490 if (time_to_ack)
1491 tcp_send_ack(sk);
1492 }
1493
tcp_cleanup_rbuf(struct sock * sk,int copied)1494 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1495 {
1496 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1497 struct tcp_sock *tp = tcp_sk(sk);
1498
1499 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1500 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1501 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1502 __tcp_cleanup_rbuf(sk, copied);
1503 }
1504
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1505 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1506 {
1507 __skb_unlink(skb, &sk->sk_receive_queue);
1508 if (likely(skb->destructor == sock_rfree)) {
1509 sock_rfree(skb);
1510 skb->destructor = NULL;
1511 skb->sk = NULL;
1512 return skb_attempt_defer_free(skb);
1513 }
1514 __kfree_skb(skb);
1515 }
1516
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1517 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1518 {
1519 struct sk_buff *skb;
1520 u32 offset;
1521
1522 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1523 offset = seq - TCP_SKB_CB(skb)->seq;
1524 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1525 pr_err_once("%s: found a SYN, please report !\n", __func__);
1526 offset--;
1527 }
1528 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1529 *off = offset;
1530 return skb;
1531 }
1532 /* This looks weird, but this can happen if TCP collapsing
1533 * splitted a fat GRO packet, while we released socket lock
1534 * in skb_splice_bits()
1535 */
1536 tcp_eat_recv_skb(sk, skb);
1537 }
1538 return NULL;
1539 }
1540 EXPORT_SYMBOL(tcp_recv_skb);
1541
1542 /*
1543 * This routine provides an alternative to tcp_recvmsg() for routines
1544 * that would like to handle copying from skbuffs directly in 'sendfile'
1545 * fashion.
1546 * Note:
1547 * - It is assumed that the socket was locked by the caller.
1548 * - The routine does not block.
1549 * - At present, there is no support for reading OOB data
1550 * or for 'peeking' the socket using this routine
1551 * (although both would be easy to implement).
1552 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1553 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1554 sk_read_actor_t recv_actor)
1555 {
1556 struct sk_buff *skb;
1557 struct tcp_sock *tp = tcp_sk(sk);
1558 u32 seq = tp->copied_seq;
1559 u32 offset;
1560 int copied = 0;
1561
1562 if (sk->sk_state == TCP_LISTEN)
1563 return -ENOTCONN;
1564 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1565 if (offset < skb->len) {
1566 int used;
1567 size_t len;
1568
1569 len = skb->len - offset;
1570 /* Stop reading if we hit a patch of urgent data */
1571 if (unlikely(tp->urg_data)) {
1572 u32 urg_offset = tp->urg_seq - seq;
1573 if (urg_offset < len)
1574 len = urg_offset;
1575 if (!len)
1576 break;
1577 }
1578 used = recv_actor(desc, skb, offset, len);
1579 if (used <= 0) {
1580 if (!copied)
1581 copied = used;
1582 break;
1583 }
1584 if (WARN_ON_ONCE(used > len))
1585 used = len;
1586 seq += used;
1587 copied += used;
1588 offset += used;
1589
1590 /* If recv_actor drops the lock (e.g. TCP splice
1591 * receive) the skb pointer might be invalid when
1592 * getting here: tcp_collapse might have deleted it
1593 * while aggregating skbs from the socket queue.
1594 */
1595 skb = tcp_recv_skb(sk, seq - 1, &offset);
1596 if (!skb)
1597 break;
1598 /* TCP coalescing might have appended data to the skb.
1599 * Try to splice more frags
1600 */
1601 if (offset + 1 != skb->len)
1602 continue;
1603 }
1604 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1605 tcp_eat_recv_skb(sk, skb);
1606 ++seq;
1607 break;
1608 }
1609 tcp_eat_recv_skb(sk, skb);
1610 if (!desc->count)
1611 break;
1612 WRITE_ONCE(tp->copied_seq, seq);
1613 }
1614 WRITE_ONCE(tp->copied_seq, seq);
1615
1616 tcp_rcv_space_adjust(sk);
1617
1618 /* Clean up data we have read: This will do ACK frames. */
1619 if (copied > 0) {
1620 tcp_recv_skb(sk, seq, &offset);
1621 tcp_cleanup_rbuf(sk, copied);
1622 }
1623 return copied;
1624 }
1625 EXPORT_SYMBOL(tcp_read_sock);
1626
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1627 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1628 {
1629 struct sk_buff *skb;
1630 int copied = 0;
1631
1632 if (sk->sk_state == TCP_LISTEN)
1633 return -ENOTCONN;
1634
1635 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1636 u8 tcp_flags;
1637 int used;
1638
1639 __skb_unlink(skb, &sk->sk_receive_queue);
1640 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1641 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1642 used = recv_actor(sk, skb);
1643 if (used < 0) {
1644 if (!copied)
1645 copied = used;
1646 break;
1647 }
1648 copied += used;
1649
1650 if (tcp_flags & TCPHDR_FIN)
1651 break;
1652 }
1653 return copied;
1654 }
1655 EXPORT_SYMBOL(tcp_read_skb);
1656
tcp_read_done(struct sock * sk,size_t len)1657 void tcp_read_done(struct sock *sk, size_t len)
1658 {
1659 struct tcp_sock *tp = tcp_sk(sk);
1660 u32 seq = tp->copied_seq;
1661 struct sk_buff *skb;
1662 size_t left;
1663 u32 offset;
1664
1665 if (sk->sk_state == TCP_LISTEN)
1666 return;
1667
1668 left = len;
1669 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1670 int used;
1671
1672 used = min_t(size_t, skb->len - offset, left);
1673 seq += used;
1674 left -= used;
1675
1676 if (skb->len > offset + used)
1677 break;
1678
1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1680 tcp_eat_recv_skb(sk, skb);
1681 ++seq;
1682 break;
1683 }
1684 tcp_eat_recv_skb(sk, skb);
1685 }
1686 WRITE_ONCE(tp->copied_seq, seq);
1687
1688 tcp_rcv_space_adjust(sk);
1689
1690 /* Clean up data we have read: This will do ACK frames. */
1691 if (left != len)
1692 tcp_cleanup_rbuf(sk, len - left);
1693 }
1694 EXPORT_SYMBOL(tcp_read_done);
1695
tcp_peek_len(struct socket * sock)1696 int tcp_peek_len(struct socket *sock)
1697 {
1698 return tcp_inq(sock->sk);
1699 }
1700 EXPORT_SYMBOL(tcp_peek_len);
1701
1702 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1703 int tcp_set_rcvlowat(struct sock *sk, int val)
1704 {
1705 int space, cap;
1706
1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1708 cap = sk->sk_rcvbuf >> 1;
1709 else
1710 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1711 val = min(val, cap);
1712 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1713
1714 /* Check if we need to signal EPOLLIN right now */
1715 tcp_data_ready(sk);
1716
1717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1718 return 0;
1719
1720 space = tcp_space_from_win(sk, val);
1721 if (space > sk->sk_rcvbuf) {
1722 WRITE_ONCE(sk->sk_rcvbuf, space);
1723 tcp_sk(sk)->window_clamp = val;
1724 }
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(tcp_set_rcvlowat);
1728
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1729 void tcp_update_recv_tstamps(struct sk_buff *skb,
1730 struct scm_timestamping_internal *tss)
1731 {
1732 if (skb->tstamp)
1733 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1734 else
1735 tss->ts[0] = (struct timespec64) {0};
1736
1737 if (skb_hwtstamps(skb)->hwtstamp)
1738 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1739 else
1740 tss->ts[2] = (struct timespec64) {0};
1741 }
1742
1743 #ifdef CONFIG_MMU
1744 static const struct vm_operations_struct tcp_vm_ops = {
1745 };
1746
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1747 int tcp_mmap(struct file *file, struct socket *sock,
1748 struct vm_area_struct *vma)
1749 {
1750 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1751 return -EPERM;
1752 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1753
1754 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1755 vm_flags_set(vma, VM_MIXEDMAP);
1756
1757 vma->vm_ops = &tcp_vm_ops;
1758 return 0;
1759 }
1760 EXPORT_SYMBOL(tcp_mmap);
1761
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1762 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1763 u32 *offset_frag)
1764 {
1765 skb_frag_t *frag;
1766
1767 if (unlikely(offset_skb >= skb->len))
1768 return NULL;
1769
1770 offset_skb -= skb_headlen(skb);
1771 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1772 return NULL;
1773
1774 frag = skb_shinfo(skb)->frags;
1775 while (offset_skb) {
1776 if (skb_frag_size(frag) > offset_skb) {
1777 *offset_frag = offset_skb;
1778 return frag;
1779 }
1780 offset_skb -= skb_frag_size(frag);
1781 ++frag;
1782 }
1783 *offset_frag = 0;
1784 return frag;
1785 }
1786
can_map_frag(const skb_frag_t * frag)1787 static bool can_map_frag(const skb_frag_t *frag)
1788 {
1789 struct page *page;
1790
1791 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1792 return false;
1793
1794 page = skb_frag_page(frag);
1795
1796 if (PageCompound(page) || page->mapping)
1797 return false;
1798
1799 return true;
1800 }
1801
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1802 static int find_next_mappable_frag(const skb_frag_t *frag,
1803 int remaining_in_skb)
1804 {
1805 int offset = 0;
1806
1807 if (likely(can_map_frag(frag)))
1808 return 0;
1809
1810 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1811 offset += skb_frag_size(frag);
1812 ++frag;
1813 }
1814 return offset;
1815 }
1816
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1817 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1818 struct tcp_zerocopy_receive *zc,
1819 struct sk_buff *skb, u32 offset)
1820 {
1821 u32 frag_offset, partial_frag_remainder = 0;
1822 int mappable_offset;
1823 skb_frag_t *frag;
1824
1825 /* worst case: skip to next skb. try to improve on this case below */
1826 zc->recv_skip_hint = skb->len - offset;
1827
1828 /* Find the frag containing this offset (and how far into that frag) */
1829 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1830 if (!frag)
1831 return;
1832
1833 if (frag_offset) {
1834 struct skb_shared_info *info = skb_shinfo(skb);
1835
1836 /* We read part of the last frag, must recvmsg() rest of skb. */
1837 if (frag == &info->frags[info->nr_frags - 1])
1838 return;
1839
1840 /* Else, we must at least read the remainder in this frag. */
1841 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1842 zc->recv_skip_hint -= partial_frag_remainder;
1843 ++frag;
1844 }
1845
1846 /* partial_frag_remainder: If part way through a frag, must read rest.
1847 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1848 * in partial_frag_remainder.
1849 */
1850 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1851 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1852 }
1853
1854 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1855 int flags, struct scm_timestamping_internal *tss,
1856 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1857 static int receive_fallback_to_copy(struct sock *sk,
1858 struct tcp_zerocopy_receive *zc, int inq,
1859 struct scm_timestamping_internal *tss)
1860 {
1861 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1862 struct msghdr msg = {};
1863 struct iovec iov;
1864 int err;
1865
1866 zc->length = 0;
1867 zc->recv_skip_hint = 0;
1868
1869 if (copy_address != zc->copybuf_address)
1870 return -EINVAL;
1871
1872 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1873 inq, &iov, &msg.msg_iter);
1874 if (err)
1875 return err;
1876
1877 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1878 tss, &zc->msg_flags);
1879 if (err < 0)
1880 return err;
1881
1882 zc->copybuf_len = err;
1883 if (likely(zc->copybuf_len)) {
1884 struct sk_buff *skb;
1885 u32 offset;
1886
1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888 if (skb)
1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890 }
1891 return 0;
1892 }
1893
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895 struct sk_buff *skb, u32 copylen,
1896 u32 *offset, u32 *seq)
1897 {
1898 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 struct msghdr msg = {};
1900 struct iovec iov;
1901 int err;
1902
1903 if (copy_address != zc->copybuf_address)
1904 return -EINVAL;
1905
1906 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1907 copylen, &iov, &msg.msg_iter);
1908 if (err)
1909 return err;
1910 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1911 if (err)
1912 return err;
1913 zc->recv_skip_hint -= copylen;
1914 *offset += copylen;
1915 *seq += copylen;
1916 return (__s32)copylen;
1917 }
1918
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1920 struct sock *sk,
1921 struct sk_buff *skb,
1922 u32 *seq,
1923 s32 copybuf_len,
1924 struct scm_timestamping_internal *tss)
1925 {
1926 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1927
1928 if (!copylen)
1929 return 0;
1930 /* skb is null if inq < PAGE_SIZE. */
1931 if (skb) {
1932 offset = *seq - TCP_SKB_CB(skb)->seq;
1933 } else {
1934 skb = tcp_recv_skb(sk, *seq, &offset);
1935 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1936 tcp_update_recv_tstamps(skb, tss);
1937 zc->msg_flags |= TCP_CMSG_TS;
1938 }
1939 }
1940
1941 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1942 seq);
1943 return zc->copybuf_len < 0 ? 0 : copylen;
1944 }
1945
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1947 struct page **pending_pages,
1948 unsigned long pages_remaining,
1949 unsigned long *address,
1950 u32 *length,
1951 u32 *seq,
1952 struct tcp_zerocopy_receive *zc,
1953 u32 total_bytes_to_map,
1954 int err)
1955 {
1956 /* At least one page did not map. Try zapping if we skipped earlier. */
1957 if (err == -EBUSY &&
1958 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1959 u32 maybe_zap_len;
1960
1961 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1962 *length + /* Mapped or pending */
1963 (pages_remaining * PAGE_SIZE); /* Failed map. */
1964 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1965 err = 0;
1966 }
1967
1968 if (!err) {
1969 unsigned long leftover_pages = pages_remaining;
1970 int bytes_mapped;
1971
1972 /* We called zap_page_range_single, try to reinsert. */
1973 err = vm_insert_pages(vma, *address,
1974 pending_pages,
1975 &pages_remaining);
1976 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1977 *seq += bytes_mapped;
1978 *address += bytes_mapped;
1979 }
1980 if (err) {
1981 /* Either we were unable to zap, OR we zapped, retried an
1982 * insert, and still had an issue. Either ways, pages_remaining
1983 * is the number of pages we were unable to map, and we unroll
1984 * some state we speculatively touched before.
1985 */
1986 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1987
1988 *length -= bytes_not_mapped;
1989 zc->recv_skip_hint += bytes_not_mapped;
1990 }
1991 return err;
1992 }
1993
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1995 struct page **pages,
1996 unsigned int pages_to_map,
1997 unsigned long *address,
1998 u32 *length,
1999 u32 *seq,
2000 struct tcp_zerocopy_receive *zc,
2001 u32 total_bytes_to_map)
2002 {
2003 unsigned long pages_remaining = pages_to_map;
2004 unsigned int pages_mapped;
2005 unsigned int bytes_mapped;
2006 int err;
2007
2008 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2009 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2010 bytes_mapped = PAGE_SIZE * pages_mapped;
2011 /* Even if vm_insert_pages fails, it may have partially succeeded in
2012 * mapping (some but not all of the pages).
2013 */
2014 *seq += bytes_mapped;
2015 *address += bytes_mapped;
2016
2017 if (likely(!err))
2018 return 0;
2019
2020 /* Error: maybe zap and retry + rollback state for failed inserts. */
2021 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2022 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2023 err);
2024 }
2025
2026 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2027 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2028 struct tcp_zerocopy_receive *zc,
2029 struct scm_timestamping_internal *tss)
2030 {
2031 unsigned long msg_control_addr;
2032 struct msghdr cmsg_dummy;
2033
2034 msg_control_addr = (unsigned long)zc->msg_control;
2035 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2036 cmsg_dummy.msg_controllen =
2037 (__kernel_size_t)zc->msg_controllen;
2038 cmsg_dummy.msg_flags = in_compat_syscall()
2039 ? MSG_CMSG_COMPAT : 0;
2040 cmsg_dummy.msg_control_is_user = true;
2041 zc->msg_flags = 0;
2042 if (zc->msg_control == msg_control_addr &&
2043 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2044 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2045 zc->msg_control = (__u64)
2046 ((uintptr_t)cmsg_dummy.msg_control_user);
2047 zc->msg_controllen =
2048 (__u64)cmsg_dummy.msg_controllen;
2049 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2050 }
2051 }
2052
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2053 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2054 unsigned long address,
2055 bool *mmap_locked)
2056 {
2057 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2058
2059 if (vma) {
2060 if (vma->vm_ops != &tcp_vm_ops) {
2061 vma_end_read(vma);
2062 return NULL;
2063 }
2064 *mmap_locked = false;
2065 return vma;
2066 }
2067
2068 mmap_read_lock(mm);
2069 vma = vma_lookup(mm, address);
2070 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2071 mmap_read_unlock(mm);
2072 return NULL;
2073 }
2074 *mmap_locked = true;
2075 return vma;
2076 }
2077
2078 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2079 static int tcp_zerocopy_receive(struct sock *sk,
2080 struct tcp_zerocopy_receive *zc,
2081 struct scm_timestamping_internal *tss)
2082 {
2083 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2084 unsigned long address = (unsigned long)zc->address;
2085 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2086 s32 copybuf_len = zc->copybuf_len;
2087 struct tcp_sock *tp = tcp_sk(sk);
2088 const skb_frag_t *frags = NULL;
2089 unsigned int pages_to_map = 0;
2090 struct vm_area_struct *vma;
2091 struct sk_buff *skb = NULL;
2092 u32 seq = tp->copied_seq;
2093 u32 total_bytes_to_map;
2094 int inq = tcp_inq(sk);
2095 bool mmap_locked;
2096 int ret;
2097
2098 zc->copybuf_len = 0;
2099 zc->msg_flags = 0;
2100
2101 if (address & (PAGE_SIZE - 1) || address != zc->address)
2102 return -EINVAL;
2103
2104 if (sk->sk_state == TCP_LISTEN)
2105 return -ENOTCONN;
2106
2107 sock_rps_record_flow(sk);
2108
2109 if (inq && inq <= copybuf_len)
2110 return receive_fallback_to_copy(sk, zc, inq, tss);
2111
2112 if (inq < PAGE_SIZE) {
2113 zc->length = 0;
2114 zc->recv_skip_hint = inq;
2115 if (!inq && sock_flag(sk, SOCK_DONE))
2116 return -EIO;
2117 return 0;
2118 }
2119
2120 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2121 if (!vma)
2122 return -EINVAL;
2123
2124 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2125 avail_len = min_t(u32, vma_len, inq);
2126 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2127 if (total_bytes_to_map) {
2128 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2129 zap_page_range_single(vma, address, total_bytes_to_map,
2130 NULL);
2131 zc->length = total_bytes_to_map;
2132 zc->recv_skip_hint = 0;
2133 } else {
2134 zc->length = avail_len;
2135 zc->recv_skip_hint = avail_len;
2136 }
2137 ret = 0;
2138 while (length + PAGE_SIZE <= zc->length) {
2139 int mappable_offset;
2140 struct page *page;
2141
2142 if (zc->recv_skip_hint < PAGE_SIZE) {
2143 u32 offset_frag;
2144
2145 if (skb) {
2146 if (zc->recv_skip_hint > 0)
2147 break;
2148 skb = skb->next;
2149 offset = seq - TCP_SKB_CB(skb)->seq;
2150 } else {
2151 skb = tcp_recv_skb(sk, seq, &offset);
2152 }
2153
2154 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2155 tcp_update_recv_tstamps(skb, tss);
2156 zc->msg_flags |= TCP_CMSG_TS;
2157 }
2158 zc->recv_skip_hint = skb->len - offset;
2159 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2160 if (!frags || offset_frag)
2161 break;
2162 }
2163
2164 mappable_offset = find_next_mappable_frag(frags,
2165 zc->recv_skip_hint);
2166 if (mappable_offset) {
2167 zc->recv_skip_hint = mappable_offset;
2168 break;
2169 }
2170 page = skb_frag_page(frags);
2171 prefetchw(page);
2172 pages[pages_to_map++] = page;
2173 length += PAGE_SIZE;
2174 zc->recv_skip_hint -= PAGE_SIZE;
2175 frags++;
2176 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2177 zc->recv_skip_hint < PAGE_SIZE) {
2178 /* Either full batch, or we're about to go to next skb
2179 * (and we cannot unroll failed ops across skbs).
2180 */
2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2182 pages_to_map,
2183 &address, &length,
2184 &seq, zc,
2185 total_bytes_to_map);
2186 if (ret)
2187 goto out;
2188 pages_to_map = 0;
2189 }
2190 }
2191 if (pages_to_map) {
2192 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2193 &address, &length, &seq,
2194 zc, total_bytes_to_map);
2195 }
2196 out:
2197 if (mmap_locked)
2198 mmap_read_unlock(current->mm);
2199 else
2200 vma_end_read(vma);
2201 /* Try to copy straggler data. */
2202 if (!ret)
2203 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2204
2205 if (length + copylen) {
2206 WRITE_ONCE(tp->copied_seq, seq);
2207 tcp_rcv_space_adjust(sk);
2208
2209 /* Clean up data we have read: This will do ACK frames. */
2210 tcp_recv_skb(sk, seq, &offset);
2211 tcp_cleanup_rbuf(sk, length + copylen);
2212 ret = 0;
2213 if (length == zc->length)
2214 zc->recv_skip_hint = 0;
2215 } else {
2216 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2217 ret = -EIO;
2218 }
2219 zc->length = length;
2220 return ret;
2221 }
2222 #endif
2223
2224 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2225 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2226 struct scm_timestamping_internal *tss)
2227 {
2228 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2229 bool has_timestamping = false;
2230
2231 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2232 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2233 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2234 if (new_tstamp) {
2235 struct __kernel_timespec kts = {
2236 .tv_sec = tss->ts[0].tv_sec,
2237 .tv_nsec = tss->ts[0].tv_nsec,
2238 };
2239 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2240 sizeof(kts), &kts);
2241 } else {
2242 struct __kernel_old_timespec ts_old = {
2243 .tv_sec = tss->ts[0].tv_sec,
2244 .tv_nsec = tss->ts[0].tv_nsec,
2245 };
2246 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2247 sizeof(ts_old), &ts_old);
2248 }
2249 } else {
2250 if (new_tstamp) {
2251 struct __kernel_sock_timeval stv = {
2252 .tv_sec = tss->ts[0].tv_sec,
2253 .tv_usec = tss->ts[0].tv_nsec / 1000,
2254 };
2255 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2256 sizeof(stv), &stv);
2257 } else {
2258 struct __kernel_old_timeval tv = {
2259 .tv_sec = tss->ts[0].tv_sec,
2260 .tv_usec = tss->ts[0].tv_nsec / 1000,
2261 };
2262 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2263 sizeof(tv), &tv);
2264 }
2265 }
2266 }
2267
2268 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2269 has_timestamping = true;
2270 else
2271 tss->ts[0] = (struct timespec64) {0};
2272 }
2273
2274 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2275 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2276 has_timestamping = true;
2277 else
2278 tss->ts[2] = (struct timespec64) {0};
2279 }
2280
2281 if (has_timestamping) {
2282 tss->ts[1] = (struct timespec64) {0};
2283 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2284 put_cmsg_scm_timestamping64(msg, tss);
2285 else
2286 put_cmsg_scm_timestamping(msg, tss);
2287 }
2288 }
2289
tcp_inq_hint(struct sock * sk)2290 static int tcp_inq_hint(struct sock *sk)
2291 {
2292 const struct tcp_sock *tp = tcp_sk(sk);
2293 u32 copied_seq = READ_ONCE(tp->copied_seq);
2294 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2295 int inq;
2296
2297 inq = rcv_nxt - copied_seq;
2298 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2299 lock_sock(sk);
2300 inq = tp->rcv_nxt - tp->copied_seq;
2301 release_sock(sk);
2302 }
2303 /* After receiving a FIN, tell the user-space to continue reading
2304 * by returning a non-zero inq.
2305 */
2306 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2307 inq = 1;
2308 return inq;
2309 }
2310
2311 /*
2312 * This routine copies from a sock struct into the user buffer.
2313 *
2314 * Technical note: in 2.3 we work on _locked_ socket, so that
2315 * tricks with *seq access order and skb->users are not required.
2316 * Probably, code can be easily improved even more.
2317 */
2318
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2319 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2320 int flags, struct scm_timestamping_internal *tss,
2321 int *cmsg_flags)
2322 {
2323 struct tcp_sock *tp = tcp_sk(sk);
2324 int copied = 0;
2325 u32 peek_seq;
2326 u32 *seq;
2327 unsigned long used;
2328 int err;
2329 int target; /* Read at least this many bytes */
2330 long timeo;
2331 struct sk_buff *skb, *last;
2332 u32 urg_hole = 0;
2333
2334 err = -ENOTCONN;
2335 if (sk->sk_state == TCP_LISTEN)
2336 goto out;
2337
2338 if (tp->recvmsg_inq) {
2339 *cmsg_flags = TCP_CMSG_INQ;
2340 msg->msg_get_inq = 1;
2341 }
2342 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2343
2344 /* Urgent data needs to be handled specially. */
2345 if (flags & MSG_OOB)
2346 goto recv_urg;
2347
2348 if (unlikely(tp->repair)) {
2349 err = -EPERM;
2350 if (!(flags & MSG_PEEK))
2351 goto out;
2352
2353 if (tp->repair_queue == TCP_SEND_QUEUE)
2354 goto recv_sndq;
2355
2356 err = -EINVAL;
2357 if (tp->repair_queue == TCP_NO_QUEUE)
2358 goto out;
2359
2360 /* 'common' recv queue MSG_PEEK-ing */
2361 }
2362
2363 seq = &tp->copied_seq;
2364 if (flags & MSG_PEEK) {
2365 peek_seq = tp->copied_seq;
2366 seq = &peek_seq;
2367 }
2368
2369 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2370
2371 do {
2372 u32 offset;
2373
2374 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2375 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2376 if (copied)
2377 break;
2378 if (signal_pending(current)) {
2379 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2380 break;
2381 }
2382 }
2383
2384 /* Next get a buffer. */
2385
2386 last = skb_peek_tail(&sk->sk_receive_queue);
2387 skb_queue_walk(&sk->sk_receive_queue, skb) {
2388 last = skb;
2389 /* Now that we have two receive queues this
2390 * shouldn't happen.
2391 */
2392 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2393 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2394 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2395 flags))
2396 break;
2397
2398 offset = *seq - TCP_SKB_CB(skb)->seq;
2399 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2400 pr_err_once("%s: found a SYN, please report !\n", __func__);
2401 offset--;
2402 }
2403 if (offset < skb->len)
2404 goto found_ok_skb;
2405 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2406 goto found_fin_ok;
2407 WARN(!(flags & MSG_PEEK),
2408 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2409 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2410 }
2411
2412 /* Well, if we have backlog, try to process it now yet. */
2413
2414 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2415 break;
2416
2417 if (copied) {
2418 if (!timeo ||
2419 sk->sk_err ||
2420 sk->sk_state == TCP_CLOSE ||
2421 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2422 signal_pending(current))
2423 break;
2424 } else {
2425 if (sock_flag(sk, SOCK_DONE))
2426 break;
2427
2428 if (sk->sk_err) {
2429 copied = sock_error(sk);
2430 break;
2431 }
2432
2433 if (sk->sk_shutdown & RCV_SHUTDOWN)
2434 break;
2435
2436 if (sk->sk_state == TCP_CLOSE) {
2437 /* This occurs when user tries to read
2438 * from never connected socket.
2439 */
2440 copied = -ENOTCONN;
2441 break;
2442 }
2443
2444 if (!timeo) {
2445 copied = -EAGAIN;
2446 break;
2447 }
2448
2449 if (signal_pending(current)) {
2450 copied = sock_intr_errno(timeo);
2451 break;
2452 }
2453 }
2454
2455 if (copied >= target) {
2456 /* Do not sleep, just process backlog. */
2457 __sk_flush_backlog(sk);
2458 } else {
2459 tcp_cleanup_rbuf(sk, copied);
2460 err = sk_wait_data(sk, &timeo, last);
2461 if (err < 0) {
2462 err = copied ? : err;
2463 goto out;
2464 }
2465 }
2466
2467 if ((flags & MSG_PEEK) &&
2468 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2469 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2470 current->comm,
2471 task_pid_nr(current));
2472 peek_seq = tp->copied_seq;
2473 }
2474 continue;
2475
2476 found_ok_skb:
2477 /* Ok so how much can we use? */
2478 used = skb->len - offset;
2479 if (len < used)
2480 used = len;
2481
2482 /* Do we have urgent data here? */
2483 if (unlikely(tp->urg_data)) {
2484 u32 urg_offset = tp->urg_seq - *seq;
2485 if (urg_offset < used) {
2486 if (!urg_offset) {
2487 if (!sock_flag(sk, SOCK_URGINLINE)) {
2488 WRITE_ONCE(*seq, *seq + 1);
2489 urg_hole++;
2490 offset++;
2491 used--;
2492 if (!used)
2493 goto skip_copy;
2494 }
2495 } else
2496 used = urg_offset;
2497 }
2498 }
2499
2500 if (!(flags & MSG_TRUNC)) {
2501 err = skb_copy_datagram_msg(skb, offset, msg, used);
2502 if (err) {
2503 /* Exception. Bailout! */
2504 if (!copied)
2505 copied = -EFAULT;
2506 break;
2507 }
2508 }
2509
2510 WRITE_ONCE(*seq, *seq + used);
2511 copied += used;
2512 len -= used;
2513
2514 tcp_rcv_space_adjust(sk);
2515
2516 skip_copy:
2517 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2518 WRITE_ONCE(tp->urg_data, 0);
2519 tcp_fast_path_check(sk);
2520 }
2521
2522 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2523 tcp_update_recv_tstamps(skb, tss);
2524 *cmsg_flags |= TCP_CMSG_TS;
2525 }
2526
2527 if (used + offset < skb->len)
2528 continue;
2529
2530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2531 goto found_fin_ok;
2532 if (!(flags & MSG_PEEK))
2533 tcp_eat_recv_skb(sk, skb);
2534 continue;
2535
2536 found_fin_ok:
2537 /* Process the FIN. */
2538 WRITE_ONCE(*seq, *seq + 1);
2539 if (!(flags & MSG_PEEK))
2540 tcp_eat_recv_skb(sk, skb);
2541 break;
2542 } while (len > 0);
2543
2544 /* According to UNIX98, msg_name/msg_namelen are ignored
2545 * on connected socket. I was just happy when found this 8) --ANK
2546 */
2547
2548 /* Clean up data we have read: This will do ACK frames. */
2549 tcp_cleanup_rbuf(sk, copied);
2550 return copied;
2551
2552 out:
2553 return err;
2554
2555 recv_urg:
2556 err = tcp_recv_urg(sk, msg, len, flags);
2557 goto out;
2558
2559 recv_sndq:
2560 err = tcp_peek_sndq(sk, msg, len);
2561 goto out;
2562 }
2563
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2564 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2565 int *addr_len)
2566 {
2567 int cmsg_flags = 0, ret;
2568 struct scm_timestamping_internal tss;
2569
2570 if (unlikely(flags & MSG_ERRQUEUE))
2571 return inet_recv_error(sk, msg, len, addr_len);
2572
2573 if (sk_can_busy_loop(sk) &&
2574 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2575 sk->sk_state == TCP_ESTABLISHED)
2576 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2577
2578 lock_sock(sk);
2579 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2580 release_sock(sk);
2581
2582 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2583 if (cmsg_flags & TCP_CMSG_TS)
2584 tcp_recv_timestamp(msg, sk, &tss);
2585 if (msg->msg_get_inq) {
2586 msg->msg_inq = tcp_inq_hint(sk);
2587 if (cmsg_flags & TCP_CMSG_INQ)
2588 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2589 sizeof(msg->msg_inq), &msg->msg_inq);
2590 }
2591 }
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(tcp_recvmsg);
2595
tcp_set_state(struct sock * sk,int state)2596 void tcp_set_state(struct sock *sk, int state)
2597 {
2598 int oldstate = sk->sk_state;
2599
2600 /* We defined a new enum for TCP states that are exported in BPF
2601 * so as not force the internal TCP states to be frozen. The
2602 * following checks will detect if an internal state value ever
2603 * differs from the BPF value. If this ever happens, then we will
2604 * need to remap the internal value to the BPF value before calling
2605 * tcp_call_bpf_2arg.
2606 */
2607 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2608 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2609 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2610 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2611 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2612 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2613 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2614 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2615 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2616 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2617 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2618 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2619 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620
2621 /* bpf uapi header bpf.h defines an anonymous enum with values
2622 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624 * But clang built vmlinux does not have this enum in DWARF
2625 * since clang removes the above code before generating IR/debuginfo.
2626 * Let us explicitly emit the type debuginfo to ensure the
2627 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628 * regardless of which compiler is used.
2629 */
2630 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631
2632 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634
2635 switch (state) {
2636 case TCP_ESTABLISHED:
2637 if (oldstate != TCP_ESTABLISHED)
2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639 break;
2640
2641 case TCP_CLOSE:
2642 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644
2645 sk->sk_prot->unhash(sk);
2646 if (inet_csk(sk)->icsk_bind_hash &&
2647 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648 inet_put_port(sk);
2649 fallthrough;
2650 default:
2651 if (oldstate == TCP_ESTABLISHED)
2652 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653 }
2654
2655 /* Change state AFTER socket is unhashed to avoid closed
2656 * socket sitting in hash tables.
2657 */
2658 inet_sk_state_store(sk, state);
2659 }
2660 EXPORT_SYMBOL_GPL(tcp_set_state);
2661
2662 /*
2663 * State processing on a close. This implements the state shift for
2664 * sending our FIN frame. Note that we only send a FIN for some
2665 * states. A shutdown() may have already sent the FIN, or we may be
2666 * closed.
2667 */
2668
2669 static const unsigned char new_state[16] = {
2670 /* current state: new state: action: */
2671 [0 /* (Invalid) */] = TCP_CLOSE,
2672 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673 [TCP_SYN_SENT] = TCP_CLOSE,
2674 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2676 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2677 [TCP_TIME_WAIT] = TCP_CLOSE,
2678 [TCP_CLOSE] = TCP_CLOSE,
2679 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2680 [TCP_LAST_ACK] = TCP_LAST_ACK,
2681 [TCP_LISTEN] = TCP_CLOSE,
2682 [TCP_CLOSING] = TCP_CLOSING,
2683 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2684 };
2685
tcp_close_state(struct sock * sk)2686 static int tcp_close_state(struct sock *sk)
2687 {
2688 int next = (int)new_state[sk->sk_state];
2689 int ns = next & TCP_STATE_MASK;
2690
2691 tcp_set_state(sk, ns);
2692
2693 return next & TCP_ACTION_FIN;
2694 }
2695
2696 /*
2697 * Shutdown the sending side of a connection. Much like close except
2698 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699 */
2700
tcp_shutdown(struct sock * sk,int how)2701 void tcp_shutdown(struct sock *sk, int how)
2702 {
2703 /* We need to grab some memory, and put together a FIN,
2704 * and then put it into the queue to be sent.
2705 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706 */
2707 if (!(how & SEND_SHUTDOWN))
2708 return;
2709
2710 /* If we've already sent a FIN, or it's a closed state, skip this. */
2711 if ((1 << sk->sk_state) &
2712 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2714 /* Clear out any half completed packets. FIN if needed. */
2715 if (tcp_close_state(sk))
2716 tcp_send_fin(sk);
2717 }
2718 }
2719 EXPORT_SYMBOL(tcp_shutdown);
2720
tcp_orphan_count_sum(void)2721 int tcp_orphan_count_sum(void)
2722 {
2723 int i, total = 0;
2724
2725 for_each_possible_cpu(i)
2726 total += per_cpu(tcp_orphan_count, i);
2727
2728 return max(total, 0);
2729 }
2730
2731 static int tcp_orphan_cache;
2732 static struct timer_list tcp_orphan_timer;
2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734
tcp_orphan_update(struct timer_list * unused)2735 static void tcp_orphan_update(struct timer_list *unused)
2736 {
2737 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739 }
2740
tcp_too_many_orphans(int shift)2741 static bool tcp_too_many_orphans(int shift)
2742 {
2743 return READ_ONCE(tcp_orphan_cache) << shift >
2744 READ_ONCE(sysctl_tcp_max_orphans);
2745 }
2746
tcp_check_oom(struct sock * sk,int shift)2747 bool tcp_check_oom(struct sock *sk, int shift)
2748 {
2749 bool too_many_orphans, out_of_socket_memory;
2750
2751 too_many_orphans = tcp_too_many_orphans(shift);
2752 out_of_socket_memory = tcp_out_of_memory(sk);
2753
2754 if (too_many_orphans)
2755 net_info_ratelimited("too many orphaned sockets\n");
2756 if (out_of_socket_memory)
2757 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2758 return too_many_orphans || out_of_socket_memory;
2759 }
2760
__tcp_close(struct sock * sk,long timeout)2761 void __tcp_close(struct sock *sk, long timeout)
2762 {
2763 struct sk_buff *skb;
2764 int data_was_unread = 0;
2765 int state;
2766
2767 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2768
2769 if (sk->sk_state == TCP_LISTEN) {
2770 tcp_set_state(sk, TCP_CLOSE);
2771
2772 /* Special case. */
2773 inet_csk_listen_stop(sk);
2774
2775 goto adjudge_to_death;
2776 }
2777
2778 /* We need to flush the recv. buffs. We do this only on the
2779 * descriptor close, not protocol-sourced closes, because the
2780 * reader process may not have drained the data yet!
2781 */
2782 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2783 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2784
2785 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2786 len--;
2787 data_was_unread += len;
2788 __kfree_skb(skb);
2789 }
2790
2791 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2792 if (sk->sk_state == TCP_CLOSE)
2793 goto adjudge_to_death;
2794
2795 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2796 * data was lost. To witness the awful effects of the old behavior of
2797 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2798 * GET in an FTP client, suspend the process, wait for the client to
2799 * advertise a zero window, then kill -9 the FTP client, wheee...
2800 * Note: timeout is always zero in such a case.
2801 */
2802 if (unlikely(tcp_sk(sk)->repair)) {
2803 sk->sk_prot->disconnect(sk, 0);
2804 } else if (data_was_unread) {
2805 /* Unread data was tossed, zap the connection. */
2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2807 tcp_set_state(sk, TCP_CLOSE);
2808 tcp_send_active_reset(sk, sk->sk_allocation);
2809 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2810 /* Check zero linger _after_ checking for unread data. */
2811 sk->sk_prot->disconnect(sk, 0);
2812 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2813 } else if (tcp_close_state(sk)) {
2814 /* We FIN if the application ate all the data before
2815 * zapping the connection.
2816 */
2817
2818 /* RED-PEN. Formally speaking, we have broken TCP state
2819 * machine. State transitions:
2820 *
2821 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2822 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2823 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2824 *
2825 * are legal only when FIN has been sent (i.e. in window),
2826 * rather than queued out of window. Purists blame.
2827 *
2828 * F.e. "RFC state" is ESTABLISHED,
2829 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2830 *
2831 * The visible declinations are that sometimes
2832 * we enter time-wait state, when it is not required really
2833 * (harmless), do not send active resets, when they are
2834 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2835 * they look as CLOSING or LAST_ACK for Linux)
2836 * Probably, I missed some more holelets.
2837 * --ANK
2838 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2839 * in a single packet! (May consider it later but will
2840 * probably need API support or TCP_CORK SYN-ACK until
2841 * data is written and socket is closed.)
2842 */
2843 tcp_send_fin(sk);
2844 }
2845
2846 sk_stream_wait_close(sk, timeout);
2847
2848 adjudge_to_death:
2849 state = sk->sk_state;
2850 sock_hold(sk);
2851 sock_orphan(sk);
2852
2853 local_bh_disable();
2854 bh_lock_sock(sk);
2855 /* remove backlog if any, without releasing ownership. */
2856 __release_sock(sk);
2857
2858 this_cpu_inc(tcp_orphan_count);
2859
2860 /* Have we already been destroyed by a softirq or backlog? */
2861 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2862 goto out;
2863
2864 /* This is a (useful) BSD violating of the RFC. There is a
2865 * problem with TCP as specified in that the other end could
2866 * keep a socket open forever with no application left this end.
2867 * We use a 1 minute timeout (about the same as BSD) then kill
2868 * our end. If they send after that then tough - BUT: long enough
2869 * that we won't make the old 4*rto = almost no time - whoops
2870 * reset mistake.
2871 *
2872 * Nope, it was not mistake. It is really desired behaviour
2873 * f.e. on http servers, when such sockets are useless, but
2874 * consume significant resources. Let's do it with special
2875 * linger2 option. --ANK
2876 */
2877
2878 if (sk->sk_state == TCP_FIN_WAIT2) {
2879 struct tcp_sock *tp = tcp_sk(sk);
2880 if (READ_ONCE(tp->linger2) < 0) {
2881 tcp_set_state(sk, TCP_CLOSE);
2882 tcp_send_active_reset(sk, GFP_ATOMIC);
2883 __NET_INC_STATS(sock_net(sk),
2884 LINUX_MIB_TCPABORTONLINGER);
2885 } else {
2886 const int tmo = tcp_fin_time(sk);
2887
2888 if (tmo > TCP_TIMEWAIT_LEN) {
2889 inet_csk_reset_keepalive_timer(sk,
2890 tmo - TCP_TIMEWAIT_LEN);
2891 } else {
2892 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2893 goto out;
2894 }
2895 }
2896 }
2897 if (sk->sk_state != TCP_CLOSE) {
2898 if (tcp_check_oom(sk, 0)) {
2899 tcp_set_state(sk, TCP_CLOSE);
2900 tcp_send_active_reset(sk, GFP_ATOMIC);
2901 __NET_INC_STATS(sock_net(sk),
2902 LINUX_MIB_TCPABORTONMEMORY);
2903 } else if (!check_net(sock_net(sk))) {
2904 /* Not possible to send reset; just close */
2905 tcp_set_state(sk, TCP_CLOSE);
2906 }
2907 }
2908
2909 if (sk->sk_state == TCP_CLOSE) {
2910 struct request_sock *req;
2911
2912 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2913 lockdep_sock_is_held(sk));
2914 /* We could get here with a non-NULL req if the socket is
2915 * aborted (e.g., closed with unread data) before 3WHS
2916 * finishes.
2917 */
2918 if (req)
2919 reqsk_fastopen_remove(sk, req, false);
2920 inet_csk_destroy_sock(sk);
2921 }
2922 /* Otherwise, socket is reprieved until protocol close. */
2923
2924 out:
2925 bh_unlock_sock(sk);
2926 local_bh_enable();
2927 }
2928
tcp_close(struct sock * sk,long timeout)2929 void tcp_close(struct sock *sk, long timeout)
2930 {
2931 lock_sock(sk);
2932 __tcp_close(sk, timeout);
2933 release_sock(sk);
2934 sock_put(sk);
2935 }
2936 EXPORT_SYMBOL(tcp_close);
2937
2938 /* These states need RST on ABORT according to RFC793 */
2939
tcp_need_reset(int state)2940 static inline bool tcp_need_reset(int state)
2941 {
2942 return (1 << state) &
2943 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2944 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2945 }
2946
tcp_rtx_queue_purge(struct sock * sk)2947 static void tcp_rtx_queue_purge(struct sock *sk)
2948 {
2949 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2950
2951 tcp_sk(sk)->highest_sack = NULL;
2952 while (p) {
2953 struct sk_buff *skb = rb_to_skb(p);
2954
2955 p = rb_next(p);
2956 /* Since we are deleting whole queue, no need to
2957 * list_del(&skb->tcp_tsorted_anchor)
2958 */
2959 tcp_rtx_queue_unlink(skb, sk);
2960 tcp_wmem_free_skb(sk, skb);
2961 }
2962 }
2963
tcp_write_queue_purge(struct sock * sk)2964 void tcp_write_queue_purge(struct sock *sk)
2965 {
2966 struct sk_buff *skb;
2967
2968 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2969 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2970 tcp_skb_tsorted_anchor_cleanup(skb);
2971 tcp_wmem_free_skb(sk, skb);
2972 }
2973 tcp_rtx_queue_purge(sk);
2974 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2975 tcp_clear_all_retrans_hints(tcp_sk(sk));
2976 tcp_sk(sk)->packets_out = 0;
2977 inet_csk(sk)->icsk_backoff = 0;
2978 }
2979
tcp_disconnect(struct sock * sk,int flags)2980 int tcp_disconnect(struct sock *sk, int flags)
2981 {
2982 struct inet_sock *inet = inet_sk(sk);
2983 struct inet_connection_sock *icsk = inet_csk(sk);
2984 struct tcp_sock *tp = tcp_sk(sk);
2985 int old_state = sk->sk_state;
2986 u32 seq;
2987
2988 if (old_state != TCP_CLOSE)
2989 tcp_set_state(sk, TCP_CLOSE);
2990
2991 /* ABORT function of RFC793 */
2992 if (old_state == TCP_LISTEN) {
2993 inet_csk_listen_stop(sk);
2994 } else if (unlikely(tp->repair)) {
2995 WRITE_ONCE(sk->sk_err, ECONNABORTED);
2996 } else if (tcp_need_reset(old_state) ||
2997 (tp->snd_nxt != tp->write_seq &&
2998 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2999 /* The last check adjusts for discrepancy of Linux wrt. RFC
3000 * states
3001 */
3002 tcp_send_active_reset(sk, gfp_any());
3003 WRITE_ONCE(sk->sk_err, ECONNRESET);
3004 } else if (old_state == TCP_SYN_SENT)
3005 WRITE_ONCE(sk->sk_err, ECONNRESET);
3006
3007 tcp_clear_xmit_timers(sk);
3008 __skb_queue_purge(&sk->sk_receive_queue);
3009 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3010 WRITE_ONCE(tp->urg_data, 0);
3011 tcp_write_queue_purge(sk);
3012 tcp_fastopen_active_disable_ofo_check(sk);
3013 skb_rbtree_purge(&tp->out_of_order_queue);
3014
3015 inet->inet_dport = 0;
3016
3017 inet_bhash2_reset_saddr(sk);
3018
3019 WRITE_ONCE(sk->sk_shutdown, 0);
3020 sock_reset_flag(sk, SOCK_DONE);
3021 tp->srtt_us = 0;
3022 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3023 tp->rcv_rtt_last_tsecr = 0;
3024
3025 seq = tp->write_seq + tp->max_window + 2;
3026 if (!seq)
3027 seq = 1;
3028 WRITE_ONCE(tp->write_seq, seq);
3029
3030 icsk->icsk_backoff = 0;
3031 icsk->icsk_probes_out = 0;
3032 icsk->icsk_probes_tstamp = 0;
3033 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3034 icsk->icsk_rto_min = TCP_RTO_MIN;
3035 icsk->icsk_delack_max = TCP_DELACK_MAX;
3036 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3037 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3038 tp->snd_cwnd_cnt = 0;
3039 tp->is_cwnd_limited = 0;
3040 tp->max_packets_out = 0;
3041 tp->window_clamp = 0;
3042 tp->delivered = 0;
3043 tp->delivered_ce = 0;
3044 if (icsk->icsk_ca_ops->release)
3045 icsk->icsk_ca_ops->release(sk);
3046 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3047 icsk->icsk_ca_initialized = 0;
3048 tcp_set_ca_state(sk, TCP_CA_Open);
3049 tp->is_sack_reneg = 0;
3050 tcp_clear_retrans(tp);
3051 tp->total_retrans = 0;
3052 inet_csk_delack_init(sk);
3053 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3054 * issue in __tcp_select_window()
3055 */
3056 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3057 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3058 __sk_dst_reset(sk);
3059 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3060 tcp_saved_syn_free(tp);
3061 tp->compressed_ack = 0;
3062 tp->segs_in = 0;
3063 tp->segs_out = 0;
3064 tp->bytes_sent = 0;
3065 tp->bytes_acked = 0;
3066 tp->bytes_received = 0;
3067 tp->bytes_retrans = 0;
3068 tp->data_segs_in = 0;
3069 tp->data_segs_out = 0;
3070 tp->duplicate_sack[0].start_seq = 0;
3071 tp->duplicate_sack[0].end_seq = 0;
3072 tp->dsack_dups = 0;
3073 tp->reord_seen = 0;
3074 tp->retrans_out = 0;
3075 tp->sacked_out = 0;
3076 tp->tlp_high_seq = 0;
3077 tp->last_oow_ack_time = 0;
3078 tp->plb_rehash = 0;
3079 /* There's a bubble in the pipe until at least the first ACK. */
3080 tp->app_limited = ~0U;
3081 tp->rate_app_limited = 1;
3082 tp->rack.mstamp = 0;
3083 tp->rack.advanced = 0;
3084 tp->rack.reo_wnd_steps = 1;
3085 tp->rack.last_delivered = 0;
3086 tp->rack.reo_wnd_persist = 0;
3087 tp->rack.dsack_seen = 0;
3088 tp->syn_data_acked = 0;
3089 tp->rx_opt.saw_tstamp = 0;
3090 tp->rx_opt.dsack = 0;
3091 tp->rx_opt.num_sacks = 0;
3092 tp->rcv_ooopack = 0;
3093
3094
3095 /* Clean up fastopen related fields */
3096 tcp_free_fastopen_req(tp);
3097 inet_clear_bit(DEFER_CONNECT, sk);
3098 tp->fastopen_client_fail = 0;
3099
3100 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3101
3102 if (sk->sk_frag.page) {
3103 put_page(sk->sk_frag.page);
3104 sk->sk_frag.page = NULL;
3105 sk->sk_frag.offset = 0;
3106 }
3107 sk_error_report(sk);
3108 return 0;
3109 }
3110 EXPORT_SYMBOL(tcp_disconnect);
3111
tcp_can_repair_sock(const struct sock * sk)3112 static inline bool tcp_can_repair_sock(const struct sock *sk)
3113 {
3114 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3115 (sk->sk_state != TCP_LISTEN);
3116 }
3117
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3118 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3119 {
3120 struct tcp_repair_window opt;
3121
3122 if (!tp->repair)
3123 return -EPERM;
3124
3125 if (len != sizeof(opt))
3126 return -EINVAL;
3127
3128 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3129 return -EFAULT;
3130
3131 if (opt.max_window < opt.snd_wnd)
3132 return -EINVAL;
3133
3134 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3135 return -EINVAL;
3136
3137 if (after(opt.rcv_wup, tp->rcv_nxt))
3138 return -EINVAL;
3139
3140 tp->snd_wl1 = opt.snd_wl1;
3141 tp->snd_wnd = opt.snd_wnd;
3142 tp->max_window = opt.max_window;
3143
3144 tp->rcv_wnd = opt.rcv_wnd;
3145 tp->rcv_wup = opt.rcv_wup;
3146
3147 return 0;
3148 }
3149
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3150 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3151 unsigned int len)
3152 {
3153 struct tcp_sock *tp = tcp_sk(sk);
3154 struct tcp_repair_opt opt;
3155 size_t offset = 0;
3156
3157 while (len >= sizeof(opt)) {
3158 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3159 return -EFAULT;
3160
3161 offset += sizeof(opt);
3162 len -= sizeof(opt);
3163
3164 switch (opt.opt_code) {
3165 case TCPOPT_MSS:
3166 tp->rx_opt.mss_clamp = opt.opt_val;
3167 tcp_mtup_init(sk);
3168 break;
3169 case TCPOPT_WINDOW:
3170 {
3171 u16 snd_wscale = opt.opt_val & 0xFFFF;
3172 u16 rcv_wscale = opt.opt_val >> 16;
3173
3174 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3175 return -EFBIG;
3176
3177 tp->rx_opt.snd_wscale = snd_wscale;
3178 tp->rx_opt.rcv_wscale = rcv_wscale;
3179 tp->rx_opt.wscale_ok = 1;
3180 }
3181 break;
3182 case TCPOPT_SACK_PERM:
3183 if (opt.opt_val != 0)
3184 return -EINVAL;
3185
3186 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3187 break;
3188 case TCPOPT_TIMESTAMP:
3189 if (opt.opt_val != 0)
3190 return -EINVAL;
3191
3192 tp->rx_opt.tstamp_ok = 1;
3193 break;
3194 }
3195 }
3196
3197 return 0;
3198 }
3199
3200 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3201 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3202
tcp_enable_tx_delay(void)3203 static void tcp_enable_tx_delay(void)
3204 {
3205 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3206 static int __tcp_tx_delay_enabled = 0;
3207
3208 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3209 static_branch_enable(&tcp_tx_delay_enabled);
3210 pr_info("TCP_TX_DELAY enabled\n");
3211 }
3212 }
3213 }
3214
3215 /* When set indicates to always queue non-full frames. Later the user clears
3216 * this option and we transmit any pending partial frames in the queue. This is
3217 * meant to be used alongside sendfile() to get properly filled frames when the
3218 * user (for example) must write out headers with a write() call first and then
3219 * use sendfile to send out the data parts.
3220 *
3221 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3222 * TCP_NODELAY.
3223 */
__tcp_sock_set_cork(struct sock * sk,bool on)3224 void __tcp_sock_set_cork(struct sock *sk, bool on)
3225 {
3226 struct tcp_sock *tp = tcp_sk(sk);
3227
3228 if (on) {
3229 tp->nonagle |= TCP_NAGLE_CORK;
3230 } else {
3231 tp->nonagle &= ~TCP_NAGLE_CORK;
3232 if (tp->nonagle & TCP_NAGLE_OFF)
3233 tp->nonagle |= TCP_NAGLE_PUSH;
3234 tcp_push_pending_frames(sk);
3235 }
3236 }
3237
tcp_sock_set_cork(struct sock * sk,bool on)3238 void tcp_sock_set_cork(struct sock *sk, bool on)
3239 {
3240 lock_sock(sk);
3241 __tcp_sock_set_cork(sk, on);
3242 release_sock(sk);
3243 }
3244 EXPORT_SYMBOL(tcp_sock_set_cork);
3245
3246 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3247 * remembered, but it is not activated until cork is cleared.
3248 *
3249 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3250 * even TCP_CORK for currently queued segments.
3251 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3252 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3253 {
3254 if (on) {
3255 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3256 tcp_push_pending_frames(sk);
3257 } else {
3258 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3259 }
3260 }
3261
tcp_sock_set_nodelay(struct sock * sk)3262 void tcp_sock_set_nodelay(struct sock *sk)
3263 {
3264 lock_sock(sk);
3265 __tcp_sock_set_nodelay(sk, true);
3266 release_sock(sk);
3267 }
3268 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3269
__tcp_sock_set_quickack(struct sock * sk,int val)3270 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3271 {
3272 if (!val) {
3273 inet_csk_enter_pingpong_mode(sk);
3274 return;
3275 }
3276
3277 inet_csk_exit_pingpong_mode(sk);
3278 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3279 inet_csk_ack_scheduled(sk)) {
3280 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3281 tcp_cleanup_rbuf(sk, 1);
3282 if (!(val & 1))
3283 inet_csk_enter_pingpong_mode(sk);
3284 }
3285 }
3286
tcp_sock_set_quickack(struct sock * sk,int val)3287 void tcp_sock_set_quickack(struct sock *sk, int val)
3288 {
3289 lock_sock(sk);
3290 __tcp_sock_set_quickack(sk, val);
3291 release_sock(sk);
3292 }
3293 EXPORT_SYMBOL(tcp_sock_set_quickack);
3294
tcp_sock_set_syncnt(struct sock * sk,int val)3295 int tcp_sock_set_syncnt(struct sock *sk, int val)
3296 {
3297 if (val < 1 || val > MAX_TCP_SYNCNT)
3298 return -EINVAL;
3299
3300 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3301 return 0;
3302 }
3303 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3304
tcp_sock_set_user_timeout(struct sock * sk,int val)3305 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3306 {
3307 /* Cap the max time in ms TCP will retry or probe the window
3308 * before giving up and aborting (ETIMEDOUT) a connection.
3309 */
3310 if (val < 0)
3311 return -EINVAL;
3312
3313 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3314 return 0;
3315 }
3316 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3317
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3318 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3319 {
3320 struct tcp_sock *tp = tcp_sk(sk);
3321
3322 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3323 return -EINVAL;
3324
3325 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3326 WRITE_ONCE(tp->keepalive_time, val * HZ);
3327 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3328 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3329 u32 elapsed = keepalive_time_elapsed(tp);
3330
3331 if (tp->keepalive_time > elapsed)
3332 elapsed = tp->keepalive_time - elapsed;
3333 else
3334 elapsed = 0;
3335 inet_csk_reset_keepalive_timer(sk, elapsed);
3336 }
3337
3338 return 0;
3339 }
3340
tcp_sock_set_keepidle(struct sock * sk,int val)3341 int tcp_sock_set_keepidle(struct sock *sk, int val)
3342 {
3343 int err;
3344
3345 lock_sock(sk);
3346 err = tcp_sock_set_keepidle_locked(sk, val);
3347 release_sock(sk);
3348 return err;
3349 }
3350 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3351
tcp_sock_set_keepintvl(struct sock * sk,int val)3352 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3353 {
3354 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3355 return -EINVAL;
3356
3357 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3358 return 0;
3359 }
3360 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3361
tcp_sock_set_keepcnt(struct sock * sk,int val)3362 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3363 {
3364 if (val < 1 || val > MAX_TCP_KEEPCNT)
3365 return -EINVAL;
3366
3367 /* Paired with READ_ONCE() in keepalive_probes() */
3368 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3369 return 0;
3370 }
3371 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3372
tcp_set_window_clamp(struct sock * sk,int val)3373 int tcp_set_window_clamp(struct sock *sk, int val)
3374 {
3375 struct tcp_sock *tp = tcp_sk(sk);
3376
3377 if (!val) {
3378 if (sk->sk_state != TCP_CLOSE)
3379 return -EINVAL;
3380 tp->window_clamp = 0;
3381 } else {
3382 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3383 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3384 SOCK_MIN_RCVBUF / 2 : val;
3385
3386 if (new_window_clamp == old_window_clamp)
3387 return 0;
3388
3389 tp->window_clamp = new_window_clamp;
3390 if (new_window_clamp < old_window_clamp) {
3391 /* need to apply the reserved mem provisioning only
3392 * when shrinking the window clamp
3393 */
3394 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3395
3396 } else {
3397 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3398 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3399 tp->rcv_ssthresh);
3400 }
3401 }
3402 return 0;
3403 }
3404
3405 /*
3406 * Socket option code for TCP.
3407 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3408 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3409 sockptr_t optval, unsigned int optlen)
3410 {
3411 struct tcp_sock *tp = tcp_sk(sk);
3412 struct inet_connection_sock *icsk = inet_csk(sk);
3413 struct net *net = sock_net(sk);
3414 int val;
3415 int err = 0;
3416
3417 /* These are data/string values, all the others are ints */
3418 switch (optname) {
3419 case TCP_CONGESTION: {
3420 char name[TCP_CA_NAME_MAX];
3421
3422 if (optlen < 1)
3423 return -EINVAL;
3424
3425 val = strncpy_from_sockptr(name, optval,
3426 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3427 if (val < 0)
3428 return -EFAULT;
3429 name[val] = 0;
3430
3431 sockopt_lock_sock(sk);
3432 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3433 sockopt_ns_capable(sock_net(sk)->user_ns,
3434 CAP_NET_ADMIN));
3435 sockopt_release_sock(sk);
3436 return err;
3437 }
3438 case TCP_ULP: {
3439 char name[TCP_ULP_NAME_MAX];
3440
3441 if (optlen < 1)
3442 return -EINVAL;
3443
3444 val = strncpy_from_sockptr(name, optval,
3445 min_t(long, TCP_ULP_NAME_MAX - 1,
3446 optlen));
3447 if (val < 0)
3448 return -EFAULT;
3449 name[val] = 0;
3450
3451 sockopt_lock_sock(sk);
3452 err = tcp_set_ulp(sk, name);
3453 sockopt_release_sock(sk);
3454 return err;
3455 }
3456 case TCP_FASTOPEN_KEY: {
3457 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3458 __u8 *backup_key = NULL;
3459
3460 /* Allow a backup key as well to facilitate key rotation
3461 * First key is the active one.
3462 */
3463 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3464 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3465 return -EINVAL;
3466
3467 if (copy_from_sockptr(key, optval, optlen))
3468 return -EFAULT;
3469
3470 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3471 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3472
3473 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3474 }
3475 default:
3476 /* fallthru */
3477 break;
3478 }
3479
3480 if (optlen < sizeof(int))
3481 return -EINVAL;
3482
3483 if (copy_from_sockptr(&val, optval, sizeof(val)))
3484 return -EFAULT;
3485
3486 /* Handle options that can be set without locking the socket. */
3487 switch (optname) {
3488 case TCP_SYNCNT:
3489 return tcp_sock_set_syncnt(sk, val);
3490 case TCP_USER_TIMEOUT:
3491 return tcp_sock_set_user_timeout(sk, val);
3492 case TCP_KEEPINTVL:
3493 return tcp_sock_set_keepintvl(sk, val);
3494 case TCP_KEEPCNT:
3495 return tcp_sock_set_keepcnt(sk, val);
3496 case TCP_LINGER2:
3497 if (val < 0)
3498 WRITE_ONCE(tp->linger2, -1);
3499 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3500 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3501 else
3502 WRITE_ONCE(tp->linger2, val * HZ);
3503 return 0;
3504 case TCP_DEFER_ACCEPT:
3505 /* Translate value in seconds to number of retransmits */
3506 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3507 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3508 TCP_RTO_MAX / HZ));
3509 return 0;
3510 }
3511
3512 sockopt_lock_sock(sk);
3513
3514 switch (optname) {
3515 case TCP_MAXSEG:
3516 /* Values greater than interface MTU won't take effect. However
3517 * at the point when this call is done we typically don't yet
3518 * know which interface is going to be used
3519 */
3520 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3521 err = -EINVAL;
3522 break;
3523 }
3524 tp->rx_opt.user_mss = val;
3525 break;
3526
3527 case TCP_NODELAY:
3528 __tcp_sock_set_nodelay(sk, val);
3529 break;
3530
3531 case TCP_THIN_LINEAR_TIMEOUTS:
3532 if (val < 0 || val > 1)
3533 err = -EINVAL;
3534 else
3535 tp->thin_lto = val;
3536 break;
3537
3538 case TCP_THIN_DUPACK:
3539 if (val < 0 || val > 1)
3540 err = -EINVAL;
3541 break;
3542
3543 case TCP_REPAIR:
3544 if (!tcp_can_repair_sock(sk))
3545 err = -EPERM;
3546 else if (val == TCP_REPAIR_ON) {
3547 tp->repair = 1;
3548 sk->sk_reuse = SK_FORCE_REUSE;
3549 tp->repair_queue = TCP_NO_QUEUE;
3550 } else if (val == TCP_REPAIR_OFF) {
3551 tp->repair = 0;
3552 sk->sk_reuse = SK_NO_REUSE;
3553 tcp_send_window_probe(sk);
3554 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3555 tp->repair = 0;
3556 sk->sk_reuse = SK_NO_REUSE;
3557 } else
3558 err = -EINVAL;
3559
3560 break;
3561
3562 case TCP_REPAIR_QUEUE:
3563 if (!tp->repair)
3564 err = -EPERM;
3565 else if ((unsigned int)val < TCP_QUEUES_NR)
3566 tp->repair_queue = val;
3567 else
3568 err = -EINVAL;
3569 break;
3570
3571 case TCP_QUEUE_SEQ:
3572 if (sk->sk_state != TCP_CLOSE) {
3573 err = -EPERM;
3574 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3575 if (!tcp_rtx_queue_empty(sk))
3576 err = -EPERM;
3577 else
3578 WRITE_ONCE(tp->write_seq, val);
3579 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3580 if (tp->rcv_nxt != tp->copied_seq) {
3581 err = -EPERM;
3582 } else {
3583 WRITE_ONCE(tp->rcv_nxt, val);
3584 WRITE_ONCE(tp->copied_seq, val);
3585 }
3586 } else {
3587 err = -EINVAL;
3588 }
3589 break;
3590
3591 case TCP_REPAIR_OPTIONS:
3592 if (!tp->repair)
3593 err = -EINVAL;
3594 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3595 err = tcp_repair_options_est(sk, optval, optlen);
3596 else
3597 err = -EPERM;
3598 break;
3599
3600 case TCP_CORK:
3601 __tcp_sock_set_cork(sk, val);
3602 break;
3603
3604 case TCP_KEEPIDLE:
3605 err = tcp_sock_set_keepidle_locked(sk, val);
3606 break;
3607 case TCP_SAVE_SYN:
3608 /* 0: disable, 1: enable, 2: start from ether_header */
3609 if (val < 0 || val > 2)
3610 err = -EINVAL;
3611 else
3612 tp->save_syn = val;
3613 break;
3614
3615 case TCP_WINDOW_CLAMP:
3616 err = tcp_set_window_clamp(sk, val);
3617 break;
3618
3619 case TCP_QUICKACK:
3620 __tcp_sock_set_quickack(sk, val);
3621 break;
3622
3623 #ifdef CONFIG_TCP_MD5SIG
3624 case TCP_MD5SIG:
3625 case TCP_MD5SIG_EXT:
3626 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3627 break;
3628 #endif
3629 case TCP_FASTOPEN:
3630 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3631 TCPF_LISTEN))) {
3632 tcp_fastopen_init_key_once(net);
3633
3634 fastopen_queue_tune(sk, val);
3635 } else {
3636 err = -EINVAL;
3637 }
3638 break;
3639 case TCP_FASTOPEN_CONNECT:
3640 if (val > 1 || val < 0) {
3641 err = -EINVAL;
3642 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3643 TFO_CLIENT_ENABLE) {
3644 if (sk->sk_state == TCP_CLOSE)
3645 tp->fastopen_connect = val;
3646 else
3647 err = -EINVAL;
3648 } else {
3649 err = -EOPNOTSUPP;
3650 }
3651 break;
3652 case TCP_FASTOPEN_NO_COOKIE:
3653 if (val > 1 || val < 0)
3654 err = -EINVAL;
3655 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3656 err = -EINVAL;
3657 else
3658 tp->fastopen_no_cookie = val;
3659 break;
3660 case TCP_TIMESTAMP:
3661 if (!tp->repair)
3662 err = -EPERM;
3663 else
3664 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3665 break;
3666 case TCP_REPAIR_WINDOW:
3667 err = tcp_repair_set_window(tp, optval, optlen);
3668 break;
3669 case TCP_NOTSENT_LOWAT:
3670 WRITE_ONCE(tp->notsent_lowat, val);
3671 sk->sk_write_space(sk);
3672 break;
3673 case TCP_INQ:
3674 if (val > 1 || val < 0)
3675 err = -EINVAL;
3676 else
3677 tp->recvmsg_inq = val;
3678 break;
3679 case TCP_TX_DELAY:
3680 if (val)
3681 tcp_enable_tx_delay();
3682 WRITE_ONCE(tp->tcp_tx_delay, val);
3683 break;
3684 default:
3685 err = -ENOPROTOOPT;
3686 break;
3687 }
3688
3689 sockopt_release_sock(sk);
3690 return err;
3691 }
3692
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3693 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3694 unsigned int optlen)
3695 {
3696 const struct inet_connection_sock *icsk = inet_csk(sk);
3697
3698 if (level != SOL_TCP)
3699 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3700 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3701 optval, optlen);
3702 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3703 }
3704 EXPORT_SYMBOL(tcp_setsockopt);
3705
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3706 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3707 struct tcp_info *info)
3708 {
3709 u64 stats[__TCP_CHRONO_MAX], total = 0;
3710 enum tcp_chrono i;
3711
3712 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3713 stats[i] = tp->chrono_stat[i - 1];
3714 if (i == tp->chrono_type)
3715 stats[i] += tcp_jiffies32 - tp->chrono_start;
3716 stats[i] *= USEC_PER_SEC / HZ;
3717 total += stats[i];
3718 }
3719
3720 info->tcpi_busy_time = total;
3721 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3722 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3723 }
3724
3725 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3726 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3727 {
3728 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3729 const struct inet_connection_sock *icsk = inet_csk(sk);
3730 unsigned long rate;
3731 u32 now;
3732 u64 rate64;
3733 bool slow;
3734
3735 memset(info, 0, sizeof(*info));
3736 if (sk->sk_type != SOCK_STREAM)
3737 return;
3738
3739 info->tcpi_state = inet_sk_state_load(sk);
3740
3741 /* Report meaningful fields for all TCP states, including listeners */
3742 rate = READ_ONCE(sk->sk_pacing_rate);
3743 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3744 info->tcpi_pacing_rate = rate64;
3745
3746 rate = READ_ONCE(sk->sk_max_pacing_rate);
3747 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3748 info->tcpi_max_pacing_rate = rate64;
3749
3750 info->tcpi_reordering = tp->reordering;
3751 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3752
3753 if (info->tcpi_state == TCP_LISTEN) {
3754 /* listeners aliased fields :
3755 * tcpi_unacked -> Number of children ready for accept()
3756 * tcpi_sacked -> max backlog
3757 */
3758 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3759 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3760 return;
3761 }
3762
3763 slow = lock_sock_fast(sk);
3764
3765 info->tcpi_ca_state = icsk->icsk_ca_state;
3766 info->tcpi_retransmits = icsk->icsk_retransmits;
3767 info->tcpi_probes = icsk->icsk_probes_out;
3768 info->tcpi_backoff = icsk->icsk_backoff;
3769
3770 if (tp->rx_opt.tstamp_ok)
3771 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3772 if (tcp_is_sack(tp))
3773 info->tcpi_options |= TCPI_OPT_SACK;
3774 if (tp->rx_opt.wscale_ok) {
3775 info->tcpi_options |= TCPI_OPT_WSCALE;
3776 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3777 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3778 }
3779
3780 if (tp->ecn_flags & TCP_ECN_OK)
3781 info->tcpi_options |= TCPI_OPT_ECN;
3782 if (tp->ecn_flags & TCP_ECN_SEEN)
3783 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3784 if (tp->syn_data_acked)
3785 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3786
3787 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3788 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3789 tcp_delack_max(sk)));
3790 info->tcpi_snd_mss = tp->mss_cache;
3791 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3792
3793 info->tcpi_unacked = tp->packets_out;
3794 info->tcpi_sacked = tp->sacked_out;
3795
3796 info->tcpi_lost = tp->lost_out;
3797 info->tcpi_retrans = tp->retrans_out;
3798
3799 now = tcp_jiffies32;
3800 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3801 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3802 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3803
3804 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3805 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3806 info->tcpi_rtt = tp->srtt_us >> 3;
3807 info->tcpi_rttvar = tp->mdev_us >> 2;
3808 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3809 info->tcpi_advmss = tp->advmss;
3810
3811 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3812 info->tcpi_rcv_space = tp->rcvq_space.space;
3813
3814 info->tcpi_total_retrans = tp->total_retrans;
3815
3816 info->tcpi_bytes_acked = tp->bytes_acked;
3817 info->tcpi_bytes_received = tp->bytes_received;
3818 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3819 tcp_get_info_chrono_stats(tp, info);
3820
3821 info->tcpi_segs_out = tp->segs_out;
3822
3823 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3824 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3825 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3826
3827 info->tcpi_min_rtt = tcp_min_rtt(tp);
3828 info->tcpi_data_segs_out = tp->data_segs_out;
3829
3830 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3831 rate64 = tcp_compute_delivery_rate(tp);
3832 if (rate64)
3833 info->tcpi_delivery_rate = rate64;
3834 info->tcpi_delivered = tp->delivered;
3835 info->tcpi_delivered_ce = tp->delivered_ce;
3836 info->tcpi_bytes_sent = tp->bytes_sent;
3837 info->tcpi_bytes_retrans = tp->bytes_retrans;
3838 info->tcpi_dsack_dups = tp->dsack_dups;
3839 info->tcpi_reord_seen = tp->reord_seen;
3840 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3841 info->tcpi_snd_wnd = tp->snd_wnd;
3842 info->tcpi_rcv_wnd = tp->rcv_wnd;
3843 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3844 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3845 unlock_sock_fast(sk, slow);
3846 }
3847 EXPORT_SYMBOL_GPL(tcp_get_info);
3848
tcp_opt_stats_get_size(void)3849 static size_t tcp_opt_stats_get_size(void)
3850 {
3851 return
3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3856 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3857 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3862 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3863 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3865 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3869 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3871 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3872 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3873 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3874 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3875 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3876 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3877 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3878 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3879 0;
3880 }
3881
3882 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3883 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3884 {
3885 if (skb->protocol == htons(ETH_P_IP))
3886 return ip_hdr(skb)->ttl;
3887 else if (skb->protocol == htons(ETH_P_IPV6))
3888 return ipv6_hdr(skb)->hop_limit;
3889 else
3890 return 0;
3891 }
3892
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3893 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3894 const struct sk_buff *orig_skb,
3895 const struct sk_buff *ack_skb)
3896 {
3897 const struct tcp_sock *tp = tcp_sk(sk);
3898 struct sk_buff *stats;
3899 struct tcp_info info;
3900 unsigned long rate;
3901 u64 rate64;
3902
3903 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3904 if (!stats)
3905 return NULL;
3906
3907 tcp_get_info_chrono_stats(tp, &info);
3908 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3909 info.tcpi_busy_time, TCP_NLA_PAD);
3910 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3911 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3912 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3913 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3914 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3915 tp->data_segs_out, TCP_NLA_PAD);
3916 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3917 tp->total_retrans, TCP_NLA_PAD);
3918
3919 rate = READ_ONCE(sk->sk_pacing_rate);
3920 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3921 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3922
3923 rate64 = tcp_compute_delivery_rate(tp);
3924 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3925
3926 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3927 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3928 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3929
3930 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3931 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3932 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3933 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3934 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3935
3936 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3937 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3938
3939 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3940 TCP_NLA_PAD);
3941 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3942 TCP_NLA_PAD);
3943 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3944 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3945 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3946 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3947 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3948 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3949 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3950 TCP_NLA_PAD);
3951 if (ack_skb)
3952 nla_put_u8(stats, TCP_NLA_TTL,
3953 tcp_skb_ttl_or_hop_limit(ack_skb));
3954
3955 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3956 return stats;
3957 }
3958
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3959 int do_tcp_getsockopt(struct sock *sk, int level,
3960 int optname, sockptr_t optval, sockptr_t optlen)
3961 {
3962 struct inet_connection_sock *icsk = inet_csk(sk);
3963 struct tcp_sock *tp = tcp_sk(sk);
3964 struct net *net = sock_net(sk);
3965 int val, len;
3966
3967 if (copy_from_sockptr(&len, optlen, sizeof(int)))
3968 return -EFAULT;
3969
3970 len = min_t(unsigned int, len, sizeof(int));
3971
3972 if (len < 0)
3973 return -EINVAL;
3974
3975 switch (optname) {
3976 case TCP_MAXSEG:
3977 val = tp->mss_cache;
3978 if (tp->rx_opt.user_mss &&
3979 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3980 val = tp->rx_opt.user_mss;
3981 if (tp->repair)
3982 val = tp->rx_opt.mss_clamp;
3983 break;
3984 case TCP_NODELAY:
3985 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3986 break;
3987 case TCP_CORK:
3988 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3989 break;
3990 case TCP_KEEPIDLE:
3991 val = keepalive_time_when(tp) / HZ;
3992 break;
3993 case TCP_KEEPINTVL:
3994 val = keepalive_intvl_when(tp) / HZ;
3995 break;
3996 case TCP_KEEPCNT:
3997 val = keepalive_probes(tp);
3998 break;
3999 case TCP_SYNCNT:
4000 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4001 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4002 break;
4003 case TCP_LINGER2:
4004 val = READ_ONCE(tp->linger2);
4005 if (val >= 0)
4006 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4007 break;
4008 case TCP_DEFER_ACCEPT:
4009 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4010 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4011 TCP_RTO_MAX / HZ);
4012 break;
4013 case TCP_WINDOW_CLAMP:
4014 val = tp->window_clamp;
4015 break;
4016 case TCP_INFO: {
4017 struct tcp_info info;
4018
4019 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4020 return -EFAULT;
4021
4022 tcp_get_info(sk, &info);
4023
4024 len = min_t(unsigned int, len, sizeof(info));
4025 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4026 return -EFAULT;
4027 if (copy_to_sockptr(optval, &info, len))
4028 return -EFAULT;
4029 return 0;
4030 }
4031 case TCP_CC_INFO: {
4032 const struct tcp_congestion_ops *ca_ops;
4033 union tcp_cc_info info;
4034 size_t sz = 0;
4035 int attr;
4036
4037 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4038 return -EFAULT;
4039
4040 ca_ops = icsk->icsk_ca_ops;
4041 if (ca_ops && ca_ops->get_info)
4042 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4043
4044 len = min_t(unsigned int, len, sz);
4045 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4046 return -EFAULT;
4047 if (copy_to_sockptr(optval, &info, len))
4048 return -EFAULT;
4049 return 0;
4050 }
4051 case TCP_QUICKACK:
4052 val = !inet_csk_in_pingpong_mode(sk);
4053 break;
4054
4055 case TCP_CONGESTION:
4056 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4057 return -EFAULT;
4058 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4059 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4060 return -EFAULT;
4061 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4062 return -EFAULT;
4063 return 0;
4064
4065 case TCP_ULP:
4066 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4067 return -EFAULT;
4068 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4069 if (!icsk->icsk_ulp_ops) {
4070 len = 0;
4071 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072 return -EFAULT;
4073 return 0;
4074 }
4075 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4076 return -EFAULT;
4077 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4078 return -EFAULT;
4079 return 0;
4080
4081 case TCP_FASTOPEN_KEY: {
4082 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4083 unsigned int key_len;
4084
4085 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4086 return -EFAULT;
4087
4088 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4089 TCP_FASTOPEN_KEY_LENGTH;
4090 len = min_t(unsigned int, len, key_len);
4091 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4092 return -EFAULT;
4093 if (copy_to_sockptr(optval, key, len))
4094 return -EFAULT;
4095 return 0;
4096 }
4097 case TCP_THIN_LINEAR_TIMEOUTS:
4098 val = tp->thin_lto;
4099 break;
4100
4101 case TCP_THIN_DUPACK:
4102 val = 0;
4103 break;
4104
4105 case TCP_REPAIR:
4106 val = tp->repair;
4107 break;
4108
4109 case TCP_REPAIR_QUEUE:
4110 if (tp->repair)
4111 val = tp->repair_queue;
4112 else
4113 return -EINVAL;
4114 break;
4115
4116 case TCP_REPAIR_WINDOW: {
4117 struct tcp_repair_window opt;
4118
4119 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120 return -EFAULT;
4121
4122 if (len != sizeof(opt))
4123 return -EINVAL;
4124
4125 if (!tp->repair)
4126 return -EPERM;
4127
4128 opt.snd_wl1 = tp->snd_wl1;
4129 opt.snd_wnd = tp->snd_wnd;
4130 opt.max_window = tp->max_window;
4131 opt.rcv_wnd = tp->rcv_wnd;
4132 opt.rcv_wup = tp->rcv_wup;
4133
4134 if (copy_to_sockptr(optval, &opt, len))
4135 return -EFAULT;
4136 return 0;
4137 }
4138 case TCP_QUEUE_SEQ:
4139 if (tp->repair_queue == TCP_SEND_QUEUE)
4140 val = tp->write_seq;
4141 else if (tp->repair_queue == TCP_RECV_QUEUE)
4142 val = tp->rcv_nxt;
4143 else
4144 return -EINVAL;
4145 break;
4146
4147 case TCP_USER_TIMEOUT:
4148 val = READ_ONCE(icsk->icsk_user_timeout);
4149 break;
4150
4151 case TCP_FASTOPEN:
4152 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4153 break;
4154
4155 case TCP_FASTOPEN_CONNECT:
4156 val = tp->fastopen_connect;
4157 break;
4158
4159 case TCP_FASTOPEN_NO_COOKIE:
4160 val = tp->fastopen_no_cookie;
4161 break;
4162
4163 case TCP_TX_DELAY:
4164 val = READ_ONCE(tp->tcp_tx_delay);
4165 break;
4166
4167 case TCP_TIMESTAMP:
4168 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4169 break;
4170 case TCP_NOTSENT_LOWAT:
4171 val = READ_ONCE(tp->notsent_lowat);
4172 break;
4173 case TCP_INQ:
4174 val = tp->recvmsg_inq;
4175 break;
4176 case TCP_SAVE_SYN:
4177 val = tp->save_syn;
4178 break;
4179 case TCP_SAVED_SYN: {
4180 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4181 return -EFAULT;
4182
4183 sockopt_lock_sock(sk);
4184 if (tp->saved_syn) {
4185 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4186 len = tcp_saved_syn_len(tp->saved_syn);
4187 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4188 sockopt_release_sock(sk);
4189 return -EFAULT;
4190 }
4191 sockopt_release_sock(sk);
4192 return -EINVAL;
4193 }
4194 len = tcp_saved_syn_len(tp->saved_syn);
4195 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4196 sockopt_release_sock(sk);
4197 return -EFAULT;
4198 }
4199 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4200 sockopt_release_sock(sk);
4201 return -EFAULT;
4202 }
4203 tcp_saved_syn_free(tp);
4204 sockopt_release_sock(sk);
4205 } else {
4206 sockopt_release_sock(sk);
4207 len = 0;
4208 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4209 return -EFAULT;
4210 }
4211 return 0;
4212 }
4213 #ifdef CONFIG_MMU
4214 case TCP_ZEROCOPY_RECEIVE: {
4215 struct scm_timestamping_internal tss;
4216 struct tcp_zerocopy_receive zc = {};
4217 int err;
4218
4219 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4220 return -EFAULT;
4221 if (len < 0 ||
4222 len < offsetofend(struct tcp_zerocopy_receive, length))
4223 return -EINVAL;
4224 if (unlikely(len > sizeof(zc))) {
4225 err = check_zeroed_sockptr(optval, sizeof(zc),
4226 len - sizeof(zc));
4227 if (err < 1)
4228 return err == 0 ? -EINVAL : err;
4229 len = sizeof(zc);
4230 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4231 return -EFAULT;
4232 }
4233 if (copy_from_sockptr(&zc, optval, len))
4234 return -EFAULT;
4235 if (zc.reserved)
4236 return -EINVAL;
4237 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4238 return -EINVAL;
4239 sockopt_lock_sock(sk);
4240 err = tcp_zerocopy_receive(sk, &zc, &tss);
4241 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4242 &zc, &len, err);
4243 sockopt_release_sock(sk);
4244 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4245 goto zerocopy_rcv_cmsg;
4246 switch (len) {
4247 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4248 goto zerocopy_rcv_cmsg;
4249 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4250 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4251 case offsetofend(struct tcp_zerocopy_receive, flags):
4252 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4253 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4254 case offsetofend(struct tcp_zerocopy_receive, err):
4255 goto zerocopy_rcv_sk_err;
4256 case offsetofend(struct tcp_zerocopy_receive, inq):
4257 goto zerocopy_rcv_inq;
4258 case offsetofend(struct tcp_zerocopy_receive, length):
4259 default:
4260 goto zerocopy_rcv_out;
4261 }
4262 zerocopy_rcv_cmsg:
4263 if (zc.msg_flags & TCP_CMSG_TS)
4264 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4265 else
4266 zc.msg_flags = 0;
4267 zerocopy_rcv_sk_err:
4268 if (!err)
4269 zc.err = sock_error(sk);
4270 zerocopy_rcv_inq:
4271 zc.inq = tcp_inq_hint(sk);
4272 zerocopy_rcv_out:
4273 if (!err && copy_to_sockptr(optval, &zc, len))
4274 err = -EFAULT;
4275 return err;
4276 }
4277 #endif
4278 default:
4279 return -ENOPROTOOPT;
4280 }
4281
4282 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4283 return -EFAULT;
4284 if (copy_to_sockptr(optval, &val, len))
4285 return -EFAULT;
4286 return 0;
4287 }
4288
tcp_bpf_bypass_getsockopt(int level,int optname)4289 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4290 {
4291 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4292 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4293 */
4294 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4295 return true;
4296
4297 return false;
4298 }
4299 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4300
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4301 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4302 int __user *optlen)
4303 {
4304 struct inet_connection_sock *icsk = inet_csk(sk);
4305
4306 if (level != SOL_TCP)
4307 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4308 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4309 optval, optlen);
4310 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4311 USER_SOCKPTR(optlen));
4312 }
4313 EXPORT_SYMBOL(tcp_getsockopt);
4314
4315 #ifdef CONFIG_TCP_MD5SIG
4316 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4317 static DEFINE_MUTEX(tcp_md5sig_mutex);
4318 static bool tcp_md5sig_pool_populated = false;
4319
__tcp_alloc_md5sig_pool(void)4320 static void __tcp_alloc_md5sig_pool(void)
4321 {
4322 struct crypto_ahash *hash;
4323 int cpu;
4324
4325 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4326 if (IS_ERR(hash))
4327 return;
4328
4329 for_each_possible_cpu(cpu) {
4330 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4331 struct ahash_request *req;
4332
4333 if (!scratch) {
4334 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4335 sizeof(struct tcphdr),
4336 GFP_KERNEL,
4337 cpu_to_node(cpu));
4338 if (!scratch)
4339 return;
4340 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4341 }
4342 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4343 continue;
4344
4345 req = ahash_request_alloc(hash, GFP_KERNEL);
4346 if (!req)
4347 return;
4348
4349 ahash_request_set_callback(req, 0, NULL, NULL);
4350
4351 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4352 }
4353 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4354 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4355 */
4356 smp_wmb();
4357 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4358 * and tcp_get_md5sig_pool().
4359 */
4360 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4361 }
4362
tcp_alloc_md5sig_pool(void)4363 bool tcp_alloc_md5sig_pool(void)
4364 {
4365 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4366 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4367 mutex_lock(&tcp_md5sig_mutex);
4368
4369 if (!tcp_md5sig_pool_populated)
4370 __tcp_alloc_md5sig_pool();
4371
4372 mutex_unlock(&tcp_md5sig_mutex);
4373 }
4374 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4375 return READ_ONCE(tcp_md5sig_pool_populated);
4376 }
4377 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4378
4379
4380 /**
4381 * tcp_get_md5sig_pool - get md5sig_pool for this user
4382 *
4383 * We use percpu structure, so if we succeed, we exit with preemption
4384 * and BH disabled, to make sure another thread or softirq handling
4385 * wont try to get same context.
4386 */
tcp_get_md5sig_pool(void)4387 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4388 {
4389 local_bh_disable();
4390
4391 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4392 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4393 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4394 smp_rmb();
4395 return this_cpu_ptr(&tcp_md5sig_pool);
4396 }
4397 local_bh_enable();
4398 return NULL;
4399 }
4400 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4401
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4402 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4403 const struct sk_buff *skb, unsigned int header_len)
4404 {
4405 struct scatterlist sg;
4406 const struct tcphdr *tp = tcp_hdr(skb);
4407 struct ahash_request *req = hp->md5_req;
4408 unsigned int i;
4409 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4410 skb_headlen(skb) - header_len : 0;
4411 const struct skb_shared_info *shi = skb_shinfo(skb);
4412 struct sk_buff *frag_iter;
4413
4414 sg_init_table(&sg, 1);
4415
4416 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4417 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4418 if (crypto_ahash_update(req))
4419 return 1;
4420
4421 for (i = 0; i < shi->nr_frags; ++i) {
4422 const skb_frag_t *f = &shi->frags[i];
4423 unsigned int offset = skb_frag_off(f);
4424 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4425
4426 sg_set_page(&sg, page, skb_frag_size(f),
4427 offset_in_page(offset));
4428 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4429 if (crypto_ahash_update(req))
4430 return 1;
4431 }
4432
4433 skb_walk_frags(skb, frag_iter)
4434 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4435 return 1;
4436
4437 return 0;
4438 }
4439 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4440
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4441 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4442 {
4443 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4444 struct scatterlist sg;
4445
4446 sg_init_one(&sg, key->key, keylen);
4447 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4448
4449 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4450 return data_race(crypto_ahash_update(hp->md5_req));
4451 }
4452 EXPORT_SYMBOL(tcp_md5_hash_key);
4453
4454 /* Called with rcu_read_lock() */
4455 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4456 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4457 const void *saddr, const void *daddr,
4458 int family, int dif, int sdif)
4459 {
4460 /*
4461 * This gets called for each TCP segment that arrives
4462 * so we want to be efficient.
4463 * We have 3 drop cases:
4464 * o No MD5 hash and one expected.
4465 * o MD5 hash and we're not expecting one.
4466 * o MD5 hash and its wrong.
4467 */
4468 const __u8 *hash_location = NULL;
4469 struct tcp_md5sig_key *hash_expected;
4470 const struct tcphdr *th = tcp_hdr(skb);
4471 const struct tcp_sock *tp = tcp_sk(sk);
4472 int genhash, l3index;
4473 u8 newhash[16];
4474
4475 /* sdif set, means packet ingressed via a device
4476 * in an L3 domain and dif is set to the l3mdev
4477 */
4478 l3index = sdif ? dif : 0;
4479
4480 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4481 hash_location = tcp_parse_md5sig_option(th);
4482
4483 /* We've parsed the options - do we have a hash? */
4484 if (!hash_expected && !hash_location)
4485 return SKB_NOT_DROPPED_YET;
4486
4487 if (hash_expected && !hash_location) {
4488 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4489 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4490 }
4491
4492 if (!hash_expected && hash_location) {
4493 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4494 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4495 }
4496
4497 /* Check the signature.
4498 * To support dual stack listeners, we need to handle
4499 * IPv4-mapped case.
4500 */
4501 if (family == AF_INET)
4502 genhash = tcp_v4_md5_hash_skb(newhash,
4503 hash_expected,
4504 NULL, skb);
4505 else
4506 genhash = tp->af_specific->calc_md5_hash(newhash,
4507 hash_expected,
4508 NULL, skb);
4509
4510 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4512 if (family == AF_INET) {
4513 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4514 saddr, ntohs(th->source),
4515 daddr, ntohs(th->dest),
4516 genhash ? " tcp_v4_calc_md5_hash failed"
4517 : "", l3index);
4518 } else {
4519 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4520 genhash ? "failed" : "mismatch",
4521 saddr, ntohs(th->source),
4522 daddr, ntohs(th->dest), l3index);
4523 }
4524 return SKB_DROP_REASON_TCP_MD5FAILURE;
4525 }
4526 return SKB_NOT_DROPPED_YET;
4527 }
4528 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4529
4530 #endif
4531
tcp_done(struct sock * sk)4532 void tcp_done(struct sock *sk)
4533 {
4534 struct request_sock *req;
4535
4536 /* We might be called with a new socket, after
4537 * inet_csk_prepare_forced_close() has been called
4538 * so we can not use lockdep_sock_is_held(sk)
4539 */
4540 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4541
4542 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4543 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4544
4545 tcp_set_state(sk, TCP_CLOSE);
4546 tcp_clear_xmit_timers(sk);
4547 if (req)
4548 reqsk_fastopen_remove(sk, req, false);
4549
4550 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4551
4552 if (!sock_flag(sk, SOCK_DEAD))
4553 sk->sk_state_change(sk);
4554 else
4555 inet_csk_destroy_sock(sk);
4556 }
4557 EXPORT_SYMBOL_GPL(tcp_done);
4558
tcp_abort(struct sock * sk,int err)4559 int tcp_abort(struct sock *sk, int err)
4560 {
4561 int state = inet_sk_state_load(sk);
4562
4563 if (state == TCP_NEW_SYN_RECV) {
4564 struct request_sock *req = inet_reqsk(sk);
4565
4566 local_bh_disable();
4567 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4568 local_bh_enable();
4569 return 0;
4570 }
4571 if (state == TCP_TIME_WAIT) {
4572 struct inet_timewait_sock *tw = inet_twsk(sk);
4573
4574 refcount_inc(&tw->tw_refcnt);
4575 local_bh_disable();
4576 inet_twsk_deschedule_put(tw);
4577 local_bh_enable();
4578 return 0;
4579 }
4580
4581 /* BPF context ensures sock locking. */
4582 if (!has_current_bpf_ctx())
4583 /* Don't race with userspace socket closes such as tcp_close. */
4584 lock_sock(sk);
4585
4586 if (sk->sk_state == TCP_LISTEN) {
4587 tcp_set_state(sk, TCP_CLOSE);
4588 inet_csk_listen_stop(sk);
4589 }
4590
4591 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4592 local_bh_disable();
4593 bh_lock_sock(sk);
4594
4595 if (!sock_flag(sk, SOCK_DEAD)) {
4596 WRITE_ONCE(sk->sk_err, err);
4597 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4598 smp_wmb();
4599 sk_error_report(sk);
4600 if (tcp_need_reset(sk->sk_state))
4601 tcp_send_active_reset(sk, GFP_ATOMIC);
4602 tcp_done(sk);
4603 }
4604
4605 bh_unlock_sock(sk);
4606 local_bh_enable();
4607 tcp_write_queue_purge(sk);
4608 if (!has_current_bpf_ctx())
4609 release_sock(sk);
4610 return 0;
4611 }
4612 EXPORT_SYMBOL_GPL(tcp_abort);
4613
4614 extern struct tcp_congestion_ops tcp_reno;
4615
4616 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4617 static int __init set_thash_entries(char *str)
4618 {
4619 ssize_t ret;
4620
4621 if (!str)
4622 return 0;
4623
4624 ret = kstrtoul(str, 0, &thash_entries);
4625 if (ret)
4626 return 0;
4627
4628 return 1;
4629 }
4630 __setup("thash_entries=", set_thash_entries);
4631
tcp_init_mem(void)4632 static void __init tcp_init_mem(void)
4633 {
4634 unsigned long limit = nr_free_buffer_pages() / 16;
4635
4636 limit = max(limit, 128UL);
4637 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4638 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4639 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4640 }
4641
tcp_init(void)4642 void __init tcp_init(void)
4643 {
4644 int max_rshare, max_wshare, cnt;
4645 unsigned long limit;
4646 unsigned int i;
4647
4648 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4649 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4650 sizeof_field(struct sk_buff, cb));
4651
4652 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4653
4654 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4655 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4656
4657 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4658 thash_entries, 21, /* one slot per 2 MB*/
4659 0, 64 * 1024);
4660 tcp_hashinfo.bind_bucket_cachep =
4661 kmem_cache_create("tcp_bind_bucket",
4662 sizeof(struct inet_bind_bucket), 0,
4663 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4664 SLAB_ACCOUNT,
4665 NULL);
4666 tcp_hashinfo.bind2_bucket_cachep =
4667 kmem_cache_create("tcp_bind2_bucket",
4668 sizeof(struct inet_bind2_bucket), 0,
4669 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4670 SLAB_ACCOUNT,
4671 NULL);
4672
4673 /* Size and allocate the main established and bind bucket
4674 * hash tables.
4675 *
4676 * The methodology is similar to that of the buffer cache.
4677 */
4678 tcp_hashinfo.ehash =
4679 alloc_large_system_hash("TCP established",
4680 sizeof(struct inet_ehash_bucket),
4681 thash_entries,
4682 17, /* one slot per 128 KB of memory */
4683 0,
4684 NULL,
4685 &tcp_hashinfo.ehash_mask,
4686 0,
4687 thash_entries ? 0 : 512 * 1024);
4688 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4689 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4690
4691 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4692 panic("TCP: failed to alloc ehash_locks");
4693 tcp_hashinfo.bhash =
4694 alloc_large_system_hash("TCP bind",
4695 2 * sizeof(struct inet_bind_hashbucket),
4696 tcp_hashinfo.ehash_mask + 1,
4697 17, /* one slot per 128 KB of memory */
4698 0,
4699 &tcp_hashinfo.bhash_size,
4700 NULL,
4701 0,
4702 64 * 1024);
4703 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4704 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4705 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4706 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4707 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4708 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4709 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4710 }
4711
4712 tcp_hashinfo.pernet = false;
4713
4714 cnt = tcp_hashinfo.ehash_mask + 1;
4715 sysctl_tcp_max_orphans = cnt / 2;
4716
4717 tcp_init_mem();
4718 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4719 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4720 max_wshare = min(4UL*1024*1024, limit);
4721 max_rshare = min(6UL*1024*1024, limit);
4722
4723 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4724 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4725 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4726
4727 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4728 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4729 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4730
4731 pr_info("Hash tables configured (established %u bind %u)\n",
4732 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4733
4734 tcp_v4_init();
4735 tcp_metrics_init();
4736 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4737 tcp_tasklet_init();
4738 mptcp_init();
4739 }
4740