1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015-2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/pci.h>
9 #include <linux/io.h>
10 #include <linux/delay.h>
11 #include <linux/netdevice.h>
12 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/prefetch.h>
15 #include <rdma/ib_verbs.h>
16 #include <linux/etherdevice.h>
17
18 #include "hfi.h"
19 #include "trace.h"
20 #include "qp.h"
21 #include "sdma.h"
22 #include "debugfs.h"
23 #include "vnic.h"
24 #include "fault.h"
25
26 #include "ipoib.h"
27 #include "netdev.h"
28
29 #undef pr_fmt
30 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
31
32 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
33
34 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
35 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
36 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
37 HFI1_DEFAULT_MAX_MTU));
38
39 unsigned int hfi1_cu = 1;
40 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
41 MODULE_PARM_DESC(cu, "Credit return units");
42
43 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
44 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
45 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
46 static const struct kernel_param_ops cap_ops = {
47 .set = hfi1_caps_set,
48 .get = hfi1_caps_get
49 };
50 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
51 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
52
53 MODULE_LICENSE("Dual BSD/GPL");
54 MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
55
56 /*
57 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
58 */
59 #define MAX_PKT_RECV 64
60 /*
61 * MAX_PKT_THREAD_RCV is the max # of packets processed before
62 * the qp_wait_list queue is flushed.
63 */
64 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
65 #define EGR_HEAD_UPDATE_THRESHOLD 16
66
67 struct hfi1_ib_stats hfi1_stats;
68
hfi1_caps_set(const char * val,const struct kernel_param * kp)69 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
70 {
71 int ret = 0;
72 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
73 cap_mask = *cap_mask_ptr, value, diff,
74 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
75 HFI1_CAP_WRITABLE_MASK);
76
77 ret = kstrtoul(val, 0, &value);
78 if (ret) {
79 pr_warn("Invalid module parameter value for 'cap_mask'\n");
80 goto done;
81 }
82 /* Get the changed bits (except the locked bit) */
83 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
84
85 /* Remove any bits that are not allowed to change after driver load */
86 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
87 pr_warn("Ignoring non-writable capability bits %#lx\n",
88 diff & ~write_mask);
89 diff &= write_mask;
90 }
91
92 /* Mask off any reserved bits */
93 diff &= ~HFI1_CAP_RESERVED_MASK;
94 /* Clear any previously set and changing bits */
95 cap_mask &= ~diff;
96 /* Update the bits with the new capability */
97 cap_mask |= (value & diff);
98 /* Check for any kernel/user restrictions */
99 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
100 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
101 cap_mask &= ~diff;
102 /* Set the bitmask to the final set */
103 *cap_mask_ptr = cap_mask;
104 done:
105 return ret;
106 }
107
hfi1_caps_get(char * buffer,const struct kernel_param * kp)108 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
109 {
110 unsigned long cap_mask = *(unsigned long *)kp->arg;
111
112 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
113 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
114
115 return sysfs_emit(buffer, "0x%lx\n", cap_mask);
116 }
117
get_pci_dev(struct rvt_dev_info * rdi)118 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
119 {
120 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
121 struct hfi1_devdata *dd = container_of(ibdev,
122 struct hfi1_devdata, verbs_dev);
123 return dd->pcidev;
124 }
125
126 /*
127 * Return count of units with at least one port ACTIVE.
128 */
hfi1_count_active_units(void)129 int hfi1_count_active_units(void)
130 {
131 struct hfi1_devdata *dd;
132 struct hfi1_pportdata *ppd;
133 unsigned long index, flags;
134 int pidx, nunits_active = 0;
135
136 xa_lock_irqsave(&hfi1_dev_table, flags);
137 xa_for_each(&hfi1_dev_table, index, dd) {
138 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
139 continue;
140 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
141 ppd = dd->pport + pidx;
142 if (ppd->lid && ppd->linkup) {
143 nunits_active++;
144 break;
145 }
146 }
147 }
148 xa_unlock_irqrestore(&hfi1_dev_table, flags);
149 return nunits_active;
150 }
151
152 /*
153 * Get address of eager buffer from it's index (allocated in chunks, not
154 * contiguous).
155 */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)156 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
157 u8 *update)
158 {
159 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
160
161 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
162 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
163 (offset * RCV_BUF_BLOCK_SIZE));
164 }
165
hfi1_get_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)166 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
167 __le32 *rhf_addr)
168 {
169 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
170
171 return (void *)(rhf_addr - rcd->rhf_offset + offset);
172 }
173
hfi1_get_msgheader(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)174 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
175 __le32 *rhf_addr)
176 {
177 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
178 }
179
180 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)181 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
182 __le32 *rhf_addr)
183 {
184 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
185 }
186
187 /*
188 * Validate and encode the a given RcvArray Buffer size.
189 * The function will check whether the given size falls within
190 * allowed size ranges for the respective type and, optionally,
191 * return the proper encoding.
192 */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)193 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
194 {
195 if (unlikely(!PAGE_ALIGNED(size)))
196 return 0;
197 if (unlikely(size < MIN_EAGER_BUFFER))
198 return 0;
199 if (size >
200 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
201 return 0;
202 if (encoded)
203 *encoded = ilog2(size / PAGE_SIZE) + 1;
204 return 1;
205 }
206
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)207 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
208 struct hfi1_packet *packet)
209 {
210 struct ib_header *rhdr = packet->hdr;
211 u32 rte = rhf_rcv_type_err(packet->rhf);
212 u32 mlid_base;
213 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
214 struct hfi1_devdata *dd = ppd->dd;
215 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
216 struct rvt_dev_info *rdi = &verbs_dev->rdi;
217
218 if ((packet->rhf & RHF_DC_ERR) &&
219 hfi1_dbg_fault_suppress_err(verbs_dev))
220 return;
221
222 if (packet->rhf & RHF_ICRC_ERR)
223 return;
224
225 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
226 goto drop;
227 } else {
228 u8 lnh = ib_get_lnh(rhdr);
229
230 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
231 if (lnh == HFI1_LRH_BTH) {
232 packet->ohdr = &rhdr->u.oth;
233 } else if (lnh == HFI1_LRH_GRH) {
234 packet->ohdr = &rhdr->u.l.oth;
235 packet->grh = &rhdr->u.l.grh;
236 } else {
237 goto drop;
238 }
239 }
240
241 if (packet->rhf & RHF_TID_ERR) {
242 /* For TIDERR and RC QPs preemptively schedule a NAK */
243 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
244 u32 dlid = ib_get_dlid(rhdr);
245 u32 qp_num;
246
247 /* Sanity check packet */
248 if (tlen < 24)
249 goto drop;
250
251 /* Check for GRH */
252 if (packet->grh) {
253 u32 vtf;
254 struct ib_grh *grh = packet->grh;
255
256 if (grh->next_hdr != IB_GRH_NEXT_HDR)
257 goto drop;
258 vtf = be32_to_cpu(grh->version_tclass_flow);
259 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
260 goto drop;
261 }
262
263 /* Get the destination QP number. */
264 qp_num = ib_bth_get_qpn(packet->ohdr);
265 if (dlid < mlid_base) {
266 struct rvt_qp *qp;
267 unsigned long flags;
268
269 rcu_read_lock();
270 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
271 if (!qp) {
272 rcu_read_unlock();
273 goto drop;
274 }
275
276 /*
277 * Handle only RC QPs - for other QP types drop error
278 * packet.
279 */
280 spin_lock_irqsave(&qp->r_lock, flags);
281
282 /* Check for valid receive state. */
283 if (!(ib_rvt_state_ops[qp->state] &
284 RVT_PROCESS_RECV_OK)) {
285 ibp->rvp.n_pkt_drops++;
286 }
287
288 switch (qp->ibqp.qp_type) {
289 case IB_QPT_RC:
290 hfi1_rc_hdrerr(rcd, packet, qp);
291 break;
292 default:
293 /* For now don't handle any other QP types */
294 break;
295 }
296
297 spin_unlock_irqrestore(&qp->r_lock, flags);
298 rcu_read_unlock();
299 } /* Unicast QP */
300 } /* Valid packet with TIDErr */
301
302 /* handle "RcvTypeErr" flags */
303 switch (rte) {
304 case RHF_RTE_ERROR_OP_CODE_ERR:
305 {
306 void *ebuf = NULL;
307 u8 opcode;
308
309 if (rhf_use_egr_bfr(packet->rhf))
310 ebuf = packet->ebuf;
311
312 if (!ebuf)
313 goto drop; /* this should never happen */
314
315 opcode = ib_bth_get_opcode(packet->ohdr);
316 if (opcode == IB_OPCODE_CNP) {
317 /*
318 * Only in pre-B0 h/w is the CNP_OPCODE handled
319 * via this code path.
320 */
321 struct rvt_qp *qp = NULL;
322 u32 lqpn, rqpn;
323 u16 rlid;
324 u8 svc_type, sl, sc5;
325
326 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
327 sl = ibp->sc_to_sl[sc5];
328
329 lqpn = ib_bth_get_qpn(packet->ohdr);
330 rcu_read_lock();
331 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
332 if (!qp) {
333 rcu_read_unlock();
334 goto drop;
335 }
336
337 switch (qp->ibqp.qp_type) {
338 case IB_QPT_UD:
339 rlid = 0;
340 rqpn = 0;
341 svc_type = IB_CC_SVCTYPE_UD;
342 break;
343 case IB_QPT_UC:
344 rlid = ib_get_slid(rhdr);
345 rqpn = qp->remote_qpn;
346 svc_type = IB_CC_SVCTYPE_UC;
347 break;
348 default:
349 rcu_read_unlock();
350 goto drop;
351 }
352
353 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
354 rcu_read_unlock();
355 }
356
357 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
358 break;
359 }
360 default:
361 break;
362 }
363
364 drop:
365 return;
366 }
367
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)368 static inline void init_packet(struct hfi1_ctxtdata *rcd,
369 struct hfi1_packet *packet)
370 {
371 packet->rsize = get_hdrqentsize(rcd); /* words */
372 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
373 packet->rcd = rcd;
374 packet->updegr = 0;
375 packet->etail = -1;
376 packet->rhf_addr = get_rhf_addr(rcd);
377 packet->rhf = rhf_to_cpu(packet->rhf_addr);
378 packet->rhqoff = hfi1_rcd_head(rcd);
379 packet->numpkt = 0;
380 }
381
382 /* We support only two types - 9B and 16B for now */
383 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
384 [HFI1_PKT_TYPE_9B] = &return_cnp,
385 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
386 };
387
388 /**
389 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
390 * @qp: The packet's destination QP
391 * @pkt: The packet itself.
392 * @prescan: Is the caller the RXQ prescan
393 *
394 * Process the packet's FECN or BECN bits. By now, the packet
395 * has already been evaluated whether processing of those bit should
396 * be done.
397 * The significance of the @prescan argument is that if the caller
398 * is the RXQ prescan, a CNP will be send out instead of waiting for the
399 * normal packet processing to send an ACK with BECN set (or a CNP).
400 */
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool prescan)401 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
402 bool prescan)
403 {
404 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
405 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
406 struct ib_other_headers *ohdr = pkt->ohdr;
407 struct ib_grh *grh = pkt->grh;
408 u32 rqpn = 0;
409 u16 pkey;
410 u32 rlid, slid, dlid = 0;
411 u8 hdr_type, sc, svc_type, opcode;
412 bool is_mcast = false, ignore_fecn = false, do_cnp = false,
413 fecn, becn;
414
415 /* can be called from prescan */
416 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
417 pkey = hfi1_16B_get_pkey(pkt->hdr);
418 sc = hfi1_16B_get_sc(pkt->hdr);
419 dlid = hfi1_16B_get_dlid(pkt->hdr);
420 slid = hfi1_16B_get_slid(pkt->hdr);
421 is_mcast = hfi1_is_16B_mcast(dlid);
422 opcode = ib_bth_get_opcode(ohdr);
423 hdr_type = HFI1_PKT_TYPE_16B;
424 fecn = hfi1_16B_get_fecn(pkt->hdr);
425 becn = hfi1_16B_get_becn(pkt->hdr);
426 } else {
427 pkey = ib_bth_get_pkey(ohdr);
428 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
429 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
430 ppd->lid;
431 slid = ib_get_slid(pkt->hdr);
432 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
433 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
434 opcode = ib_bth_get_opcode(ohdr);
435 hdr_type = HFI1_PKT_TYPE_9B;
436 fecn = ib_bth_get_fecn(ohdr);
437 becn = ib_bth_get_becn(ohdr);
438 }
439
440 switch (qp->ibqp.qp_type) {
441 case IB_QPT_UD:
442 rlid = slid;
443 rqpn = ib_get_sqpn(pkt->ohdr);
444 svc_type = IB_CC_SVCTYPE_UD;
445 break;
446 case IB_QPT_SMI:
447 case IB_QPT_GSI:
448 rlid = slid;
449 rqpn = ib_get_sqpn(pkt->ohdr);
450 svc_type = IB_CC_SVCTYPE_UD;
451 break;
452 case IB_QPT_UC:
453 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
454 rqpn = qp->remote_qpn;
455 svc_type = IB_CC_SVCTYPE_UC;
456 break;
457 case IB_QPT_RC:
458 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
459 rqpn = qp->remote_qpn;
460 svc_type = IB_CC_SVCTYPE_RC;
461 break;
462 default:
463 return false;
464 }
465
466 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
467 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
468 /*
469 * ACKNOWLEDGE packets do not get a CNP but this will be
470 * guarded by ignore_fecn above.
471 */
472 do_cnp = prescan ||
473 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
474 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
475 opcode == TID_OP(READ_RESP) ||
476 opcode == TID_OP(ACK);
477
478 /* Call appropriate CNP handler */
479 if (!ignore_fecn && do_cnp && fecn)
480 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
481 dlid, rlid, sc, grh);
482
483 if (becn) {
484 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
485 u8 sl = ibp->sc_to_sl[sc];
486
487 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
488 }
489 return !ignore_fecn && fecn;
490 }
491
492 struct ps_mdata {
493 struct hfi1_ctxtdata *rcd;
494 u32 rsize;
495 u32 maxcnt;
496 u32 ps_head;
497 u32 ps_tail;
498 u32 ps_seq;
499 };
500
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)501 static inline void init_ps_mdata(struct ps_mdata *mdata,
502 struct hfi1_packet *packet)
503 {
504 struct hfi1_ctxtdata *rcd = packet->rcd;
505
506 mdata->rcd = rcd;
507 mdata->rsize = packet->rsize;
508 mdata->maxcnt = packet->maxcnt;
509 mdata->ps_head = packet->rhqoff;
510
511 if (get_dma_rtail_setting(rcd)) {
512 mdata->ps_tail = get_rcvhdrtail(rcd);
513 if (rcd->ctxt == HFI1_CTRL_CTXT)
514 mdata->ps_seq = hfi1_seq_cnt(rcd);
515 else
516 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
517 } else {
518 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
519 mdata->ps_seq = hfi1_seq_cnt(rcd);
520 }
521 }
522
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)523 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
524 struct hfi1_ctxtdata *rcd)
525 {
526 if (get_dma_rtail_setting(rcd))
527 return mdata->ps_head == mdata->ps_tail;
528 return mdata->ps_seq != rhf_rcv_seq(rhf);
529 }
530
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)531 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
532 struct hfi1_ctxtdata *rcd)
533 {
534 /*
535 * Control context can potentially receive an invalid rhf.
536 * Drop such packets.
537 */
538 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
539 return mdata->ps_seq != rhf_rcv_seq(rhf);
540
541 return 0;
542 }
543
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)544 static inline void update_ps_mdata(struct ps_mdata *mdata,
545 struct hfi1_ctxtdata *rcd)
546 {
547 mdata->ps_head += mdata->rsize;
548 if (mdata->ps_head >= mdata->maxcnt)
549 mdata->ps_head = 0;
550
551 /* Control context must do seq counting */
552 if (!get_dma_rtail_setting(rcd) ||
553 rcd->ctxt == HFI1_CTRL_CTXT)
554 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
555 }
556
557 /*
558 * prescan_rxq - search through the receive queue looking for packets
559 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
560 * When an ECN is found, process the Congestion Notification, and toggle
561 * it off.
562 * This is declared as a macro to allow quick checking of the port to avoid
563 * the overhead of a function call if not enabled.
564 */
565 #define prescan_rxq(rcd, packet) \
566 do { \
567 if (rcd->ppd->cc_prescan) \
568 __prescan_rxq(packet); \
569 } while (0)
__prescan_rxq(struct hfi1_packet * packet)570 static void __prescan_rxq(struct hfi1_packet *packet)
571 {
572 struct hfi1_ctxtdata *rcd = packet->rcd;
573 struct ps_mdata mdata;
574
575 init_ps_mdata(&mdata, packet);
576
577 while (1) {
578 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
579 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
580 packet->rcd->rhf_offset;
581 struct rvt_qp *qp;
582 struct ib_header *hdr;
583 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
584 u64 rhf = rhf_to_cpu(rhf_addr);
585 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
586 u8 lnh;
587
588 if (ps_done(&mdata, rhf, rcd))
589 break;
590
591 if (ps_skip(&mdata, rhf, rcd))
592 goto next;
593
594 if (etype != RHF_RCV_TYPE_IB)
595 goto next;
596
597 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
598 hdr = packet->hdr;
599 lnh = ib_get_lnh(hdr);
600
601 if (lnh == HFI1_LRH_BTH) {
602 packet->ohdr = &hdr->u.oth;
603 packet->grh = NULL;
604 } else if (lnh == HFI1_LRH_GRH) {
605 packet->ohdr = &hdr->u.l.oth;
606 packet->grh = &hdr->u.l.grh;
607 } else {
608 goto next; /* just in case */
609 }
610
611 if (!hfi1_may_ecn(packet))
612 goto next;
613
614 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
615 qpn = bth1 & RVT_QPN_MASK;
616 rcu_read_lock();
617 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
618
619 if (!qp) {
620 rcu_read_unlock();
621 goto next;
622 }
623
624 hfi1_process_ecn_slowpath(qp, packet, true);
625 rcu_read_unlock();
626
627 /* turn off BECN, FECN */
628 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
629 packet->ohdr->bth[1] = cpu_to_be32(bth1);
630 next:
631 update_ps_mdata(&mdata, rcd);
632 }
633 }
634
process_rcv_qp_work(struct hfi1_packet * packet)635 static void process_rcv_qp_work(struct hfi1_packet *packet)
636 {
637 struct rvt_qp *qp, *nqp;
638 struct hfi1_ctxtdata *rcd = packet->rcd;
639
640 /*
641 * Iterate over all QPs waiting to respond.
642 * The list won't change since the IRQ is only run on one CPU.
643 */
644 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
645 list_del_init(&qp->rspwait);
646 if (qp->r_flags & RVT_R_RSP_NAK) {
647 qp->r_flags &= ~RVT_R_RSP_NAK;
648 packet->qp = qp;
649 hfi1_send_rc_ack(packet, 0);
650 }
651 if (qp->r_flags & RVT_R_RSP_SEND) {
652 unsigned long flags;
653
654 qp->r_flags &= ~RVT_R_RSP_SEND;
655 spin_lock_irqsave(&qp->s_lock, flags);
656 if (ib_rvt_state_ops[qp->state] &
657 RVT_PROCESS_OR_FLUSH_SEND)
658 hfi1_schedule_send(qp);
659 spin_unlock_irqrestore(&qp->s_lock, flags);
660 }
661 rvt_put_qp(qp);
662 }
663 }
664
max_packet_exceeded(struct hfi1_packet * packet,int thread)665 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
666 {
667 if (thread) {
668 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
669 /* allow defered processing */
670 process_rcv_qp_work(packet);
671 cond_resched();
672 return RCV_PKT_OK;
673 } else {
674 this_cpu_inc(*packet->rcd->dd->rcv_limit);
675 return RCV_PKT_LIMIT;
676 }
677 }
678
check_max_packet(struct hfi1_packet * packet,int thread)679 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
680 {
681 int ret = RCV_PKT_OK;
682
683 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
684 ret = max_packet_exceeded(packet, thread);
685 return ret;
686 }
687
skip_rcv_packet(struct hfi1_packet * packet,int thread)688 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
689 {
690 int ret;
691
692 packet->rcd->dd->ctx0_seq_drop++;
693 /* Set up for the next packet */
694 packet->rhqoff += packet->rsize;
695 if (packet->rhqoff >= packet->maxcnt)
696 packet->rhqoff = 0;
697
698 packet->numpkt++;
699 ret = check_max_packet(packet, thread);
700
701 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
702 packet->rcd->rhf_offset;
703 packet->rhf = rhf_to_cpu(packet->rhf_addr);
704
705 return ret;
706 }
707
process_rcv_packet_napi(struct hfi1_packet * packet)708 static void process_rcv_packet_napi(struct hfi1_packet *packet)
709 {
710 packet->etype = rhf_rcv_type(packet->rhf);
711
712 /* total length */
713 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
714 /* retrieve eager buffer details */
715 packet->etail = rhf_egr_index(packet->rhf);
716 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
717 &packet->updegr);
718 /*
719 * Prefetch the contents of the eager buffer. It is
720 * OK to send a negative length to prefetch_range().
721 * The +2 is the size of the RHF.
722 */
723 prefetch_range(packet->ebuf,
724 packet->tlen - ((packet->rcd->rcvhdrqentsize -
725 (rhf_hdrq_offset(packet->rhf)
726 + 2)) * 4));
727
728 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
729 packet->numpkt++;
730
731 /* Set up for the next packet */
732 packet->rhqoff += packet->rsize;
733 if (packet->rhqoff >= packet->maxcnt)
734 packet->rhqoff = 0;
735
736 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
737 packet->rcd->rhf_offset;
738 packet->rhf = rhf_to_cpu(packet->rhf_addr);
739 }
740
process_rcv_packet(struct hfi1_packet * packet,int thread)741 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
742 {
743 int ret;
744
745 packet->etype = rhf_rcv_type(packet->rhf);
746
747 /* total length */
748 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
749 /* retrieve eager buffer details */
750 packet->ebuf = NULL;
751 if (rhf_use_egr_bfr(packet->rhf)) {
752 packet->etail = rhf_egr_index(packet->rhf);
753 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
754 &packet->updegr);
755 /*
756 * Prefetch the contents of the eager buffer. It is
757 * OK to send a negative length to prefetch_range().
758 * The +2 is the size of the RHF.
759 */
760 prefetch_range(packet->ebuf,
761 packet->tlen - ((get_hdrqentsize(packet->rcd) -
762 (rhf_hdrq_offset(packet->rhf)
763 + 2)) * 4));
764 }
765
766 /*
767 * Call a type specific handler for the packet. We
768 * should be able to trust that etype won't be beyond
769 * the range of valid indexes. If so something is really
770 * wrong and we can probably just let things come
771 * crashing down. There is no need to eat another
772 * comparison in this performance critical code.
773 */
774 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
775 packet->numpkt++;
776
777 /* Set up for the next packet */
778 packet->rhqoff += packet->rsize;
779 if (packet->rhqoff >= packet->maxcnt)
780 packet->rhqoff = 0;
781
782 ret = check_max_packet(packet, thread);
783
784 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
785 packet->rcd->rhf_offset;
786 packet->rhf = rhf_to_cpu(packet->rhf_addr);
787
788 return ret;
789 }
790
process_rcv_update(int last,struct hfi1_packet * packet)791 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
792 {
793 /*
794 * Update head regs etc., every 16 packets, if not last pkt,
795 * to help prevent rcvhdrq overflows, when many packets
796 * are processed and queue is nearly full.
797 * Don't request an interrupt for intermediate updates.
798 */
799 if (!last && !(packet->numpkt & 0xf)) {
800 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
801 packet->etail, 0, 0);
802 packet->updegr = 0;
803 }
804 packet->grh = NULL;
805 }
806
finish_packet(struct hfi1_packet * packet)807 static inline void finish_packet(struct hfi1_packet *packet)
808 {
809 /*
810 * Nothing we need to free for the packet.
811 *
812 * The only thing we need to do is a final update and call for an
813 * interrupt
814 */
815 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
816 packet->etail, rcv_intr_dynamic, packet->numpkt);
817 }
818
819 /*
820 * handle_receive_interrupt_napi_fp - receive a packet
821 * @rcd: the context
822 * @budget: polling budget
823 *
824 * Called from interrupt handler for receive interrupt.
825 * This is the fast path interrupt handler
826 * when executing napi soft irq environment.
827 */
handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata * rcd,int budget)828 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
829 {
830 struct hfi1_packet packet;
831
832 init_packet(rcd, &packet);
833 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
834 goto bail;
835
836 while (packet.numpkt < budget) {
837 process_rcv_packet_napi(&packet);
838 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
839 break;
840
841 process_rcv_update(0, &packet);
842 }
843 hfi1_set_rcd_head(rcd, packet.rhqoff);
844 bail:
845 finish_packet(&packet);
846 return packet.numpkt;
847 }
848
849 /*
850 * Handle receive interrupts when using the no dma rtail option.
851 */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)852 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
853 {
854 int last = RCV_PKT_OK;
855 struct hfi1_packet packet;
856
857 init_packet(rcd, &packet);
858 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
859 last = RCV_PKT_DONE;
860 goto bail;
861 }
862
863 prescan_rxq(rcd, &packet);
864
865 while (last == RCV_PKT_OK) {
866 last = process_rcv_packet(&packet, thread);
867 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
868 last = RCV_PKT_DONE;
869 process_rcv_update(last, &packet);
870 }
871 process_rcv_qp_work(&packet);
872 hfi1_set_rcd_head(rcd, packet.rhqoff);
873 bail:
874 finish_packet(&packet);
875 return last;
876 }
877
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)878 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
879 {
880 u32 hdrqtail;
881 int last = RCV_PKT_OK;
882 struct hfi1_packet packet;
883
884 init_packet(rcd, &packet);
885 hdrqtail = get_rcvhdrtail(rcd);
886 if (packet.rhqoff == hdrqtail) {
887 last = RCV_PKT_DONE;
888 goto bail;
889 }
890 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
891
892 prescan_rxq(rcd, &packet);
893
894 while (last == RCV_PKT_OK) {
895 last = process_rcv_packet(&packet, thread);
896 if (packet.rhqoff == hdrqtail)
897 last = RCV_PKT_DONE;
898 process_rcv_update(last, &packet);
899 }
900 process_rcv_qp_work(&packet);
901 hfi1_set_rcd_head(rcd, packet.rhqoff);
902 bail:
903 finish_packet(&packet);
904 return last;
905 }
906
set_all_fastpath(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)907 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
908 {
909 u16 i;
910
911 /*
912 * For dynamically allocated kernel contexts (like vnic) switch
913 * interrupt handler only for that context. Otherwise, switch
914 * interrupt handler for all statically allocated kernel contexts.
915 */
916 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
917 hfi1_rcd_get(rcd);
918 hfi1_set_fast(rcd);
919 hfi1_rcd_put(rcd);
920 return;
921 }
922
923 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
924 rcd = hfi1_rcd_get_by_index(dd, i);
925 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
926 hfi1_set_fast(rcd);
927 hfi1_rcd_put(rcd);
928 }
929 }
930
set_all_slowpath(struct hfi1_devdata * dd)931 void set_all_slowpath(struct hfi1_devdata *dd)
932 {
933 struct hfi1_ctxtdata *rcd;
934 u16 i;
935
936 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
937 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
938 rcd = hfi1_rcd_get_by_index(dd, i);
939 if (!rcd)
940 continue;
941 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
942 rcd->do_interrupt = rcd->slow_handler;
943
944 hfi1_rcd_put(rcd);
945 }
946 }
947
__set_armed_to_active(struct hfi1_packet * packet)948 static bool __set_armed_to_active(struct hfi1_packet *packet)
949 {
950 u8 etype = rhf_rcv_type(packet->rhf);
951 u8 sc = SC15_PACKET;
952
953 if (etype == RHF_RCV_TYPE_IB) {
954 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
955 packet->rhf_addr);
956 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
957 } else if (etype == RHF_RCV_TYPE_BYPASS) {
958 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
959 packet->rcd,
960 packet->rhf_addr);
961 sc = hfi1_16B_get_sc(hdr);
962 }
963 if (sc != SC15_PACKET) {
964 int hwstate = driver_lstate(packet->rcd->ppd);
965 struct work_struct *lsaw =
966 &packet->rcd->ppd->linkstate_active_work;
967
968 if (hwstate != IB_PORT_ACTIVE) {
969 dd_dev_info(packet->rcd->dd,
970 "Unexpected link state %s\n",
971 opa_lstate_name(hwstate));
972 return false;
973 }
974
975 queue_work(packet->rcd->ppd->link_wq, lsaw);
976 return true;
977 }
978 return false;
979 }
980
981 /**
982 * set_armed_to_active - the fast path for armed to active
983 * @packet: the packet structure
984 *
985 * Return true if packet processing needs to bail.
986 */
set_armed_to_active(struct hfi1_packet * packet)987 static bool set_armed_to_active(struct hfi1_packet *packet)
988 {
989 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
990 return false;
991 return __set_armed_to_active(packet);
992 }
993
994 /*
995 * handle_receive_interrupt - receive a packet
996 * @rcd: the context
997 *
998 * Called from interrupt handler for errors or receive interrupt.
999 * This is the slow path interrupt handler.
1000 */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)1001 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1002 {
1003 struct hfi1_devdata *dd = rcd->dd;
1004 u32 hdrqtail;
1005 int needset, last = RCV_PKT_OK;
1006 struct hfi1_packet packet;
1007 int skip_pkt = 0;
1008
1009 if (!rcd->rcvhdrq)
1010 return RCV_PKT_OK;
1011 /* Control context will always use the slow path interrupt handler */
1012 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1013
1014 init_packet(rcd, &packet);
1015
1016 if (!get_dma_rtail_setting(rcd)) {
1017 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1018 last = RCV_PKT_DONE;
1019 goto bail;
1020 }
1021 hdrqtail = 0;
1022 } else {
1023 hdrqtail = get_rcvhdrtail(rcd);
1024 if (packet.rhqoff == hdrqtail) {
1025 last = RCV_PKT_DONE;
1026 goto bail;
1027 }
1028 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1029
1030 /*
1031 * Control context can potentially receive an invalid
1032 * rhf. Drop such packets.
1033 */
1034 if (rcd->ctxt == HFI1_CTRL_CTXT)
1035 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1036 skip_pkt = 1;
1037 }
1038
1039 prescan_rxq(rcd, &packet);
1040
1041 while (last == RCV_PKT_OK) {
1042 if (hfi1_need_drop(dd)) {
1043 /* On to the next packet */
1044 packet.rhqoff += packet.rsize;
1045 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1046 packet.rhqoff +
1047 rcd->rhf_offset;
1048 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1049
1050 } else if (skip_pkt) {
1051 last = skip_rcv_packet(&packet, thread);
1052 skip_pkt = 0;
1053 } else {
1054 if (set_armed_to_active(&packet))
1055 goto bail;
1056 last = process_rcv_packet(&packet, thread);
1057 }
1058
1059 if (!get_dma_rtail_setting(rcd)) {
1060 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1061 last = RCV_PKT_DONE;
1062 } else {
1063 if (packet.rhqoff == hdrqtail)
1064 last = RCV_PKT_DONE;
1065 /*
1066 * Control context can potentially receive an invalid
1067 * rhf. Drop such packets.
1068 */
1069 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1070 bool lseq;
1071
1072 lseq = hfi1_seq_incr(rcd,
1073 rhf_rcv_seq(packet.rhf));
1074 if (!last && lseq)
1075 skip_pkt = 1;
1076 }
1077 }
1078
1079 if (needset) {
1080 needset = false;
1081 set_all_fastpath(dd, rcd);
1082 }
1083 process_rcv_update(last, &packet);
1084 }
1085
1086 process_rcv_qp_work(&packet);
1087 hfi1_set_rcd_head(rcd, packet.rhqoff);
1088
1089 bail:
1090 /*
1091 * Always write head at end, and setup rcv interrupt, even
1092 * if no packets were processed.
1093 */
1094 finish_packet(&packet);
1095 return last;
1096 }
1097
1098 /*
1099 * handle_receive_interrupt_napi_sp - receive a packet
1100 * @rcd: the context
1101 * @budget: polling budget
1102 *
1103 * Called from interrupt handler for errors or receive interrupt.
1104 * This is the slow path interrupt handler
1105 * when executing napi soft irq environment.
1106 */
handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata * rcd,int budget)1107 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1108 {
1109 struct hfi1_devdata *dd = rcd->dd;
1110 int last = RCV_PKT_OK;
1111 bool needset = true;
1112 struct hfi1_packet packet;
1113
1114 init_packet(rcd, &packet);
1115 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1116 goto bail;
1117
1118 while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1119 if (hfi1_need_drop(dd)) {
1120 /* On to the next packet */
1121 packet.rhqoff += packet.rsize;
1122 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1123 packet.rhqoff +
1124 rcd->rhf_offset;
1125 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1126
1127 } else {
1128 if (set_armed_to_active(&packet))
1129 goto bail;
1130 process_rcv_packet_napi(&packet);
1131 }
1132
1133 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1134 last = RCV_PKT_DONE;
1135
1136 if (needset) {
1137 needset = false;
1138 set_all_fastpath(dd, rcd);
1139 }
1140
1141 process_rcv_update(last, &packet);
1142 }
1143
1144 hfi1_set_rcd_head(rcd, packet.rhqoff);
1145
1146 bail:
1147 /*
1148 * Always write head at end, and setup rcv interrupt, even
1149 * if no packets were processed.
1150 */
1151 finish_packet(&packet);
1152 return packet.numpkt;
1153 }
1154
1155 /*
1156 * We may discover in the interrupt that the hardware link state has
1157 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1158 * and we need to update the driver's notion of the link state. We cannot
1159 * run set_link_state from interrupt context, so we queue this function on
1160 * a workqueue.
1161 *
1162 * We delay the regular interrupt processing until after the state changes
1163 * so that the link will be in the correct state by the time any application
1164 * we wake up attempts to send a reply to any message it received.
1165 * (Subsequent receive interrupts may possibly force the wakeup before we
1166 * update the link state.)
1167 *
1168 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1169 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1170 * so we're safe from use-after-free of the rcd.
1171 */
receive_interrupt_work(struct work_struct * work)1172 void receive_interrupt_work(struct work_struct *work)
1173 {
1174 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1175 linkstate_active_work);
1176 struct hfi1_devdata *dd = ppd->dd;
1177 struct hfi1_ctxtdata *rcd;
1178 u16 i;
1179
1180 /* Received non-SC15 packet implies neighbor_normal */
1181 ppd->neighbor_normal = 1;
1182 set_link_state(ppd, HLS_UP_ACTIVE);
1183
1184 /*
1185 * Interrupt all statically allocated kernel contexts that could
1186 * have had an interrupt during auto activation.
1187 */
1188 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1189 rcd = hfi1_rcd_get_by_index(dd, i);
1190 if (rcd)
1191 force_recv_intr(rcd);
1192 hfi1_rcd_put(rcd);
1193 }
1194 }
1195
1196 /*
1197 * Convert a given MTU size to the on-wire MAD packet enumeration.
1198 * Return -1 if the size is invalid.
1199 */
mtu_to_enum(u32 mtu,int default_if_bad)1200 int mtu_to_enum(u32 mtu, int default_if_bad)
1201 {
1202 switch (mtu) {
1203 case 0: return OPA_MTU_0;
1204 case 256: return OPA_MTU_256;
1205 case 512: return OPA_MTU_512;
1206 case 1024: return OPA_MTU_1024;
1207 case 2048: return OPA_MTU_2048;
1208 case 4096: return OPA_MTU_4096;
1209 case 8192: return OPA_MTU_8192;
1210 case 10240: return OPA_MTU_10240;
1211 }
1212 return default_if_bad;
1213 }
1214
enum_to_mtu(int mtu)1215 u16 enum_to_mtu(int mtu)
1216 {
1217 switch (mtu) {
1218 case OPA_MTU_0: return 0;
1219 case OPA_MTU_256: return 256;
1220 case OPA_MTU_512: return 512;
1221 case OPA_MTU_1024: return 1024;
1222 case OPA_MTU_2048: return 2048;
1223 case OPA_MTU_4096: return 4096;
1224 case OPA_MTU_8192: return 8192;
1225 case OPA_MTU_10240: return 10240;
1226 default: return 0xffff;
1227 }
1228 }
1229
1230 /*
1231 * set_mtu - set the MTU
1232 * @ppd: the per port data
1233 *
1234 * We can handle "any" incoming size, the issue here is whether we
1235 * need to restrict our outgoing size. We do not deal with what happens
1236 * to programs that are already running when the size changes.
1237 */
set_mtu(struct hfi1_pportdata * ppd)1238 int set_mtu(struct hfi1_pportdata *ppd)
1239 {
1240 struct hfi1_devdata *dd = ppd->dd;
1241 int i, drain, ret = 0, is_up = 0;
1242
1243 ppd->ibmtu = 0;
1244 for (i = 0; i < ppd->vls_supported; i++)
1245 if (ppd->ibmtu < dd->vld[i].mtu)
1246 ppd->ibmtu = dd->vld[i].mtu;
1247 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1248
1249 mutex_lock(&ppd->hls_lock);
1250 if (ppd->host_link_state == HLS_UP_INIT ||
1251 ppd->host_link_state == HLS_UP_ARMED ||
1252 ppd->host_link_state == HLS_UP_ACTIVE)
1253 is_up = 1;
1254
1255 drain = !is_ax(dd) && is_up;
1256
1257 if (drain)
1258 /*
1259 * MTU is specified per-VL. To ensure that no packet gets
1260 * stuck (due, e.g., to the MTU for the packet's VL being
1261 * reduced), empty the per-VL FIFOs before adjusting MTU.
1262 */
1263 ret = stop_drain_data_vls(dd);
1264
1265 if (ret) {
1266 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1267 __func__);
1268 goto err;
1269 }
1270
1271 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1272
1273 if (drain)
1274 open_fill_data_vls(dd); /* reopen all VLs */
1275
1276 err:
1277 mutex_unlock(&ppd->hls_lock);
1278
1279 return ret;
1280 }
1281
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1282 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1283 {
1284 struct hfi1_devdata *dd = ppd->dd;
1285
1286 ppd->lid = lid;
1287 ppd->lmc = lmc;
1288 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1289
1290 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1291
1292 return 0;
1293 }
1294
shutdown_led_override(struct hfi1_pportdata * ppd)1295 void shutdown_led_override(struct hfi1_pportdata *ppd)
1296 {
1297 struct hfi1_devdata *dd = ppd->dd;
1298
1299 /*
1300 * This pairs with the memory barrier in hfi1_start_led_override to
1301 * ensure that we read the correct state of LED beaconing represented
1302 * by led_override_timer_active
1303 */
1304 smp_rmb();
1305 if (atomic_read(&ppd->led_override_timer_active)) {
1306 del_timer_sync(&ppd->led_override_timer);
1307 atomic_set(&ppd->led_override_timer_active, 0);
1308 /* Ensure the atomic_set is visible to all CPUs */
1309 smp_wmb();
1310 }
1311
1312 /* Hand control of the LED to the DC for normal operation */
1313 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1314 }
1315
run_led_override(struct timer_list * t)1316 static void run_led_override(struct timer_list *t)
1317 {
1318 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1319 struct hfi1_devdata *dd = ppd->dd;
1320 unsigned long timeout;
1321 int phase_idx;
1322
1323 if (!(dd->flags & HFI1_INITTED))
1324 return;
1325
1326 phase_idx = ppd->led_override_phase & 1;
1327
1328 setextled(dd, phase_idx);
1329
1330 timeout = ppd->led_override_vals[phase_idx];
1331
1332 /* Set up for next phase */
1333 ppd->led_override_phase = !ppd->led_override_phase;
1334
1335 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1336 }
1337
1338 /*
1339 * To have the LED blink in a particular pattern, provide timeon and timeoff
1340 * in milliseconds.
1341 * To turn off custom blinking and return to normal operation, use
1342 * shutdown_led_override()
1343 */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1344 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1345 unsigned int timeoff)
1346 {
1347 if (!(ppd->dd->flags & HFI1_INITTED))
1348 return;
1349
1350 /* Convert to jiffies for direct use in timer */
1351 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1352 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1353
1354 /* Arbitrarily start from LED on phase */
1355 ppd->led_override_phase = 1;
1356
1357 /*
1358 * If the timer has not already been started, do so. Use a "quick"
1359 * timeout so the handler will be called soon to look at our request.
1360 */
1361 if (!timer_pending(&ppd->led_override_timer)) {
1362 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1363 ppd->led_override_timer.expires = jiffies + 1;
1364 add_timer(&ppd->led_override_timer);
1365 atomic_set(&ppd->led_override_timer_active, 1);
1366 /* Ensure the atomic_set is visible to all CPUs */
1367 smp_wmb();
1368 }
1369 }
1370
1371 /**
1372 * hfi1_reset_device - reset the chip if possible
1373 * @unit: the device to reset
1374 *
1375 * Whether or not reset is successful, we attempt to re-initialize the chip
1376 * (that is, much like a driver unload/reload). We clear the INITTED flag
1377 * so that the various entry points will fail until we reinitialize. For
1378 * now, we only allow this if no user contexts are open that use chip resources
1379 */
hfi1_reset_device(int unit)1380 int hfi1_reset_device(int unit)
1381 {
1382 int ret;
1383 struct hfi1_devdata *dd = hfi1_lookup(unit);
1384 struct hfi1_pportdata *ppd;
1385 int pidx;
1386
1387 if (!dd) {
1388 ret = -ENODEV;
1389 goto bail;
1390 }
1391
1392 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1393
1394 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1395 dd_dev_info(dd,
1396 "Invalid unit number %u or not initialized or not present\n",
1397 unit);
1398 ret = -ENXIO;
1399 goto bail;
1400 }
1401
1402 /* If there are any user/vnic contexts, we cannot reset */
1403 mutex_lock(&hfi1_mutex);
1404 if (dd->rcd)
1405 if (hfi1_stats.sps_ctxts) {
1406 mutex_unlock(&hfi1_mutex);
1407 ret = -EBUSY;
1408 goto bail;
1409 }
1410 mutex_unlock(&hfi1_mutex);
1411
1412 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1413 ppd = dd->pport + pidx;
1414
1415 shutdown_led_override(ppd);
1416 }
1417 if (dd->flags & HFI1_HAS_SEND_DMA)
1418 sdma_exit(dd);
1419
1420 hfi1_reset_cpu_counters(dd);
1421
1422 ret = hfi1_init(dd, 1);
1423
1424 if (ret)
1425 dd_dev_err(dd,
1426 "Reinitialize unit %u after reset failed with %d\n",
1427 unit, ret);
1428 else
1429 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1430 unit);
1431
1432 bail:
1433 return ret;
1434 }
1435
hfi1_setup_ib_header(struct hfi1_packet * packet)1436 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1437 {
1438 packet->hdr = (struct hfi1_ib_message_header *)
1439 hfi1_get_msgheader(packet->rcd,
1440 packet->rhf_addr);
1441 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1442 }
1443
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1444 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1445 {
1446 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1447
1448 /* slid and dlid cannot be 0 */
1449 if ((!packet->slid) || (!packet->dlid))
1450 return -EINVAL;
1451
1452 /* Compare port lid with incoming packet dlid */
1453 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1454 (packet->dlid !=
1455 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1456 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1457 return -EINVAL;
1458 }
1459
1460 /* No multicast packets with SC15 */
1461 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1462 return -EINVAL;
1463
1464 /* Packets with permissive DLID always on SC15 */
1465 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1466 16B)) &&
1467 (packet->sc != 0xF))
1468 return -EINVAL;
1469
1470 return 0;
1471 }
1472
hfi1_setup_9B_packet(struct hfi1_packet * packet)1473 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1474 {
1475 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1476 struct ib_header *hdr;
1477 u8 lnh;
1478
1479 hfi1_setup_ib_header(packet);
1480 hdr = packet->hdr;
1481
1482 lnh = ib_get_lnh(hdr);
1483 if (lnh == HFI1_LRH_BTH) {
1484 packet->ohdr = &hdr->u.oth;
1485 packet->grh = NULL;
1486 } else if (lnh == HFI1_LRH_GRH) {
1487 u32 vtf;
1488
1489 packet->ohdr = &hdr->u.l.oth;
1490 packet->grh = &hdr->u.l.grh;
1491 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1492 goto drop;
1493 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1494 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1495 goto drop;
1496 } else {
1497 goto drop;
1498 }
1499
1500 /* Query commonly used fields from packet header */
1501 packet->payload = packet->ebuf;
1502 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1503 packet->slid = ib_get_slid(hdr);
1504 packet->dlid = ib_get_dlid(hdr);
1505 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1506 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1507 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1508 be16_to_cpu(IB_MULTICAST_LID_BASE);
1509 packet->sl = ib_get_sl(hdr);
1510 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1511 packet->pad = ib_bth_get_pad(packet->ohdr);
1512 packet->extra_byte = 0;
1513 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1514 packet->migrated = ib_bth_is_migration(packet->ohdr);
1515
1516 return 0;
1517 drop:
1518 ibp->rvp.n_pkt_drops++;
1519 return -EINVAL;
1520 }
1521
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1522 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1523 {
1524 /*
1525 * Bypass packets have a different header/payload split
1526 * compared to an IB packet.
1527 * Current split is set such that 16 bytes of the actual
1528 * header is in the header buffer and the remining is in
1529 * the eager buffer. We chose 16 since hfi1 driver only
1530 * supports 16B bypass packets and we will be able to
1531 * receive the entire LRH with such a split.
1532 */
1533
1534 struct hfi1_ctxtdata *rcd = packet->rcd;
1535 struct hfi1_pportdata *ppd = rcd->ppd;
1536 struct hfi1_ibport *ibp = &ppd->ibport_data;
1537 u8 l4;
1538
1539 packet->hdr = (struct hfi1_16b_header *)
1540 hfi1_get_16B_header(packet->rcd,
1541 packet->rhf_addr);
1542 l4 = hfi1_16B_get_l4(packet->hdr);
1543 if (l4 == OPA_16B_L4_IB_LOCAL) {
1544 packet->ohdr = packet->ebuf;
1545 packet->grh = NULL;
1546 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1547 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1548 /* hdr_len_by_opcode already has an IB LRH factored in */
1549 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1550 (LRH_16B_BYTES - LRH_9B_BYTES);
1551 packet->migrated = opa_bth_is_migration(packet->ohdr);
1552 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1553 u32 vtf;
1554 u8 grh_len = sizeof(struct ib_grh);
1555
1556 packet->ohdr = packet->ebuf + grh_len;
1557 packet->grh = packet->ebuf;
1558 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1559 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1560 /* hdr_len_by_opcode already has an IB LRH factored in */
1561 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1562 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1563 packet->migrated = opa_bth_is_migration(packet->ohdr);
1564
1565 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1566 goto drop;
1567 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1568 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1569 goto drop;
1570 } else if (l4 == OPA_16B_L4_FM) {
1571 packet->mgmt = packet->ebuf;
1572 packet->ohdr = NULL;
1573 packet->grh = NULL;
1574 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1575 packet->pad = OPA_16B_L4_FM_PAD;
1576 packet->hlen = OPA_16B_L4_FM_HLEN;
1577 packet->migrated = false;
1578 } else {
1579 goto drop;
1580 }
1581
1582 /* Query commonly used fields from packet header */
1583 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1584 packet->slid = hfi1_16B_get_slid(packet->hdr);
1585 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1586 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1587 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1588 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1589 16B);
1590 packet->sc = hfi1_16B_get_sc(packet->hdr);
1591 packet->sl = ibp->sc_to_sl[packet->sc];
1592 packet->extra_byte = SIZE_OF_LT;
1593 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1594
1595 if (hfi1_bypass_ingress_pkt_check(packet))
1596 goto drop;
1597
1598 return 0;
1599 drop:
1600 hfi1_cdbg(PKT, "%s: packet dropped", __func__);
1601 ibp->rvp.n_pkt_drops++;
1602 return -EINVAL;
1603 }
1604
show_eflags_errs(struct hfi1_packet * packet)1605 static void show_eflags_errs(struct hfi1_packet *packet)
1606 {
1607 struct hfi1_ctxtdata *rcd = packet->rcd;
1608 u32 rte = rhf_rcv_type_err(packet->rhf);
1609
1610 dd_dev_err(rcd->dd,
1611 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1612 rcd->ctxt, packet->rhf,
1613 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1614 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1615 packet->rhf & RHF_DC_ERR ? "dc " : "",
1616 packet->rhf & RHF_TID_ERR ? "tid " : "",
1617 packet->rhf & RHF_LEN_ERR ? "len " : "",
1618 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1619 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1620 rte);
1621 }
1622
handle_eflags(struct hfi1_packet * packet)1623 void handle_eflags(struct hfi1_packet *packet)
1624 {
1625 struct hfi1_ctxtdata *rcd = packet->rcd;
1626
1627 rcv_hdrerr(rcd, rcd->ppd, packet);
1628 if (rhf_err_flags(packet->rhf))
1629 show_eflags_errs(packet);
1630 }
1631
hfi1_ipoib_ib_rcv(struct hfi1_packet * packet)1632 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1633 {
1634 struct hfi1_ibport *ibp;
1635 struct net_device *netdev;
1636 struct hfi1_ctxtdata *rcd = packet->rcd;
1637 struct napi_struct *napi = rcd->napi;
1638 struct sk_buff *skb;
1639 struct hfi1_netdev_rxq *rxq = container_of(napi,
1640 struct hfi1_netdev_rxq, napi);
1641 u32 extra_bytes;
1642 u32 tlen, qpnum;
1643 bool do_work, do_cnp;
1644
1645 trace_hfi1_rcvhdr(packet);
1646
1647 hfi1_setup_ib_header(packet);
1648
1649 packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1650 packet->grh = NULL;
1651
1652 if (unlikely(rhf_err_flags(packet->rhf))) {
1653 handle_eflags(packet);
1654 return;
1655 }
1656
1657 qpnum = ib_bth_get_qpn(packet->ohdr);
1658 netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1659 if (!netdev)
1660 goto drop_no_nd;
1661
1662 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1663 trace_ctxt_rsm_hist(rcd->ctxt);
1664
1665 /* handle congestion notifications */
1666 do_work = hfi1_may_ecn(packet);
1667 if (unlikely(do_work)) {
1668 do_cnp = (packet->opcode != IB_OPCODE_CNP);
1669 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1670 packet, do_cnp);
1671 }
1672
1673 /*
1674 * We have split point after last byte of DETH
1675 * lets strip padding and CRC and ICRC.
1676 * tlen is whole packet len so we need to
1677 * subtract header size as well.
1678 */
1679 tlen = packet->tlen;
1680 extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1681 packet->hlen;
1682 if (unlikely(tlen < extra_bytes))
1683 goto drop;
1684
1685 tlen -= extra_bytes;
1686
1687 skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1688 if (unlikely(!skb))
1689 goto drop;
1690
1691 dev_sw_netstats_rx_add(netdev, skb->len);
1692
1693 skb->dev = netdev;
1694 skb->pkt_type = PACKET_HOST;
1695 netif_receive_skb(skb);
1696
1697 return;
1698
1699 drop:
1700 ++netdev->stats.rx_dropped;
1701 drop_no_nd:
1702 ibp = rcd_to_iport(packet->rcd);
1703 ++ibp->rvp.n_pkt_drops;
1704 }
1705
1706 /*
1707 * The following functions are called by the interrupt handler. They are type
1708 * specific handlers for each packet type.
1709 */
process_receive_ib(struct hfi1_packet * packet)1710 static void process_receive_ib(struct hfi1_packet *packet)
1711 {
1712 if (hfi1_setup_9B_packet(packet))
1713 return;
1714
1715 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1716 return;
1717
1718 trace_hfi1_rcvhdr(packet);
1719
1720 if (unlikely(rhf_err_flags(packet->rhf))) {
1721 handle_eflags(packet);
1722 return;
1723 }
1724
1725 hfi1_ib_rcv(packet);
1726 }
1727
process_receive_bypass(struct hfi1_packet * packet)1728 static void process_receive_bypass(struct hfi1_packet *packet)
1729 {
1730 struct hfi1_devdata *dd = packet->rcd->dd;
1731
1732 if (hfi1_setup_bypass_packet(packet))
1733 return;
1734
1735 trace_hfi1_rcvhdr(packet);
1736
1737 if (unlikely(rhf_err_flags(packet->rhf))) {
1738 handle_eflags(packet);
1739 return;
1740 }
1741
1742 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1743 hfi1_16B_rcv(packet);
1744 } else {
1745 dd_dev_err(dd,
1746 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1747 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1748 if (!(dd->err_info_rcvport.status_and_code &
1749 OPA_EI_STATUS_SMASK)) {
1750 u64 *flits = packet->ebuf;
1751
1752 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1753 dd->err_info_rcvport.packet_flit1 = flits[0];
1754 dd->err_info_rcvport.packet_flit2 =
1755 packet->tlen > sizeof(flits[0]) ?
1756 flits[1] : 0;
1757 }
1758 dd->err_info_rcvport.status_and_code |=
1759 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1760 }
1761 }
1762 }
1763
process_receive_error(struct hfi1_packet * packet)1764 static void process_receive_error(struct hfi1_packet *packet)
1765 {
1766 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1767 if (unlikely(
1768 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1769 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1770 packet->rhf & RHF_DC_ERR)))
1771 return;
1772
1773 hfi1_setup_ib_header(packet);
1774 handle_eflags(packet);
1775
1776 if (unlikely(rhf_err_flags(packet->rhf)))
1777 dd_dev_err(packet->rcd->dd,
1778 "Unhandled error packet received. Dropping.\n");
1779 }
1780
kdeth_process_expected(struct hfi1_packet * packet)1781 static void kdeth_process_expected(struct hfi1_packet *packet)
1782 {
1783 hfi1_setup_9B_packet(packet);
1784 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1785 return;
1786
1787 if (unlikely(rhf_err_flags(packet->rhf))) {
1788 struct hfi1_ctxtdata *rcd = packet->rcd;
1789
1790 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1791 return;
1792 }
1793
1794 hfi1_kdeth_expected_rcv(packet);
1795 }
1796
kdeth_process_eager(struct hfi1_packet * packet)1797 static void kdeth_process_eager(struct hfi1_packet *packet)
1798 {
1799 hfi1_setup_9B_packet(packet);
1800 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1801 return;
1802
1803 trace_hfi1_rcvhdr(packet);
1804 if (unlikely(rhf_err_flags(packet->rhf))) {
1805 struct hfi1_ctxtdata *rcd = packet->rcd;
1806
1807 show_eflags_errs(packet);
1808 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1809 return;
1810 }
1811
1812 hfi1_kdeth_eager_rcv(packet);
1813 }
1814
process_receive_invalid(struct hfi1_packet * packet)1815 static void process_receive_invalid(struct hfi1_packet *packet)
1816 {
1817 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1818 rhf_rcv_type(packet->rhf));
1819 }
1820
1821 #define HFI1_RCVHDR_DUMP_MAX 5
1822
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1823 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1824 {
1825 struct hfi1_packet packet;
1826 struct ps_mdata mdata;
1827 int i;
1828
1829 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1830 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1831 get_dma_rtail_setting(rcd) ?
1832 "dma_rtail" : "nodma_rtail",
1833 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1834 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1835 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1836 RCV_HDR_HEAD_HEAD_MASK,
1837 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1838 rcd->head);
1839
1840 init_packet(rcd, &packet);
1841 init_ps_mdata(&mdata, &packet);
1842
1843 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1844 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1845 rcd->rhf_offset;
1846 struct ib_header *hdr;
1847 u64 rhf = rhf_to_cpu(rhf_addr);
1848 u32 etype = rhf_rcv_type(rhf), qpn;
1849 u8 opcode;
1850 u32 psn;
1851 u8 lnh;
1852
1853 if (ps_done(&mdata, rhf, rcd))
1854 break;
1855
1856 if (ps_skip(&mdata, rhf, rcd))
1857 goto next;
1858
1859 if (etype > RHF_RCV_TYPE_IB)
1860 goto next;
1861
1862 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1863 hdr = packet.hdr;
1864
1865 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1866
1867 if (lnh == HFI1_LRH_BTH)
1868 packet.ohdr = &hdr->u.oth;
1869 else if (lnh == HFI1_LRH_GRH)
1870 packet.ohdr = &hdr->u.l.oth;
1871 else
1872 goto next; /* just in case */
1873
1874 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1875 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1876 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1877
1878 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1879 mdata.ps_head, opcode, qpn, psn);
1880 next:
1881 update_ps_mdata(&mdata, rcd);
1882 }
1883 }
1884
1885 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1886 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1887 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1888 [RHF_RCV_TYPE_IB] = process_receive_ib,
1889 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1890 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1891 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1892 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1893 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1894 };
1895
1896 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1897 [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1898 [RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1899 [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1900 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1901 [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1902 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1903 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1904 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1905 };
1906