1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28 #include "selftest.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
33 
34 static const unsigned int
35 /* "Large" EEPROM device: Atmel AT25640 or similar
36  * 8 KB, 16-bit address, 32 B write block */
37 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
38 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
39 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
40 /* Default flash device: Atmel AT25F1024
41  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
42 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
43 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
44 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
45 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
46 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
47 
48 /**************************************************************************
49  *
50  * I2C bus - this is a bit-bashing interface using GPIO pins
51  * Note that it uses the output enables to tristate the outputs
52  * SDA is the data pin and SCL is the clock
53  *
54  **************************************************************************
55  */
falcon_setsda(void * data,int state)56 static void falcon_setsda(void *data, int state)
57 {
58 	struct efx_nic *efx = (struct efx_nic *)data;
59 	efx_oword_t reg;
60 
61 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
62 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
63 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
64 }
65 
falcon_setscl(void * data,int state)66 static void falcon_setscl(void *data, int state)
67 {
68 	struct efx_nic *efx = (struct efx_nic *)data;
69 	efx_oword_t reg;
70 
71 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
72 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
73 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
74 }
75 
falcon_getsda(void * data)76 static int falcon_getsda(void *data)
77 {
78 	struct efx_nic *efx = (struct efx_nic *)data;
79 	efx_oword_t reg;
80 
81 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
82 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
83 }
84 
falcon_getscl(void * data)85 static int falcon_getscl(void *data)
86 {
87 	struct efx_nic *efx = (struct efx_nic *)data;
88 	efx_oword_t reg;
89 
90 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
91 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
92 }
93 
94 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
95 	.setsda		= falcon_setsda,
96 	.setscl		= falcon_setscl,
97 	.getsda		= falcon_getsda,
98 	.getscl		= falcon_getscl,
99 	.udelay		= 5,
100 	/* Wait up to 50 ms for slave to let us pull SCL high */
101 	.timeout	= DIV_ROUND_UP(HZ, 20),
102 };
103 
falcon_push_irq_moderation(struct efx_channel * channel)104 static void falcon_push_irq_moderation(struct efx_channel *channel)
105 {
106 	efx_dword_t timer_cmd;
107 	struct efx_nic *efx = channel->efx;
108 
109 	/* Set timer register */
110 	if (channel->irq_moderation) {
111 		EFX_POPULATE_DWORD_2(timer_cmd,
112 				     FRF_AB_TC_TIMER_MODE,
113 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
114 				     FRF_AB_TC_TIMER_VAL,
115 				     channel->irq_moderation - 1);
116 	} else {
117 		EFX_POPULATE_DWORD_2(timer_cmd,
118 				     FRF_AB_TC_TIMER_MODE,
119 				     FFE_BB_TIMER_MODE_DIS,
120 				     FRF_AB_TC_TIMER_VAL, 0);
121 	}
122 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124 			       channel->channel);
125 }
126 
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128 
falcon_prepare_flush(struct efx_nic * efx)129 static void falcon_prepare_flush(struct efx_nic *efx)
130 {
131 	falcon_deconfigure_mac_wrapper(efx);
132 
133 	/* Wait for the tx and rx fifo's to get to the next packet boundary
134 	 * (~1ms without back-pressure), then to drain the remainder of the
135 	 * fifo's at data path speeds (negligible), with a healthy margin. */
136 	msleep(10);
137 }
138 
139 /* Acknowledge a legacy interrupt from Falcon
140  *
141  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142  *
143  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144  * BIU. Interrupt acknowledge is read sensitive so must write instead
145  * (then read to ensure the BIU collector is flushed)
146  *
147  * NB most hardware supports MSI interrupts
148  */
falcon_irq_ack_a1(struct efx_nic * efx)149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 {
151 	efx_dword_t reg;
152 
153 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154 	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155 	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156 }
157 
158 
falcon_legacy_interrupt_a1(int irq,void * dev_id)159 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 {
161 	struct efx_nic *efx = dev_id;
162 	efx_oword_t *int_ker = efx->irq_status.addr;
163 	int syserr;
164 	int queues;
165 
166 	/* Check to see if this is our interrupt.  If it isn't, we
167 	 * exit without having touched the hardware.
168 	 */
169 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170 		netif_vdbg(efx, intr, efx->net_dev,
171 			   "IRQ %d on CPU %d not for me\n", irq,
172 			   raw_smp_processor_id());
173 		return IRQ_NONE;
174 	}
175 	efx->last_irq_cpu = raw_smp_processor_id();
176 	netif_vdbg(efx, intr, efx->net_dev,
177 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179 
180 	/* Check to see if we have a serious error condition */
181 	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
182 	if (unlikely(syserr))
183 		return efx_nic_fatal_interrupt(efx);
184 
185 	/* Determine interrupting queues, clear interrupt status
186 	 * register and acknowledge the device interrupt.
187 	 */
188 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
189 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
190 	EFX_ZERO_OWORD(*int_ker);
191 	wmb(); /* Ensure the vector is cleared before interrupt ack */
192 	falcon_irq_ack_a1(efx);
193 
194 	if (queues & 1)
195 		efx_schedule_channel_irq(efx_get_channel(efx, 0));
196 	if (queues & 2)
197 		efx_schedule_channel_irq(efx_get_channel(efx, 1));
198 	return IRQ_HANDLED;
199 }
200 /**************************************************************************
201  *
202  * EEPROM/flash
203  *
204  **************************************************************************
205  */
206 
207 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
208 
falcon_spi_poll(struct efx_nic * efx)209 static int falcon_spi_poll(struct efx_nic *efx)
210 {
211 	efx_oword_t reg;
212 	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
213 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
214 }
215 
216 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)217 static int falcon_spi_wait(struct efx_nic *efx)
218 {
219 	/* Most commands will finish quickly, so we start polling at
220 	 * very short intervals.  Sometimes the command may have to
221 	 * wait for VPD or expansion ROM access outside of our
222 	 * control, so we allow up to 100 ms. */
223 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
224 	int i;
225 
226 	for (i = 0; i < 10; i++) {
227 		if (!falcon_spi_poll(efx))
228 			return 0;
229 		udelay(10);
230 	}
231 
232 	for (;;) {
233 		if (!falcon_spi_poll(efx))
234 			return 0;
235 		if (time_after_eq(jiffies, timeout)) {
236 			netif_err(efx, hw, efx->net_dev,
237 				  "timed out waiting for SPI\n");
238 			return -ETIMEDOUT;
239 		}
240 		schedule_timeout_uninterruptible(1);
241 	}
242 }
243 
falcon_spi_cmd(struct efx_nic * efx,const struct efx_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)244 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
245 		   unsigned int command, int address,
246 		   const void *in, void *out, size_t len)
247 {
248 	bool addressed = (address >= 0);
249 	bool reading = (out != NULL);
250 	efx_oword_t reg;
251 	int rc;
252 
253 	/* Input validation */
254 	if (len > FALCON_SPI_MAX_LEN)
255 		return -EINVAL;
256 
257 	/* Check that previous command is not still running */
258 	rc = falcon_spi_poll(efx);
259 	if (rc)
260 		return rc;
261 
262 	/* Program address register, if we have an address */
263 	if (addressed) {
264 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
265 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
266 	}
267 
268 	/* Program data register, if we have data */
269 	if (in != NULL) {
270 		memcpy(&reg, in, len);
271 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
272 	}
273 
274 	/* Issue read/write command */
275 	EFX_POPULATE_OWORD_7(reg,
276 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
277 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
278 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
279 			     FRF_AB_EE_SPI_HCMD_READ, reading,
280 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
281 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
282 			     (addressed ? spi->addr_len : 0),
283 			     FRF_AB_EE_SPI_HCMD_ENC, command);
284 	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
285 
286 	/* Wait for read/write to complete */
287 	rc = falcon_spi_wait(efx);
288 	if (rc)
289 		return rc;
290 
291 	/* Read data */
292 	if (out != NULL) {
293 		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
294 		memcpy(out, &reg, len);
295 	}
296 
297 	return 0;
298 }
299 
300 static size_t
falcon_spi_write_limit(const struct efx_spi_device * spi,size_t start)301 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
302 {
303 	return min(FALCON_SPI_MAX_LEN,
304 		   (spi->block_size - (start & (spi->block_size - 1))));
305 }
306 
307 static inline u8
efx_spi_munge_command(const struct efx_spi_device * spi,const u8 command,const unsigned int address)308 efx_spi_munge_command(const struct efx_spi_device *spi,
309 		      const u8 command, const unsigned int address)
310 {
311 	return command | (((address >> 8) & spi->munge_address) << 3);
312 }
313 
314 /* Wait up to 10 ms for buffered write completion */
315 int
falcon_spi_wait_write(struct efx_nic * efx,const struct efx_spi_device * spi)316 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
317 {
318 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
319 	u8 status;
320 	int rc;
321 
322 	for (;;) {
323 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
324 				    &status, sizeof(status));
325 		if (rc)
326 			return rc;
327 		if (!(status & SPI_STATUS_NRDY))
328 			return 0;
329 		if (time_after_eq(jiffies, timeout)) {
330 			netif_err(efx, hw, efx->net_dev,
331 				  "SPI write timeout on device %d"
332 				  " last status=0x%02x\n",
333 				  spi->device_id, status);
334 			return -ETIMEDOUT;
335 		}
336 		schedule_timeout_uninterruptible(1);
337 	}
338 }
339 
falcon_spi_read(struct efx_nic * efx,const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)340 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
341 		    loff_t start, size_t len, size_t *retlen, u8 *buffer)
342 {
343 	size_t block_len, pos = 0;
344 	unsigned int command;
345 	int rc = 0;
346 
347 	while (pos < len) {
348 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
349 
350 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
351 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
352 				    buffer + pos, block_len);
353 		if (rc)
354 			break;
355 		pos += block_len;
356 
357 		/* Avoid locking up the system */
358 		cond_resched();
359 		if (signal_pending(current)) {
360 			rc = -EINTR;
361 			break;
362 		}
363 	}
364 
365 	if (retlen)
366 		*retlen = pos;
367 	return rc;
368 }
369 
370 int
falcon_spi_write(struct efx_nic * efx,const struct efx_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)371 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
372 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
373 {
374 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
375 	size_t block_len, pos = 0;
376 	unsigned int command;
377 	int rc = 0;
378 
379 	while (pos < len) {
380 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
381 		if (rc)
382 			break;
383 
384 		block_len = min(len - pos,
385 				falcon_spi_write_limit(spi, start + pos));
386 		command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
387 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
388 				    buffer + pos, NULL, block_len);
389 		if (rc)
390 			break;
391 
392 		rc = falcon_spi_wait_write(efx, spi);
393 		if (rc)
394 			break;
395 
396 		command = efx_spi_munge_command(spi, SPI_READ, start + pos);
397 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
398 				    NULL, verify_buffer, block_len);
399 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
400 			rc = -EIO;
401 			break;
402 		}
403 
404 		pos += block_len;
405 
406 		/* Avoid locking up the system */
407 		cond_resched();
408 		if (signal_pending(current)) {
409 			rc = -EINTR;
410 			break;
411 		}
412 	}
413 
414 	if (retlen)
415 		*retlen = pos;
416 	return rc;
417 }
418 
419 /**************************************************************************
420  *
421  * MAC wrapper
422  *
423  **************************************************************************
424  */
425 
falcon_push_multicast_hash(struct efx_nic * efx)426 static void falcon_push_multicast_hash(struct efx_nic *efx)
427 {
428 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
429 
430 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
431 
432 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
433 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
434 }
435 
falcon_reset_macs(struct efx_nic * efx)436 static void falcon_reset_macs(struct efx_nic *efx)
437 {
438 	struct falcon_nic_data *nic_data = efx->nic_data;
439 	efx_oword_t reg, mac_ctrl;
440 	int count;
441 
442 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443 		/* It's not safe to use GLB_CTL_REG to reset the
444 		 * macs, so instead use the internal MAC resets
445 		 */
446 		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
447 		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
448 
449 		for (count = 0; count < 10000; count++) {
450 			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
451 			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
452 			    0)
453 				return;
454 			udelay(10);
455 		}
456 
457 		netif_err(efx, hw, efx->net_dev,
458 			  "timed out waiting for XMAC core reset\n");
459 	}
460 
461 	/* Mac stats will fail whist the TX fifo is draining */
462 	WARN_ON(nic_data->stats_disable_count == 0);
463 
464 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
465 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
466 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
467 
468 	efx_reado(efx, &reg, FR_AB_GLB_CTL);
469 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
470 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
471 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
472 	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
473 
474 	count = 0;
475 	while (1) {
476 		efx_reado(efx, &reg, FR_AB_GLB_CTL);
477 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
478 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
479 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
480 			netif_dbg(efx, hw, efx->net_dev,
481 				  "Completed MAC reset after %d loops\n",
482 				  count);
483 			break;
484 		}
485 		if (count > 20) {
486 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
487 			break;
488 		}
489 		count++;
490 		udelay(10);
491 	}
492 
493 	/* Ensure the correct MAC is selected before statistics
494 	 * are re-enabled by the caller */
495 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
496 
497 	falcon_setup_xaui(efx);
498 }
499 
falcon_drain_tx_fifo(struct efx_nic * efx)500 void falcon_drain_tx_fifo(struct efx_nic *efx)
501 {
502 	efx_oword_t reg;
503 
504 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
505 	    (efx->loopback_mode != LOOPBACK_NONE))
506 		return;
507 
508 	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
509 	/* There is no point in draining more than once */
510 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
511 		return;
512 
513 	falcon_reset_macs(efx);
514 }
515 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)516 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
517 {
518 	efx_oword_t reg;
519 
520 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
521 		return;
522 
523 	/* Isolate the MAC -> RX */
524 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
525 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
526 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
527 
528 	/* Isolate TX -> MAC */
529 	falcon_drain_tx_fifo(efx);
530 }
531 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)532 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
533 {
534 	struct efx_link_state *link_state = &efx->link_state;
535 	efx_oword_t reg;
536 	int link_speed, isolate;
537 
538 	isolate = !!ACCESS_ONCE(efx->reset_pending);
539 
540 	switch (link_state->speed) {
541 	case 10000: link_speed = 3; break;
542 	case 1000:  link_speed = 2; break;
543 	case 100:   link_speed = 1; break;
544 	default:    link_speed = 0; break;
545 	}
546 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
547 	 * as advertised.  Disable to ensure packets are not
548 	 * indefinitely held and TX queue can be flushed at any point
549 	 * while the link is down. */
550 	EFX_POPULATE_OWORD_5(reg,
551 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
552 			     FRF_AB_MAC_BCAD_ACPT, 1,
553 			     FRF_AB_MAC_UC_PROM, efx->promiscuous,
554 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
555 			     FRF_AB_MAC_SPEED, link_speed);
556 	/* On B0, MAC backpressure can be disabled and packets get
557 	 * discarded. */
558 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
559 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
560 				    !link_state->up || isolate);
561 	}
562 
563 	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
564 
565 	/* Restore the multicast hash registers. */
566 	falcon_push_multicast_hash(efx);
567 
568 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
569 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
570 	 * initialisation but it may read back as 0) */
571 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
572 	/* Unisolate the MAC -> RX */
573 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
574 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
575 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
576 }
577 
falcon_stats_request(struct efx_nic * efx)578 static void falcon_stats_request(struct efx_nic *efx)
579 {
580 	struct falcon_nic_data *nic_data = efx->nic_data;
581 	efx_oword_t reg;
582 
583 	WARN_ON(nic_data->stats_pending);
584 	WARN_ON(nic_data->stats_disable_count);
585 
586 	if (nic_data->stats_dma_done == NULL)
587 		return;	/* no mac selected */
588 
589 	*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
590 	nic_data->stats_pending = true;
591 	wmb(); /* ensure done flag is clear */
592 
593 	/* Initiate DMA transfer of stats */
594 	EFX_POPULATE_OWORD_2(reg,
595 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
596 			     FRF_AB_MAC_STAT_DMA_ADR,
597 			     efx->stats_buffer.dma_addr);
598 	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
599 
600 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
601 }
602 
falcon_stats_complete(struct efx_nic * efx)603 static void falcon_stats_complete(struct efx_nic *efx)
604 {
605 	struct falcon_nic_data *nic_data = efx->nic_data;
606 
607 	if (!nic_data->stats_pending)
608 		return;
609 
610 	nic_data->stats_pending = false;
611 	if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
612 		rmb(); /* read the done flag before the stats */
613 		falcon_update_stats_xmac(efx);
614 	} else {
615 		netif_err(efx, hw, efx->net_dev,
616 			  "timed out waiting for statistics\n");
617 	}
618 }
619 
falcon_stats_timer_func(unsigned long context)620 static void falcon_stats_timer_func(unsigned long context)
621 {
622 	struct efx_nic *efx = (struct efx_nic *)context;
623 	struct falcon_nic_data *nic_data = efx->nic_data;
624 
625 	spin_lock(&efx->stats_lock);
626 
627 	falcon_stats_complete(efx);
628 	if (nic_data->stats_disable_count == 0)
629 		falcon_stats_request(efx);
630 
631 	spin_unlock(&efx->stats_lock);
632 }
633 
falcon_loopback_link_poll(struct efx_nic * efx)634 static bool falcon_loopback_link_poll(struct efx_nic *efx)
635 {
636 	struct efx_link_state old_state = efx->link_state;
637 
638 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
639 	WARN_ON(!LOOPBACK_INTERNAL(efx));
640 
641 	efx->link_state.fd = true;
642 	efx->link_state.fc = efx->wanted_fc;
643 	efx->link_state.up = true;
644 	efx->link_state.speed = 10000;
645 
646 	return !efx_link_state_equal(&efx->link_state, &old_state);
647 }
648 
falcon_reconfigure_port(struct efx_nic * efx)649 static int falcon_reconfigure_port(struct efx_nic *efx)
650 {
651 	int rc;
652 
653 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
654 
655 	/* Poll the PHY link state *before* reconfiguring it. This means we
656 	 * will pick up the correct speed (in loopback) to select the correct
657 	 * MAC.
658 	 */
659 	if (LOOPBACK_INTERNAL(efx))
660 		falcon_loopback_link_poll(efx);
661 	else
662 		efx->phy_op->poll(efx);
663 
664 	falcon_stop_nic_stats(efx);
665 	falcon_deconfigure_mac_wrapper(efx);
666 
667 	falcon_reset_macs(efx);
668 
669 	efx->phy_op->reconfigure(efx);
670 	rc = falcon_reconfigure_xmac(efx);
671 	BUG_ON(rc);
672 
673 	falcon_start_nic_stats(efx);
674 
675 	/* Synchronise efx->link_state with the kernel */
676 	efx_link_status_changed(efx);
677 
678 	return 0;
679 }
680 
681 /**************************************************************************
682  *
683  * PHY access via GMII
684  *
685  **************************************************************************
686  */
687 
688 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)689 static int falcon_gmii_wait(struct efx_nic *efx)
690 {
691 	efx_oword_t md_stat;
692 	int count;
693 
694 	/* wait up to 50ms - taken max from datasheet */
695 	for (count = 0; count < 5000; count++) {
696 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
697 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
698 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
699 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
700 				netif_err(efx, hw, efx->net_dev,
701 					  "error from GMII access "
702 					  EFX_OWORD_FMT"\n",
703 					  EFX_OWORD_VAL(md_stat));
704 				return -EIO;
705 			}
706 			return 0;
707 		}
708 		udelay(10);
709 	}
710 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
711 	return -ETIMEDOUT;
712 }
713 
714 /* Write an MDIO register of a PHY connected to Falcon. */
falcon_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)715 static int falcon_mdio_write(struct net_device *net_dev,
716 			     int prtad, int devad, u16 addr, u16 value)
717 {
718 	struct efx_nic *efx = netdev_priv(net_dev);
719 	struct falcon_nic_data *nic_data = efx->nic_data;
720 	efx_oword_t reg;
721 	int rc;
722 
723 	netif_vdbg(efx, hw, efx->net_dev,
724 		   "writing MDIO %d register %d.%d with 0x%04x\n",
725 		    prtad, devad, addr, value);
726 
727 	mutex_lock(&nic_data->mdio_lock);
728 
729 	/* Check MDIO not currently being accessed */
730 	rc = falcon_gmii_wait(efx);
731 	if (rc)
732 		goto out;
733 
734 	/* Write the address/ID register */
735 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
736 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
737 
738 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
739 			     FRF_AB_MD_DEV_ADR, devad);
740 	efx_writeo(efx, &reg, FR_AB_MD_ID);
741 
742 	/* Write data */
743 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
744 	efx_writeo(efx, &reg, FR_AB_MD_TXD);
745 
746 	EFX_POPULATE_OWORD_2(reg,
747 			     FRF_AB_MD_WRC, 1,
748 			     FRF_AB_MD_GC, 0);
749 	efx_writeo(efx, &reg, FR_AB_MD_CS);
750 
751 	/* Wait for data to be written */
752 	rc = falcon_gmii_wait(efx);
753 	if (rc) {
754 		/* Abort the write operation */
755 		EFX_POPULATE_OWORD_2(reg,
756 				     FRF_AB_MD_WRC, 0,
757 				     FRF_AB_MD_GC, 1);
758 		efx_writeo(efx, &reg, FR_AB_MD_CS);
759 		udelay(10);
760 	}
761 
762 out:
763 	mutex_unlock(&nic_data->mdio_lock);
764 	return rc;
765 }
766 
767 /* Read an MDIO register of a PHY connected to Falcon. */
falcon_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)768 static int falcon_mdio_read(struct net_device *net_dev,
769 			    int prtad, int devad, u16 addr)
770 {
771 	struct efx_nic *efx = netdev_priv(net_dev);
772 	struct falcon_nic_data *nic_data = efx->nic_data;
773 	efx_oword_t reg;
774 	int rc;
775 
776 	mutex_lock(&nic_data->mdio_lock);
777 
778 	/* Check MDIO not currently being accessed */
779 	rc = falcon_gmii_wait(efx);
780 	if (rc)
781 		goto out;
782 
783 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
784 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
785 
786 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
787 			     FRF_AB_MD_DEV_ADR, devad);
788 	efx_writeo(efx, &reg, FR_AB_MD_ID);
789 
790 	/* Request data to be read */
791 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
792 	efx_writeo(efx, &reg, FR_AB_MD_CS);
793 
794 	/* Wait for data to become available */
795 	rc = falcon_gmii_wait(efx);
796 	if (rc == 0) {
797 		efx_reado(efx, &reg, FR_AB_MD_RXD);
798 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
799 		netif_vdbg(efx, hw, efx->net_dev,
800 			   "read from MDIO %d register %d.%d, got %04x\n",
801 			   prtad, devad, addr, rc);
802 	} else {
803 		/* Abort the read operation */
804 		EFX_POPULATE_OWORD_2(reg,
805 				     FRF_AB_MD_RIC, 0,
806 				     FRF_AB_MD_GC, 1);
807 		efx_writeo(efx, &reg, FR_AB_MD_CS);
808 
809 		netif_dbg(efx, hw, efx->net_dev,
810 			  "read from MDIO %d register %d.%d, got error %d\n",
811 			  prtad, devad, addr, rc);
812 	}
813 
814 out:
815 	mutex_unlock(&nic_data->mdio_lock);
816 	return rc;
817 }
818 
819 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)820 static int falcon_probe_port(struct efx_nic *efx)
821 {
822 	struct falcon_nic_data *nic_data = efx->nic_data;
823 	int rc;
824 
825 	switch (efx->phy_type) {
826 	case PHY_TYPE_SFX7101:
827 		efx->phy_op = &falcon_sfx7101_phy_ops;
828 		break;
829 	case PHY_TYPE_QT2022C2:
830 	case PHY_TYPE_QT2025C:
831 		efx->phy_op = &falcon_qt202x_phy_ops;
832 		break;
833 	case PHY_TYPE_TXC43128:
834 		efx->phy_op = &falcon_txc_phy_ops;
835 		break;
836 	default:
837 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
838 			  efx->phy_type);
839 		return -ENODEV;
840 	}
841 
842 	/* Fill out MDIO structure and loopback modes */
843 	mutex_init(&nic_data->mdio_lock);
844 	efx->mdio.mdio_read = falcon_mdio_read;
845 	efx->mdio.mdio_write = falcon_mdio_write;
846 	rc = efx->phy_op->probe(efx);
847 	if (rc != 0)
848 		return rc;
849 
850 	/* Initial assumption */
851 	efx->link_state.speed = 10000;
852 	efx->link_state.fd = true;
853 
854 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
856 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
857 	else
858 		efx->wanted_fc = EFX_FC_RX;
859 	if (efx->mdio.mmds & MDIO_DEVS_AN)
860 		efx->wanted_fc |= EFX_FC_AUTO;
861 
862 	/* Allocate buffer for stats */
863 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
864 				  FALCON_MAC_STATS_SIZE);
865 	if (rc)
866 		return rc;
867 	netif_dbg(efx, probe, efx->net_dev,
868 		  "stats buffer at %llx (virt %p phys %llx)\n",
869 		  (u64)efx->stats_buffer.dma_addr,
870 		  efx->stats_buffer.addr,
871 		  (u64)virt_to_phys(efx->stats_buffer.addr));
872 	nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
873 
874 	return 0;
875 }
876 
falcon_remove_port(struct efx_nic * efx)877 static void falcon_remove_port(struct efx_nic *efx)
878 {
879 	efx->phy_op->remove(efx);
880 	efx_nic_free_buffer(efx, &efx->stats_buffer);
881 }
882 
883 /* Global events are basically PHY events */
884 static bool
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)885 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
886 {
887 	struct efx_nic *efx = channel->efx;
888 	struct falcon_nic_data *nic_data = efx->nic_data;
889 
890 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
893 		/* Ignored */
894 		return true;
895 
896 	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
897 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
898 		nic_data->xmac_poll_required = true;
899 		return true;
900 	}
901 
902 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
903 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
904 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
905 		netif_err(efx, rx_err, efx->net_dev,
906 			  "channel %d seen global RX_RESET event. Resetting.\n",
907 			  channel->channel);
908 
909 		atomic_inc(&efx->rx_reset);
910 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
911 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 /**************************************************************************
919  *
920  * Falcon test code
921  *
922  **************************************************************************/
923 
924 static int
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)925 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
926 {
927 	struct falcon_nic_data *nic_data = efx->nic_data;
928 	struct falcon_nvconfig *nvconfig;
929 	struct efx_spi_device *spi;
930 	void *region;
931 	int rc, magic_num, struct_ver;
932 	__le16 *word, *limit;
933 	u32 csum;
934 
935 	if (efx_spi_present(&nic_data->spi_flash))
936 		spi = &nic_data->spi_flash;
937 	else if (efx_spi_present(&nic_data->spi_eeprom))
938 		spi = &nic_data->spi_eeprom;
939 	else
940 		return -EINVAL;
941 
942 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
943 	if (!region)
944 		return -ENOMEM;
945 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
946 
947 	mutex_lock(&nic_data->spi_lock);
948 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
949 	mutex_unlock(&nic_data->spi_lock);
950 	if (rc) {
951 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
952 			  efx_spi_present(&nic_data->spi_flash) ?
953 			  "flash" : "EEPROM");
954 		rc = -EIO;
955 		goto out;
956 	}
957 
958 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
959 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
960 
961 	rc = -EINVAL;
962 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
963 		netif_err(efx, hw, efx->net_dev,
964 			  "NVRAM bad magic 0x%x\n", magic_num);
965 		goto out;
966 	}
967 	if (struct_ver < 2) {
968 		netif_err(efx, hw, efx->net_dev,
969 			  "NVRAM has ancient version 0x%x\n", struct_ver);
970 		goto out;
971 	} else if (struct_ver < 4) {
972 		word = &nvconfig->board_magic_num;
973 		limit = (__le16 *) (nvconfig + 1);
974 	} else {
975 		word = region;
976 		limit = region + FALCON_NVCONFIG_END;
977 	}
978 	for (csum = 0; word < limit; ++word)
979 		csum += le16_to_cpu(*word);
980 
981 	if (~csum & 0xffff) {
982 		netif_err(efx, hw, efx->net_dev,
983 			  "NVRAM has incorrect checksum\n");
984 		goto out;
985 	}
986 
987 	rc = 0;
988 	if (nvconfig_out)
989 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
990 
991  out:
992 	kfree(region);
993 	return rc;
994 }
995 
falcon_test_nvram(struct efx_nic * efx)996 static int falcon_test_nvram(struct efx_nic *efx)
997 {
998 	return falcon_read_nvram(efx, NULL);
999 }
1000 
1001 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1002 	{ FR_AZ_ADR_REGION,
1003 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1004 	{ FR_AZ_RX_CFG,
1005 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1006 	{ FR_AZ_TX_CFG,
1007 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1008 	{ FR_AZ_TX_RESERVED,
1009 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1010 	{ FR_AB_MAC_CTRL,
1011 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1012 	{ FR_AZ_SRM_TX_DC_CFG,
1013 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1014 	{ FR_AZ_RX_DC_CFG,
1015 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1016 	{ FR_AZ_RX_DC_PF_WM,
1017 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1018 	{ FR_BZ_DP_CTRL,
1019 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1020 	{ FR_AB_GM_CFG2,
1021 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1022 	{ FR_AB_GMF_CFG0,
1023 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1024 	{ FR_AB_XM_GLB_CFG,
1025 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1026 	{ FR_AB_XM_TX_CFG,
1027 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1028 	{ FR_AB_XM_RX_CFG,
1029 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1030 	{ FR_AB_XM_RX_PARAM,
1031 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1032 	{ FR_AB_XM_FC,
1033 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1034 	{ FR_AB_XM_ADR_LO,
1035 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1036 	{ FR_AB_XX_SD_CTL,
1037 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1038 };
1039 
1040 static int
falcon_b0_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)1041 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1042 {
1043 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1044 	int rc, rc2;
1045 
1046 	mutex_lock(&efx->mac_lock);
1047 	if (efx->loopback_modes) {
1048 		/* We need the 312 clock from the PHY to test the XMAC
1049 		 * registers, so move into XGMII loopback if available */
1050 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1051 			efx->loopback_mode = LOOPBACK_XGMII;
1052 		else
1053 			efx->loopback_mode = __ffs(efx->loopback_modes);
1054 	}
1055 	__efx_reconfigure_port(efx);
1056 	mutex_unlock(&efx->mac_lock);
1057 
1058 	efx_reset_down(efx, reset_method);
1059 
1060 	tests->registers =
1061 		efx_nic_test_registers(efx, falcon_b0_register_tests,
1062 				       ARRAY_SIZE(falcon_b0_register_tests))
1063 		? -1 : 1;
1064 
1065 	rc = falcon_reset_hw(efx, reset_method);
1066 	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1067 	return rc ? rc : rc2;
1068 }
1069 
1070 /**************************************************************************
1071  *
1072  * Device reset
1073  *
1074  **************************************************************************
1075  */
1076 
falcon_map_reset_reason(enum reset_type reason)1077 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1078 {
1079 	switch (reason) {
1080 	case RESET_TYPE_RX_RECOVERY:
1081 	case RESET_TYPE_RX_DESC_FETCH:
1082 	case RESET_TYPE_TX_DESC_FETCH:
1083 	case RESET_TYPE_TX_SKIP:
1084 		/* These can occasionally occur due to hardware bugs.
1085 		 * We try to reset without disrupting the link.
1086 		 */
1087 		return RESET_TYPE_INVISIBLE;
1088 	default:
1089 		return RESET_TYPE_ALL;
1090 	}
1091 }
1092 
falcon_map_reset_flags(u32 * flags)1093 static int falcon_map_reset_flags(u32 *flags)
1094 {
1095 	enum {
1096 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1097 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1098 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1099 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1100 	};
1101 
1102 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1103 		*flags &= ~FALCON_RESET_WORLD;
1104 		return RESET_TYPE_WORLD;
1105 	}
1106 
1107 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1108 		*flags &= ~FALCON_RESET_ALL;
1109 		return RESET_TYPE_ALL;
1110 	}
1111 
1112 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1113 		*flags &= ~FALCON_RESET_INVISIBLE;
1114 		return RESET_TYPE_INVISIBLE;
1115 	}
1116 
1117 	return -EINVAL;
1118 }
1119 
1120 /* Resets NIC to known state.  This routine must be called in process
1121  * context and is allowed to sleep. */
__falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1122 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1123 {
1124 	struct falcon_nic_data *nic_data = efx->nic_data;
1125 	efx_oword_t glb_ctl_reg_ker;
1126 	int rc;
1127 
1128 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1129 		  RESET_TYPE(method));
1130 
1131 	/* Initiate device reset */
1132 	if (method == RESET_TYPE_WORLD) {
1133 		rc = pci_save_state(efx->pci_dev);
1134 		if (rc) {
1135 			netif_err(efx, drv, efx->net_dev,
1136 				  "failed to backup PCI state of primary "
1137 				  "function prior to hardware reset\n");
1138 			goto fail1;
1139 		}
1140 		if (efx_nic_is_dual_func(efx)) {
1141 			rc = pci_save_state(nic_data->pci_dev2);
1142 			if (rc) {
1143 				netif_err(efx, drv, efx->net_dev,
1144 					  "failed to backup PCI state of "
1145 					  "secondary function prior to "
1146 					  "hardware reset\n");
1147 				goto fail2;
1148 			}
1149 		}
1150 
1151 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1152 				     FRF_AB_EXT_PHY_RST_DUR,
1153 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1154 				     FRF_AB_SWRST, 1);
1155 	} else {
1156 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1157 				     /* exclude PHY from "invisible" reset */
1158 				     FRF_AB_EXT_PHY_RST_CTL,
1159 				     method == RESET_TYPE_INVISIBLE,
1160 				     /* exclude EEPROM/flash and PCIe */
1161 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
1162 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1163 				     FRF_AB_PCIE_SD_RST_CTL, 1,
1164 				     FRF_AB_EE_RST_CTL, 1,
1165 				     FRF_AB_EXT_PHY_RST_DUR,
1166 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1167 				     FRF_AB_SWRST, 1);
1168 	}
1169 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1170 
1171 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1172 	schedule_timeout_uninterruptible(HZ / 20);
1173 
1174 	/* Restore PCI configuration if needed */
1175 	if (method == RESET_TYPE_WORLD) {
1176 		if (efx_nic_is_dual_func(efx))
1177 			pci_restore_state(nic_data->pci_dev2);
1178 		pci_restore_state(efx->pci_dev);
1179 		netif_dbg(efx, drv, efx->net_dev,
1180 			  "successfully restored PCI config\n");
1181 	}
1182 
1183 	/* Assert that reset complete */
1184 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1185 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1186 		rc = -ETIMEDOUT;
1187 		netif_err(efx, hw, efx->net_dev,
1188 			  "timed out waiting for hardware reset\n");
1189 		goto fail3;
1190 	}
1191 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1192 
1193 	return 0;
1194 
1195 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
1196 fail2:
1197 	pci_restore_state(efx->pci_dev);
1198 fail1:
1199 fail3:
1200 	return rc;
1201 }
1202 
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1203 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1204 {
1205 	struct falcon_nic_data *nic_data = efx->nic_data;
1206 	int rc;
1207 
1208 	mutex_lock(&nic_data->spi_lock);
1209 	rc = __falcon_reset_hw(efx, method);
1210 	mutex_unlock(&nic_data->spi_lock);
1211 
1212 	return rc;
1213 }
1214 
falcon_monitor(struct efx_nic * efx)1215 static void falcon_monitor(struct efx_nic *efx)
1216 {
1217 	bool link_changed;
1218 	int rc;
1219 
1220 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
1221 
1222 	rc = falcon_board(efx)->type->monitor(efx);
1223 	if (rc) {
1224 		netif_err(efx, hw, efx->net_dev,
1225 			  "Board sensor %s; shutting down PHY\n",
1226 			  (rc == -ERANGE) ? "reported fault" : "failed");
1227 		efx->phy_mode |= PHY_MODE_LOW_POWER;
1228 		rc = __efx_reconfigure_port(efx);
1229 		WARN_ON(rc);
1230 	}
1231 
1232 	if (LOOPBACK_INTERNAL(efx))
1233 		link_changed = falcon_loopback_link_poll(efx);
1234 	else
1235 		link_changed = efx->phy_op->poll(efx);
1236 
1237 	if (link_changed) {
1238 		falcon_stop_nic_stats(efx);
1239 		falcon_deconfigure_mac_wrapper(efx);
1240 
1241 		falcon_reset_macs(efx);
1242 		rc = falcon_reconfigure_xmac(efx);
1243 		BUG_ON(rc);
1244 
1245 		falcon_start_nic_stats(efx);
1246 
1247 		efx_link_status_changed(efx);
1248 	}
1249 
1250 	falcon_poll_xmac(efx);
1251 }
1252 
1253 /* Zeroes out the SRAM contents.  This routine must be called in
1254  * process context and is allowed to sleep.
1255  */
falcon_reset_sram(struct efx_nic * efx)1256 static int falcon_reset_sram(struct efx_nic *efx)
1257 {
1258 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1259 	int count;
1260 
1261 	/* Set the SRAM wake/sleep GPIO appropriately. */
1262 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1263 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1264 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1265 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1266 
1267 	/* Initiate SRAM reset */
1268 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1269 			     FRF_AZ_SRM_INIT_EN, 1,
1270 			     FRF_AZ_SRM_NB_SZ, 0);
1271 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1272 
1273 	/* Wait for SRAM reset to complete */
1274 	count = 0;
1275 	do {
1276 		netif_dbg(efx, hw, efx->net_dev,
1277 			  "waiting for SRAM reset (attempt %d)...\n", count);
1278 
1279 		/* SRAM reset is slow; expect around 16ms */
1280 		schedule_timeout_uninterruptible(HZ / 50);
1281 
1282 		/* Check for reset complete */
1283 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1284 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1285 			netif_dbg(efx, hw, efx->net_dev,
1286 				  "SRAM reset complete\n");
1287 
1288 			return 0;
1289 		}
1290 	} while (++count < 20);	/* wait up to 0.4 sec */
1291 
1292 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1293 	return -ETIMEDOUT;
1294 }
1295 
falcon_spi_device_init(struct efx_nic * efx,struct efx_spi_device * spi_device,unsigned int device_id,u32 device_type)1296 static void falcon_spi_device_init(struct efx_nic *efx,
1297 				  struct efx_spi_device *spi_device,
1298 				  unsigned int device_id, u32 device_type)
1299 {
1300 	if (device_type != 0) {
1301 		spi_device->device_id = device_id;
1302 		spi_device->size =
1303 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1304 		spi_device->addr_len =
1305 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1306 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
1307 					     spi_device->addr_len == 1);
1308 		spi_device->erase_command =
1309 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1310 		spi_device->erase_size =
1311 			1 << SPI_DEV_TYPE_FIELD(device_type,
1312 						SPI_DEV_TYPE_ERASE_SIZE);
1313 		spi_device->block_size =
1314 			1 << SPI_DEV_TYPE_FIELD(device_type,
1315 						SPI_DEV_TYPE_BLOCK_SIZE);
1316 	} else {
1317 		spi_device->size = 0;
1318 	}
1319 }
1320 
1321 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)1322 static int falcon_probe_nvconfig(struct efx_nic *efx)
1323 {
1324 	struct falcon_nic_data *nic_data = efx->nic_data;
1325 	struct falcon_nvconfig *nvconfig;
1326 	int rc;
1327 
1328 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1329 	if (!nvconfig)
1330 		return -ENOMEM;
1331 
1332 	rc = falcon_read_nvram(efx, nvconfig);
1333 	if (rc)
1334 		goto out;
1335 
1336 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
1337 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1338 
1339 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1340 		falcon_spi_device_init(
1341 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1342 			le32_to_cpu(nvconfig->board_v3
1343 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1344 		falcon_spi_device_init(
1345 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346 			le32_to_cpu(nvconfig->board_v3
1347 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1348 	}
1349 
1350 	/* Read the MAC addresses */
1351 	memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1352 
1353 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1354 		  efx->phy_type, efx->mdio.prtad);
1355 
1356 	rc = falcon_probe_board(efx,
1357 				le16_to_cpu(nvconfig->board_v2.board_revision));
1358 out:
1359 	kfree(nvconfig);
1360 	return rc;
1361 }
1362 
falcon_dimension_resources(struct efx_nic * efx)1363 static void falcon_dimension_resources(struct efx_nic *efx)
1364 {
1365 	efx->rx_dc_base = 0x20000;
1366 	efx->tx_dc_base = 0x26000;
1367 }
1368 
1369 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)1370 static void falcon_probe_spi_devices(struct efx_nic *efx)
1371 {
1372 	struct falcon_nic_data *nic_data = efx->nic_data;
1373 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1374 	int boot_dev;
1375 
1376 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1377 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1378 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1379 
1380 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1381 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1382 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1383 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1384 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1385 			  "flash" : "EEPROM");
1386 	} else {
1387 		/* Disable VPD and set clock dividers to safe
1388 		 * values for initial programming. */
1389 		boot_dev = -1;
1390 		netif_dbg(efx, probe, efx->net_dev,
1391 			  "Booted from internal ASIC settings;"
1392 			  " setting SPI config\n");
1393 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1394 				     /* 125 MHz / 7 ~= 20 MHz */
1395 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
1396 				     /* 125 MHz / 63 ~= 2 MHz */
1397 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
1398 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1399 	}
1400 
1401 	mutex_init(&nic_data->spi_lock);
1402 
1403 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1404 		falcon_spi_device_init(efx, &nic_data->spi_flash,
1405 				       FFE_AB_SPI_DEVICE_FLASH,
1406 				       default_flash_type);
1407 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1408 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1409 				       FFE_AB_SPI_DEVICE_EEPROM,
1410 				       large_eeprom_type);
1411 }
1412 
falcon_probe_nic(struct efx_nic * efx)1413 static int falcon_probe_nic(struct efx_nic *efx)
1414 {
1415 	struct falcon_nic_data *nic_data;
1416 	struct falcon_board *board;
1417 	int rc;
1418 
1419 	/* Allocate storage for hardware specific data */
1420 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1421 	if (!nic_data)
1422 		return -ENOMEM;
1423 	efx->nic_data = nic_data;
1424 
1425 	rc = -ENODEV;
1426 
1427 	if (efx_nic_fpga_ver(efx) != 0) {
1428 		netif_err(efx, probe, efx->net_dev,
1429 			  "Falcon FPGA not supported\n");
1430 		goto fail1;
1431 	}
1432 
1433 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1434 		efx_oword_t nic_stat;
1435 		struct pci_dev *dev;
1436 		u8 pci_rev = efx->pci_dev->revision;
1437 
1438 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
1439 			netif_err(efx, probe, efx->net_dev,
1440 				  "Falcon rev A0 not supported\n");
1441 			goto fail1;
1442 		}
1443 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1444 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1445 			netif_err(efx, probe, efx->net_dev,
1446 				  "Falcon rev A1 1G not supported\n");
1447 			goto fail1;
1448 		}
1449 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1450 			netif_err(efx, probe, efx->net_dev,
1451 				  "Falcon rev A1 PCI-X not supported\n");
1452 			goto fail1;
1453 		}
1454 
1455 		dev = pci_dev_get(efx->pci_dev);
1456 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1457 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1458 					     dev))) {
1459 			if (dev->bus == efx->pci_dev->bus &&
1460 			    dev->devfn == efx->pci_dev->devfn + 1) {
1461 				nic_data->pci_dev2 = dev;
1462 				break;
1463 			}
1464 		}
1465 		if (!nic_data->pci_dev2) {
1466 			netif_err(efx, probe, efx->net_dev,
1467 				  "failed to find secondary function\n");
1468 			rc = -ENODEV;
1469 			goto fail2;
1470 		}
1471 	}
1472 
1473 	/* Now we can reset the NIC */
1474 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1475 	if (rc) {
1476 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477 		goto fail3;
1478 	}
1479 
1480 	/* Allocate memory for INT_KER */
1481 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482 	if (rc)
1483 		goto fail4;
1484 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
1485 
1486 	netif_dbg(efx, probe, efx->net_dev,
1487 		  "INT_KER at %llx (virt %p phys %llx)\n",
1488 		  (u64)efx->irq_status.dma_addr,
1489 		  efx->irq_status.addr,
1490 		  (u64)virt_to_phys(efx->irq_status.addr));
1491 
1492 	falcon_probe_spi_devices(efx);
1493 
1494 	/* Read in the non-volatile configuration */
1495 	rc = falcon_probe_nvconfig(efx);
1496 	if (rc) {
1497 		if (rc == -EINVAL)
1498 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1499 		goto fail5;
1500 	}
1501 
1502 	efx->timer_quantum_ns = 4968; /* 621 cycles */
1503 
1504 	/* Initialise I2C adapter */
1505 	board = falcon_board(efx);
1506 	board->i2c_adap.owner = THIS_MODULE;
1507 	board->i2c_data = falcon_i2c_bit_operations;
1508 	board->i2c_data.data = efx;
1509 	board->i2c_adap.algo_data = &board->i2c_data;
1510 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1511 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1512 		sizeof(board->i2c_adap.name));
1513 	rc = i2c_bit_add_bus(&board->i2c_adap);
1514 	if (rc)
1515 		goto fail5;
1516 
1517 	rc = falcon_board(efx)->type->init(efx);
1518 	if (rc) {
1519 		netif_err(efx, probe, efx->net_dev,
1520 			  "failed to initialise board\n");
1521 		goto fail6;
1522 	}
1523 
1524 	nic_data->stats_disable_count = 1;
1525 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1526 		    (unsigned long)efx);
1527 
1528 	return 0;
1529 
1530  fail6:
1531 	BUG_ON(i2c_del_adapter(&board->i2c_adap));
1532 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1533  fail5:
1534 	efx_nic_free_buffer(efx, &efx->irq_status);
1535  fail4:
1536  fail3:
1537 	if (nic_data->pci_dev2) {
1538 		pci_dev_put(nic_data->pci_dev2);
1539 		nic_data->pci_dev2 = NULL;
1540 	}
1541  fail2:
1542  fail1:
1543 	kfree(efx->nic_data);
1544 	return rc;
1545 }
1546 
falcon_init_rx_cfg(struct efx_nic * efx)1547 static void falcon_init_rx_cfg(struct efx_nic *efx)
1548 {
1549 	/* Prior to Siena the RX DMA engine will split each frame at
1550 	 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1551 	 * be so large that that never happens. */
1552 	const unsigned huge_buf_size = (3 * 4096) >> 5;
1553 	/* RX control FIFO thresholds (32 entries) */
1554 	const unsigned ctrl_xon_thr = 20;
1555 	const unsigned ctrl_xoff_thr = 25;
1556 	efx_oword_t reg;
1557 
1558 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1559 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1560 		/* Data FIFO size is 5.5K */
1561 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1562 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1563 				    huge_buf_size);
1564 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1565 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1566 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1567 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1568 	} else {
1569 		/* Data FIFO size is 80K; register fields moved */
1570 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1571 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1572 				    huge_buf_size);
1573 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
1574 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1575 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1576 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1577 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1578 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1579 
1580 		/* Enable hash insertion. This is broken for the
1581 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1582 		 * IPv4 hashes. */
1583 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1584 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1585 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1586 	}
1587 	/* Always enable XOFF signal from RX FIFO.  We enable
1588 	 * or disable transmission of pause frames at the MAC. */
1589 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1590 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1591 }
1592 
1593 /* This call performs hardware-specific global initialisation, such as
1594  * defining the descriptor cache sizes and number of RSS channels.
1595  * It does not set up any buffers, descriptor rings or event queues.
1596  */
falcon_init_nic(struct efx_nic * efx)1597 static int falcon_init_nic(struct efx_nic *efx)
1598 {
1599 	efx_oword_t temp;
1600 	int rc;
1601 
1602 	/* Use on-chip SRAM */
1603 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
1604 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1605 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1606 
1607 	rc = falcon_reset_sram(efx);
1608 	if (rc)
1609 		return rc;
1610 
1611 	/* Clear the parity enables on the TX data fifos as
1612 	 * they produce false parity errors because of timing issues
1613 	 */
1614 	if (EFX_WORKAROUND_5129(efx)) {
1615 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1616 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1617 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1618 	}
1619 
1620 	if (EFX_WORKAROUND_7244(efx)) {
1621 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1622 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1623 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1624 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1625 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1626 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1627 	}
1628 
1629 	/* XXX This is documented only for Falcon A0/A1 */
1630 	/* Setup RX.  Wait for descriptor is broken and must
1631 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
1632 	 */
1633 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1634 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1635 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1636 	if (EFX_WORKAROUND_5583(efx))
1637 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1638 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1639 
1640 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1641 	 * descriptors (which is bad).
1642 	 */
1643 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
1644 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1645 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1646 
1647 	falcon_init_rx_cfg(efx);
1648 
1649 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1650 		/* Set hash key for IPv4 */
1651 		memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1652 		efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1653 
1654 		/* Set destination of both TX and RX Flush events */
1655 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1656 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1657 	}
1658 
1659 	efx_nic_init_common(efx);
1660 
1661 	return 0;
1662 }
1663 
falcon_remove_nic(struct efx_nic * efx)1664 static void falcon_remove_nic(struct efx_nic *efx)
1665 {
1666 	struct falcon_nic_data *nic_data = efx->nic_data;
1667 	struct falcon_board *board = falcon_board(efx);
1668 	int rc;
1669 
1670 	board->type->fini(efx);
1671 
1672 	/* Remove I2C adapter and clear it in preparation for a retry */
1673 	rc = i2c_del_adapter(&board->i2c_adap);
1674 	BUG_ON(rc);
1675 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1676 
1677 	efx_nic_free_buffer(efx, &efx->irq_status);
1678 
1679 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
1680 
1681 	/* Release the second function after the reset */
1682 	if (nic_data->pci_dev2) {
1683 		pci_dev_put(nic_data->pci_dev2);
1684 		nic_data->pci_dev2 = NULL;
1685 	}
1686 
1687 	/* Tear down the private nic state */
1688 	kfree(efx->nic_data);
1689 	efx->nic_data = NULL;
1690 }
1691 
falcon_update_nic_stats(struct efx_nic * efx)1692 static void falcon_update_nic_stats(struct efx_nic *efx)
1693 {
1694 	struct falcon_nic_data *nic_data = efx->nic_data;
1695 	efx_oword_t cnt;
1696 
1697 	if (nic_data->stats_disable_count)
1698 		return;
1699 
1700 	efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1701 	efx->n_rx_nodesc_drop_cnt +=
1702 		EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1703 
1704 	if (nic_data->stats_pending &&
1705 	    *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1706 		nic_data->stats_pending = false;
1707 		rmb(); /* read the done flag before the stats */
1708 		falcon_update_stats_xmac(efx);
1709 	}
1710 }
1711 
falcon_start_nic_stats(struct efx_nic * efx)1712 void falcon_start_nic_stats(struct efx_nic *efx)
1713 {
1714 	struct falcon_nic_data *nic_data = efx->nic_data;
1715 
1716 	spin_lock_bh(&efx->stats_lock);
1717 	if (--nic_data->stats_disable_count == 0)
1718 		falcon_stats_request(efx);
1719 	spin_unlock_bh(&efx->stats_lock);
1720 }
1721 
falcon_stop_nic_stats(struct efx_nic * efx)1722 void falcon_stop_nic_stats(struct efx_nic *efx)
1723 {
1724 	struct falcon_nic_data *nic_data = efx->nic_data;
1725 	int i;
1726 
1727 	might_sleep();
1728 
1729 	spin_lock_bh(&efx->stats_lock);
1730 	++nic_data->stats_disable_count;
1731 	spin_unlock_bh(&efx->stats_lock);
1732 
1733 	del_timer_sync(&nic_data->stats_timer);
1734 
1735 	/* Wait enough time for the most recent transfer to
1736 	 * complete. */
1737 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1738 		if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1739 			break;
1740 		msleep(1);
1741 	}
1742 
1743 	spin_lock_bh(&efx->stats_lock);
1744 	falcon_stats_complete(efx);
1745 	spin_unlock_bh(&efx->stats_lock);
1746 }
1747 
falcon_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1748 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1749 {
1750 	falcon_board(efx)->type->set_id_led(efx, mode);
1751 }
1752 
1753 /**************************************************************************
1754  *
1755  * Wake on LAN
1756  *
1757  **************************************************************************
1758  */
1759 
falcon_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)1760 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1761 {
1762 	wol->supported = 0;
1763 	wol->wolopts = 0;
1764 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1765 }
1766 
falcon_set_wol(struct efx_nic * efx,u32 type)1767 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1768 {
1769 	if (type != 0)
1770 		return -EINVAL;
1771 	return 0;
1772 }
1773 
1774 /**************************************************************************
1775  *
1776  * Revision-dependent attributes used by efx.c and nic.c
1777  *
1778  **************************************************************************
1779  */
1780 
1781 const struct efx_nic_type falcon_a1_nic_type = {
1782 	.probe = falcon_probe_nic,
1783 	.remove = falcon_remove_nic,
1784 	.init = falcon_init_nic,
1785 	.dimension_resources = falcon_dimension_resources,
1786 	.fini = efx_port_dummy_op_void,
1787 	.monitor = falcon_monitor,
1788 	.map_reset_reason = falcon_map_reset_reason,
1789 	.map_reset_flags = falcon_map_reset_flags,
1790 	.reset = falcon_reset_hw,
1791 	.probe_port = falcon_probe_port,
1792 	.remove_port = falcon_remove_port,
1793 	.handle_global_event = falcon_handle_global_event,
1794 	.prepare_flush = falcon_prepare_flush,
1795 	.finish_flush = efx_port_dummy_op_void,
1796 	.update_stats = falcon_update_nic_stats,
1797 	.start_stats = falcon_start_nic_stats,
1798 	.stop_stats = falcon_stop_nic_stats,
1799 	.set_id_led = falcon_set_id_led,
1800 	.push_irq_moderation = falcon_push_irq_moderation,
1801 	.reconfigure_port = falcon_reconfigure_port,
1802 	.reconfigure_mac = falcon_reconfigure_xmac,
1803 	.check_mac_fault = falcon_xmac_check_fault,
1804 	.get_wol = falcon_get_wol,
1805 	.set_wol = falcon_set_wol,
1806 	.resume_wol = efx_port_dummy_op_void,
1807 	.test_nvram = falcon_test_nvram,
1808 
1809 	.revision = EFX_REV_FALCON_A1,
1810 	.mem_map_size = 0x20000,
1811 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1812 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1813 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1814 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1815 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1816 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1817 	.rx_buffer_padding = 0x24,
1818 	.max_interrupt_mode = EFX_INT_MODE_MSI,
1819 	.phys_addr_channels = 4,
1820 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1821 	.offload_features = NETIF_F_IP_CSUM,
1822 };
1823 
1824 const struct efx_nic_type falcon_b0_nic_type = {
1825 	.probe = falcon_probe_nic,
1826 	.remove = falcon_remove_nic,
1827 	.init = falcon_init_nic,
1828 	.dimension_resources = falcon_dimension_resources,
1829 	.fini = efx_port_dummy_op_void,
1830 	.monitor = falcon_monitor,
1831 	.map_reset_reason = falcon_map_reset_reason,
1832 	.map_reset_flags = falcon_map_reset_flags,
1833 	.reset = falcon_reset_hw,
1834 	.probe_port = falcon_probe_port,
1835 	.remove_port = falcon_remove_port,
1836 	.handle_global_event = falcon_handle_global_event,
1837 	.prepare_flush = falcon_prepare_flush,
1838 	.finish_flush = efx_port_dummy_op_void,
1839 	.update_stats = falcon_update_nic_stats,
1840 	.start_stats = falcon_start_nic_stats,
1841 	.stop_stats = falcon_stop_nic_stats,
1842 	.set_id_led = falcon_set_id_led,
1843 	.push_irq_moderation = falcon_push_irq_moderation,
1844 	.reconfigure_port = falcon_reconfigure_port,
1845 	.reconfigure_mac = falcon_reconfigure_xmac,
1846 	.check_mac_fault = falcon_xmac_check_fault,
1847 	.get_wol = falcon_get_wol,
1848 	.set_wol = falcon_set_wol,
1849 	.resume_wol = efx_port_dummy_op_void,
1850 	.test_chip = falcon_b0_test_chip,
1851 	.test_nvram = falcon_test_nvram,
1852 
1853 	.revision = EFX_REV_FALCON_B0,
1854 	/* Map everything up to and including the RSS indirection
1855 	 * table.  Don't map MSI-X table, MSI-X PBA since Linux
1856 	 * requires that they not be mapped.  */
1857 	.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1858 			 FR_BZ_RX_INDIRECTION_TBL_STEP *
1859 			 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1860 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1861 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1862 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1863 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1864 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1865 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1866 	.rx_buffer_hash_size = 0x10,
1867 	.rx_buffer_padding = 0,
1868 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
1869 	.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1870 				   * interrupt handler only supports 32
1871 				   * channels */
1872 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1873 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1874 };
1875 
1876