1 /*P:100
2  * This is the Launcher code, a simple program which lays out the "physical"
3  * memory for the new Guest by mapping the kernel image and the virtual
4  * devices, then opens /dev/lguest to tell the kernel about the Guest and
5  * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include <pwd.h>
43 #include <grp.h>
44 
45 #include <linux/virtio_config.h>
46 #include <linux/virtio_net.h>
47 #include <linux/virtio_blk.h>
48 #include <linux/virtio_console.h>
49 #include <linux/virtio_rng.h>
50 #include <linux/virtio_ring.h>
51 #include <asm/bootparam.h>
52 #include "../../include/linux/lguest_launcher.h"
53 /*L:110
54  * We can ignore the 42 include files we need for this program, but I do want
55  * to draw attention to the use of kernel-style types.
56  *
57  * As Linus said, "C is a Spartan language, and so should your naming be."  I
58  * like these abbreviations, so we define them here.  Note that u64 is always
59  * unsigned long long, which works on all Linux systems: this means that we can
60  * use %llu in printf for any u64.
61  */
62 typedef unsigned long long u64;
63 typedef uint32_t u32;
64 typedef uint16_t u16;
65 typedef uint8_t u8;
66 /*:*/
67 
68 #define PAGE_PRESENT 0x7 	/* Present, RW, Execute */
69 #define BRIDGE_PFX "bridge:"
70 #ifndef SIOCBRADDIF
71 #define SIOCBRADDIF	0x89a2		/* add interface to bridge      */
72 #endif
73 /* We can have up to 256 pages for devices. */
74 #define DEVICE_PAGES 256
75 /* This will occupy 3 pages: it must be a power of 2. */
76 #define VIRTQUEUE_NUM 256
77 
78 /*L:120
79  * verbose is both a global flag and a macro.  The C preprocessor allows
80  * this, and although I wouldn't recommend it, it works quite nicely here.
81  */
82 static bool verbose;
83 #define verbose(args...) \
84 	do { if (verbose) printf(args); } while(0)
85 /*:*/
86 
87 /* The pointer to the start of guest memory. */
88 static void *guest_base;
89 /* The maximum guest physical address allowed, and maximum possible. */
90 static unsigned long guest_limit, guest_max;
91 /* The /dev/lguest file descriptor. */
92 static int lguest_fd;
93 
94 /* a per-cpu variable indicating whose vcpu is currently running */
95 static unsigned int __thread cpu_id;
96 
97 /* This is our list of devices. */
98 struct device_list {
99 	/* Counter to assign interrupt numbers. */
100 	unsigned int next_irq;
101 
102 	/* Counter to print out convenient device numbers. */
103 	unsigned int device_num;
104 
105 	/* The descriptor page for the devices. */
106 	u8 *descpage;
107 
108 	/* A single linked list of devices. */
109 	struct device *dev;
110 	/* And a pointer to the last device for easy append. */
111 	struct device *lastdev;
112 };
113 
114 /* The list of Guest devices, based on command line arguments. */
115 static struct device_list devices;
116 
117 /* The device structure describes a single device. */
118 struct device {
119 	/* The linked-list pointer. */
120 	struct device *next;
121 
122 	/* The device's descriptor, as mapped into the Guest. */
123 	struct lguest_device_desc *desc;
124 
125 	/* We can't trust desc values once Guest has booted: we use these. */
126 	unsigned int feature_len;
127 	unsigned int num_vq;
128 
129 	/* The name of this device, for --verbose. */
130 	const char *name;
131 
132 	/* Any queues attached to this device */
133 	struct virtqueue *vq;
134 
135 	/* Is it operational */
136 	bool running;
137 
138 	/* Does Guest want an intrrupt on empty? */
139 	bool irq_on_empty;
140 
141 	/* Device-specific data. */
142 	void *priv;
143 };
144 
145 /* The virtqueue structure describes a queue attached to a device. */
146 struct virtqueue {
147 	struct virtqueue *next;
148 
149 	/* Which device owns me. */
150 	struct device *dev;
151 
152 	/* The configuration for this queue. */
153 	struct lguest_vqconfig config;
154 
155 	/* The actual ring of buffers. */
156 	struct vring vring;
157 
158 	/* Last available index we saw. */
159 	u16 last_avail_idx;
160 
161 	/* How many are used since we sent last irq? */
162 	unsigned int pending_used;
163 
164 	/* Eventfd where Guest notifications arrive. */
165 	int eventfd;
166 
167 	/* Function for the thread which is servicing this virtqueue. */
168 	void (*service)(struct virtqueue *vq);
169 	pid_t thread;
170 };
171 
172 /* Remember the arguments to the program so we can "reboot" */
173 static char **main_args;
174 
175 /* The original tty settings to restore on exit. */
176 static struct termios orig_term;
177 
178 /*
179  * We have to be careful with barriers: our devices are all run in separate
180  * threads and so we need to make sure that changes visible to the Guest happen
181  * in precise order.
182  */
183 #define wmb() __asm__ __volatile__("" : : : "memory")
184 #define mb() __asm__ __volatile__("" : : : "memory")
185 
186 /*
187  * Convert an iovec element to the given type.
188  *
189  * This is a fairly ugly trick: we need to know the size of the type and
190  * alignment requirement to check the pointer is kosher.  It's also nice to
191  * have the name of the type in case we report failure.
192  *
193  * Typing those three things all the time is cumbersome and error prone, so we
194  * have a macro which sets them all up and passes to the real function.
195  */
196 #define convert(iov, type) \
197 	((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
198 
_convert(struct iovec * iov,size_t size,size_t align,const char * name)199 static void *_convert(struct iovec *iov, size_t size, size_t align,
200 		      const char *name)
201 {
202 	if (iov->iov_len != size)
203 		errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
204 	if ((unsigned long)iov->iov_base % align != 0)
205 		errx(1, "Bad alignment %p for %s", iov->iov_base, name);
206 	return iov->iov_base;
207 }
208 
209 /* Wrapper for the last available index.  Makes it easier to change. */
210 #define lg_last_avail(vq)	((vq)->last_avail_idx)
211 
212 /*
213  * The virtio configuration space is defined to be little-endian.  x86 is
214  * little-endian too, but it's nice to be explicit so we have these helpers.
215  */
216 #define cpu_to_le16(v16) (v16)
217 #define cpu_to_le32(v32) (v32)
218 #define cpu_to_le64(v64) (v64)
219 #define le16_to_cpu(v16) (v16)
220 #define le32_to_cpu(v32) (v32)
221 #define le64_to_cpu(v64) (v64)
222 
223 /* Is this iovec empty? */
iov_empty(const struct iovec iov[],unsigned int num_iov)224 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
225 {
226 	unsigned int i;
227 
228 	for (i = 0; i < num_iov; i++)
229 		if (iov[i].iov_len)
230 			return false;
231 	return true;
232 }
233 
234 /* Take len bytes from the front of this iovec. */
iov_consume(struct iovec iov[],unsigned num_iov,unsigned len)235 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
236 {
237 	unsigned int i;
238 
239 	for (i = 0; i < num_iov; i++) {
240 		unsigned int used;
241 
242 		used = iov[i].iov_len < len ? iov[i].iov_len : len;
243 		iov[i].iov_base += used;
244 		iov[i].iov_len -= used;
245 		len -= used;
246 	}
247 	assert(len == 0);
248 }
249 
250 /* The device virtqueue descriptors are followed by feature bitmasks. */
get_feature_bits(struct device * dev)251 static u8 *get_feature_bits(struct device *dev)
252 {
253 	return (u8 *)(dev->desc + 1)
254 		+ dev->num_vq * sizeof(struct lguest_vqconfig);
255 }
256 
257 /*L:100
258  * The Launcher code itself takes us out into userspace, that scary place where
259  * pointers run wild and free!  Unfortunately, like most userspace programs,
260  * it's quite boring (which is why everyone likes to hack on the kernel!).
261  * Perhaps if you make up an Lguest Drinking Game at this point, it will get
262  * you through this section.  Or, maybe not.
263  *
264  * The Launcher sets up a big chunk of memory to be the Guest's "physical"
265  * memory and stores it in "guest_base".  In other words, Guest physical ==
266  * Launcher virtual with an offset.
267  *
268  * This can be tough to get your head around, but usually it just means that we
269  * use these trivial conversion functions when the Guest gives us its
270  * "physical" addresses:
271  */
from_guest_phys(unsigned long addr)272 static void *from_guest_phys(unsigned long addr)
273 {
274 	return guest_base + addr;
275 }
276 
to_guest_phys(const void * addr)277 static unsigned long to_guest_phys(const void *addr)
278 {
279 	return (addr - guest_base);
280 }
281 
282 /*L:130
283  * Loading the Kernel.
284  *
285  * We start with couple of simple helper routines.  open_or_die() avoids
286  * error-checking code cluttering the callers:
287  */
open_or_die(const char * name,int flags)288 static int open_or_die(const char *name, int flags)
289 {
290 	int fd = open(name, flags);
291 	if (fd < 0)
292 		err(1, "Failed to open %s", name);
293 	return fd;
294 }
295 
296 /* map_zeroed_pages() takes a number of pages. */
map_zeroed_pages(unsigned int num)297 static void *map_zeroed_pages(unsigned int num)
298 {
299 	int fd = open_or_die("/dev/zero", O_RDONLY);
300 	void *addr;
301 
302 	/*
303 	 * We use a private mapping (ie. if we write to the page, it will be
304 	 * copied). We allocate an extra two pages PROT_NONE to act as guard
305 	 * pages against read/write attempts that exceed allocated space.
306 	 */
307 	addr = mmap(NULL, getpagesize() * (num+2),
308 		    PROT_NONE, MAP_PRIVATE, fd, 0);
309 
310 	if (addr == MAP_FAILED)
311 		err(1, "Mmapping %u pages of /dev/zero", num);
312 
313 	if (mprotect(addr + getpagesize(), getpagesize() * num,
314 		     PROT_READ|PROT_WRITE) == -1)
315 		err(1, "mprotect rw %u pages failed", num);
316 
317 	/*
318 	 * One neat mmap feature is that you can close the fd, and it
319 	 * stays mapped.
320 	 */
321 	close(fd);
322 
323 	/* Return address after PROT_NONE page */
324 	return addr + getpagesize();
325 }
326 
327 /* Get some more pages for a device. */
get_pages(unsigned int num)328 static void *get_pages(unsigned int num)
329 {
330 	void *addr = from_guest_phys(guest_limit);
331 
332 	guest_limit += num * getpagesize();
333 	if (guest_limit > guest_max)
334 		errx(1, "Not enough memory for devices");
335 	return addr;
336 }
337 
338 /*
339  * This routine is used to load the kernel or initrd.  It tries mmap, but if
340  * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
341  * it falls back to reading the memory in.
342  */
map_at(int fd,void * addr,unsigned long offset,unsigned long len)343 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
344 {
345 	ssize_t r;
346 
347 	/*
348 	 * We map writable even though for some segments are marked read-only.
349 	 * The kernel really wants to be writable: it patches its own
350 	 * instructions.
351 	 *
352 	 * MAP_PRIVATE means that the page won't be copied until a write is
353 	 * done to it.  This allows us to share untouched memory between
354 	 * Guests.
355 	 */
356 	if (mmap(addr, len, PROT_READ|PROT_WRITE,
357 		 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
358 		return;
359 
360 	/* pread does a seek and a read in one shot: saves a few lines. */
361 	r = pread(fd, addr, len, offset);
362 	if (r != len)
363 		err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
364 }
365 
366 /*
367  * This routine takes an open vmlinux image, which is in ELF, and maps it into
368  * the Guest memory.  ELF = Embedded Linking Format, which is the format used
369  * by all modern binaries on Linux including the kernel.
370  *
371  * The ELF headers give *two* addresses: a physical address, and a virtual
372  * address.  We use the physical address; the Guest will map itself to the
373  * virtual address.
374  *
375  * We return the starting address.
376  */
map_elf(int elf_fd,const Elf32_Ehdr * ehdr)377 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
378 {
379 	Elf32_Phdr phdr[ehdr->e_phnum];
380 	unsigned int i;
381 
382 	/*
383 	 * Sanity checks on the main ELF header: an x86 executable with a
384 	 * reasonable number of correctly-sized program headers.
385 	 */
386 	if (ehdr->e_type != ET_EXEC
387 	    || ehdr->e_machine != EM_386
388 	    || ehdr->e_phentsize != sizeof(Elf32_Phdr)
389 	    || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
390 		errx(1, "Malformed elf header");
391 
392 	/*
393 	 * An ELF executable contains an ELF header and a number of "program"
394 	 * headers which indicate which parts ("segments") of the program to
395 	 * load where.
396 	 */
397 
398 	/* We read in all the program headers at once: */
399 	if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
400 		err(1, "Seeking to program headers");
401 	if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
402 		err(1, "Reading program headers");
403 
404 	/*
405 	 * Try all the headers: there are usually only three.  A read-only one,
406 	 * a read-write one, and a "note" section which we don't load.
407 	 */
408 	for (i = 0; i < ehdr->e_phnum; i++) {
409 		/* If this isn't a loadable segment, we ignore it */
410 		if (phdr[i].p_type != PT_LOAD)
411 			continue;
412 
413 		verbose("Section %i: size %i addr %p\n",
414 			i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
415 
416 		/* We map this section of the file at its physical address. */
417 		map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
418 		       phdr[i].p_offset, phdr[i].p_filesz);
419 	}
420 
421 	/* The entry point is given in the ELF header. */
422 	return ehdr->e_entry;
423 }
424 
425 /*L:150
426  * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
427  * to jump into it and it will unpack itself.  We used to have to perform some
428  * hairy magic because the unpacking code scared me.
429  *
430  * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
431  * a small patch to jump over the tricky bits in the Guest, so now we just read
432  * the funky header so we know where in the file to load, and away we go!
433  */
load_bzimage(int fd)434 static unsigned long load_bzimage(int fd)
435 {
436 	struct boot_params boot;
437 	int r;
438 	/* Modern bzImages get loaded at 1M. */
439 	void *p = from_guest_phys(0x100000);
440 
441 	/*
442 	 * Go back to the start of the file and read the header.  It should be
443 	 * a Linux boot header (see Documentation/x86/i386/boot.txt)
444 	 */
445 	lseek(fd, 0, SEEK_SET);
446 	read(fd, &boot, sizeof(boot));
447 
448 	/* Inside the setup_hdr, we expect the magic "HdrS" */
449 	if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
450 		errx(1, "This doesn't look like a bzImage to me");
451 
452 	/* Skip over the extra sectors of the header. */
453 	lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
454 
455 	/* Now read everything into memory. in nice big chunks. */
456 	while ((r = read(fd, p, 65536)) > 0)
457 		p += r;
458 
459 	/* Finally, code32_start tells us where to enter the kernel. */
460 	return boot.hdr.code32_start;
461 }
462 
463 /*L:140
464  * Loading the kernel is easy when it's a "vmlinux", but most kernels
465  * come wrapped up in the self-decompressing "bzImage" format.  With a little
466  * work, we can load those, too.
467  */
load_kernel(int fd)468 static unsigned long load_kernel(int fd)
469 {
470 	Elf32_Ehdr hdr;
471 
472 	/* Read in the first few bytes. */
473 	if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
474 		err(1, "Reading kernel");
475 
476 	/* If it's an ELF file, it starts with "\177ELF" */
477 	if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
478 		return map_elf(fd, &hdr);
479 
480 	/* Otherwise we assume it's a bzImage, and try to load it. */
481 	return load_bzimage(fd);
482 }
483 
484 /*
485  * This is a trivial little helper to align pages.  Andi Kleen hated it because
486  * it calls getpagesize() twice: "it's dumb code."
487  *
488  * Kernel guys get really het up about optimization, even when it's not
489  * necessary.  I leave this code as a reaction against that.
490  */
page_align(unsigned long addr)491 static inline unsigned long page_align(unsigned long addr)
492 {
493 	/* Add upwards and truncate downwards. */
494 	return ((addr + getpagesize()-1) & ~(getpagesize()-1));
495 }
496 
497 /*L:180
498  * An "initial ram disk" is a disk image loaded into memory along with the
499  * kernel which the kernel can use to boot from without needing any drivers.
500  * Most distributions now use this as standard: the initrd contains the code to
501  * load the appropriate driver modules for the current machine.
502  *
503  * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
504  * kernels.  He sent me this (and tells me when I break it).
505  */
load_initrd(const char * name,unsigned long mem)506 static unsigned long load_initrd(const char *name, unsigned long mem)
507 {
508 	int ifd;
509 	struct stat st;
510 	unsigned long len;
511 
512 	ifd = open_or_die(name, O_RDONLY);
513 	/* fstat() is needed to get the file size. */
514 	if (fstat(ifd, &st) < 0)
515 		err(1, "fstat() on initrd '%s'", name);
516 
517 	/*
518 	 * We map the initrd at the top of memory, but mmap wants it to be
519 	 * page-aligned, so we round the size up for that.
520 	 */
521 	len = page_align(st.st_size);
522 	map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
523 	/*
524 	 * Once a file is mapped, you can close the file descriptor.  It's a
525 	 * little odd, but quite useful.
526 	 */
527 	close(ifd);
528 	verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
529 
530 	/* We return the initrd size. */
531 	return len;
532 }
533 /*:*/
534 
535 /*
536  * Simple routine to roll all the commandline arguments together with spaces
537  * between them.
538  */
concat(char * dst,char * args[])539 static void concat(char *dst, char *args[])
540 {
541 	unsigned int i, len = 0;
542 
543 	for (i = 0; args[i]; i++) {
544 		if (i) {
545 			strcat(dst+len, " ");
546 			len++;
547 		}
548 		strcpy(dst+len, args[i]);
549 		len += strlen(args[i]);
550 	}
551 	/* In case it's empty. */
552 	dst[len] = '\0';
553 }
554 
555 /*L:185
556  * This is where we actually tell the kernel to initialize the Guest.  We
557  * saw the arguments it expects when we looked at initialize() in lguest_user.c:
558  * the base of Guest "physical" memory, the top physical page to allow and the
559  * entry point for the Guest.
560  */
tell_kernel(unsigned long start)561 static void tell_kernel(unsigned long start)
562 {
563 	unsigned long args[] = { LHREQ_INITIALIZE,
564 				 (unsigned long)guest_base,
565 				 guest_limit / getpagesize(), start };
566 	verbose("Guest: %p - %p (%#lx)\n",
567 		guest_base, guest_base + guest_limit, guest_limit);
568 	lguest_fd = open_or_die("/dev/lguest", O_RDWR);
569 	if (write(lguest_fd, args, sizeof(args)) < 0)
570 		err(1, "Writing to /dev/lguest");
571 }
572 /*:*/
573 
574 /*L:200
575  * Device Handling.
576  *
577  * When the Guest gives us a buffer, it sends an array of addresses and sizes.
578  * We need to make sure it's not trying to reach into the Launcher itself, so
579  * we have a convenient routine which checks it and exits with an error message
580  * if something funny is going on:
581  */
_check_pointer(unsigned long addr,unsigned int size,unsigned int line)582 static void *_check_pointer(unsigned long addr, unsigned int size,
583 			    unsigned int line)
584 {
585 	/*
586 	 * Check if the requested address and size exceeds the allocated memory,
587 	 * or addr + size wraps around.
588 	 */
589 	if ((addr + size) > guest_limit || (addr + size) < addr)
590 		errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
591 	/*
592 	 * We return a pointer for the caller's convenience, now we know it's
593 	 * safe to use.
594 	 */
595 	return from_guest_phys(addr);
596 }
597 /* A macro which transparently hands the line number to the real function. */
598 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
599 
600 /*
601  * Each buffer in the virtqueues is actually a chain of descriptors.  This
602  * function returns the next descriptor in the chain, or vq->vring.num if we're
603  * at the end.
604  */
next_desc(struct vring_desc * desc,unsigned int i,unsigned int max)605 static unsigned next_desc(struct vring_desc *desc,
606 			  unsigned int i, unsigned int max)
607 {
608 	unsigned int next;
609 
610 	/* If this descriptor says it doesn't chain, we're done. */
611 	if (!(desc[i].flags & VRING_DESC_F_NEXT))
612 		return max;
613 
614 	/* Check they're not leading us off end of descriptors. */
615 	next = desc[i].next;
616 	/* Make sure compiler knows to grab that: we don't want it changing! */
617 	wmb();
618 
619 	if (next >= max)
620 		errx(1, "Desc next is %u", next);
621 
622 	return next;
623 }
624 
625 /*
626  * This actually sends the interrupt for this virtqueue, if we've used a
627  * buffer.
628  */
trigger_irq(struct virtqueue * vq)629 static void trigger_irq(struct virtqueue *vq)
630 {
631 	unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
632 
633 	/* Don't inform them if nothing used. */
634 	if (!vq->pending_used)
635 		return;
636 	vq->pending_used = 0;
637 
638 	/* If they don't want an interrupt, don't send one... */
639 	if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
640 		/* ... unless they've asked us to force one on empty. */
641 		if (!vq->dev->irq_on_empty
642 		    || lg_last_avail(vq) != vq->vring.avail->idx)
643 			return;
644 	}
645 
646 	/* Send the Guest an interrupt tell them we used something up. */
647 	if (write(lguest_fd, buf, sizeof(buf)) != 0)
648 		err(1, "Triggering irq %i", vq->config.irq);
649 }
650 
651 /*
652  * This looks in the virtqueue for the first available buffer, and converts
653  * it to an iovec for convenient access.  Since descriptors consist of some
654  * number of output then some number of input descriptors, it's actually two
655  * iovecs, but we pack them into one and note how many of each there were.
656  *
657  * This function waits if necessary, and returns the descriptor number found.
658  */
wait_for_vq_desc(struct virtqueue * vq,struct iovec iov[],unsigned int * out_num,unsigned int * in_num)659 static unsigned wait_for_vq_desc(struct virtqueue *vq,
660 				 struct iovec iov[],
661 				 unsigned int *out_num, unsigned int *in_num)
662 {
663 	unsigned int i, head, max;
664 	struct vring_desc *desc;
665 	u16 last_avail = lg_last_avail(vq);
666 
667 	/* There's nothing available? */
668 	while (last_avail == vq->vring.avail->idx) {
669 		u64 event;
670 
671 		/*
672 		 * Since we're about to sleep, now is a good time to tell the
673 		 * Guest about what we've used up to now.
674 		 */
675 		trigger_irq(vq);
676 
677 		/* OK, now we need to know about added descriptors. */
678 		vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
679 
680 		/*
681 		 * They could have slipped one in as we were doing that: make
682 		 * sure it's written, then check again.
683 		 */
684 		mb();
685 		if (last_avail != vq->vring.avail->idx) {
686 			vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
687 			break;
688 		}
689 
690 		/* Nothing new?  Wait for eventfd to tell us they refilled. */
691 		if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
692 			errx(1, "Event read failed?");
693 
694 		/* We don't need to be notified again. */
695 		vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
696 	}
697 
698 	/* Check it isn't doing very strange things with descriptor numbers. */
699 	if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
700 		errx(1, "Guest moved used index from %u to %u",
701 		     last_avail, vq->vring.avail->idx);
702 
703 	/*
704 	 * Grab the next descriptor number they're advertising, and increment
705 	 * the index we've seen.
706 	 */
707 	head = vq->vring.avail->ring[last_avail % vq->vring.num];
708 	lg_last_avail(vq)++;
709 
710 	/* If their number is silly, that's a fatal mistake. */
711 	if (head >= vq->vring.num)
712 		errx(1, "Guest says index %u is available", head);
713 
714 	/* When we start there are none of either input nor output. */
715 	*out_num = *in_num = 0;
716 
717 	max = vq->vring.num;
718 	desc = vq->vring.desc;
719 	i = head;
720 
721 	/*
722 	 * If this is an indirect entry, then this buffer contains a descriptor
723 	 * table which we handle as if it's any normal descriptor chain.
724 	 */
725 	if (desc[i].flags & VRING_DESC_F_INDIRECT) {
726 		if (desc[i].len % sizeof(struct vring_desc))
727 			errx(1, "Invalid size for indirect buffer table");
728 
729 		max = desc[i].len / sizeof(struct vring_desc);
730 		desc = check_pointer(desc[i].addr, desc[i].len);
731 		i = 0;
732 	}
733 
734 	do {
735 		/* Grab the first descriptor, and check it's OK. */
736 		iov[*out_num + *in_num].iov_len = desc[i].len;
737 		iov[*out_num + *in_num].iov_base
738 			= check_pointer(desc[i].addr, desc[i].len);
739 		/* If this is an input descriptor, increment that count. */
740 		if (desc[i].flags & VRING_DESC_F_WRITE)
741 			(*in_num)++;
742 		else {
743 			/*
744 			 * If it's an output descriptor, they're all supposed
745 			 * to come before any input descriptors.
746 			 */
747 			if (*in_num)
748 				errx(1, "Descriptor has out after in");
749 			(*out_num)++;
750 		}
751 
752 		/* If we've got too many, that implies a descriptor loop. */
753 		if (*out_num + *in_num > max)
754 			errx(1, "Looped descriptor");
755 	} while ((i = next_desc(desc, i, max)) != max);
756 
757 	return head;
758 }
759 
760 /*
761  * After we've used one of their buffers, we tell the Guest about it.  Sometime
762  * later we'll want to send them an interrupt using trigger_irq(); note that
763  * wait_for_vq_desc() does that for us if it has to wait.
764  */
add_used(struct virtqueue * vq,unsigned int head,int len)765 static void add_used(struct virtqueue *vq, unsigned int head, int len)
766 {
767 	struct vring_used_elem *used;
768 
769 	/*
770 	 * The virtqueue contains a ring of used buffers.  Get a pointer to the
771 	 * next entry in that used ring.
772 	 */
773 	used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
774 	used->id = head;
775 	used->len = len;
776 	/* Make sure buffer is written before we update index. */
777 	wmb();
778 	vq->vring.used->idx++;
779 	vq->pending_used++;
780 }
781 
782 /* And here's the combo meal deal.  Supersize me! */
add_used_and_trigger(struct virtqueue * vq,unsigned head,int len)783 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
784 {
785 	add_used(vq, head, len);
786 	trigger_irq(vq);
787 }
788 
789 /*
790  * The Console
791  *
792  * We associate some data with the console for our exit hack.
793  */
794 struct console_abort {
795 	/* How many times have they hit ^C? */
796 	int count;
797 	/* When did they start? */
798 	struct timeval start;
799 };
800 
801 /* This is the routine which handles console input (ie. stdin). */
console_input(struct virtqueue * vq)802 static void console_input(struct virtqueue *vq)
803 {
804 	int len;
805 	unsigned int head, in_num, out_num;
806 	struct console_abort *abort = vq->dev->priv;
807 	struct iovec iov[vq->vring.num];
808 
809 	/* Make sure there's a descriptor available. */
810 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
811 	if (out_num)
812 		errx(1, "Output buffers in console in queue?");
813 
814 	/* Read into it.  This is where we usually wait. */
815 	len = readv(STDIN_FILENO, iov, in_num);
816 	if (len <= 0) {
817 		/* Ran out of input? */
818 		warnx("Failed to get console input, ignoring console.");
819 		/*
820 		 * For simplicity, dying threads kill the whole Launcher.  So
821 		 * just nap here.
822 		 */
823 		for (;;)
824 			pause();
825 	}
826 
827 	/* Tell the Guest we used a buffer. */
828 	add_used_and_trigger(vq, head, len);
829 
830 	/*
831 	 * Three ^C within one second?  Exit.
832 	 *
833 	 * This is such a hack, but works surprisingly well.  Each ^C has to
834 	 * be in a buffer by itself, so they can't be too fast.  But we check
835 	 * that we get three within about a second, so they can't be too
836 	 * slow.
837 	 */
838 	if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
839 		abort->count = 0;
840 		return;
841 	}
842 
843 	abort->count++;
844 	if (abort->count == 1)
845 		gettimeofday(&abort->start, NULL);
846 	else if (abort->count == 3) {
847 		struct timeval now;
848 		gettimeofday(&now, NULL);
849 		/* Kill all Launcher processes with SIGINT, like normal ^C */
850 		if (now.tv_sec <= abort->start.tv_sec+1)
851 			kill(0, SIGINT);
852 		abort->count = 0;
853 	}
854 }
855 
856 /* This is the routine which handles console output (ie. stdout). */
console_output(struct virtqueue * vq)857 static void console_output(struct virtqueue *vq)
858 {
859 	unsigned int head, out, in;
860 	struct iovec iov[vq->vring.num];
861 
862 	/* We usually wait in here, for the Guest to give us something. */
863 	head = wait_for_vq_desc(vq, iov, &out, &in);
864 	if (in)
865 		errx(1, "Input buffers in console output queue?");
866 
867 	/* writev can return a partial write, so we loop here. */
868 	while (!iov_empty(iov, out)) {
869 		int len = writev(STDOUT_FILENO, iov, out);
870 		if (len <= 0)
871 			err(1, "Write to stdout gave %i", len);
872 		iov_consume(iov, out, len);
873 	}
874 
875 	/*
876 	 * We're finished with that buffer: if we're going to sleep,
877 	 * wait_for_vq_desc() will prod the Guest with an interrupt.
878 	 */
879 	add_used(vq, head, 0);
880 }
881 
882 /*
883  * The Network
884  *
885  * Handling output for network is also simple: we get all the output buffers
886  * and write them to /dev/net/tun.
887  */
888 struct net_info {
889 	int tunfd;
890 };
891 
net_output(struct virtqueue * vq)892 static void net_output(struct virtqueue *vq)
893 {
894 	struct net_info *net_info = vq->dev->priv;
895 	unsigned int head, out, in;
896 	struct iovec iov[vq->vring.num];
897 
898 	/* We usually wait in here for the Guest to give us a packet. */
899 	head = wait_for_vq_desc(vq, iov, &out, &in);
900 	if (in)
901 		errx(1, "Input buffers in net output queue?");
902 	/*
903 	 * Send the whole thing through to /dev/net/tun.  It expects the exact
904 	 * same format: what a coincidence!
905 	 */
906 	if (writev(net_info->tunfd, iov, out) < 0)
907 		errx(1, "Write to tun failed?");
908 
909 	/*
910 	 * Done with that one; wait_for_vq_desc() will send the interrupt if
911 	 * all packets are processed.
912 	 */
913 	add_used(vq, head, 0);
914 }
915 
916 /*
917  * Handling network input is a bit trickier, because I've tried to optimize it.
918  *
919  * First we have a helper routine which tells is if from this file descriptor
920  * (ie. the /dev/net/tun device) will block:
921  */
will_block(int fd)922 static bool will_block(int fd)
923 {
924 	fd_set fdset;
925 	struct timeval zero = { 0, 0 };
926 	FD_ZERO(&fdset);
927 	FD_SET(fd, &fdset);
928 	return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
929 }
930 
931 /*
932  * This handles packets coming in from the tun device to our Guest.  Like all
933  * service routines, it gets called again as soon as it returns, so you don't
934  * see a while(1) loop here.
935  */
net_input(struct virtqueue * vq)936 static void net_input(struct virtqueue *vq)
937 {
938 	int len;
939 	unsigned int head, out, in;
940 	struct iovec iov[vq->vring.num];
941 	struct net_info *net_info = vq->dev->priv;
942 
943 	/*
944 	 * Get a descriptor to write an incoming packet into.  This will also
945 	 * send an interrupt if they're out of descriptors.
946 	 */
947 	head = wait_for_vq_desc(vq, iov, &out, &in);
948 	if (out)
949 		errx(1, "Output buffers in net input queue?");
950 
951 	/*
952 	 * If it looks like we'll block reading from the tun device, send them
953 	 * an interrupt.
954 	 */
955 	if (vq->pending_used && will_block(net_info->tunfd))
956 		trigger_irq(vq);
957 
958 	/*
959 	 * Read in the packet.  This is where we normally wait (when there's no
960 	 * incoming network traffic).
961 	 */
962 	len = readv(net_info->tunfd, iov, in);
963 	if (len <= 0)
964 		err(1, "Failed to read from tun.");
965 
966 	/*
967 	 * Mark that packet buffer as used, but don't interrupt here.  We want
968 	 * to wait until we've done as much work as we can.
969 	 */
970 	add_used(vq, head, len);
971 }
972 /*:*/
973 
974 /* This is the helper to create threads: run the service routine in a loop. */
do_thread(void * _vq)975 static int do_thread(void *_vq)
976 {
977 	struct virtqueue *vq = _vq;
978 
979 	for (;;)
980 		vq->service(vq);
981 	return 0;
982 }
983 
984 /*
985  * When a child dies, we kill our entire process group with SIGTERM.  This
986  * also has the side effect that the shell restores the console for us!
987  */
kill_launcher(int signal)988 static void kill_launcher(int signal)
989 {
990 	kill(0, SIGTERM);
991 }
992 
reset_device(struct device * dev)993 static void reset_device(struct device *dev)
994 {
995 	struct virtqueue *vq;
996 
997 	verbose("Resetting device %s\n", dev->name);
998 
999 	/* Clear any features they've acked. */
1000 	memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
1001 
1002 	/* We're going to be explicitly killing threads, so ignore them. */
1003 	signal(SIGCHLD, SIG_IGN);
1004 
1005 	/* Zero out the virtqueues, get rid of their threads */
1006 	for (vq = dev->vq; vq; vq = vq->next) {
1007 		if (vq->thread != (pid_t)-1) {
1008 			kill(vq->thread, SIGTERM);
1009 			waitpid(vq->thread, NULL, 0);
1010 			vq->thread = (pid_t)-1;
1011 		}
1012 		memset(vq->vring.desc, 0,
1013 		       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1014 		lg_last_avail(vq) = 0;
1015 	}
1016 	dev->running = false;
1017 
1018 	/* Now we care if threads die. */
1019 	signal(SIGCHLD, (void *)kill_launcher);
1020 }
1021 
1022 /*L:216
1023  * This actually creates the thread which services the virtqueue for a device.
1024  */
create_thread(struct virtqueue * vq)1025 static void create_thread(struct virtqueue *vq)
1026 {
1027 	/*
1028 	 * Create stack for thread.  Since the stack grows upwards, we point
1029 	 * the stack pointer to the end of this region.
1030 	 */
1031 	char *stack = malloc(32768);
1032 	unsigned long args[] = { LHREQ_EVENTFD,
1033 				 vq->config.pfn*getpagesize(), 0 };
1034 
1035 	/* Create a zero-initialized eventfd. */
1036 	vq->eventfd = eventfd(0, 0);
1037 	if (vq->eventfd < 0)
1038 		err(1, "Creating eventfd");
1039 	args[2] = vq->eventfd;
1040 
1041 	/*
1042 	 * Attach an eventfd to this virtqueue: it will go off when the Guest
1043 	 * does an LHCALL_NOTIFY for this vq.
1044 	 */
1045 	if (write(lguest_fd, &args, sizeof(args)) != 0)
1046 		err(1, "Attaching eventfd");
1047 
1048 	/*
1049 	 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1050 	 * we get a signal if it dies.
1051 	 */
1052 	vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1053 	if (vq->thread == (pid_t)-1)
1054 		err(1, "Creating clone");
1055 
1056 	/* We close our local copy now the child has it. */
1057 	close(vq->eventfd);
1058 }
1059 
accepted_feature(struct device * dev,unsigned int bit)1060 static bool accepted_feature(struct device *dev, unsigned int bit)
1061 {
1062 	const u8 *features = get_feature_bits(dev) + dev->feature_len;
1063 
1064 	if (dev->feature_len < bit / CHAR_BIT)
1065 		return false;
1066 	return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
1067 }
1068 
start_device(struct device * dev)1069 static void start_device(struct device *dev)
1070 {
1071 	unsigned int i;
1072 	struct virtqueue *vq;
1073 
1074 	verbose("Device %s OK: offered", dev->name);
1075 	for (i = 0; i < dev->feature_len; i++)
1076 		verbose(" %02x", get_feature_bits(dev)[i]);
1077 	verbose(", accepted");
1078 	for (i = 0; i < dev->feature_len; i++)
1079 		verbose(" %02x", get_feature_bits(dev)
1080 			[dev->feature_len+i]);
1081 
1082 	dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1083 
1084 	for (vq = dev->vq; vq; vq = vq->next) {
1085 		if (vq->service)
1086 			create_thread(vq);
1087 	}
1088 	dev->running = true;
1089 }
1090 
cleanup_devices(void)1091 static void cleanup_devices(void)
1092 {
1093 	struct device *dev;
1094 
1095 	for (dev = devices.dev; dev; dev = dev->next)
1096 		reset_device(dev);
1097 
1098 	/* If we saved off the original terminal settings, restore them now. */
1099 	if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1100 		tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1101 }
1102 
1103 /* When the Guest tells us they updated the status field, we handle it. */
update_device_status(struct device * dev)1104 static void update_device_status(struct device *dev)
1105 {
1106 	/* A zero status is a reset, otherwise it's a set of flags. */
1107 	if (dev->desc->status == 0)
1108 		reset_device(dev);
1109 	else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1110 		warnx("Device %s configuration FAILED", dev->name);
1111 		if (dev->running)
1112 			reset_device(dev);
1113 	} else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1114 		if (!dev->running)
1115 			start_device(dev);
1116 	}
1117 }
1118 
1119 /*L:215
1120  * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1121  * particular, it's used to notify us of device status changes during boot.
1122  */
handle_output(unsigned long addr)1123 static void handle_output(unsigned long addr)
1124 {
1125 	struct device *i;
1126 
1127 	/* Check each device. */
1128 	for (i = devices.dev; i; i = i->next) {
1129 		struct virtqueue *vq;
1130 
1131 		/*
1132 		 * Notifications to device descriptors mean they updated the
1133 		 * device status.
1134 		 */
1135 		if (from_guest_phys(addr) == i->desc) {
1136 			update_device_status(i);
1137 			return;
1138 		}
1139 
1140 		/*
1141 		 * Devices *can* be used before status is set to DRIVER_OK.
1142 		 * The original plan was that they would never do this: they
1143 		 * would always finish setting up their status bits before
1144 		 * actually touching the virtqueues.  In practice, we allowed
1145 		 * them to, and they do (eg. the disk probes for partition
1146 		 * tables as part of initialization).
1147 		 *
1148 		 * If we see this, we start the device: once it's running, we
1149 		 * expect the device to catch all the notifications.
1150 		 */
1151 		for (vq = i->vq; vq; vq = vq->next) {
1152 			if (addr != vq->config.pfn*getpagesize())
1153 				continue;
1154 			if (i->running)
1155 				errx(1, "Notification on running %s", i->name);
1156 			/* This just calls create_thread() for each virtqueue */
1157 			start_device(i);
1158 			return;
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Early console write is done using notify on a nul-terminated string
1164 	 * in Guest memory.  It's also great for hacking debugging messages
1165 	 * into a Guest.
1166 	 */
1167 	if (addr >= guest_limit)
1168 		errx(1, "Bad NOTIFY %#lx", addr);
1169 
1170 	write(STDOUT_FILENO, from_guest_phys(addr),
1171 	      strnlen(from_guest_phys(addr), guest_limit - addr));
1172 }
1173 
1174 /*L:190
1175  * Device Setup
1176  *
1177  * All devices need a descriptor so the Guest knows it exists, and a "struct
1178  * device" so the Launcher can keep track of it.  We have common helper
1179  * routines to allocate and manage them.
1180  */
1181 
1182 /*
1183  * The layout of the device page is a "struct lguest_device_desc" followed by a
1184  * number of virtqueue descriptors, then two sets of feature bits, then an
1185  * array of configuration bytes.  This routine returns the configuration
1186  * pointer.
1187  */
device_config(const struct device * dev)1188 static u8 *device_config(const struct device *dev)
1189 {
1190 	return (void *)(dev->desc + 1)
1191 		+ dev->num_vq * sizeof(struct lguest_vqconfig)
1192 		+ dev->feature_len * 2;
1193 }
1194 
1195 /*
1196  * This routine allocates a new "struct lguest_device_desc" from descriptor
1197  * table page just above the Guest's normal memory.  It returns a pointer to
1198  * that descriptor.
1199  */
new_dev_desc(u16 type)1200 static struct lguest_device_desc *new_dev_desc(u16 type)
1201 {
1202 	struct lguest_device_desc d = { .type = type };
1203 	void *p;
1204 
1205 	/* Figure out where the next device config is, based on the last one. */
1206 	if (devices.lastdev)
1207 		p = device_config(devices.lastdev)
1208 			+ devices.lastdev->desc->config_len;
1209 	else
1210 		p = devices.descpage;
1211 
1212 	/* We only have one page for all the descriptors. */
1213 	if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1214 		errx(1, "Too many devices");
1215 
1216 	/* p might not be aligned, so we memcpy in. */
1217 	return memcpy(p, &d, sizeof(d));
1218 }
1219 
1220 /*
1221  * Each device descriptor is followed by the description of its virtqueues.  We
1222  * specify how many descriptors the virtqueue is to have.
1223  */
add_virtqueue(struct device * dev,unsigned int num_descs,void (* service)(struct virtqueue *))1224 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1225 			  void (*service)(struct virtqueue *))
1226 {
1227 	unsigned int pages;
1228 	struct virtqueue **i, *vq = malloc(sizeof(*vq));
1229 	void *p;
1230 
1231 	/* First we need some memory for this virtqueue. */
1232 	pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1233 		/ getpagesize();
1234 	p = get_pages(pages);
1235 
1236 	/* Initialize the virtqueue */
1237 	vq->next = NULL;
1238 	vq->last_avail_idx = 0;
1239 	vq->dev = dev;
1240 
1241 	/*
1242 	 * This is the routine the service thread will run, and its Process ID
1243 	 * once it's running.
1244 	 */
1245 	vq->service = service;
1246 	vq->thread = (pid_t)-1;
1247 
1248 	/* Initialize the configuration. */
1249 	vq->config.num = num_descs;
1250 	vq->config.irq = devices.next_irq++;
1251 	vq->config.pfn = to_guest_phys(p) / getpagesize();
1252 
1253 	/* Initialize the vring. */
1254 	vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1255 
1256 	/*
1257 	 * Append virtqueue to this device's descriptor.  We use
1258 	 * device_config() to get the end of the device's current virtqueues;
1259 	 * we check that we haven't added any config or feature information
1260 	 * yet, otherwise we'd be overwriting them.
1261 	 */
1262 	assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1263 	memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1264 	dev->num_vq++;
1265 	dev->desc->num_vq++;
1266 
1267 	verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1268 
1269 	/*
1270 	 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1271 	 * second.
1272 	 */
1273 	for (i = &dev->vq; *i; i = &(*i)->next);
1274 	*i = vq;
1275 }
1276 
1277 /*
1278  * The first half of the feature bitmask is for us to advertise features.  The
1279  * second half is for the Guest to accept features.
1280  */
add_feature(struct device * dev,unsigned bit)1281 static void add_feature(struct device *dev, unsigned bit)
1282 {
1283 	u8 *features = get_feature_bits(dev);
1284 
1285 	/* We can't extend the feature bits once we've added config bytes */
1286 	if (dev->desc->feature_len <= bit / CHAR_BIT) {
1287 		assert(dev->desc->config_len == 0);
1288 		dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1289 	}
1290 
1291 	features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1292 }
1293 
1294 /*
1295  * This routine sets the configuration fields for an existing device's
1296  * descriptor.  It only works for the last device, but that's OK because that's
1297  * how we use it.
1298  */
set_config(struct device * dev,unsigned len,const void * conf)1299 static void set_config(struct device *dev, unsigned len, const void *conf)
1300 {
1301 	/* Check we haven't overflowed our single page. */
1302 	if (device_config(dev) + len > devices.descpage + getpagesize())
1303 		errx(1, "Too many devices");
1304 
1305 	/* Copy in the config information, and store the length. */
1306 	memcpy(device_config(dev), conf, len);
1307 	dev->desc->config_len = len;
1308 
1309 	/* Size must fit in config_len field (8 bits)! */
1310 	assert(dev->desc->config_len == len);
1311 }
1312 
1313 /*
1314  * This routine does all the creation and setup of a new device, including
1315  * calling new_dev_desc() to allocate the descriptor and device memory.  We
1316  * don't actually start the service threads until later.
1317  *
1318  * See what I mean about userspace being boring?
1319  */
new_device(const char * name,u16 type)1320 static struct device *new_device(const char *name, u16 type)
1321 {
1322 	struct device *dev = malloc(sizeof(*dev));
1323 
1324 	/* Now we populate the fields one at a time. */
1325 	dev->desc = new_dev_desc(type);
1326 	dev->name = name;
1327 	dev->vq = NULL;
1328 	dev->feature_len = 0;
1329 	dev->num_vq = 0;
1330 	dev->running = false;
1331 
1332 	/*
1333 	 * Append to device list.  Prepending to a single-linked list is
1334 	 * easier, but the user expects the devices to be arranged on the bus
1335 	 * in command-line order.  The first network device on the command line
1336 	 * is eth0, the first block device /dev/vda, etc.
1337 	 */
1338 	if (devices.lastdev)
1339 		devices.lastdev->next = dev;
1340 	else
1341 		devices.dev = dev;
1342 	devices.lastdev = dev;
1343 
1344 	return dev;
1345 }
1346 
1347 /*
1348  * Our first setup routine is the console.  It's a fairly simple device, but
1349  * UNIX tty handling makes it uglier than it could be.
1350  */
setup_console(void)1351 static void setup_console(void)
1352 {
1353 	struct device *dev;
1354 
1355 	/* If we can save the initial standard input settings... */
1356 	if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1357 		struct termios term = orig_term;
1358 		/*
1359 		 * Then we turn off echo, line buffering and ^C etc: We want a
1360 		 * raw input stream to the Guest.
1361 		 */
1362 		term.c_lflag &= ~(ISIG|ICANON|ECHO);
1363 		tcsetattr(STDIN_FILENO, TCSANOW, &term);
1364 	}
1365 
1366 	dev = new_device("console", VIRTIO_ID_CONSOLE);
1367 
1368 	/* We store the console state in dev->priv, and initialize it. */
1369 	dev->priv = malloc(sizeof(struct console_abort));
1370 	((struct console_abort *)dev->priv)->count = 0;
1371 
1372 	/*
1373 	 * The console needs two virtqueues: the input then the output.  When
1374 	 * they put something the input queue, we make sure we're listening to
1375 	 * stdin.  When they put something in the output queue, we write it to
1376 	 * stdout.
1377 	 */
1378 	add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1379 	add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1380 
1381 	verbose("device %u: console\n", ++devices.device_num);
1382 }
1383 /*:*/
1384 
1385 /*M:010
1386  * Inter-guest networking is an interesting area.  Simplest is to have a
1387  * --sharenet=<name> option which opens or creates a named pipe.  This can be
1388  * used to send packets to another guest in a 1:1 manner.
1389  *
1390  * More sopisticated is to use one of the tools developed for project like UML
1391  * to do networking.
1392  *
1393  * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1394  * completely generic ("here's my vring, attach to your vring") and would work
1395  * for any traffic.  Of course, namespace and permissions issues need to be
1396  * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1397  * multiple inter-guest channels behind one interface, although it would
1398  * require some manner of hotplugging new virtio channels.
1399  *
1400  * Finally, we could implement a virtio network switch in the kernel.
1401 :*/
1402 
str2ip(const char * ipaddr)1403 static u32 str2ip(const char *ipaddr)
1404 {
1405 	unsigned int b[4];
1406 
1407 	if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1408 		errx(1, "Failed to parse IP address '%s'", ipaddr);
1409 	return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1410 }
1411 
str2mac(const char * macaddr,unsigned char mac[6])1412 static void str2mac(const char *macaddr, unsigned char mac[6])
1413 {
1414 	unsigned int m[6];
1415 	if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1416 		   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1417 		errx(1, "Failed to parse mac address '%s'", macaddr);
1418 	mac[0] = m[0];
1419 	mac[1] = m[1];
1420 	mac[2] = m[2];
1421 	mac[3] = m[3];
1422 	mac[4] = m[4];
1423 	mac[5] = m[5];
1424 }
1425 
1426 /*
1427  * This code is "adapted" from libbridge: it attaches the Host end of the
1428  * network device to the bridge device specified by the command line.
1429  *
1430  * This is yet another James Morris contribution (I'm an IP-level guy, so I
1431  * dislike bridging), and I just try not to break it.
1432  */
add_to_bridge(int fd,const char * if_name,const char * br_name)1433 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1434 {
1435 	int ifidx;
1436 	struct ifreq ifr;
1437 
1438 	if (!*br_name)
1439 		errx(1, "must specify bridge name");
1440 
1441 	ifidx = if_nametoindex(if_name);
1442 	if (!ifidx)
1443 		errx(1, "interface %s does not exist!", if_name);
1444 
1445 	strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1446 	ifr.ifr_name[IFNAMSIZ-1] = '\0';
1447 	ifr.ifr_ifindex = ifidx;
1448 	if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1449 		err(1, "can't add %s to bridge %s", if_name, br_name);
1450 }
1451 
1452 /*
1453  * This sets up the Host end of the network device with an IP address, brings
1454  * it up so packets will flow, the copies the MAC address into the hwaddr
1455  * pointer.
1456  */
configure_device(int fd,const char * tapif,u32 ipaddr)1457 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1458 {
1459 	struct ifreq ifr;
1460 	struct sockaddr_in sin;
1461 
1462 	memset(&ifr, 0, sizeof(ifr));
1463 	strcpy(ifr.ifr_name, tapif);
1464 
1465 	/* Don't read these incantations.  Just cut & paste them like I did! */
1466 	sin.sin_family = AF_INET;
1467 	sin.sin_addr.s_addr = htonl(ipaddr);
1468 	memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1469 	if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1470 		err(1, "Setting %s interface address", tapif);
1471 	ifr.ifr_flags = IFF_UP;
1472 	if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1473 		err(1, "Bringing interface %s up", tapif);
1474 }
1475 
get_tun_device(char tapif[IFNAMSIZ])1476 static int get_tun_device(char tapif[IFNAMSIZ])
1477 {
1478 	struct ifreq ifr;
1479 	int netfd;
1480 
1481 	/* Start with this zeroed.  Messy but sure. */
1482 	memset(&ifr, 0, sizeof(ifr));
1483 
1484 	/*
1485 	 * We open the /dev/net/tun device and tell it we want a tap device.  A
1486 	 * tap device is like a tun device, only somehow different.  To tell
1487 	 * the truth, I completely blundered my way through this code, but it
1488 	 * works now!
1489 	 */
1490 	netfd = open_or_die("/dev/net/tun", O_RDWR);
1491 	ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1492 	strcpy(ifr.ifr_name, "tap%d");
1493 	if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1494 		err(1, "configuring /dev/net/tun");
1495 
1496 	if (ioctl(netfd, TUNSETOFFLOAD,
1497 		  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1498 		err(1, "Could not set features for tun device");
1499 
1500 	/*
1501 	 * We don't need checksums calculated for packets coming in this
1502 	 * device: trust us!
1503 	 */
1504 	ioctl(netfd, TUNSETNOCSUM, 1);
1505 
1506 	memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1507 	return netfd;
1508 }
1509 
1510 /*L:195
1511  * Our network is a Host<->Guest network.  This can either use bridging or
1512  * routing, but the principle is the same: it uses the "tun" device to inject
1513  * packets into the Host as if they came in from a normal network card.  We
1514  * just shunt packets between the Guest and the tun device.
1515  */
setup_tun_net(char * arg)1516 static void setup_tun_net(char *arg)
1517 {
1518 	struct device *dev;
1519 	struct net_info *net_info = malloc(sizeof(*net_info));
1520 	int ipfd;
1521 	u32 ip = INADDR_ANY;
1522 	bool bridging = false;
1523 	char tapif[IFNAMSIZ], *p;
1524 	struct virtio_net_config conf;
1525 
1526 	net_info->tunfd = get_tun_device(tapif);
1527 
1528 	/* First we create a new network device. */
1529 	dev = new_device("net", VIRTIO_ID_NET);
1530 	dev->priv = net_info;
1531 
1532 	/* Network devices need a recv and a send queue, just like console. */
1533 	add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1534 	add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1535 
1536 	/*
1537 	 * We need a socket to perform the magic network ioctls to bring up the
1538 	 * tap interface, connect to the bridge etc.  Any socket will do!
1539 	 */
1540 	ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1541 	if (ipfd < 0)
1542 		err(1, "opening IP socket");
1543 
1544 	/* If the command line was --tunnet=bridge:<name> do bridging. */
1545 	if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1546 		arg += strlen(BRIDGE_PFX);
1547 		bridging = true;
1548 	}
1549 
1550 	/* A mac address may follow the bridge name or IP address */
1551 	p = strchr(arg, ':');
1552 	if (p) {
1553 		str2mac(p+1, conf.mac);
1554 		add_feature(dev, VIRTIO_NET_F_MAC);
1555 		*p = '\0';
1556 	}
1557 
1558 	/* arg is now either an IP address or a bridge name */
1559 	if (bridging)
1560 		add_to_bridge(ipfd, tapif, arg);
1561 	else
1562 		ip = str2ip(arg);
1563 
1564 	/* Set up the tun device. */
1565 	configure_device(ipfd, tapif, ip);
1566 
1567 	add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1568 	/* Expect Guest to handle everything except UFO */
1569 	add_feature(dev, VIRTIO_NET_F_CSUM);
1570 	add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1571 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1572 	add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1573 	add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1574 	add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1575 	add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1576 	add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1577 	/* We handle indirect ring entries */
1578 	add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1579 	set_config(dev, sizeof(conf), &conf);
1580 
1581 	/* We don't need the socket any more; setup is done. */
1582 	close(ipfd);
1583 
1584 	devices.device_num++;
1585 
1586 	if (bridging)
1587 		verbose("device %u: tun %s attached to bridge: %s\n",
1588 			devices.device_num, tapif, arg);
1589 	else
1590 		verbose("device %u: tun %s: %s\n",
1591 			devices.device_num, tapif, arg);
1592 }
1593 /*:*/
1594 
1595 /* This hangs off device->priv. */
1596 struct vblk_info {
1597 	/* The size of the file. */
1598 	off64_t len;
1599 
1600 	/* The file descriptor for the file. */
1601 	int fd;
1602 
1603 };
1604 
1605 /*L:210
1606  * The Disk
1607  *
1608  * The disk only has one virtqueue, so it only has one thread.  It is really
1609  * simple: the Guest asks for a block number and we read or write that position
1610  * in the file.
1611  *
1612  * Before we serviced each virtqueue in a separate thread, that was unacceptably
1613  * slow: the Guest waits until the read is finished before running anything
1614  * else, even if it could have been doing useful work.
1615  *
1616  * We could have used async I/O, except it's reputed to suck so hard that
1617  * characters actually go missing from your code when you try to use it.
1618  */
blk_request(struct virtqueue * vq)1619 static void blk_request(struct virtqueue *vq)
1620 {
1621 	struct vblk_info *vblk = vq->dev->priv;
1622 	unsigned int head, out_num, in_num, wlen;
1623 	int ret;
1624 	u8 *in;
1625 	struct virtio_blk_outhdr *out;
1626 	struct iovec iov[vq->vring.num];
1627 	off64_t off;
1628 
1629 	/*
1630 	 * Get the next request, where we normally wait.  It triggers the
1631 	 * interrupt to acknowledge previously serviced requests (if any).
1632 	 */
1633 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1634 
1635 	/*
1636 	 * Every block request should contain at least one output buffer
1637 	 * (detailing the location on disk and the type of request) and one
1638 	 * input buffer (to hold the result).
1639 	 */
1640 	if (out_num == 0 || in_num == 0)
1641 		errx(1, "Bad virtblk cmd %u out=%u in=%u",
1642 		     head, out_num, in_num);
1643 
1644 	out = convert(&iov[0], struct virtio_blk_outhdr);
1645 	in = convert(&iov[out_num+in_num-1], u8);
1646 	/*
1647 	 * For historical reasons, block operations are expressed in 512 byte
1648 	 * "sectors".
1649 	 */
1650 	off = out->sector * 512;
1651 
1652 	/*
1653 	 * In general the virtio block driver is allowed to try SCSI commands.
1654 	 * It'd be nice if we supported eject, for example, but we don't.
1655 	 */
1656 	if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1657 		fprintf(stderr, "Scsi commands unsupported\n");
1658 		*in = VIRTIO_BLK_S_UNSUPP;
1659 		wlen = sizeof(*in);
1660 	} else if (out->type & VIRTIO_BLK_T_OUT) {
1661 		/*
1662 		 * Write
1663 		 *
1664 		 * Move to the right location in the block file.  This can fail
1665 		 * if they try to write past end.
1666 		 */
1667 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1668 			err(1, "Bad seek to sector %llu", out->sector);
1669 
1670 		ret = writev(vblk->fd, iov+1, out_num-1);
1671 		verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1672 
1673 		/*
1674 		 * Grr... Now we know how long the descriptor they sent was, we
1675 		 * make sure they didn't try to write over the end of the block
1676 		 * file (possibly extending it).
1677 		 */
1678 		if (ret > 0 && off + ret > vblk->len) {
1679 			/* Trim it back to the correct length */
1680 			ftruncate64(vblk->fd, vblk->len);
1681 			/* Die, bad Guest, die. */
1682 			errx(1, "Write past end %llu+%u", off, ret);
1683 		}
1684 
1685 		wlen = sizeof(*in);
1686 		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1687 	} else if (out->type & VIRTIO_BLK_T_FLUSH) {
1688 		/* Flush */
1689 		ret = fdatasync(vblk->fd);
1690 		verbose("FLUSH fdatasync: %i\n", ret);
1691 		wlen = sizeof(*in);
1692 		*in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1693 	} else {
1694 		/*
1695 		 * Read
1696 		 *
1697 		 * Move to the right location in the block file.  This can fail
1698 		 * if they try to read past end.
1699 		 */
1700 		if (lseek64(vblk->fd, off, SEEK_SET) != off)
1701 			err(1, "Bad seek to sector %llu", out->sector);
1702 
1703 		ret = readv(vblk->fd, iov+1, in_num-1);
1704 		verbose("READ from sector %llu: %i\n", out->sector, ret);
1705 		if (ret >= 0) {
1706 			wlen = sizeof(*in) + ret;
1707 			*in = VIRTIO_BLK_S_OK;
1708 		} else {
1709 			wlen = sizeof(*in);
1710 			*in = VIRTIO_BLK_S_IOERR;
1711 		}
1712 	}
1713 
1714 	/* Finished that request. */
1715 	add_used(vq, head, wlen);
1716 }
1717 
1718 /*L:198 This actually sets up a virtual block device. */
setup_block_file(const char * filename)1719 static void setup_block_file(const char *filename)
1720 {
1721 	struct device *dev;
1722 	struct vblk_info *vblk;
1723 	struct virtio_blk_config conf;
1724 
1725 	/* Creat the device. */
1726 	dev = new_device("block", VIRTIO_ID_BLOCK);
1727 
1728 	/* The device has one virtqueue, where the Guest places requests. */
1729 	add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1730 
1731 	/* Allocate the room for our own bookkeeping */
1732 	vblk = dev->priv = malloc(sizeof(*vblk));
1733 
1734 	/* First we open the file and store the length. */
1735 	vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1736 	vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1737 
1738 	/* We support FLUSH. */
1739 	add_feature(dev, VIRTIO_BLK_F_FLUSH);
1740 
1741 	/* Tell Guest how many sectors this device has. */
1742 	conf.capacity = cpu_to_le64(vblk->len / 512);
1743 
1744 	/*
1745 	 * Tell Guest not to put in too many descriptors at once: two are used
1746 	 * for the in and out elements.
1747 	 */
1748 	add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1749 	conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1750 
1751 	/* Don't try to put whole struct: we have 8 bit limit. */
1752 	set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1753 
1754 	verbose("device %u: virtblock %llu sectors\n",
1755 		++devices.device_num, le64_to_cpu(conf.capacity));
1756 }
1757 
1758 /*L:211
1759  * Our random number generator device reads from /dev/random into the Guest's
1760  * input buffers.  The usual case is that the Guest doesn't want random numbers
1761  * and so has no buffers although /dev/random is still readable, whereas
1762  * console is the reverse.
1763  *
1764  * The same logic applies, however.
1765  */
1766 struct rng_info {
1767 	int rfd;
1768 };
1769 
rng_input(struct virtqueue * vq)1770 static void rng_input(struct virtqueue *vq)
1771 {
1772 	int len;
1773 	unsigned int head, in_num, out_num, totlen = 0;
1774 	struct rng_info *rng_info = vq->dev->priv;
1775 	struct iovec iov[vq->vring.num];
1776 
1777 	/* First we need a buffer from the Guests's virtqueue. */
1778 	head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1779 	if (out_num)
1780 		errx(1, "Output buffers in rng?");
1781 
1782 	/*
1783 	 * Just like the console write, we loop to cover the whole iovec.
1784 	 * In this case, short reads actually happen quite a bit.
1785 	 */
1786 	while (!iov_empty(iov, in_num)) {
1787 		len = readv(rng_info->rfd, iov, in_num);
1788 		if (len <= 0)
1789 			err(1, "Read from /dev/random gave %i", len);
1790 		iov_consume(iov, in_num, len);
1791 		totlen += len;
1792 	}
1793 
1794 	/* Tell the Guest about the new input. */
1795 	add_used(vq, head, totlen);
1796 }
1797 
1798 /*L:199
1799  * This creates a "hardware" random number device for the Guest.
1800  */
setup_rng(void)1801 static void setup_rng(void)
1802 {
1803 	struct device *dev;
1804 	struct rng_info *rng_info = malloc(sizeof(*rng_info));
1805 
1806 	/* Our device's privat info simply contains the /dev/random fd. */
1807 	rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1808 
1809 	/* Create the new device. */
1810 	dev = new_device("rng", VIRTIO_ID_RNG);
1811 	dev->priv = rng_info;
1812 
1813 	/* The device has one virtqueue, where the Guest places inbufs. */
1814 	add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1815 
1816 	verbose("device %u: rng\n", devices.device_num++);
1817 }
1818 /* That's the end of device setup. */
1819 
1820 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
restart_guest(void)1821 static void __attribute__((noreturn)) restart_guest(void)
1822 {
1823 	unsigned int i;
1824 
1825 	/*
1826 	 * Since we don't track all open fds, we simply close everything beyond
1827 	 * stderr.
1828 	 */
1829 	for (i = 3; i < FD_SETSIZE; i++)
1830 		close(i);
1831 
1832 	/* Reset all the devices (kills all threads). */
1833 	cleanup_devices();
1834 
1835 	execv(main_args[0], main_args);
1836 	err(1, "Could not exec %s", main_args[0]);
1837 }
1838 
1839 /*L:220
1840  * Finally we reach the core of the Launcher which runs the Guest, serves
1841  * its input and output, and finally, lays it to rest.
1842  */
run_guest(void)1843 static void __attribute__((noreturn)) run_guest(void)
1844 {
1845 	for (;;) {
1846 		unsigned long notify_addr;
1847 		int readval;
1848 
1849 		/* We read from the /dev/lguest device to run the Guest. */
1850 		readval = pread(lguest_fd, &notify_addr,
1851 				sizeof(notify_addr), cpu_id);
1852 
1853 		/* One unsigned long means the Guest did HCALL_NOTIFY */
1854 		if (readval == sizeof(notify_addr)) {
1855 			verbose("Notify on address %#lx\n", notify_addr);
1856 			handle_output(notify_addr);
1857 		/* ENOENT means the Guest died.  Reading tells us why. */
1858 		} else if (errno == ENOENT) {
1859 			char reason[1024] = { 0 };
1860 			pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1861 			errx(1, "%s", reason);
1862 		/* ERESTART means that we need to reboot the guest */
1863 		} else if (errno == ERESTART) {
1864 			restart_guest();
1865 		/* Anything else means a bug or incompatible change. */
1866 		} else
1867 			err(1, "Running guest failed");
1868 	}
1869 }
1870 /*L:240
1871  * This is the end of the Launcher.  The good news: we are over halfway
1872  * through!  The bad news: the most fiendish part of the code still lies ahead
1873  * of us.
1874  *
1875  * Are you ready?  Take a deep breath and join me in the core of the Host, in
1876  * "make Host".
1877 :*/
1878 
1879 static struct option opts[] = {
1880 	{ "verbose", 0, NULL, 'v' },
1881 	{ "tunnet", 1, NULL, 't' },
1882 	{ "block", 1, NULL, 'b' },
1883 	{ "rng", 0, NULL, 'r' },
1884 	{ "initrd", 1, NULL, 'i' },
1885 	{ "username", 1, NULL, 'u' },
1886 	{ "chroot", 1, NULL, 'c' },
1887 	{ NULL },
1888 };
usage(void)1889 static void usage(void)
1890 {
1891 	errx(1, "Usage: lguest [--verbose] "
1892 	     "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1893 	     "|--block=<filename>|--initrd=<filename>]...\n"
1894 	     "<mem-in-mb> vmlinux [args...]");
1895 }
1896 
1897 /*L:105 The main routine is where the real work begins: */
main(int argc,char * argv[])1898 int main(int argc, char *argv[])
1899 {
1900 	/* Memory, code startpoint and size of the (optional) initrd. */
1901 	unsigned long mem = 0, start, initrd_size = 0;
1902 	/* Two temporaries. */
1903 	int i, c;
1904 	/* The boot information for the Guest. */
1905 	struct boot_params *boot;
1906 	/* If they specify an initrd file to load. */
1907 	const char *initrd_name = NULL;
1908 
1909 	/* Password structure for initgroups/setres[gu]id */
1910 	struct passwd *user_details = NULL;
1911 
1912 	/* Directory to chroot to */
1913 	char *chroot_path = NULL;
1914 
1915 	/* Save the args: we "reboot" by execing ourselves again. */
1916 	main_args = argv;
1917 
1918 	/*
1919 	 * First we initialize the device list.  We keep a pointer to the last
1920 	 * device, and the next interrupt number to use for devices (1:
1921 	 * remember that 0 is used by the timer).
1922 	 */
1923 	devices.lastdev = NULL;
1924 	devices.next_irq = 1;
1925 
1926 	/* We're CPU 0.  In fact, that's the only CPU possible right now. */
1927 	cpu_id = 0;
1928 
1929 	/*
1930 	 * We need to know how much memory so we can set up the device
1931 	 * descriptor and memory pages for the devices as we parse the command
1932 	 * line.  So we quickly look through the arguments to find the amount
1933 	 * of memory now.
1934 	 */
1935 	for (i = 1; i < argc; i++) {
1936 		if (argv[i][0] != '-') {
1937 			mem = atoi(argv[i]) * 1024 * 1024;
1938 			/*
1939 			 * We start by mapping anonymous pages over all of
1940 			 * guest-physical memory range.  This fills it with 0,
1941 			 * and ensures that the Guest won't be killed when it
1942 			 * tries to access it.
1943 			 */
1944 			guest_base = map_zeroed_pages(mem / getpagesize()
1945 						      + DEVICE_PAGES);
1946 			guest_limit = mem;
1947 			guest_max = mem + DEVICE_PAGES*getpagesize();
1948 			devices.descpage = get_pages(1);
1949 			break;
1950 		}
1951 	}
1952 
1953 	/* The options are fairly straight-forward */
1954 	while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1955 		switch (c) {
1956 		case 'v':
1957 			verbose = true;
1958 			break;
1959 		case 't':
1960 			setup_tun_net(optarg);
1961 			break;
1962 		case 'b':
1963 			setup_block_file(optarg);
1964 			break;
1965 		case 'r':
1966 			setup_rng();
1967 			break;
1968 		case 'i':
1969 			initrd_name = optarg;
1970 			break;
1971 		case 'u':
1972 			user_details = getpwnam(optarg);
1973 			if (!user_details)
1974 				err(1, "getpwnam failed, incorrect username?");
1975 			break;
1976 		case 'c':
1977 			chroot_path = optarg;
1978 			break;
1979 		default:
1980 			warnx("Unknown argument %s", argv[optind]);
1981 			usage();
1982 		}
1983 	}
1984 	/*
1985 	 * After the other arguments we expect memory and kernel image name,
1986 	 * followed by command line arguments for the kernel.
1987 	 */
1988 	if (optind + 2 > argc)
1989 		usage();
1990 
1991 	verbose("Guest base is at %p\n", guest_base);
1992 
1993 	/* We always have a console device */
1994 	setup_console();
1995 
1996 	/* Now we load the kernel */
1997 	start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1998 
1999 	/* Boot information is stashed at physical address 0 */
2000 	boot = from_guest_phys(0);
2001 
2002 	/* Map the initrd image if requested (at top of physical memory) */
2003 	if (initrd_name) {
2004 		initrd_size = load_initrd(initrd_name, mem);
2005 		/*
2006 		 * These are the location in the Linux boot header where the
2007 		 * start and size of the initrd are expected to be found.
2008 		 */
2009 		boot->hdr.ramdisk_image = mem - initrd_size;
2010 		boot->hdr.ramdisk_size = initrd_size;
2011 		/* The bootloader type 0xFF means "unknown"; that's OK. */
2012 		boot->hdr.type_of_loader = 0xFF;
2013 	}
2014 
2015 	/*
2016 	 * The Linux boot header contains an "E820" memory map: ours is a
2017 	 * simple, single region.
2018 	 */
2019 	boot->e820_entries = 1;
2020 	boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2021 	/*
2022 	 * The boot header contains a command line pointer: we put the command
2023 	 * line after the boot header.
2024 	 */
2025 	boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2026 	/* We use a simple helper to copy the arguments separated by spaces. */
2027 	concat((char *)(boot + 1), argv+optind+2);
2028 
2029 	/* Boot protocol version: 2.07 supports the fields for lguest. */
2030 	boot->hdr.version = 0x207;
2031 
2032 	/* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2033 	boot->hdr.hardware_subarch = 1;
2034 
2035 	/* Tell the entry path not to try to reload segment registers. */
2036 	boot->hdr.loadflags |= KEEP_SEGMENTS;
2037 
2038 	/*
2039 	 * We tell the kernel to initialize the Guest: this returns the open
2040 	 * /dev/lguest file descriptor.
2041 	 */
2042 	tell_kernel(start);
2043 
2044 	/* Ensure that we terminate if a device-servicing child dies. */
2045 	signal(SIGCHLD, kill_launcher);
2046 
2047 	/* If we exit via err(), this kills all the threads, restores tty. */
2048 	atexit(cleanup_devices);
2049 
2050 	/* If requested, chroot to a directory */
2051 	if (chroot_path) {
2052 		if (chroot(chroot_path) != 0)
2053 			err(1, "chroot(\"%s\") failed", chroot_path);
2054 
2055 		if (chdir("/") != 0)
2056 			err(1, "chdir(\"/\") failed");
2057 
2058 		verbose("chroot done\n");
2059 	}
2060 
2061 	/* If requested, drop privileges */
2062 	if (user_details) {
2063 		uid_t u;
2064 		gid_t g;
2065 
2066 		u = user_details->pw_uid;
2067 		g = user_details->pw_gid;
2068 
2069 		if (initgroups(user_details->pw_name, g) != 0)
2070 			err(1, "initgroups failed");
2071 
2072 		if (setresgid(g, g, g) != 0)
2073 			err(1, "setresgid failed");
2074 
2075 		if (setresuid(u, u, u) != 0)
2076 			err(1, "setresuid failed");
2077 
2078 		verbose("Dropping privileges completed\n");
2079 	}
2080 
2081 	/* Finally, run the Guest.  This doesn't return. */
2082 	run_guest();
2083 }
2084 /*:*/
2085 
2086 /*M:999
2087  * Mastery is done: you now know everything I do.
2088  *
2089  * But surely you have seen code, features and bugs in your wanderings which
2090  * you now yearn to attack?  That is the real game, and I look forward to you
2091  * patching and forking lguest into the Your-Name-Here-visor.
2092  *
2093  * Farewell, and good coding!
2094  * Rusty Russell.
2095  */
2096