1 /*
2    Copyright (C) 1995-2022 Free Software Foundation, Inc.
3 
4    The GNU C Library is free software; you can redistribute it and/or
5    modify it under the terms of the GNU Lesser General Public
6    License as published by the Free Software Foundation; either
7    version 2.1 of the License, or (at your option) any later version.
8 
9    The GNU C Library is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12    Lesser General Public License for more details.
13 
14    You should have received a copy of the GNU Lesser General Public
15    License along with the GNU C Library; if not, see
16    <https://www.gnu.org/licenses/>.  */
17 
18 /*
19    Copyright (C) 1983 Regents of the University of California.
20    All rights reserved.
21 
22    Redistribution and use in source and binary forms, with or without
23    modification, are permitted provided that the following conditions
24    are met:
25 
26    1. Redistributions of source code must retain the above copyright
27       notice, this list of conditions and the following disclaimer.
28    2. Redistributions in binary form must reproduce the above copyright
29       notice, this list of conditions and the following disclaimer in the
30       documentation and/or other materials provided with the distribution.
31    4. Neither the name of the University nor the names of its contributors
32       may be used to endorse or promote products derived from this software
33       without specific prior written permission.
34 
35    THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38    ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45    SUCH DAMAGE.*/
46 
47 /*
48  * This is derived from the Berkeley source:
49  *	@(#)random.c	5.5 (Berkeley) 7/6/88
50  * It was reworked for the GNU C Library by Roland McGrath.
51  * Rewritten to be reentrant by Ulrich Drepper, 1995
52  */
53 
54 #include <errno.h>
55 #include <limits.h>
56 #include <stddef.h>
57 #include <stdlib.h>
58 
59 
60 /* An improved random number generation package.  In addition to the standard
61    rand()/srand() like interface, this package also has a special state info
62    interface.  The initstate() routine is called with a seed, an array of
63    bytes, and a count of how many bytes are being passed in; this array is
64    then initialized to contain information for random number generation with
65    that much state information.  Good sizes for the amount of state
66    information are 32, 64, 128, and 256 bytes.  The state can be switched by
67    calling the setstate() function with the same array as was initialized
68    with initstate().  By default, the package runs with 128 bytes of state
69    information and generates far better random numbers than a linear
70    congruential generator.  If the amount of state information is less than
71    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
72    state information is treated as an array of longs; the zeroth element of
73    the array is the type of R.N.G. being used (small integer); the remainder
74    of the array is the state information for the R.N.G.  Thus, 32 bytes of
75    state information will give 7 longs worth of state information, which will
76    allow a degree seven polynomial.  (Note: The zeroth word of state
77    information also has some other information stored in it; see setstate
78    for details).  The random number generation technique is a linear feedback
79    shift register approach, employing trinomials (since there are fewer terms
80    to sum up that way).  In this approach, the least significant bit of all
81    the numbers in the state table will act as a linear feedback shift register,
82    and will have period 2^deg - 1 (where deg is the degree of the polynomial
83    being used, assuming that the polynomial is irreducible and primitive).
84    The higher order bits will have longer periods, since their values are
85    also influenced by pseudo-random carries out of the lower bits.  The
86    total period of the generator is approximately deg*(2**deg - 1); thus
87    doubling the amount of state information has a vast influence on the
88    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
89    only good for large deg, when the period of the shift register is the
90    dominant factor.  With deg equal to seven, the period is actually much
91    longer than the 7*(2**7 - 1) predicted by this formula.  */
92 
93 
94 
95 /* For each of the currently supported random number generators, we have a
96    break value on the amount of state information (you need at least this many
97    bytes of state info to support this random number generator), a degree for
98    the polynomial (actually a trinomial) that the R.N.G. is based on, and
99    separation between the two lower order coefficients of the trinomial.  */
100 
101 /* Linear congruential.  */
102 #define	TYPE_0		0
103 #define	BREAK_0		8
104 #define	DEG_0		0
105 #define	SEP_0		0
106 
107 /* x**7 + x**3 + 1.  */
108 #define	TYPE_1		1
109 #define	BREAK_1		32
110 #define	DEG_1		7
111 #define	SEP_1		3
112 
113 /* x**15 + x + 1.  */
114 #define	TYPE_2		2
115 #define	BREAK_2		64
116 #define	DEG_2		15
117 #define	SEP_2		1
118 
119 /* x**31 + x**3 + 1.  */
120 #define	TYPE_3		3
121 #define	BREAK_3		128
122 #define	DEG_3		31
123 #define	SEP_3		3
124 
125 /* x**63 + x + 1.  */
126 #define	TYPE_4		4
127 #define	BREAK_4		256
128 #define	DEG_4		63
129 #define	SEP_4		1
130 
131 
132 /* Array versions of the above information to make code run faster.
133    Relies on fact that TYPE_i == i.  */
134 
135 #define	MAX_TYPES	5	/* Max number of types above.  */
136 
137 struct random_poly_info
138 {
139   int seps[MAX_TYPES];
140   int degrees[MAX_TYPES];
141 };
142 
143 static const struct random_poly_info random_poly_info =
144 {
145   { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
146   { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
147 };
148 
149 
150 
151 
152 /* Initialize the random number generator based on the given seed.  If the
153    type is the trivial no-state-information type, just remember the seed.
154    Otherwise, initializes state[] based on the given "seed" via a linear
155    congruential generator.  Then, the pointers are set to known locations
156    that are exactly rand_sep places apart.  Lastly, it cycles the state
157    information a given number of times to get rid of any initial dependencies
158    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
159    for default usage relies on values produced by this routine.  */
160 int
__srandom_r(unsigned int seed,struct random_data * buf)161 __srandom_r (unsigned int seed, struct random_data *buf)
162 {
163   int type;
164   int32_t *state;
165   long int i;
166   int32_t word;
167   int32_t *dst;
168   int kc;
169 
170   if (buf == NULL)
171     goto fail;
172   type = buf->rand_type;
173   if ((unsigned int) type >= MAX_TYPES)
174     goto fail;
175 
176   state = buf->state;
177   /* We must make sure the seed is not 0.  Take arbitrarily 1 in this case.  */
178   if (seed == 0)
179     seed = 1;
180   state[0] = seed;
181   if (type == TYPE_0)
182     goto done;
183 
184   dst = state;
185   word = seed;
186   kc = buf->rand_deg;
187   for (i = 1; i < kc; ++i)
188     {
189       /* This does:
190 	   state[i] = (16807 * state[i - 1]) % 2147483647;
191 	 but avoids overflowing 31 bits.  */
192       long int hi = word / 127773;
193       long int lo = word % 127773;
194       word = 16807 * lo - 2836 * hi;
195       if (word < 0)
196 	word += 2147483647;
197       *++dst = word;
198     }
199 
200   buf->fptr = &state[buf->rand_sep];
201   buf->rptr = &state[0];
202   kc *= 10;
203   while (--kc >= 0)
204     {
205       int32_t discard;
206       (void) __random_r (buf, &discard);
207     }
208 
209  done:
210   return 0;
211 
212  fail:
213   return -1;
214 }
215 
weak_alias(__srandom_r,srandom_r)216 weak_alias (__srandom_r, srandom_r)
217 
218 /* Initialize the state information in the given array of N bytes for
219    future random number generation.  Based on the number of bytes we
220    are given, and the break values for the different R.N.G.'s, we choose
221    the best (largest) one we can and set things up for it.  srandom is
222    then called to initialize the state information.  Note that on return
223    from srandom, we set state[-1] to be the type multiplexed with the current
224    value of the rear pointer; this is so successive calls to initstate won't
225    lose this information and will be able to restart with setstate.
226    Note: The first thing we do is save the current state, if any, just like
227    setstate so that it doesn't matter when initstate is called.
228    Returns 0 on success, non-zero on failure.  */
229 int
230 __initstate_r (unsigned int seed, char *arg_state, size_t n,
231 	       struct random_data *buf)
232 {
233   if (buf == NULL)
234     goto fail;
235 
236   int32_t *old_state = buf->state;
237   if (old_state != NULL)
238     {
239       int old_type = buf->rand_type;
240       if (old_type == TYPE_0)
241 	old_state[-1] = TYPE_0;
242       else
243 	old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
244     }
245 
246   int type;
247   if (n >= BREAK_3)
248     type = n < BREAK_4 ? TYPE_3 : TYPE_4;
249   else if (n < BREAK_1)
250     {
251       if (n < BREAK_0)
252 	goto fail;
253 
254       type = TYPE_0;
255     }
256   else
257     type = n < BREAK_2 ? TYPE_1 : TYPE_2;
258 
259   int degree = random_poly_info.degrees[type];
260   int separation = random_poly_info.seps[type];
261 
262   buf->rand_type = type;
263   buf->rand_sep = separation;
264   buf->rand_deg = degree;
265   int32_t *state = &((int32_t *) arg_state)[1];	/* First location.  */
266   /* Must set END_PTR before srandom.  */
267   buf->end_ptr = &state[degree];
268 
269   buf->state = state;
270 
271   __srandom_r (seed, buf);
272 
273   state[-1] = TYPE_0;
274   if (type != TYPE_0)
275     state[-1] = (buf->rptr - state) * MAX_TYPES + type;
276 
277   return 0;
278 
279  fail:
280   __set_errno (EINVAL);
281   return -1;
282 }
283 
weak_alias(__initstate_r,initstate_r)284 weak_alias (__initstate_r, initstate_r)
285 
286 /* Restore the state from the given state array.
287    Note: It is important that we also remember the locations of the pointers
288    in the current state information, and restore the locations of the pointers
289    from the old state information.  This is done by multiplexing the pointer
290    location into the zeroth word of the state information. Note that due
291    to the order in which things are done, it is OK to call setstate with the
292    same state as the current state
293    Returns 0 on success, non-zero on failure.  */
294 int
295 __setstate_r (char *arg_state, struct random_data *buf)
296 {
297   int32_t *new_state = 1 + (int32_t *) arg_state;
298   int type;
299   int old_type;
300   int32_t *old_state;
301   int degree;
302   int separation;
303 
304   if (arg_state == NULL || buf == NULL)
305     goto fail;
306 
307   old_type = buf->rand_type;
308   old_state = buf->state;
309   if (old_type == TYPE_0)
310     old_state[-1] = TYPE_0;
311   else
312     old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
313 
314   type = new_state[-1] % MAX_TYPES;
315   if (type < TYPE_0 || type > TYPE_4)
316     goto fail;
317 
318   buf->rand_deg = degree = random_poly_info.degrees[type];
319   buf->rand_sep = separation = random_poly_info.seps[type];
320   buf->rand_type = type;
321 
322   if (type != TYPE_0)
323     {
324       int rear = new_state[-1] / MAX_TYPES;
325       buf->rptr = &new_state[rear];
326       buf->fptr = &new_state[(rear + separation) % degree];
327     }
328   buf->state = new_state;
329   /* Set end_ptr too.  */
330   buf->end_ptr = &new_state[degree];
331 
332   return 0;
333 
334  fail:
335   __set_errno (EINVAL);
336   return -1;
337 }
338 
weak_alias(__setstate_r,setstate_r)339 weak_alias (__setstate_r, setstate_r)
340 
341 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
342    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
343    same in all the other cases due to all the global variables that have been
344    set up.  The basic operation is to add the number at the rear pointer into
345    the one at the front pointer.  Then both pointers are advanced to the next
346    location cyclically in the table.  The value returned is the sum generated,
347    reduced to 31 bits by throwing away the "least random" low bit.
348    Note: The code takes advantage of the fact that both the front and
349    rear pointers can't wrap on the same call by not testing the rear
350    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
351 
352 int
353 __random_r (struct random_data *buf, int32_t *result)
354 {
355   int32_t *state;
356 
357   if (buf == NULL || result == NULL)
358     goto fail;
359 
360   state = buf->state;
361 
362   if (buf->rand_type == TYPE_0)
363     {
364       int32_t val = ((state[0] * 1103515245U) + 12345U) & 0x7fffffff;
365       state[0] = val;
366       *result = val;
367     }
368   else
369     {
370       int32_t *fptr = buf->fptr;
371       int32_t *rptr = buf->rptr;
372       int32_t *end_ptr = buf->end_ptr;
373       uint32_t val;
374 
375       val = *fptr += (uint32_t) *rptr;
376       /* Chucking least random bit.  */
377       *result = val >> 1;
378       ++fptr;
379       if (fptr >= end_ptr)
380 	{
381 	  fptr = state;
382 	  ++rptr;
383 	}
384       else
385 	{
386 	  ++rptr;
387 	  if (rptr >= end_ptr)
388 	    rptr = state;
389 	}
390       buf->fptr = fptr;
391       buf->rptr = rptr;
392     }
393   return 0;
394 
395  fail:
396   __set_errno (EINVAL);
397   return -1;
398 }
399 
400 weak_alias (__random_r, random_r)
401