1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
8  *              Matthew Wilcox <willy@infradead.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 /* #define CONFIG_DEBUG_MAPLE_TREE_VERBOSE */
16 
17 /*
18  * Allocated nodes are mutable until they have been inserted into the tree,
19  * at which time they cannot change their type until they have been removed
20  * from the tree and an RCU grace period has passed.
21  *
22  * Removed nodes have their ->parent set to point to themselves.  RCU readers
23  * check ->parent before relying on the value that they loaded from the
24  * slots array.  This lets us reuse the slots array for the RCU head.
25  *
26  * Nodes in the tree point to their parent unless bit 0 is set.
27  */
28 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
29 /* 64bit sizes */
30 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
31 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
32 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
33 #define MAPLE_ARANGE64_META_MAX	15	/* Out of range for metadata */
34 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
35 #else
36 /* 32bit sizes */
37 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
38 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
39 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
40 #define MAPLE_ARANGE64_META_MAX	31	/* Out of range for metadata */
41 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
42 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
43 
44 #define MAPLE_NODE_MASK		255UL
45 
46 /*
47  * The node->parent of the root node has bit 0 set and the rest of the pointer
48  * is a pointer to the tree itself.  No more bits are available in this pointer
49  * (on m68k, the data structure may only be 2-byte aligned).
50  *
51  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
52  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
53  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
54  * extra bit to store the offset.  This extra bit comes from a reuse of the last
55  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
56  * is part of the type or the slot.
57  *
58  * Once the type is decided, the decision of an allocation range type or a range
59  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
60  * flag.
61  *
62  *  Node types:
63  *   0x??1 = Root
64  *   0x?00 = 16 bit nodes
65  *   0x010 = 32 bit nodes
66  *   0x110 = 64 bit nodes
67  *
68  *  Slot size and location in the parent pointer:
69  *   type  : slot location
70  *   0x??1 : Root
71  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
72  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
73  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
74  */
75 
76 /*
77  * This metadata is used to optimize the gap updating code and in reverse
78  * searching for gaps or any other code that needs to find the end of the data.
79  */
80 struct maple_metadata {
81 	unsigned char end;
82 	unsigned char gap;
83 };
84 
85 /*
86  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
87  * store almost any bit pattern.  As noted above, the optimisation of storing an
88  * entry at 0 in the root pointer cannot be done for data which have the bottom
89  * two bits set to '10'.  We also reserve values with the bottom two bits set to
90  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
91  * return errnos as a negative errno shifted right by two bits and the bottom
92  * two bits set to '10', and while choosing to store these values in the array
93  * is not an error, it may lead to confusion if you're testing for an error with
94  * mas_is_err().
95  *
96  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
97  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
98  *
99  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
100  * indicate that the tree is specifying ranges,  Pivots may appear in the
101  * subtree with an entry attached to the value whereas keys are unique to a
102  * specific position of a B-tree.  Pivot values are inclusive of the slot with
103  * the same index.
104  */
105 
106 struct maple_range_64 {
107 	struct maple_pnode *parent;
108 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
109 	union {
110 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
111 		struct {
112 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
113 			struct maple_metadata meta;
114 		};
115 	};
116 };
117 
118 /*
119  * At tree creation time, the user can specify that they're willing to trade off
120  * storing fewer entries in a tree in return for storing more information in
121  * each node.
122  *
123  * The maple tree supports recording the largest range of NULL entries available
124  * in this node, also called gaps.  This optimises the tree for allocating a
125  * range.
126  */
127 struct maple_arange_64 {
128 	struct maple_pnode *parent;
129 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
130 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
131 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
132 	struct maple_metadata meta;
133 };
134 
135 struct maple_alloc {
136 	unsigned long total;
137 	unsigned char node_count;
138 	unsigned int request_count;
139 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
140 };
141 
142 struct maple_topiary {
143 	struct maple_pnode *parent;
144 	struct maple_enode *next; /* Overlaps the pivot */
145 };
146 
147 enum maple_type {
148 	maple_dense,
149 	maple_leaf_64,
150 	maple_range_64,
151 	maple_arange_64,
152 };
153 
154 
155 /**
156  * DOC: Maple tree flags
157  *
158  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
159  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
160  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
161  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
162  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
163  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
164  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
165  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
166  *
167  * MAPLE_HEIGHT_MAX	The largest height that can be stored
168  */
169 #define MT_FLAGS_ALLOC_RANGE	0x01
170 #define MT_FLAGS_USE_RCU	0x02
171 #define MT_FLAGS_HEIGHT_OFFSET	0x02
172 #define MT_FLAGS_HEIGHT_MASK	0x7C
173 #define MT_FLAGS_LOCK_MASK	0x300
174 #define MT_FLAGS_LOCK_IRQ	0x100
175 #define MT_FLAGS_LOCK_BH	0x200
176 #define MT_FLAGS_LOCK_EXTERN	0x300
177 
178 #define MAPLE_HEIGHT_MAX	31
179 
180 
181 #define MAPLE_NODE_TYPE_MASK	0x0F
182 #define MAPLE_NODE_TYPE_SHIFT	0x03
183 
184 #define MAPLE_RESERVED_RANGE	4096
185 
186 #ifdef CONFIG_LOCKDEP
187 typedef struct lockdep_map *lockdep_map_p;
188 #define mt_lock_is_held(mt)	lock_is_held(mt->ma_external_lock)
189 #define mt_set_external_lock(mt, lock)					\
190 	(mt)->ma_external_lock = &(lock)->dep_map
191 #else
192 typedef struct { /* nothing */ } lockdep_map_p;
193 #define mt_lock_is_held(mt)	1
194 #define mt_set_external_lock(mt, lock)	do { } while (0)
195 #endif
196 
197 /*
198  * If the tree contains a single entry at index 0, it is usually stored in
199  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
200  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
201  * stored in a node.  Bits 3-6 are used to store enum maple_type.
202  *
203  * The flags are used both to store some immutable information about this tree
204  * (set at tree creation time) and dynamic information set under the spinlock.
205  *
206  * Another use of flags are to indicate global states of the tree.  This is the
207  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
208  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
209  * re-allocating and RCU freeing nodes when there is a single user.
210  */
211 struct maple_tree {
212 	union {
213 		spinlock_t	ma_lock;
214 		lockdep_map_p	ma_external_lock;
215 	};
216 	void __rcu      *ma_root;
217 	unsigned int	ma_flags;
218 };
219 
220 /**
221  * MTREE_INIT() - Initialize a maple tree
222  * @name: The maple tree name
223  * @__flags: The maple tree flags
224  *
225  */
226 #define MTREE_INIT(name, __flags) {					\
227 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
228 	.ma_flags = __flags,						\
229 	.ma_root = NULL,						\
230 }
231 
232 /**
233  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
234  * @name: The tree name
235  * @__flags: The maple tree flags
236  * @__lock: The external lock
237  */
238 #ifdef CONFIG_LOCKDEP
239 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
240 	.ma_external_lock = &(__lock).dep_map,				\
241 	.ma_flags = (__flags),						\
242 	.ma_root = NULL,						\
243 }
244 #else
245 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
246 #endif
247 
248 #define DEFINE_MTREE(name)						\
249 	struct maple_tree name = MTREE_INIT(name, 0)
250 
251 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
252 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
253 
254 /*
255  * The Maple Tree squeezes various bits in at various points which aren't
256  * necessarily obvious.  Usually, this is done by observing that pointers are
257  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
258  * don't use the high bits of pointers to store additional information because
259  * we don't know what bits are unused on any given architecture.
260  *
261  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
262  * low bits for our own purposes.  Nodes are currently of 4 types:
263  * 1. Single pointer (Range is 0-0)
264  * 2. Non-leaf Allocation Range nodes
265  * 3. Non-leaf Range nodes
266  * 4. Leaf Range nodes All nodes consist of a number of node slots,
267  *    pivots, and a parent pointer.
268  */
269 
270 struct maple_node {
271 	union {
272 		struct {
273 			struct maple_pnode *parent;
274 			void __rcu *slot[MAPLE_NODE_SLOTS];
275 		};
276 		struct {
277 			void *pad;
278 			struct rcu_head rcu;
279 			struct maple_enode *piv_parent;
280 			unsigned char parent_slot;
281 			enum maple_type type;
282 			unsigned char slot_len;
283 			unsigned int ma_flags;
284 		};
285 		struct maple_range_64 mr64;
286 		struct maple_arange_64 ma64;
287 		struct maple_alloc alloc;
288 	};
289 };
290 
291 /*
292  * More complicated stores can cause two nodes to become one or three and
293  * potentially alter the height of the tree.  Either half of the tree may need
294  * to be rebalanced against the other.  The ma_topiary struct is used to track
295  * which nodes have been 'cut' from the tree so that the change can be done
296  * safely at a later date.  This is done to support RCU.
297  */
298 struct ma_topiary {
299 	struct maple_enode *head;
300 	struct maple_enode *tail;
301 	struct maple_tree *mtree;
302 };
303 
304 void *mtree_load(struct maple_tree *mt, unsigned long index);
305 
306 int mtree_insert(struct maple_tree *mt, unsigned long index,
307 		void *entry, gfp_t gfp);
308 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
309 		unsigned long last, void *entry, gfp_t gfp);
310 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
311 		void *entry, unsigned long size, unsigned long min,
312 		unsigned long max, gfp_t gfp);
313 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
314 		void *entry, unsigned long size, unsigned long min,
315 		unsigned long max, gfp_t gfp);
316 
317 int mtree_store_range(struct maple_tree *mt, unsigned long first,
318 		      unsigned long last, void *entry, gfp_t gfp);
319 int mtree_store(struct maple_tree *mt, unsigned long index,
320 		void *entry, gfp_t gfp);
321 void *mtree_erase(struct maple_tree *mt, unsigned long index);
322 
323 void mtree_destroy(struct maple_tree *mt);
324 void __mt_destroy(struct maple_tree *mt);
325 
326 /**
327  * mtree_empty() - Determine if a tree has any present entries.
328  * @mt: Maple Tree.
329  *
330  * Context: Any context.
331  * Return: %true if the tree contains only NULL pointers.
332  */
mtree_empty(const struct maple_tree * mt)333 static inline bool mtree_empty(const struct maple_tree *mt)
334 {
335 	return mt->ma_root == NULL;
336 }
337 
338 /* Advanced API */
339 
340 /*
341  * The maple state is defined in the struct ma_state and is used to keep track
342  * of information during operations, and even between operations when using the
343  * advanced API.
344  *
345  * If state->node has bit 0 set then it references a tree location which is not
346  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
347  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
348  * node type.
349  *
350  * state->alloc either has a request number of nodes or an allocated node.  If
351  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
352  * and the remaining bits are the value.  If state->alloc is a node, then the
353  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
354  * storing more allocated nodes, a total number of nodes allocated, and the
355  * node_count in this node.  node_count is the number of allocated nodes in this
356  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
357  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
358  * by removing a node from the state->alloc node until state->alloc->node_count
359  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
360  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
361  * state->alloc into the pushed node's slot[0].
362  *
363  * The state also contains the implied min/max of the state->node, the depth of
364  * this search, and the offset. The implied min/max are either from the parent
365  * node or are 0-oo for the root node.  The depth is incremented or decremented
366  * every time a node is walked down or up.  The offset is the slot/pivot of
367  * interest in the node - either for reading or writing.
368  *
369  * When returning a value the maple state index and last respectively contain
370  * the start and end of the range for the entry.  Ranges are inclusive in the
371  * Maple Tree.
372  */
373 struct ma_state {
374 	struct maple_tree *tree;	/* The tree we're operating in */
375 	unsigned long index;		/* The index we're operating on - range start */
376 	unsigned long last;		/* The last index we're operating on - range end */
377 	struct maple_enode *node;	/* The node containing this entry */
378 	unsigned long min;		/* The minimum index of this node - implied pivot min */
379 	unsigned long max;		/* The maximum index of this node - implied pivot max */
380 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
381 	unsigned char depth;		/* depth of tree descent during write */
382 	unsigned char offset;
383 	unsigned char mas_flags;
384 };
385 
386 struct ma_wr_state {
387 	struct ma_state *mas;
388 	struct maple_node *node;	/* Decoded mas->node */
389 	unsigned long r_min;		/* range min */
390 	unsigned long r_max;		/* range max */
391 	enum maple_type type;		/* mas->node type */
392 	unsigned char offset_end;	/* The offset where the write ends */
393 	unsigned char node_end;		/* mas->node end */
394 	unsigned long *pivots;		/* mas->node->pivots pointer */
395 	unsigned long end_piv;		/* The pivot at the offset end */
396 	void __rcu **slots;		/* mas->node->slots pointer */
397 	void *entry;			/* The entry to write */
398 	void *content;			/* The existing entry that is being overwritten */
399 };
400 
401 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
402 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
403 
404 
405 /*
406  * Special values for ma_state.node.
407  * MAS_START means we have not searched the tree.
408  * MAS_ROOT means we have searched the tree and the entry we found lives in
409  * the root of the tree (ie it has index 0, length 1 and is the only entry in
410  * the tree).
411  * MAS_NONE means we have searched the tree and there is no node in the
412  * tree for this entry.  For example, we searched for index 1 in an empty
413  * tree.  Or we have a tree which points to a full leaf node and we
414  * searched for an entry which is larger than can be contained in that
415  * leaf node.
416  * MA_ERROR represents an errno.  After dropping the lock and attempting
417  * to resolve the error, the walk would have to be restarted from the
418  * top of the tree as the tree may have been modified.
419  */
420 #define MAS_START	((struct maple_enode *)1UL)
421 #define MAS_ROOT	((struct maple_enode *)5UL)
422 #define MAS_NONE	((struct maple_enode *)9UL)
423 #define MAS_PAUSE	((struct maple_enode *)17UL)
424 #define MA_ERROR(err) \
425 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
426 
427 #define MA_STATE(name, mt, first, end)					\
428 	struct ma_state name = {					\
429 		.tree = mt,						\
430 		.index = first,						\
431 		.last = end,						\
432 		.node = MAS_START,					\
433 		.min = 0,						\
434 		.max = ULONG_MAX,					\
435 		.alloc = NULL,						\
436 	}
437 
438 #define MA_WR_STATE(name, ma_state, wr_entry)				\
439 	struct ma_wr_state name = {					\
440 		.mas = ma_state,					\
441 		.content = NULL,					\
442 		.entry = wr_entry,					\
443 	}
444 
445 #define MA_TOPIARY(name, tree)						\
446 	struct ma_topiary name = {					\
447 		.head = NULL,						\
448 		.tail = NULL,						\
449 		.mtree = tree,						\
450 	}
451 
452 void *mas_walk(struct ma_state *mas);
453 void *mas_store(struct ma_state *mas, void *entry);
454 void *mas_erase(struct ma_state *mas);
455 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
456 void mas_store_prealloc(struct ma_state *mas, void *entry);
457 void *mas_find(struct ma_state *mas, unsigned long max);
458 void *mas_find_rev(struct ma_state *mas, unsigned long min);
459 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
460 bool mas_is_err(struct ma_state *mas);
461 
462 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
463 void mas_pause(struct ma_state *mas);
464 void maple_tree_init(void);
465 void mas_destroy(struct ma_state *mas);
466 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
467 
468 void *mas_prev(struct ma_state *mas, unsigned long min);
469 void *mas_next(struct ma_state *mas, unsigned long max);
470 
471 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
472 		   unsigned long size);
473 
474 /* Checks if a mas has not found anything */
mas_is_none(struct ma_state * mas)475 static inline bool mas_is_none(struct ma_state *mas)
476 {
477 	return mas->node == MAS_NONE;
478 }
479 
480 /* Checks if a mas has been paused */
mas_is_paused(struct ma_state * mas)481 static inline bool mas_is_paused(struct ma_state *mas)
482 {
483 	return mas->node == MAS_PAUSE;
484 }
485 
486 void mas_dup_tree(struct ma_state *oldmas, struct ma_state *mas);
487 void mas_dup_store(struct ma_state *mas, void *entry);
488 
489 /*
490  * This finds an empty area from the highest address to the lowest.
491  * AKA "Topdown" version,
492  */
493 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
494 		       unsigned long max, unsigned long size);
495 /**
496  * mas_reset() - Reset a Maple Tree operation state.
497  * @mas: Maple Tree operation state.
498  *
499  * Resets the error or walk state of the @mas so future walks of the
500  * array will start from the root.  Use this if you have dropped the
501  * lock and want to reuse the ma_state.
502  *
503  * Context: Any context.
504  */
mas_reset(struct ma_state * mas)505 static inline void mas_reset(struct ma_state *mas)
506 {
507 	mas->node = MAS_START;
508 }
509 
510 /**
511  * mas_for_each() - Iterate over a range of the maple tree.
512  * @__mas: Maple Tree operation state (maple_state)
513  * @__entry: Entry retrieved from the tree
514  * @__max: maximum index to retrieve from the tree
515  *
516  * When returned, mas->index and mas->last will hold the entire range for the
517  * entry.
518  *
519  * Note: may return the zero entry.
520  *
521  */
522 #define mas_for_each(__mas, __entry, __max) \
523 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
524 
525 
526 /**
527  * mas_set_range() - Set up Maple Tree operation state for a different index.
528  * @mas: Maple Tree operation state.
529  * @start: New start of range in the Maple Tree.
530  * @last: New end of range in the Maple Tree.
531  *
532  * Move the operation state to refer to a different range.  This will
533  * have the effect of starting a walk from the top; see mas_next()
534  * to move to an adjacent index.
535  */
536 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)537 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
538 {
539 	       mas->index = start;
540 	       mas->last = last;
541 	       mas->node = MAS_START;
542 }
543 
544 /**
545  * mas_set() - Set up Maple Tree operation state for a different index.
546  * @mas: Maple Tree operation state.
547  * @index: New index into the Maple Tree.
548  *
549  * Move the operation state to refer to a different index.  This will
550  * have the effect of starting a walk from the top; see mas_next()
551  * to move to an adjacent index.
552  */
mas_set(struct ma_state * mas,unsigned long index)553 static inline void mas_set(struct ma_state *mas, unsigned long index)
554 {
555 
556 	mas_set_range(mas, index, index);
557 }
558 
mt_external_lock(const struct maple_tree * mt)559 static inline bool mt_external_lock(const struct maple_tree *mt)
560 {
561 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
562 }
563 
564 /**
565  * mt_init_flags() - Initialise an empty maple tree with flags.
566  * @mt: Maple Tree
567  * @flags: maple tree flags.
568  *
569  * If you need to initialise a Maple Tree with special flags (eg, an
570  * allocation tree), use this function.
571  *
572  * Context: Any context.
573  */
mt_init_flags(struct maple_tree * mt,unsigned int flags)574 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
575 {
576 	mt->ma_flags = flags;
577 	if (!mt_external_lock(mt))
578 		spin_lock_init(&mt->ma_lock);
579 	rcu_assign_pointer(mt->ma_root, NULL);
580 }
581 
582 /**
583  * mt_init() - Initialise an empty maple tree.
584  * @mt: Maple Tree
585  *
586  * An empty Maple Tree.
587  *
588  * Context: Any context.
589  */
mt_init(struct maple_tree * mt)590 static inline void mt_init(struct maple_tree *mt)
591 {
592 	mt_init_flags(mt, 0);
593 }
594 
mt_in_rcu(struct maple_tree * mt)595 static inline bool mt_in_rcu(struct maple_tree *mt)
596 {
597 #ifdef CONFIG_MAPLE_RCU_DISABLED
598 	return false;
599 #endif
600 	return mt->ma_flags & MT_FLAGS_USE_RCU;
601 }
602 
603 /**
604  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
605  * @mt: The Maple Tree
606  */
mt_clear_in_rcu(struct maple_tree * mt)607 static inline void mt_clear_in_rcu(struct maple_tree *mt)
608 {
609 	if (!mt_in_rcu(mt))
610 		return;
611 
612 	if (mt_external_lock(mt)) {
613 		BUG_ON(!mt_lock_is_held(mt));
614 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
615 	} else {
616 		mtree_lock(mt);
617 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
618 		mtree_unlock(mt);
619 	}
620 }
621 
622 /**
623  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
624  * @mt: The Maple Tree
625  */
mt_set_in_rcu(struct maple_tree * mt)626 static inline void mt_set_in_rcu(struct maple_tree *mt)
627 {
628 	if (mt_in_rcu(mt))
629 		return;
630 
631 	if (mt_external_lock(mt)) {
632 		BUG_ON(!mt_lock_is_held(mt));
633 		mt->ma_flags |= MT_FLAGS_USE_RCU;
634 	} else {
635 		mtree_lock(mt);
636 		mt->ma_flags |= MT_FLAGS_USE_RCU;
637 		mtree_unlock(mt);
638 	}
639 }
640 
mt_height(const struct maple_tree * mt)641 static inline unsigned int mt_height(const struct maple_tree *mt)
642 
643 {
644 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
645 }
646 
647 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
648 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
649 		    unsigned long max);
650 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
651 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
652 
653 /**
654  * mt_for_each - Iterate over each entry starting at index until max.
655  * @__tree: The Maple Tree
656  * @__entry: The current entry
657  * @__index: The index to update to track the location in the tree
658  * @__max: The maximum limit for @index
659  *
660  * Note: Will not return the zero entry.
661  */
662 #define mt_for_each(__tree, __entry, __index, __max) \
663 	for (__entry = mt_find(__tree, &(__index), __max); \
664 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
665 
666 
667 #ifdef CONFIG_DEBUG_MAPLE_TREE
668 extern atomic_t maple_tree_tests_run;
669 extern atomic_t maple_tree_tests_passed;
670 
671 void mt_dump(const struct maple_tree *mt);
672 void mt_validate(struct maple_tree *mt);
673 void mt_cache_shrink(void);
674 #define MT_BUG_ON(__tree, __x) do {					\
675 	atomic_inc(&maple_tree_tests_run);				\
676 	if (__x) {							\
677 		pr_info("BUG at %s:%d (%u)\n",				\
678 		__func__, __LINE__, __x);				\
679 		mt_dump(__tree);					\
680 		pr_info("Pass: %u Run:%u\n",				\
681 			atomic_read(&maple_tree_tests_passed),		\
682 			atomic_read(&maple_tree_tests_run));		\
683 		dump_stack();						\
684 	} else {							\
685 		atomic_inc(&maple_tree_tests_passed);			\
686 	}								\
687 } while (0)
688 #else
689 #define MT_BUG_ON(__tree, __x) BUG_ON(__x)
690 #endif /* CONFIG_DEBUG_MAPLE_TREE */
691 
692 #endif /*_LINUX_MAPLE_TREE_H */
693