1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 #include <linux/config.h>
9 
10 /*
11  * These have to be done with inline assembly: that way the bit-setting
12  * is guaranteed to be atomic. All bit operations return 0 if the bit
13  * was cleared before the operation and != 0 if it was not.
14  *
15  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
16  */
17 
18 #ifdef CONFIG_SMP
19 #define LOCK_PREFIX "lock ; "
20 #else
21 #define LOCK_PREFIX ""
22 #endif
23 
24 #define ADDR (*(volatile long *) addr)
25 
26 /**
27  * set_bit - Atomically set a bit in memory
28  * @nr: the bit to set
29  * @addr: the address to start counting from
30  *
31  * This function is atomic and may not be reordered.  See __set_bit()
32  * if you do not require the atomic guarantees.
33  * Note that @nr may be almost arbitrarily large; this function is not
34  * restricted to acting on a single-word quantity.
35  */
set_bit(int nr,volatile void * addr)36 static __inline__ void set_bit(int nr, volatile void * addr)
37 {
38 	__asm__ __volatile__( LOCK_PREFIX
39 		"btsl %1,%0"
40 		:"=m" (ADDR)
41 		:"Ir" (nr), "m" (ADDR));
42 }
43 
44 /**
45  * __set_bit - Set a bit in memory
46  * @nr: the bit to set
47  * @addr: the address to start counting from
48  *
49  * Unlike set_bit(), this function is non-atomic and may be reordered.
50  * If it's called on the same region of memory simultaneously, the effect
51  * may be that only one operation succeeds.
52  */
__set_bit(int nr,volatile void * addr)53 static __inline__ void __set_bit(int nr, volatile void * addr)
54 {
55 	__asm__(
56 		"btsl %1,%0"
57 		:"=m" (ADDR)
58 		:"Ir" (nr), "m" (ADDR));
59 }
60 
61 /**
62  * clear_bit - Clears a bit in memory
63  * @nr: Bit to clear
64  * @addr: Address to start counting from
65  *
66  * clear_bit() is atomic and may not be reordered.  However, it does
67  * not contain a memory barrier, so if it is used for locking purposes,
68  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
69  * in order to ensure changes are visible on other processors.
70  */
clear_bit(int nr,volatile void * addr)71 static __inline__ void clear_bit(int nr, volatile void * addr)
72 {
73 	__asm__ __volatile__( LOCK_PREFIX
74 		"btrl %1,%0"
75 		:"=m" (ADDR)
76 		:"Ir" (nr), "m" (ADDR));
77 }
78 #define smp_mb__before_clear_bit()	barrier()
79 #define smp_mb__after_clear_bit()	barrier()
80 
81 /**
82  * __change_bit - Toggle a bit in memory
83  * @nr: the bit to change
84  * @addr: the address to start counting from
85  *
86  * Unlike change_bit(), this function is non-atomic and may be reordered.
87  * If it's called on the same region of memory simultaneously, the effect
88  * may be that only one operation succeeds.
89  */
__change_bit(int nr,volatile void * addr)90 static __inline__ void __change_bit(int nr, volatile void * addr)
91 {
92 	__asm__ __volatile__(
93 		"btcl %1,%0"
94 		:"=m" (ADDR)
95 		:"Ir" (nr), "m" (ADDR));
96 }
97 
98 /**
99  * change_bit - Toggle a bit in memory
100  * @nr: Bit to change
101  * @addr: Address to start counting from
102  *
103  * change_bit() is atomic and may not be reordered.
104  * Note that @nr may be almost arbitrarily large; this function is not
105  * restricted to acting on a single-word quantity.
106  */
change_bit(int nr,volatile void * addr)107 static __inline__ void change_bit(int nr, volatile void * addr)
108 {
109 	__asm__ __volatile__( LOCK_PREFIX
110 		"btcl %1,%0"
111 		:"=m" (ADDR)
112 		:"Ir" (nr), "m" (ADDR));
113 }
114 
115 /**
116  * test_and_set_bit - Set a bit and return its old value
117  * @nr: Bit to set
118  * @addr: Address to count from
119  *
120  * This operation is atomic and cannot be reordered.
121  * It also implies a memory barrier.
122  */
test_and_set_bit(int nr,volatile void * addr)123 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
124 {
125 	int oldbit;
126 
127 	__asm__ __volatile__( LOCK_PREFIX
128 		"btsl %2,%1\n\tsbbl %0,%0"
129 		:"=r" (oldbit),"=m" (ADDR)
130 		:"Ir" (nr), "m" (ADDR) : "memory");
131 	return oldbit;
132 }
133 
134 /**
135  * __test_and_set_bit - Set a bit and return its old value
136  * @nr: Bit to set
137  * @addr: Address to count from
138  *
139  * This operation is non-atomic and can be reordered.
140  * If two examples of this operation race, one can appear to succeed
141  * but actually fail.  You must protect multiple accesses with a lock.
142  */
__test_and_set_bit(int nr,volatile void * addr)143 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
144 {
145 	int oldbit;
146 
147 	__asm__(
148 		"btsl %2,%1\n\tsbbl %0,%0"
149 		:"=r" (oldbit),"=m" (ADDR)
150 		:"Ir" (nr), "m" (ADDR));
151 	return oldbit;
152 }
153 
154 /**
155  * test_and_clear_bit - Clear a bit and return its old value
156  * @nr: Bit to clear
157  * @addr: Address to count from
158  *
159  * This operation is atomic and cannot be reordered.
160  * It also implies a memory barrier.
161  */
test_and_clear_bit(int nr,volatile void * addr)162 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
163 {
164 	int oldbit;
165 
166 	__asm__ __volatile__( LOCK_PREFIX
167 		"btrl %2,%1\n\tsbbl %0,%0"
168 		:"=r" (oldbit),"=m" (ADDR)
169 		:"Ir" (nr), "m" (ADDR) : "memory");
170 	return oldbit;
171 }
172 
173 /**
174  * __test_and_clear_bit - Clear a bit and return its old value
175  * @nr: Bit to clear
176  * @addr: Address to count from
177  *
178  * This operation is non-atomic and can be reordered.
179  * If two examples of this operation race, one can appear to succeed
180  * but actually fail.  You must protect multiple accesses with a lock.
181  */
__test_and_clear_bit(int nr,volatile void * addr)182 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
183 {
184 	int oldbit;
185 
186 	__asm__(
187 		"btrl %2,%1\n\tsbbl %0,%0"
188 		:"=r" (oldbit),"=m" (ADDR)
189 		:"Ir" (nr), "m" (ADDR));
190 	return oldbit;
191 }
192 
193 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile void * addr)194 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
195 {
196 	int oldbit;
197 
198 	__asm__ __volatile__(
199 		"btcl %2,%1\n\tsbbl %0,%0"
200 		:"=r" (oldbit),"=m" (ADDR)
201 		:"Ir" (nr), "m" (ADDR) : "memory");
202 	return oldbit;
203 }
204 
205 /**
206  * test_and_change_bit - Change a bit and return its new value
207  * @nr: Bit to change
208  * @addr: Address to count from
209  *
210  * This operation is atomic and cannot be reordered.
211  * It also implies a memory barrier.
212  */
test_and_change_bit(int nr,volatile void * addr)213 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
214 {
215 	int oldbit;
216 
217 	__asm__ __volatile__( LOCK_PREFIX
218 		"btcl %2,%1\n\tsbbl %0,%0"
219 		:"=r" (oldbit),"=m" (ADDR)
220 		:"Ir" (nr), "m" (ADDR) : "memory");
221 	return oldbit;
222 }
223 
224 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
225 /**
226  * test_bit - Determine whether a bit is set
227  * @nr: bit number to test
228  * @addr: Address to start counting from
229  */
230 static int test_bit(int nr, const volatile void * addr);
231 #endif
232 
constant_test_bit(int nr,const volatile void * addr)233 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
234 {
235 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
236 }
237 
variable_test_bit(int nr,volatile void * addr)238 static __inline__ int variable_test_bit(int nr, volatile void * addr)
239 {
240 	int oldbit;
241 
242 	__asm__ __volatile__(
243 		"btl %2,%1\n\tsbbl %0,%0"
244 		:"=r" (oldbit)
245 		:"m" (ADDR),"Ir" (nr));
246 	return oldbit;
247 }
248 
249 #define test_bit(nr,addr) \
250 (__builtin_constant_p(nr) ? \
251  constant_test_bit((nr),(addr)) : \
252  variable_test_bit((nr),(addr)))
253 
254 /**
255  * find_first_zero_bit - find the first zero bit in a memory region
256  * @addr: The address to start the search at
257  * @size: The maximum size to search
258  *
259  * Returns the bit-number of the first zero bit, not the number of the byte
260  * containing a bit.
261  */
find_first_zero_bit(void * addr,unsigned size)262 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
263 {
264 	int d0, d1, d2;
265 	int res;
266 
267 	if (!size)
268 		return 0;
269 	__asm__ __volatile__(
270 		"movl $-1,%%eax\n\t"
271 		"xorl %%edx,%%edx\n\t"
272 		"repe; scasl\n\t"
273 		"je 1f\n\t"
274 		"xorl -4(%%edi),%%eax\n\t"
275 		"subl $4,%%edi\n\t"
276 		"bsfl %%eax,%%edx\n"
277 		"1:\tsubl %%ebx,%%edi\n\t"
278 		"shll $3,%%edi\n\t"
279 		"addl %%edi,%%edx"
280 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
281 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
282 	return res;
283 }
284 
285 /**
286  * find_next_zero_bit - find the first zero bit in a memory region
287  * @addr: The address to base the search on
288  * @offset: The bitnumber to start searching at
289  * @size: The maximum size to search
290  */
find_next_zero_bit(void * addr,int size,int offset)291 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
292 {
293 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
294 	int set = 0, bit = offset & 31, res;
295 
296 	if (bit) {
297 		/*
298 		 * Look for zero in first byte
299 		 */
300 		__asm__("bsfl %1,%0\n\t"
301 			"jne 1f\n\t"
302 			"movl $32, %0\n"
303 			"1:"
304 			: "=r" (set)
305 			: "r" (~(*p >> bit)));
306 		if (set < (32 - bit))
307 			return set + offset;
308 		set = 32 - bit;
309 		p++;
310 	}
311 	/*
312 	 * No zero yet, search remaining full bytes for a zero
313 	 */
314 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
315 	return (offset + set + res);
316 }
317 
318 /**
319  * ffz - find first zero in word.
320  * @word: The word to search
321  *
322  * Undefined if no zero exists, so code should check against ~0UL first.
323  */
ffz(unsigned long word)324 static __inline__ unsigned long ffz(unsigned long word)
325 {
326 	__asm__("bsfl %1,%0"
327 		:"=r" (word)
328 		:"r" (~word));
329 	return word;
330 }
331 
332 #ifdef __KERNEL__
333 
334 /**
335  * ffs - find first bit set
336  * @x: the word to search
337  *
338  * This is defined the same way as
339  * the libc and compiler builtin ffs routines, therefore
340  * differs in spirit from the above ffz (man ffs).
341  */
ffs(int x)342 static __inline__ int ffs(int x)
343 {
344 	int r;
345 
346 	__asm__("bsfl %1,%0\n\t"
347 		"jnz 1f\n\t"
348 		"movl $-1,%0\n"
349 		"1:" : "=r" (r) : "rm" (x));
350 	return r+1;
351 }
352 
353 /**
354  * hweightN - returns the hamming weight of a N-bit word
355  * @x: the word to weigh
356  *
357  * The Hamming Weight of a number is the total number of bits set in it.
358  */
359 
360 #define hweight32(x) generic_hweight32(x)
361 #define hweight16(x) generic_hweight16(x)
362 #define hweight8(x) generic_hweight8(x)
363 
364 #endif /* __KERNEL__ */
365 
366 #ifdef __KERNEL__
367 
368 #define ext2_set_bit                 __test_and_set_bit
369 #define ext2_clear_bit               __test_and_clear_bit
370 #define ext2_test_bit                test_bit
371 #define ext2_find_first_zero_bit     find_first_zero_bit
372 #define ext2_find_next_zero_bit      find_next_zero_bit
373 
374 /* Bitmap functions for the minix filesystem.  */
375 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
376 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
377 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
378 #define minix_test_bit(nr,addr) test_bit(nr,addr)
379 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
380 
381 #endif /* __KERNEL__ */
382 
383 #endif /* _I386_BITOPS_H */
384