1 /*
2  *	linux/arch/i386/kernel/irq.c
3  *
4  *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
5  *
6  * This file contains the code used by various IRQ handling routines:
7  * asking for different IRQ's should be done through these routines
8  * instead of just grabbing them. Thus setups with different IRQ numbers
9  * shouldn't result in any weird surprises, and installing new handlers
10  * should be easier.
11  */
12 
13 /*
14  * (mostly architecture independent, will move to kernel/irq.c in 2.5.)
15  *
16  * IRQs are in fact implemented a bit like signal handlers for the kernel.
17  * Naturally it's not a 1:1 relation, but there are similarities.
18  */
19 
20 #include <linux/config.h>
21 #include <linux/ptrace.h>
22 #include <linux/errno.h>
23 #include <linux/signal.h>
24 #include <linux/sched.h>
25 #include <linux/ioport.h>
26 #include <linux/interrupt.h>
27 #include <linux/timex.h>
28 #include <linux/slab.h>
29 #include <linux/random.h>
30 #include <linux/smp_lock.h>
31 #include <linux/init.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/irq.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 
37 #include <asm/atomic.h>
38 #include <asm/io.h>
39 #include <asm/smp.h>
40 #include <asm/system.h>
41 #include <asm/bitops.h>
42 #include <asm/uaccess.h>
43 #include <asm/pgalloc.h>
44 #include <asm/delay.h>
45 #include <asm/desc.h>
46 #include <asm/irq.h>
47 
48 
49 
50 /*
51  * Linux has a controller-independent x86 interrupt architecture.
52  * every controller has a 'controller-template', that is used
53  * by the main code to do the right thing. Each driver-visible
54  * interrupt source is transparently wired to the apropriate
55  * controller. Thus drivers need not be aware of the
56  * interrupt-controller.
57  *
58  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
59  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
60  * (IO-APICs assumed to be messaging to Pentium local-APICs)
61  *
62  * the code is designed to be easily extended with new/different
63  * interrupt controllers, without having to do assembly magic.
64  */
65 
66 /*
67  * Controller mappings for all interrupt sources:
68  */
69 irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned =
70 	{ [0 ... NR_IRQS-1] = { 0, &no_irq_type, NULL, 0, SPIN_LOCK_UNLOCKED}};
71 
72 static void register_irq_proc (unsigned int irq);
73 
74 /*
75  * Special irq handlers.
76  */
77 
no_action(int cpl,void * dev_id,struct pt_regs * regs)78 void no_action(int cpl, void *dev_id, struct pt_regs *regs) { }
79 
80 /*
81  * Generic no controller code
82  */
83 
enable_none(unsigned int irq)84 static void enable_none(unsigned int irq) { }
startup_none(unsigned int irq)85 static unsigned int startup_none(unsigned int irq) { return 0; }
disable_none(unsigned int irq)86 static void disable_none(unsigned int irq) { }
ack_none(unsigned int irq)87 static void ack_none(unsigned int irq)
88 {
89 /*
90  * 'what should we do if we get a hw irq event on an illegal vector'.
91  * each architecture has to answer this themselves, it doesnt deserve
92  * a generic callback i think.
93  */
94 #if CONFIG_X86
95 	printk("unexpected IRQ trap at vector %02x\n", irq);
96 #ifdef CONFIG_X86_LOCAL_APIC
97 	/*
98 	 * Currently unexpected vectors happen only on SMP and APIC.
99 	 * We _must_ ack these because every local APIC has only N
100 	 * irq slots per priority level, and a 'hanging, unacked' IRQ
101 	 * holds up an irq slot - in excessive cases (when multiple
102 	 * unexpected vectors occur) that might lock up the APIC
103 	 * completely.
104 	 */
105 	ack_APIC_irq();
106 #endif
107 #endif
108 }
109 
110 /* startup is the same as "enable", shutdown is same as "disable" */
111 #define shutdown_none	disable_none
112 #define end_none	enable_none
113 
114 struct hw_interrupt_type no_irq_type = {
115 	"none",
116 	startup_none,
117 	shutdown_none,
118 	enable_none,
119 	disable_none,
120 	ack_none,
121 	end_none
122 };
123 
124 atomic_t irq_err_count;
125 #ifdef CONFIG_X86_IO_APIC
126 #ifdef APIC_MISMATCH_DEBUG
127 atomic_t irq_mis_count;
128 #endif
129 #endif
130 
131 /*
132  * Generic, controller-independent functions:
133  */
134 
show_interrupts(struct seq_file * p,void * v)135 int show_interrupts(struct seq_file *p, void *v)
136 {
137 	int i, j;
138 	struct irqaction * action;
139 
140 	seq_printf(p, "           ");
141 	for (j=0; j<smp_num_cpus; j++)
142 		seq_printf(p, "CPU%d       ",j);
143 	seq_putc(p,'\n');
144 
145 	for (i = 0 ; i < NR_IRQS ; i++) {
146 		action = irq_desc[i].action;
147 		if (!action)
148 			continue;
149 		seq_printf(p, "%3d: ",i);
150 #ifndef CONFIG_SMP
151 		seq_printf(p, "%10u ", kstat_irqs(i));
152 #else
153 		for (j = 0; j < smp_num_cpus; j++)
154 			seq_printf(p, "%10u ",
155 				kstat.irqs[cpu_logical_map(j)][i]);
156 #endif
157 		seq_printf(p, " %14s", irq_desc[i].handler->typename);
158 		seq_printf(p, "  %s", action->name);
159 
160 		for (action=action->next; action; action = action->next)
161 			seq_printf(p, ", %s", action->name);
162 		seq_putc(p,'\n');
163 	}
164 	seq_printf(p, "NMI: ");
165 	for (j = 0; j < smp_num_cpus; j++)
166 		seq_printf(p, "%10u ",
167 			nmi_count(cpu_logical_map(j)));
168 	seq_printf(p, "\n");
169 #if CONFIG_X86_LOCAL_APIC
170 	seq_printf(p, "LOC: ");
171 	for (j = 0; j < smp_num_cpus; j++)
172 		seq_printf(p, "%10u ",
173 			apic_timer_irqs[cpu_logical_map(j)]);
174 	seq_printf(p, "\n");
175 #endif
176 	seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
177 #ifdef CONFIG_X86_IO_APIC
178 #ifdef APIC_MISMATCH_DEBUG
179 	seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
180 #endif
181 #endif
182 
183 	return 0;
184 }
185 
186 
187 /*
188  * Global interrupt locks for SMP. Allow interrupts to come in on any
189  * CPU, yet make cli/sti act globally to protect critical regions..
190  */
191 
192 #ifdef CONFIG_SMP
193 unsigned char global_irq_holder = NO_PROC_ID;
194 unsigned volatile long global_irq_lock; /* pendantic: long for set_bit --RR */
195 
196 extern void show_stack(unsigned long* esp);
197 
show(char * str)198 static void show(char * str)
199 {
200 	int i;
201 	int cpu = smp_processor_id();
202 
203 	printk("\n%s, CPU %d:\n", str, cpu);
204 	printk("irq:  %d [",irqs_running());
205 	for(i=0;i < smp_num_cpus;i++)
206 		printk(" %d",local_irq_count(i));
207 	printk(" ]\nbh:   %d [",spin_is_locked(&global_bh_lock) ? 1 : 0);
208 	for(i=0;i < smp_num_cpus;i++)
209 		printk(" %d",local_bh_count(i));
210 
211 	printk(" ]\nStack dumps:");
212 	for(i = 0; i < smp_num_cpus; i++) {
213 		unsigned long esp;
214 		if (i == cpu)
215 			continue;
216 		printk("\nCPU %d:",i);
217 		esp = init_tss[i].esp0;
218 		if (!esp) {
219 			/* tss->esp0 is set to NULL in cpu_init(),
220 			 * it's initialized when the cpu returns to user
221 			 * space. -- manfreds
222 			 */
223 			printk(" <unknown> ");
224 			continue;
225 		}
226 		esp &= ~(THREAD_SIZE-1);
227 		esp += sizeof(struct task_struct);
228 		show_stack((void*)esp);
229  	}
230 	printk("\nCPU %d:",cpu);
231 	show_stack(NULL);
232 	printk("\n");
233 }
234 
235 #define MAXCOUNT 100000000
236 
237 /*
238  * I had a lockup scenario where a tight loop doing
239  * spin_unlock()/spin_lock() on CPU#1 was racing with
240  * spin_lock() on CPU#0. CPU#0 should have noticed spin_unlock(), but
241  * apparently the spin_unlock() information did not make it
242  * through to CPU#0 ... nasty, is this by design, do we have to limit
243  * 'memory update oscillation frequency' artificially like here?
244  *
245  * Such 'high frequency update' races can be avoided by careful design, but
246  * some of our major constructs like spinlocks use similar techniques,
247  * it would be nice to clarify this issue. Set this define to 0 if you
248  * want to check whether your system freezes.  I suspect the delay done
249  * by SYNC_OTHER_CORES() is in correlation with 'snooping latency', but
250  * i thought that such things are guaranteed by design, since we use
251  * the 'LOCK' prefix.
252  */
253 #define SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND 0
254 
255 #if SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND
256 # define SYNC_OTHER_CORES(x) udelay(x+1)
257 #else
258 /*
259  * We have to allow irqs to arrive between __sti and __cli
260  */
261 # define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop")
262 #endif
263 
wait_on_irq(int cpu)264 static inline void wait_on_irq(int cpu)
265 {
266 	int count = MAXCOUNT;
267 
268 	for (;;) {
269 
270 		/*
271 		 * Wait until all interrupts are gone. Wait
272 		 * for bottom half handlers unless we're
273 		 * already executing in one..
274 		 */
275 		if (!irqs_running())
276 			if (local_bh_count(cpu) || !spin_is_locked(&global_bh_lock))
277 				break;
278 
279 		/* Duh, we have to loop. Release the lock to avoid deadlocks */
280 		clear_bit(0,&global_irq_lock);
281 
282 		for (;;) {
283 			if (!--count) {
284 				show("wait_on_irq");
285 				count = ~0;
286 			}
287 			__sti();
288 			SYNC_OTHER_CORES(cpu);
289 			__cli();
290 			if (irqs_running())
291 				continue;
292 			if (global_irq_lock)
293 				continue;
294 			if (!local_bh_count(cpu) && spin_is_locked(&global_bh_lock))
295 				continue;
296 			if (!test_and_set_bit(0,&global_irq_lock))
297 				break;
298 		}
299 	}
300 }
301 
302 /*
303  * This is called when we want to synchronize with
304  * interrupts. We may for example tell a device to
305  * stop sending interrupts: but to make sure there
306  * are no interrupts that are executing on another
307  * CPU we need to call this function.
308  */
synchronize_irq(void)309 void synchronize_irq(void)
310 {
311 	if (irqs_running()) {
312 		/* Stupid approach */
313 		cli();
314 		sti();
315 	}
316 }
317 
get_irqlock(int cpu)318 static inline void get_irqlock(int cpu)
319 {
320 	if (test_and_set_bit(0,&global_irq_lock)) {
321 		/* do we already hold the lock? */
322 		if ((unsigned char) cpu == global_irq_holder)
323 			return;
324 		/* Uhhuh.. Somebody else got it. Wait.. */
325 		do {
326 			do {
327 				rep_nop();
328 			} while (test_bit(0,&global_irq_lock));
329 		} while (test_and_set_bit(0,&global_irq_lock));
330 	}
331 	/*
332 	 * We also to make sure that nobody else is running
333 	 * in an interrupt context.
334 	 */
335 	wait_on_irq(cpu);
336 
337 	/*
338 	 * Ok, finally..
339 	 */
340 	global_irq_holder = cpu;
341 }
342 
343 #define EFLAGS_IF_SHIFT 9
344 
345 /*
346  * A global "cli()" while in an interrupt context
347  * turns into just a local cli(). Interrupts
348  * should use spinlocks for the (very unlikely)
349  * case that they ever want to protect against
350  * each other.
351  *
352  * If we already have local interrupts disabled,
353  * this will not turn a local disable into a
354  * global one (problems with spinlocks: this makes
355  * save_flags+cli+sti usable inside a spinlock).
356  */
__global_cli(void)357 void __global_cli(void)
358 {
359 	unsigned int flags;
360 
361 	__save_flags(flags);
362 	if (flags & (1 << EFLAGS_IF_SHIFT)) {
363 		int cpu = smp_processor_id();
364 		__cli();
365 		if (!local_irq_count(cpu))
366 			get_irqlock(cpu);
367 	}
368 }
369 
__global_sti(void)370 void __global_sti(void)
371 {
372 	int cpu = smp_processor_id();
373 
374 	if (!local_irq_count(cpu))
375 		release_irqlock(cpu);
376 	__sti();
377 }
378 
379 /*
380  * SMP flags value to restore to:
381  * 0 - global cli
382  * 1 - global sti
383  * 2 - local cli
384  * 3 - local sti
385  */
__global_save_flags(void)386 unsigned long __global_save_flags(void)
387 {
388 	int retval;
389 	int local_enabled;
390 	unsigned long flags;
391 	int cpu = smp_processor_id();
392 
393 	__save_flags(flags);
394 	local_enabled = (flags >> EFLAGS_IF_SHIFT) & 1;
395 	/* default to local */
396 	retval = 2 + local_enabled;
397 
398 	/* check for global flags if we're not in an interrupt */
399 	if (!local_irq_count(cpu)) {
400 		if (local_enabled)
401 			retval = 1;
402 		if (global_irq_holder == cpu)
403 			retval = 0;
404 	}
405 	return retval;
406 }
407 
__global_restore_flags(unsigned long flags)408 void __global_restore_flags(unsigned long flags)
409 {
410 	switch (flags) {
411 	case 0:
412 		__global_cli();
413 		break;
414 	case 1:
415 		__global_sti();
416 		break;
417 	case 2:
418 		__cli();
419 		break;
420 	case 3:
421 		__sti();
422 		break;
423 	default:
424 		printk("global_restore_flags: %08lx (%08lx)\n",
425 			flags, (&flags)[-1]);
426 	}
427 }
428 
429 #endif
430 
431 /*
432  * This should really return information about whether
433  * we should do bottom half handling etc. Right now we
434  * end up _always_ checking the bottom half, which is a
435  * waste of time and is not what some drivers would
436  * prefer.
437  */
handle_IRQ_event(unsigned int irq,struct pt_regs * regs,struct irqaction * action)438 int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
439 {
440 	int status;
441 	int cpu = smp_processor_id();
442 
443 	irq_enter(cpu, irq);
444 
445 	status = 1;	/* Force the "do bottom halves" bit */
446 
447 	if (!(action->flags & SA_INTERRUPT))
448 		__sti();
449 
450 	do {
451 		status |= action->flags;
452 		action->handler(irq, action->dev_id, regs);
453 		action = action->next;
454 	} while (action);
455 	if (status & SA_SAMPLE_RANDOM)
456 		add_interrupt_randomness(irq);
457 	__cli();
458 
459 	irq_exit(cpu, irq);
460 
461 	return status;
462 }
463 
464 /*
465  * Generic enable/disable code: this just calls
466  * down into the PIC-specific version for the actual
467  * hardware disable after having gotten the irq
468  * controller lock.
469  */
470 
471 /**
472  *	disable_irq_nosync - disable an irq without waiting
473  *	@irq: Interrupt to disable
474  *
475  *	Disable the selected interrupt line.  Disables and Enables are
476  *	nested.
477  *	Unlike disable_irq(), this function does not ensure existing
478  *	instances of the IRQ handler have completed before returning.
479  *
480  *	This function may be called from IRQ context.
481  */
482 
disable_irq_nosync(unsigned int irq)483 inline void disable_irq_nosync(unsigned int irq)
484 {
485 	irq_desc_t *desc = irq_desc + irq;
486 	unsigned long flags;
487 
488 	spin_lock_irqsave(&desc->lock, flags);
489 	if (!desc->depth++) {
490 		desc->status |= IRQ_DISABLED;
491 		desc->handler->disable(irq);
492 	}
493 	spin_unlock_irqrestore(&desc->lock, flags);
494 }
495 
496 /**
497  *	disable_irq - disable an irq and wait for completion
498  *	@irq: Interrupt to disable
499  *
500  *	Disable the selected interrupt line.  Enables and Disables are
501  *	nested.
502  *	This function waits for any pending IRQ handlers for this interrupt
503  *	to complete before returning. If you use this function while
504  *	holding a resource the IRQ handler may need you will deadlock.
505  *
506  *	This function may be called - with care - from IRQ context.
507  */
508 
disable_irq(unsigned int irq)509 void disable_irq(unsigned int irq)
510 {
511 	disable_irq_nosync(irq);
512 
513 	if (!local_irq_count(smp_processor_id())) {
514 		do {
515 			barrier();
516 			cpu_relax();
517 		} while (irq_desc[irq].status & IRQ_INPROGRESS);
518 	}
519 }
520 
521 /**
522  *	enable_irq - enable handling of an irq
523  *	@irq: Interrupt to enable
524  *
525  *	Undoes the effect of one call to disable_irq().  If this
526  *	matches the last disable, processing of interrupts on this
527  *	IRQ line is re-enabled.
528  *
529  *	This function may be called from IRQ context.
530  */
531 
enable_irq(unsigned int irq)532 void enable_irq(unsigned int irq)
533 {
534 	irq_desc_t *desc = irq_desc + irq;
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&desc->lock, flags);
538 	switch (desc->depth) {
539 	case 1: {
540 		unsigned int status = desc->status & ~IRQ_DISABLED;
541 		desc->status = status;
542 		if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
543 			desc->status = status | IRQ_REPLAY;
544 			hw_resend_irq(desc->handler,irq);
545 		}
546 		desc->handler->enable(irq);
547 		/* fall-through */
548 	}
549 	default:
550 		desc->depth--;
551 		break;
552 	case 0:
553 		printk("enable_irq(%u) unbalanced from %p\n", irq,
554 		       __builtin_return_address(0));
555 	}
556 	spin_unlock_irqrestore(&desc->lock, flags);
557 }
558 
559 /*
560  * do_IRQ handles all normal device IRQ's (the special
561  * SMP cross-CPU interrupts have their own specific
562  * handlers).
563  */
do_IRQ(struct pt_regs regs)564 asmlinkage unsigned int do_IRQ(struct pt_regs regs)
565 {
566 	/*
567 	 * We ack quickly, we don't want the irq controller
568 	 * thinking we're snobs just because some other CPU has
569 	 * disabled global interrupts (we have already done the
570 	 * INT_ACK cycles, it's too late to try to pretend to the
571 	 * controller that we aren't taking the interrupt).
572 	 *
573 	 * 0 return value means that this irq is already being
574 	 * handled by some other CPU. (or is disabled)
575 	 */
576 	int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code  */
577 	int cpu = smp_processor_id();
578 	irq_desc_t *desc = irq_desc + irq;
579 	struct irqaction * action;
580 	unsigned int status;
581 #ifdef CONFIG_DEBUG_STACKOVERFLOW
582 	long esp;
583 
584 	/* Debugging check for stack overflow: is there less than 1KB free? */
585 	__asm__ __volatile__("andl %%esp,%0" : "=r" (esp) : "0" (8191));
586 	if (unlikely(esp < (sizeof(struct task_struct) + 1024))) {
587 		extern void show_stack(unsigned long *);
588 
589 		printk("do_IRQ: stack overflow: %ld\n",
590 			esp - sizeof(struct task_struct));
591 		__asm__ __volatile__("movl %%esp,%0" : "=r" (esp));
592 		show_stack((void *)esp);
593 	}
594 #endif
595 
596 	kstat.irqs[cpu][irq]++;
597 	spin_lock(&desc->lock);
598 	desc->handler->ack(irq);
599 	/*
600 	   REPLAY is when Linux resends an IRQ that was dropped earlier
601 	   WAITING is used by probe to mark irqs that are being tested
602 	   */
603 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
604 	status |= IRQ_PENDING; /* we _want_ to handle it */
605 
606 	/*
607 	 * If the IRQ is disabled for whatever reason, we cannot
608 	 * use the action we have.
609 	 */
610 	action = NULL;
611 	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
612 		action = desc->action;
613 		status &= ~IRQ_PENDING; /* we commit to handling */
614 		status |= IRQ_INPROGRESS; /* we are handling it */
615 	}
616 	desc->status = status;
617 
618 	/*
619 	 * If there is no IRQ handler or it was disabled, exit early.
620 	   Since we set PENDING, if another processor is handling
621 	   a different instance of this same irq, the other processor
622 	   will take care of it.
623 	 */
624 	if (!action)
625 		goto out;
626 
627 	/*
628 	 * Edge triggered interrupts need to remember
629 	 * pending events.
630 	 * This applies to any hw interrupts that allow a second
631 	 * instance of the same irq to arrive while we are in do_IRQ
632 	 * or in the handler. But the code here only handles the _second_
633 	 * instance of the irq, not the third or fourth. So it is mostly
634 	 * useful for irq hardware that does not mask cleanly in an
635 	 * SMP environment.
636 	 */
637 	for (;;) {
638 		spin_unlock(&desc->lock);
639 		handle_IRQ_event(irq, &regs, action);
640 		spin_lock(&desc->lock);
641 
642 		if (!(desc->status & IRQ_PENDING))
643 			break;
644 		desc->status &= ~IRQ_PENDING;
645 	}
646 	desc->status &= ~IRQ_INPROGRESS;
647 out:
648 	/*
649 	 * The ->end() handler has to deal with interrupts which got
650 	 * disabled while the handler was running.
651 	 */
652 	desc->handler->end(irq);
653 	spin_unlock(&desc->lock);
654 
655 	if (softirq_pending(cpu))
656 		do_softirq();
657 	return 1;
658 }
659 
660 /**
661  *	request_irq - allocate an interrupt line
662  *	@irq: Interrupt line to allocate
663  *	@handler: Function to be called when the IRQ occurs
664  *	@irqflags: Interrupt type flags
665  *	@devname: An ascii name for the claiming device
666  *	@dev_id: A cookie passed back to the handler function
667  *
668  *	This call allocates interrupt resources and enables the
669  *	interrupt line and IRQ handling. From the point this
670  *	call is made your handler function may be invoked. Since
671  *	your handler function must clear any interrupt the board
672  *	raises, you must take care both to initialise your hardware
673  *	and to set up the interrupt handler in the right order.
674  *
675  *	Dev_id must be globally unique. Normally the address of the
676  *	device data structure is used as the cookie. Since the handler
677  *	receives this value it makes sense to use it.
678  *
679  *	If your interrupt is shared you must pass a non NULL dev_id
680  *	as this is required when freeing the interrupt.
681  *
682  *	Flags:
683  *
684  *	SA_SHIRQ		Interrupt is shared
685  *
686  *	SA_INTERRUPT		Disable local interrupts while processing
687  *
688  *	SA_SAMPLE_RANDOM	The interrupt can be used for entropy
689  *
690  */
691 
request_irq(unsigned int irq,void (* handler)(int,void *,struct pt_regs *),unsigned long irqflags,const char * devname,void * dev_id)692 int request_irq(unsigned int irq,
693 		void (*handler)(int, void *, struct pt_regs *),
694 		unsigned long irqflags,
695 		const char * devname,
696 		void *dev_id)
697 {
698 	int retval;
699 	struct irqaction * action;
700 
701 #if 1
702 	/*
703 	 * Sanity-check: shared interrupts should REALLY pass in
704 	 * a real dev-ID, otherwise we'll have trouble later trying
705 	 * to figure out which interrupt is which (messes up the
706 	 * interrupt freeing logic etc).
707 	 */
708 	if (irqflags & SA_SHIRQ) {
709 		if (!dev_id)
710 			printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
711 	}
712 #endif
713 
714 	if (irq >= NR_IRQS)
715 		return -EINVAL;
716 	if (!handler)
717 		return -EINVAL;
718 
719 	action = (struct irqaction *)
720 			kmalloc(sizeof(struct irqaction), GFP_KERNEL);
721 	if (!action)
722 		return -ENOMEM;
723 
724 	action->handler = handler;
725 	action->flags = irqflags;
726 	action->mask = 0;
727 	action->name = devname;
728 	action->next = NULL;
729 	action->dev_id = dev_id;
730 
731 	retval = setup_irq(irq, action);
732 	if (retval)
733 		kfree(action);
734 	return retval;
735 }
736 
737 /**
738  *	free_irq - free an interrupt
739  *	@irq: Interrupt line to free
740  *	@dev_id: Device identity to free
741  *
742  *	Remove an interrupt handler. The handler is removed and if the
743  *	interrupt line is no longer in use by any driver it is disabled.
744  *	On a shared IRQ the caller must ensure the interrupt is disabled
745  *	on the card it drives before calling this function. The function
746  *	does not return until any executing interrupts for this IRQ
747  *	have completed.
748  *
749  *	This function may be called from interrupt context.
750  *
751  *	Bugs: Attempting to free an irq in a handler for the same irq hangs
752  *	      the machine.
753  */
754 
free_irq(unsigned int irq,void * dev_id)755 void free_irq(unsigned int irq, void *dev_id)
756 {
757 	irq_desc_t *desc;
758 	struct irqaction **p;
759 	unsigned long flags;
760 
761 	if (irq >= NR_IRQS)
762 		return;
763 
764 	desc = irq_desc + irq;
765 	spin_lock_irqsave(&desc->lock,flags);
766 	p = &desc->action;
767 	for (;;) {
768 		struct irqaction * action = *p;
769 		if (action) {
770 			struct irqaction **pp = p;
771 			p = &action->next;
772 			if (action->dev_id != dev_id)
773 				continue;
774 
775 			/* Found it - now remove it from the list of entries */
776 			*pp = action->next;
777 			if (!desc->action) {
778 				desc->status |= IRQ_DISABLED;
779 				desc->handler->shutdown(irq);
780 			}
781 			spin_unlock_irqrestore(&desc->lock,flags);
782 
783 #ifdef CONFIG_SMP
784 			/* Wait to make sure it's not being used on another CPU */
785 			while (desc->status & IRQ_INPROGRESS) {
786 				barrier();
787 				cpu_relax();
788 			}
789 #endif
790 			kfree(action);
791 			return;
792 		}
793 		printk("Trying to free free IRQ%d\n",irq);
794 		spin_unlock_irqrestore(&desc->lock,flags);
795 		return;
796 	}
797 }
798 
799 /*
800  * IRQ autodetection code..
801  *
802  * This depends on the fact that any interrupt that
803  * comes in on to an unassigned handler will get stuck
804  * with "IRQ_WAITING" cleared and the interrupt
805  * disabled.
806  */
807 
808 static DECLARE_MUTEX(probe_sem);
809 
810 /**
811  *	probe_irq_on	- begin an interrupt autodetect
812  *
813  *	Commence probing for an interrupt. The interrupts are scanned
814  *	and a mask of potential interrupt lines is returned.
815  *
816  */
817 
probe_irq_on(void)818 unsigned long probe_irq_on(void)
819 {
820 	unsigned int i;
821 	irq_desc_t *desc;
822 	unsigned long val;
823 	unsigned long delay;
824 
825 	down(&probe_sem);
826 	/*
827 	 * something may have generated an irq long ago and we want to
828 	 * flush such a longstanding irq before considering it as spurious.
829 	 */
830 	for (i = NR_IRQS-1; i > 0; i--)  {
831 		desc = irq_desc + i;
832 
833 		spin_lock_irq(&desc->lock);
834 		if (!irq_desc[i].action)
835 			irq_desc[i].handler->startup(i);
836 		spin_unlock_irq(&desc->lock);
837 	}
838 
839 	/* Wait for longstanding interrupts to trigger. */
840 	for (delay = jiffies + HZ/50; time_after(delay, jiffies); )
841 		/* about 20ms delay */ synchronize_irq();
842 
843 	/*
844 	 * enable any unassigned irqs
845 	 * (we must startup again here because if a longstanding irq
846 	 * happened in the previous stage, it may have masked itself)
847 	 */
848 	for (i = NR_IRQS-1; i > 0; i--) {
849 		desc = irq_desc + i;
850 
851 		spin_lock_irq(&desc->lock);
852 		if (!desc->action) {
853 			desc->status |= IRQ_AUTODETECT | IRQ_WAITING;
854 			if (desc->handler->startup(i))
855 				desc->status |= IRQ_PENDING;
856 		}
857 		spin_unlock_irq(&desc->lock);
858 	}
859 
860 	/*
861 	 * Wait for spurious interrupts to trigger
862 	 */
863 	for (delay = jiffies + HZ/10; time_after(delay, jiffies); )
864 		/* about 100ms delay */ synchronize_irq();
865 
866 	/*
867 	 * Now filter out any obviously spurious interrupts
868 	 */
869 	val = 0;
870 	for (i = 0; i < NR_IRQS; i++) {
871 		irq_desc_t *desc = irq_desc + i;
872 		unsigned int status;
873 
874 		spin_lock_irq(&desc->lock);
875 		status = desc->status;
876 
877 		if (status & IRQ_AUTODETECT) {
878 			/* It triggered already - consider it spurious. */
879 			if (!(status & IRQ_WAITING)) {
880 				desc->status = status & ~IRQ_AUTODETECT;
881 				desc->handler->shutdown(i);
882 			} else
883 				if (i < 32)
884 					val |= 1 << i;
885 		}
886 		spin_unlock_irq(&desc->lock);
887 	}
888 
889 	return val;
890 }
891 
892 /*
893  * Return a mask of triggered interrupts (this
894  * can handle only legacy ISA interrupts).
895  */
896 
897 /**
898  *	probe_irq_mask - scan a bitmap of interrupt lines
899  *	@val:	mask of interrupts to consider
900  *
901  *	Scan the ISA bus interrupt lines and return a bitmap of
902  *	active interrupts. The interrupt probe logic state is then
903  *	returned to its previous value.
904  *
905  *	Note: we need to scan all the irq's even though we will
906  *	only return ISA irq numbers - just so that we reset them
907  *	all to a known state.
908  */
probe_irq_mask(unsigned long val)909 unsigned int probe_irq_mask(unsigned long val)
910 {
911 	int i;
912 	unsigned int mask;
913 
914 	mask = 0;
915 	for (i = 0; i < NR_IRQS; i++) {
916 		irq_desc_t *desc = irq_desc + i;
917 		unsigned int status;
918 
919 		spin_lock_irq(&desc->lock);
920 		status = desc->status;
921 
922 		if (status & IRQ_AUTODETECT) {
923 			if (i < 16 && !(status & IRQ_WAITING))
924 				mask |= 1 << i;
925 
926 			desc->status = status & ~IRQ_AUTODETECT;
927 			desc->handler->shutdown(i);
928 		}
929 		spin_unlock_irq(&desc->lock);
930 	}
931 	up(&probe_sem);
932 
933 	return mask & val;
934 }
935 
936 /*
937  * Return the one interrupt that triggered (this can
938  * handle any interrupt source).
939  */
940 
941 /**
942  *	probe_irq_off	- end an interrupt autodetect
943  *	@val: mask of potential interrupts (unused)
944  *
945  *	Scans the unused interrupt lines and returns the line which
946  *	appears to have triggered the interrupt. If no interrupt was
947  *	found then zero is returned. If more than one interrupt is
948  *	found then minus the first candidate is returned to indicate
949  *	their is doubt.
950  *
951  *	The interrupt probe logic state is returned to its previous
952  *	value.
953  *
954  *	BUGS: When used in a module (which arguably shouldnt happen)
955  *	nothing prevents two IRQ probe callers from overlapping. The
956  *	results of this are non-optimal.
957  */
958 
probe_irq_off(unsigned long val)959 int probe_irq_off(unsigned long val)
960 {
961 	int i, irq_found, nr_irqs;
962 
963 	nr_irqs = 0;
964 	irq_found = 0;
965 	for (i = 0; i < NR_IRQS; i++) {
966 		irq_desc_t *desc = irq_desc + i;
967 		unsigned int status;
968 
969 		spin_lock_irq(&desc->lock);
970 		status = desc->status;
971 
972 		if (status & IRQ_AUTODETECT) {
973 			if (!(status & IRQ_WAITING)) {
974 				if (!nr_irqs)
975 					irq_found = i;
976 				nr_irqs++;
977 			}
978 			desc->status = status & ~IRQ_AUTODETECT;
979 			desc->handler->shutdown(i);
980 		}
981 		spin_unlock_irq(&desc->lock);
982 	}
983 	up(&probe_sem);
984 
985 	if (nr_irqs > 1)
986 		irq_found = -irq_found;
987 	return irq_found;
988 }
989 
990 /* this was setup_x86_irq but it seems pretty generic */
setup_irq(unsigned int irq,struct irqaction * new)991 int setup_irq(unsigned int irq, struct irqaction * new)
992 {
993 	int shared = 0;
994 	unsigned long flags;
995 	struct irqaction *old, **p;
996 	irq_desc_t *desc = irq_desc + irq;
997 
998 	/*
999 	 * Some drivers like serial.c use request_irq() heavily,
1000 	 * so we have to be careful not to interfere with a
1001 	 * running system.
1002 	 */
1003 	if (new->flags & SA_SAMPLE_RANDOM) {
1004 		/*
1005 		 * This function might sleep, we want to call it first,
1006 		 * outside of the atomic block.
1007 		 * Yes, this might clear the entropy pool if the wrong
1008 		 * driver is attempted to be loaded, without actually
1009 		 * installing a new handler, but is this really a problem,
1010 		 * only the sysadmin is able to do this.
1011 		 */
1012 		rand_initialize_irq(irq);
1013 	}
1014 
1015 	/*
1016 	 * The following block of code has to be executed atomically
1017 	 */
1018 	spin_lock_irqsave(&desc->lock,flags);
1019 	p = &desc->action;
1020 	if ((old = *p) != NULL) {
1021 		/* Can't share interrupts unless both agree to */
1022 		if (!(old->flags & new->flags & SA_SHIRQ)) {
1023 			spin_unlock_irqrestore(&desc->lock,flags);
1024 			return -EBUSY;
1025 		}
1026 
1027 		/* add new interrupt at end of irq queue */
1028 		do {
1029 			p = &old->next;
1030 			old = *p;
1031 		} while (old);
1032 		shared = 1;
1033 	}
1034 
1035 	*p = new;
1036 
1037 	if (!shared) {
1038 		desc->depth = 0;
1039 		desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING | IRQ_INPROGRESS);
1040 		desc->handler->startup(irq);
1041 	}
1042 	spin_unlock_irqrestore(&desc->lock,flags);
1043 
1044 	register_irq_proc(irq);
1045 	return 0;
1046 }
1047 
1048 static struct proc_dir_entry * root_irq_dir;
1049 static struct proc_dir_entry * irq_dir [NR_IRQS];
1050 
1051 #define HEX_DIGITS 8
1052 
parse_hex_value(const char * buffer,unsigned long count,unsigned long * ret)1053 static unsigned int parse_hex_value (const char *buffer,
1054 		unsigned long count, unsigned long *ret)
1055 {
1056 	unsigned char hexnum [HEX_DIGITS];
1057 	unsigned long value;
1058 	int i;
1059 
1060 	if (!count)
1061 		return -EINVAL;
1062 	if (count > HEX_DIGITS)
1063 		count = HEX_DIGITS;
1064 	if (copy_from_user(hexnum, buffer, count))
1065 		return -EFAULT;
1066 
1067 	/*
1068 	 * Parse the first 8 characters as a hex string, any non-hex char
1069 	 * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same.
1070 	 */
1071 	value = 0;
1072 
1073 	for (i = 0; i < count; i++) {
1074 		unsigned int c = hexnum[i];
1075 
1076 		switch (c) {
1077 			case '0' ... '9': c -= '0'; break;
1078 			case 'a' ... 'f': c -= 'a'-10; break;
1079 			case 'A' ... 'F': c -= 'A'-10; break;
1080 		default:
1081 			goto out;
1082 		}
1083 		value = (value << 4) | c;
1084 	}
1085 out:
1086 	*ret = value;
1087 	return 0;
1088 }
1089 
1090 #if CONFIG_SMP
1091 
1092 static struct proc_dir_entry * smp_affinity_entry [NR_IRQS];
1093 
1094 static unsigned long irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL };
irq_affinity_read_proc(char * page,char ** start,off_t off,int count,int * eof,void * data)1095 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1096 			int count, int *eof, void *data)
1097 {
1098 	if (count < HEX_DIGITS+1)
1099 		return -EINVAL;
1100 	return sprintf (page, "%08lx\n", irq_affinity[(long)data]);
1101 }
1102 
irq_affinity_write_proc(struct file * file,const char * buffer,unsigned long count,void * data)1103 static int irq_affinity_write_proc (struct file *file, const char *buffer,
1104 					unsigned long count, void *data)
1105 {
1106 	int irq = (long) data, full_count = count, err;
1107 	unsigned long new_value;
1108 
1109 	if (!irq_desc[irq].handler->set_affinity)
1110 		return -EIO;
1111 
1112 	err = parse_hex_value(buffer, count, &new_value);
1113 
1114 	/*
1115 	 * Do not allow disabling IRQs completely - it's a too easy
1116 	 * way to make the system unusable accidentally :-) At least
1117 	 * one online CPU still has to be targeted.
1118 	 */
1119 	if (!(new_value & cpu_online_map))
1120 		return -EINVAL;
1121 
1122 	irq_affinity[irq] = new_value;
1123 	irq_desc[irq].handler->set_affinity(irq, new_value);
1124 
1125 	return full_count;
1126 }
1127 
1128 #endif
1129 
prof_cpu_mask_read_proc(char * page,char ** start,off_t off,int count,int * eof,void * data)1130 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
1131 			int count, int *eof, void *data)
1132 {
1133 	unsigned long *mask = (unsigned long *) data;
1134 	if (count < HEX_DIGITS+1)
1135 		return -EINVAL;
1136 	return sprintf (page, "%08lx\n", *mask);
1137 }
1138 
prof_cpu_mask_write_proc(struct file * file,const char * buffer,unsigned long count,void * data)1139 static int prof_cpu_mask_write_proc (struct file *file, const char *buffer,
1140 					unsigned long count, void *data)
1141 {
1142 	unsigned long *mask = (unsigned long *) data, full_count = count, err;
1143 	unsigned long new_value;
1144 
1145 	err = parse_hex_value(buffer, count, &new_value);
1146 	if (err)
1147 		return err;
1148 
1149 	*mask = new_value;
1150 	return full_count;
1151 }
1152 
1153 #define MAX_NAMELEN 10
1154 
register_irq_proc(unsigned int irq)1155 static void register_irq_proc (unsigned int irq)
1156 {
1157 	char name [MAX_NAMELEN];
1158 
1159 	if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type) ||
1160 			irq_dir[irq])
1161 		return;
1162 
1163 	memset(name, 0, MAX_NAMELEN);
1164 	sprintf(name, "%d", irq);
1165 
1166 	/* create /proc/irq/1234 */
1167 	irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1168 
1169 #if CONFIG_SMP
1170 	{
1171 		struct proc_dir_entry *entry;
1172 
1173 		/* create /proc/irq/1234/smp_affinity */
1174 		entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1175 
1176 		if (entry) {
1177 			entry->nlink = 1;
1178 			entry->data = (void *)(long)irq;
1179 			entry->read_proc = irq_affinity_read_proc;
1180 			entry->write_proc = irq_affinity_write_proc;
1181 		}
1182 
1183 		smp_affinity_entry[irq] = entry;
1184 	}
1185 #endif
1186 }
1187 
1188 unsigned long prof_cpu_mask = -1;
1189 
init_irq_proc(void)1190 void init_irq_proc (void)
1191 {
1192 	struct proc_dir_entry *entry;
1193 	int i;
1194 
1195 	/* create /proc/irq */
1196 	root_irq_dir = proc_mkdir("irq", 0);
1197 
1198 	/* create /proc/irq/prof_cpu_mask */
1199 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
1200 
1201 	if (!entry)
1202 	    return;
1203 
1204 	entry->nlink = 1;
1205 	entry->data = (void *)&prof_cpu_mask;
1206 	entry->read_proc = prof_cpu_mask_read_proc;
1207 	entry->write_proc = prof_cpu_mask_write_proc;
1208 
1209 	/*
1210 	 * Create entries for all existing IRQs.
1211 	 */
1212 	for (i = 0; i < NR_IRQS; i++)
1213 		register_irq_proc(i);
1214 }
1215 
1216