1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31
32 #include <asm/isc.h>
33 #include <asm/airq.h>
34 #include <asm/facility.h>
35 #include <asm/pci_insn.h>
36 #include <asm/pci_clp.h>
37 #include <asm/pci_dma.h>
38
39 #include "pci_bus.h"
40 #include "pci_iov.h"
41
42 /* list of all detected zpci devices */
43 static LIST_HEAD(zpci_list);
44 static DEFINE_SPINLOCK(zpci_list_lock);
45
46 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
47 static DEFINE_SPINLOCK(zpci_domain_lock);
48
49 #define ZPCI_IOMAP_ENTRIES \
50 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
51 ZPCI_IOMAP_MAX_ENTRIES)
52
53 unsigned int s390_pci_no_rid;
54
55 static DEFINE_SPINLOCK(zpci_iomap_lock);
56 static unsigned long *zpci_iomap_bitmap;
57 struct zpci_iomap_entry *zpci_iomap_start;
58 EXPORT_SYMBOL_GPL(zpci_iomap_start);
59
60 DEFINE_STATIC_KEY_FALSE(have_mio);
61
62 static struct kmem_cache *zdev_fmb_cache;
63
64 /* AEN structures that must be preserved over KVM module re-insertion */
65 union zpci_sic_iib *zpci_aipb;
66 EXPORT_SYMBOL_GPL(zpci_aipb);
67 struct airq_iv *zpci_aif_sbv;
68 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
69
get_zdev_by_fid(u32 fid)70 struct zpci_dev *get_zdev_by_fid(u32 fid)
71 {
72 struct zpci_dev *tmp, *zdev = NULL;
73
74 spin_lock(&zpci_list_lock);
75 list_for_each_entry(tmp, &zpci_list, entry) {
76 if (tmp->fid == fid) {
77 zdev = tmp;
78 zpci_zdev_get(zdev);
79 break;
80 }
81 }
82 spin_unlock(&zpci_list_lock);
83 return zdev;
84 }
85
zpci_remove_reserved_devices(void)86 void zpci_remove_reserved_devices(void)
87 {
88 struct zpci_dev *tmp, *zdev;
89 enum zpci_state state;
90 LIST_HEAD(remove);
91
92 spin_lock(&zpci_list_lock);
93 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
94 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
95 !clp_get_state(zdev->fid, &state) &&
96 state == ZPCI_FN_STATE_RESERVED)
97 list_move_tail(&zdev->entry, &remove);
98 }
99 spin_unlock(&zpci_list_lock);
100
101 list_for_each_entry_safe(zdev, tmp, &remove, entry)
102 zpci_device_reserved(zdev);
103 }
104
pci_domain_nr(struct pci_bus * bus)105 int pci_domain_nr(struct pci_bus *bus)
106 {
107 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
108 }
109 EXPORT_SYMBOL_GPL(pci_domain_nr);
110
pci_proc_domain(struct pci_bus * bus)111 int pci_proc_domain(struct pci_bus *bus)
112 {
113 return pci_domain_nr(bus);
114 }
115 EXPORT_SYMBOL_GPL(pci_proc_domain);
116
117 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota)118 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
119 u64 base, u64 limit, u64 iota)
120 {
121 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
122 struct zpci_fib fib = {0};
123 u8 cc, status;
124
125 WARN_ON_ONCE(iota & 0x3fff);
126 fib.pba = base;
127 fib.pal = limit;
128 fib.iota = iota | ZPCI_IOTA_RTTO_FLAG;
129 fib.gd = zdev->gisa;
130 cc = zpci_mod_fc(req, &fib, &status);
131 if (cc)
132 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
133 return cc;
134 }
135 EXPORT_SYMBOL_GPL(zpci_register_ioat);
136
137 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)138 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
139 {
140 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
141 struct zpci_fib fib = {0};
142 u8 cc, status;
143
144 fib.gd = zdev->gisa;
145
146 cc = zpci_mod_fc(req, &fib, &status);
147 if (cc)
148 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
149 return cc;
150 }
151
152 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)153 int zpci_fmb_enable_device(struct zpci_dev *zdev)
154 {
155 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
156 struct zpci_fib fib = {0};
157 u8 cc, status;
158
159 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
160 return -EINVAL;
161
162 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
163 if (!zdev->fmb)
164 return -ENOMEM;
165 WARN_ON((u64) zdev->fmb & 0xf);
166
167 /* reset software counters */
168 atomic64_set(&zdev->allocated_pages, 0);
169 atomic64_set(&zdev->mapped_pages, 0);
170 atomic64_set(&zdev->unmapped_pages, 0);
171
172 fib.fmb_addr = virt_to_phys(zdev->fmb);
173 fib.gd = zdev->gisa;
174 cc = zpci_mod_fc(req, &fib, &status);
175 if (cc) {
176 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
177 zdev->fmb = NULL;
178 }
179 return cc ? -EIO : 0;
180 }
181
182 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)183 int zpci_fmb_disable_device(struct zpci_dev *zdev)
184 {
185 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
186 struct zpci_fib fib = {0};
187 u8 cc, status;
188
189 if (!zdev->fmb)
190 return -EINVAL;
191
192 fib.gd = zdev->gisa;
193
194 /* Function measurement is disabled if fmb address is zero */
195 cc = zpci_mod_fc(req, &fib, &status);
196 if (cc == 3) /* Function already gone. */
197 cc = 0;
198
199 if (!cc) {
200 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
201 zdev->fmb = NULL;
202 }
203 return cc ? -EIO : 0;
204 }
205
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)206 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
207 {
208 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
209 u64 data;
210 int rc;
211
212 rc = __zpci_load(&data, req, offset);
213 if (!rc) {
214 data = le64_to_cpu((__force __le64) data);
215 data >>= (8 - len) * 8;
216 *val = (u32) data;
217 } else
218 *val = 0xffffffff;
219 return rc;
220 }
221
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)222 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
223 {
224 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
225 u64 data = val;
226 int rc;
227
228 data <<= (8 - len) * 8;
229 data = (__force u64) cpu_to_le64(data);
230 rc = __zpci_store(data, req, offset);
231 return rc;
232 }
233
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)234 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
235 resource_size_t size,
236 resource_size_t align)
237 {
238 return 0;
239 }
240
241 /* combine single writes by using store-block insn */
__iowrite64_copy(void __iomem * to,const void * from,size_t count)242 void __iowrite64_copy(void __iomem *to, const void *from, size_t count)
243 {
244 zpci_memcpy_toio(to, from, count);
245 }
246
__ioremap(phys_addr_t addr,size_t size,pgprot_t prot)247 static void __iomem *__ioremap(phys_addr_t addr, size_t size, pgprot_t prot)
248 {
249 unsigned long offset, vaddr;
250 struct vm_struct *area;
251 phys_addr_t last_addr;
252
253 last_addr = addr + size - 1;
254 if (!size || last_addr < addr)
255 return NULL;
256
257 if (!static_branch_unlikely(&have_mio))
258 return (void __iomem *) addr;
259
260 offset = addr & ~PAGE_MASK;
261 addr &= PAGE_MASK;
262 size = PAGE_ALIGN(size + offset);
263 area = get_vm_area(size, VM_IOREMAP);
264 if (!area)
265 return NULL;
266
267 vaddr = (unsigned long) area->addr;
268 if (ioremap_page_range(vaddr, vaddr + size, addr, prot)) {
269 free_vm_area(area);
270 return NULL;
271 }
272 return (void __iomem *) ((unsigned long) area->addr + offset);
273 }
274
ioremap_prot(phys_addr_t addr,size_t size,unsigned long prot)275 void __iomem *ioremap_prot(phys_addr_t addr, size_t size, unsigned long prot)
276 {
277 return __ioremap(addr, size, __pgprot(prot));
278 }
279 EXPORT_SYMBOL(ioremap_prot);
280
ioremap(phys_addr_t addr,size_t size)281 void __iomem *ioremap(phys_addr_t addr, size_t size)
282 {
283 return __ioremap(addr, size, PAGE_KERNEL);
284 }
285 EXPORT_SYMBOL(ioremap);
286
ioremap_wc(phys_addr_t addr,size_t size)287 void __iomem *ioremap_wc(phys_addr_t addr, size_t size)
288 {
289 return __ioremap(addr, size, pgprot_writecombine(PAGE_KERNEL));
290 }
291 EXPORT_SYMBOL(ioremap_wc);
292
ioremap_wt(phys_addr_t addr,size_t size)293 void __iomem *ioremap_wt(phys_addr_t addr, size_t size)
294 {
295 return __ioremap(addr, size, pgprot_writethrough(PAGE_KERNEL));
296 }
297 EXPORT_SYMBOL(ioremap_wt);
298
iounmap(volatile void __iomem * addr)299 void iounmap(volatile void __iomem *addr)
300 {
301 if (static_branch_likely(&have_mio))
302 vunmap((__force void *) ((unsigned long) addr & PAGE_MASK));
303 }
304 EXPORT_SYMBOL(iounmap);
305
306 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)307 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
308 unsigned long offset, unsigned long max)
309 {
310 struct zpci_dev *zdev = to_zpci(pdev);
311 int idx;
312
313 idx = zdev->bars[bar].map_idx;
314 spin_lock(&zpci_iomap_lock);
315 /* Detect overrun */
316 WARN_ON(!++zpci_iomap_start[idx].count);
317 zpci_iomap_start[idx].fh = zdev->fh;
318 zpci_iomap_start[idx].bar = bar;
319 spin_unlock(&zpci_iomap_lock);
320
321 return (void __iomem *) ZPCI_ADDR(idx) + offset;
322 }
323
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)324 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
325 unsigned long offset,
326 unsigned long max)
327 {
328 unsigned long barsize = pci_resource_len(pdev, bar);
329 struct zpci_dev *zdev = to_zpci(pdev);
330 void __iomem *iova;
331
332 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
333 return iova ? iova + offset : iova;
334 }
335
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)336 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
337 unsigned long offset, unsigned long max)
338 {
339 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
340 return NULL;
341
342 if (static_branch_likely(&have_mio))
343 return pci_iomap_range_mio(pdev, bar, offset, max);
344 else
345 return pci_iomap_range_fh(pdev, bar, offset, max);
346 }
347 EXPORT_SYMBOL(pci_iomap_range);
348
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)349 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
350 {
351 return pci_iomap_range(dev, bar, 0, maxlen);
352 }
353 EXPORT_SYMBOL(pci_iomap);
354
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)355 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
356 unsigned long offset, unsigned long max)
357 {
358 unsigned long barsize = pci_resource_len(pdev, bar);
359 struct zpci_dev *zdev = to_zpci(pdev);
360 void __iomem *iova;
361
362 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
363 return iova ? iova + offset : iova;
364 }
365
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)366 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
367 unsigned long offset, unsigned long max)
368 {
369 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
370 return NULL;
371
372 if (static_branch_likely(&have_mio))
373 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
374 else
375 return pci_iomap_range_fh(pdev, bar, offset, max);
376 }
377 EXPORT_SYMBOL(pci_iomap_wc_range);
378
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)379 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
380 {
381 return pci_iomap_wc_range(dev, bar, 0, maxlen);
382 }
383 EXPORT_SYMBOL(pci_iomap_wc);
384
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)385 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
386 {
387 unsigned int idx = ZPCI_IDX(addr);
388
389 spin_lock(&zpci_iomap_lock);
390 /* Detect underrun */
391 WARN_ON(!zpci_iomap_start[idx].count);
392 if (!--zpci_iomap_start[idx].count) {
393 zpci_iomap_start[idx].fh = 0;
394 zpci_iomap_start[idx].bar = 0;
395 }
396 spin_unlock(&zpci_iomap_lock);
397 }
398
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)399 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
400 {
401 iounmap(addr);
402 }
403
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)404 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
405 {
406 if (static_branch_likely(&have_mio))
407 pci_iounmap_mio(pdev, addr);
408 else
409 pci_iounmap_fh(pdev, addr);
410 }
411 EXPORT_SYMBOL(pci_iounmap);
412
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)413 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
414 int size, u32 *val)
415 {
416 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
417
418 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
419 }
420
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)421 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
422 int size, u32 val)
423 {
424 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
425
426 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
427 }
428
429 static struct pci_ops pci_root_ops = {
430 .read = pci_read,
431 .write = pci_write,
432 };
433
zpci_map_resources(struct pci_dev * pdev)434 static void zpci_map_resources(struct pci_dev *pdev)
435 {
436 struct zpci_dev *zdev = to_zpci(pdev);
437 resource_size_t len;
438 int i;
439
440 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
441 len = pci_resource_len(pdev, i);
442 if (!len)
443 continue;
444
445 if (zpci_use_mio(zdev))
446 pdev->resource[i].start =
447 (resource_size_t __force) zdev->bars[i].mio_wt;
448 else
449 pdev->resource[i].start = (resource_size_t __force)
450 pci_iomap_range_fh(pdev, i, 0, 0);
451 pdev->resource[i].end = pdev->resource[i].start + len - 1;
452 }
453
454 zpci_iov_map_resources(pdev);
455 }
456
zpci_unmap_resources(struct pci_dev * pdev)457 static void zpci_unmap_resources(struct pci_dev *pdev)
458 {
459 struct zpci_dev *zdev = to_zpci(pdev);
460 resource_size_t len;
461 int i;
462
463 if (zpci_use_mio(zdev))
464 return;
465
466 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
467 len = pci_resource_len(pdev, i);
468 if (!len)
469 continue;
470 pci_iounmap_fh(pdev, (void __iomem __force *)
471 pdev->resource[i].start);
472 }
473 }
474
zpci_alloc_iomap(struct zpci_dev * zdev)475 static int zpci_alloc_iomap(struct zpci_dev *zdev)
476 {
477 unsigned long entry;
478
479 spin_lock(&zpci_iomap_lock);
480 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
481 if (entry == ZPCI_IOMAP_ENTRIES) {
482 spin_unlock(&zpci_iomap_lock);
483 return -ENOSPC;
484 }
485 set_bit(entry, zpci_iomap_bitmap);
486 spin_unlock(&zpci_iomap_lock);
487 return entry;
488 }
489
zpci_free_iomap(struct zpci_dev * zdev,int entry)490 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
491 {
492 spin_lock(&zpci_iomap_lock);
493 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
494 clear_bit(entry, zpci_iomap_bitmap);
495 spin_unlock(&zpci_iomap_lock);
496 }
497
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)498 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
499 {
500 int bar, idx;
501
502 spin_lock(&zpci_iomap_lock);
503 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
504 if (!zdev->bars[bar].size)
505 continue;
506 idx = zdev->bars[bar].map_idx;
507 if (!zpci_iomap_start[idx].count)
508 continue;
509 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
510 }
511 spin_unlock(&zpci_iomap_lock);
512 }
513
zpci_update_fh(struct zpci_dev * zdev,u32 fh)514 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
515 {
516 if (!fh || zdev->fh == fh)
517 return;
518
519 zdev->fh = fh;
520 if (zpci_use_mio(zdev))
521 return;
522 if (zdev->has_resources && zdev_enabled(zdev))
523 zpci_do_update_iomap_fh(zdev, fh);
524 }
525
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)526 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
527 unsigned long size, unsigned long flags)
528 {
529 struct resource *r;
530
531 r = kzalloc(sizeof(*r), GFP_KERNEL);
532 if (!r)
533 return NULL;
534
535 r->start = start;
536 r->end = r->start + size - 1;
537 r->flags = flags;
538 r->name = zdev->res_name;
539
540 if (request_resource(&iomem_resource, r)) {
541 kfree(r);
542 return NULL;
543 }
544 return r;
545 }
546
zpci_setup_bus_resources(struct zpci_dev * zdev,struct list_head * resources)547 int zpci_setup_bus_resources(struct zpci_dev *zdev,
548 struct list_head *resources)
549 {
550 unsigned long addr, size, flags;
551 struct resource *res;
552 int i, entry;
553
554 snprintf(zdev->res_name, sizeof(zdev->res_name),
555 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
556
557 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
558 if (!zdev->bars[i].size)
559 continue;
560 entry = zpci_alloc_iomap(zdev);
561 if (entry < 0)
562 return entry;
563 zdev->bars[i].map_idx = entry;
564
565 /* only MMIO is supported */
566 flags = IORESOURCE_MEM;
567 if (zdev->bars[i].val & 8)
568 flags |= IORESOURCE_PREFETCH;
569 if (zdev->bars[i].val & 4)
570 flags |= IORESOURCE_MEM_64;
571
572 if (zpci_use_mio(zdev))
573 addr = (unsigned long) zdev->bars[i].mio_wt;
574 else
575 addr = ZPCI_ADDR(entry);
576 size = 1UL << zdev->bars[i].size;
577
578 res = __alloc_res(zdev, addr, size, flags);
579 if (!res) {
580 zpci_free_iomap(zdev, entry);
581 return -ENOMEM;
582 }
583 zdev->bars[i].res = res;
584 pci_add_resource(resources, res);
585 }
586 zdev->has_resources = 1;
587
588 return 0;
589 }
590
zpci_cleanup_bus_resources(struct zpci_dev * zdev)591 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
592 {
593 int i;
594
595 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
596 if (!zdev->bars[i].size || !zdev->bars[i].res)
597 continue;
598
599 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
600 release_resource(zdev->bars[i].res);
601 kfree(zdev->bars[i].res);
602 }
603 zdev->has_resources = 0;
604 }
605
pcibios_device_add(struct pci_dev * pdev)606 int pcibios_device_add(struct pci_dev *pdev)
607 {
608 struct zpci_dev *zdev = to_zpci(pdev);
609 struct resource *res;
610 int i;
611
612 /* The pdev has a reference to the zdev via its bus */
613 zpci_zdev_get(zdev);
614 if (pdev->is_physfn)
615 pdev->no_vf_scan = 1;
616
617 pdev->dev.groups = zpci_attr_groups;
618 pdev->dev.dma_ops = &s390_pci_dma_ops;
619 zpci_map_resources(pdev);
620
621 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 res = &pdev->resource[i];
623 if (res->parent || !res->flags)
624 continue;
625 pci_claim_resource(pdev, i);
626 }
627
628 return 0;
629 }
630
pcibios_release_device(struct pci_dev * pdev)631 void pcibios_release_device(struct pci_dev *pdev)
632 {
633 struct zpci_dev *zdev = to_zpci(pdev);
634
635 zpci_unmap_resources(pdev);
636 zpci_zdev_put(zdev);
637 }
638
pcibios_enable_device(struct pci_dev * pdev,int mask)639 int pcibios_enable_device(struct pci_dev *pdev, int mask)
640 {
641 struct zpci_dev *zdev = to_zpci(pdev);
642
643 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
644 zpci_fmb_enable_device(zdev);
645
646 return pci_enable_resources(pdev, mask);
647 }
648
pcibios_disable_device(struct pci_dev * pdev)649 void pcibios_disable_device(struct pci_dev *pdev)
650 {
651 struct zpci_dev *zdev = to_zpci(pdev);
652
653 zpci_fmb_disable_device(zdev);
654 zpci_debug_exit_device(zdev);
655 }
656
__zpci_register_domain(int domain)657 static int __zpci_register_domain(int domain)
658 {
659 spin_lock(&zpci_domain_lock);
660 if (test_bit(domain, zpci_domain)) {
661 spin_unlock(&zpci_domain_lock);
662 pr_err("Domain %04x is already assigned\n", domain);
663 return -EEXIST;
664 }
665 set_bit(domain, zpci_domain);
666 spin_unlock(&zpci_domain_lock);
667 return domain;
668 }
669
__zpci_alloc_domain(void)670 static int __zpci_alloc_domain(void)
671 {
672 int domain;
673
674 spin_lock(&zpci_domain_lock);
675 /*
676 * We can always auto allocate domains below ZPCI_NR_DEVICES.
677 * There is either a free domain or we have reached the maximum in
678 * which case we would have bailed earlier.
679 */
680 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
681 set_bit(domain, zpci_domain);
682 spin_unlock(&zpci_domain_lock);
683 return domain;
684 }
685
zpci_alloc_domain(int domain)686 int zpci_alloc_domain(int domain)
687 {
688 if (zpci_unique_uid) {
689 if (domain)
690 return __zpci_register_domain(domain);
691 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
692 update_uid_checking(false);
693 }
694 return __zpci_alloc_domain();
695 }
696
zpci_free_domain(int domain)697 void zpci_free_domain(int domain)
698 {
699 spin_lock(&zpci_domain_lock);
700 clear_bit(domain, zpci_domain);
701 spin_unlock(&zpci_domain_lock);
702 }
703
704
zpci_enable_device(struct zpci_dev * zdev)705 int zpci_enable_device(struct zpci_dev *zdev)
706 {
707 u32 fh = zdev->fh;
708 int rc = 0;
709
710 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
711 rc = -EIO;
712 else
713 zpci_update_fh(zdev, fh);
714 return rc;
715 }
716 EXPORT_SYMBOL_GPL(zpci_enable_device);
717
zpci_disable_device(struct zpci_dev * zdev)718 int zpci_disable_device(struct zpci_dev *zdev)
719 {
720 u32 fh = zdev->fh;
721 int cc, rc = 0;
722
723 cc = clp_disable_fh(zdev, &fh);
724 if (!cc) {
725 zpci_update_fh(zdev, fh);
726 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
727 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
728 zdev->fid);
729 /* Function is already disabled - update handle */
730 rc = clp_refresh_fh(zdev->fid, &fh);
731 if (!rc) {
732 zpci_update_fh(zdev, fh);
733 rc = -EINVAL;
734 }
735 } else {
736 rc = -EIO;
737 }
738 return rc;
739 }
740 EXPORT_SYMBOL_GPL(zpci_disable_device);
741
742 /**
743 * zpci_hot_reset_device - perform a reset of the given zPCI function
744 * @zdev: the slot which should be reset
745 *
746 * Performs a low level reset of the zPCI function. The reset is low level in
747 * the sense that the zPCI function can be reset without detaching it from the
748 * common PCI subsystem. The reset may be performed while under control of
749 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
750 * table is reinstated at the end of the reset.
751 *
752 * After the reset the functions internal state is reset to an initial state
753 * equivalent to its state during boot when first probing a driver.
754 * Consequently after reset the PCI function requires re-initialization via the
755 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
756 * and enabling the function via e.g.pci_enablde_device_flags().The caller
757 * must guard against concurrent reset attempts.
758 *
759 * In most cases this function should not be called directly but through
760 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
761 * locking.
762 *
763 * Return: 0 on success and an error value otherwise
764 */
zpci_hot_reset_device(struct zpci_dev * zdev)765 int zpci_hot_reset_device(struct zpci_dev *zdev)
766 {
767 int rc;
768
769 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
770 if (zdev_enabled(zdev)) {
771 /* Disables device access, DMAs and IRQs (reset state) */
772 rc = zpci_disable_device(zdev);
773 /*
774 * Due to a z/VM vs LPAR inconsistency in the error state the
775 * FH may indicate an enabled device but disable says the
776 * device is already disabled don't treat it as an error here.
777 */
778 if (rc == -EINVAL)
779 rc = 0;
780 if (rc)
781 return rc;
782 }
783
784 rc = zpci_enable_device(zdev);
785 if (rc)
786 return rc;
787
788 if (zdev->dma_table)
789 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
790 virt_to_phys(zdev->dma_table));
791 else
792 rc = zpci_dma_init_device(zdev);
793 if (rc) {
794 zpci_disable_device(zdev);
795 return rc;
796 }
797
798 return 0;
799 }
800
801 /**
802 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
803 * @fid: Function ID of the device to be created
804 * @fh: Current Function Handle of the device to be created
805 * @state: Initial state after creation either Standby or Configured
806 *
807 * Creates a new zpci device and adds it to its, possibly newly created, zbus
808 * as well as zpci_list.
809 *
810 * Returns: the zdev on success or an error pointer otherwise
811 */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)812 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
813 {
814 struct zpci_dev *zdev;
815 int rc;
816
817 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", fid, fh, state);
818 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
819 if (!zdev)
820 return ERR_PTR(-ENOMEM);
821
822 /* FID and Function Handle are the static/dynamic identifiers */
823 zdev->fid = fid;
824 zdev->fh = fh;
825
826 /* Query function properties and update zdev */
827 rc = clp_query_pci_fn(zdev);
828 if (rc)
829 goto error;
830 zdev->state = state;
831
832 kref_init(&zdev->kref);
833 mutex_init(&zdev->lock);
834 mutex_init(&zdev->kzdev_lock);
835
836 rc = zpci_init_iommu(zdev);
837 if (rc)
838 goto error;
839
840 rc = zpci_bus_device_register(zdev, &pci_root_ops);
841 if (rc)
842 goto error_destroy_iommu;
843
844 spin_lock(&zpci_list_lock);
845 list_add_tail(&zdev->entry, &zpci_list);
846 spin_unlock(&zpci_list_lock);
847
848 return zdev;
849
850 error_destroy_iommu:
851 zpci_destroy_iommu(zdev);
852 error:
853 zpci_dbg(0, "add fid:%x, rc:%d\n", fid, rc);
854 kfree(zdev);
855 return ERR_PTR(rc);
856 }
857
zpci_is_device_configured(struct zpci_dev * zdev)858 bool zpci_is_device_configured(struct zpci_dev *zdev)
859 {
860 enum zpci_state state = zdev->state;
861
862 return state != ZPCI_FN_STATE_RESERVED &&
863 state != ZPCI_FN_STATE_STANDBY;
864 }
865
866 /**
867 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
868 * @zdev: The zpci_dev to be configured
869 * @fh: The general function handle supplied by the platform
870 *
871 * Given a device in the configuration state Configured, enables, scans and
872 * adds it to the common code PCI subsystem if possible. If the PCI device is
873 * parked because we can not yet create a PCI bus because we have not seen
874 * function 0, it is ignored but will be scanned once function 0 appears.
875 * If any failure occurs, the zpci_dev is left disabled.
876 *
877 * Return: 0 on success, or an error code otherwise
878 */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)879 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
880 {
881 int rc;
882
883 zpci_update_fh(zdev, fh);
884 /* the PCI function will be scanned once function 0 appears */
885 if (!zdev->zbus->bus)
886 return 0;
887
888 /* For function 0 on a multi-function bus scan whole bus as we might
889 * have to pick up existing functions waiting for it to allow creating
890 * the PCI bus
891 */
892 if (zdev->devfn == 0 && zdev->zbus->multifunction)
893 rc = zpci_bus_scan_bus(zdev->zbus);
894 else
895 rc = zpci_bus_scan_device(zdev);
896
897 return rc;
898 }
899
900 /**
901 * zpci_deconfigure_device() - Deconfigure a zpci_dev
902 * @zdev: The zpci_dev to configure
903 *
904 * Deconfigure a zPCI function that is currently configured and possibly known
905 * to the common code PCI subsystem.
906 * If any failure occurs the device is left as is.
907 *
908 * Return: 0 on success, or an error code otherwise
909 */
zpci_deconfigure_device(struct zpci_dev * zdev)910 int zpci_deconfigure_device(struct zpci_dev *zdev)
911 {
912 int rc;
913
914 if (zdev->zbus->bus)
915 zpci_bus_remove_device(zdev, false);
916
917 if (zdev->dma_table) {
918 rc = zpci_dma_exit_device(zdev);
919 if (rc)
920 return rc;
921 }
922 if (zdev_enabled(zdev)) {
923 rc = zpci_disable_device(zdev);
924 if (rc)
925 return rc;
926 }
927
928 rc = sclp_pci_deconfigure(zdev->fid);
929 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
930 if (rc)
931 return rc;
932 zdev->state = ZPCI_FN_STATE_STANDBY;
933
934 return 0;
935 }
936
937 /**
938 * zpci_device_reserved() - Mark device as resverved
939 * @zdev: the zpci_dev that was reserved
940 *
941 * Handle the case that a given zPCI function was reserved by another system.
942 * After a call to this function the zpci_dev can not be found via
943 * get_zdev_by_fid() anymore but may still be accessible via existing
944 * references though it will not be functional anymore.
945 */
zpci_device_reserved(struct zpci_dev * zdev)946 void zpci_device_reserved(struct zpci_dev *zdev)
947 {
948 if (zdev->has_hp_slot)
949 zpci_exit_slot(zdev);
950 /*
951 * Remove device from zpci_list as it is going away. This also
952 * makes sure we ignore subsequent zPCI events for this device.
953 */
954 spin_lock(&zpci_list_lock);
955 list_del(&zdev->entry);
956 spin_unlock(&zpci_list_lock);
957 zdev->state = ZPCI_FN_STATE_RESERVED;
958 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
959 zpci_zdev_put(zdev);
960 }
961
zpci_release_device(struct kref * kref)962 void zpci_release_device(struct kref *kref)
963 {
964 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
965 int ret;
966
967 if (zdev->zbus->bus)
968 zpci_bus_remove_device(zdev, false);
969
970 if (zdev->dma_table)
971 zpci_dma_exit_device(zdev);
972 if (zdev_enabled(zdev))
973 zpci_disable_device(zdev);
974
975 switch (zdev->state) {
976 case ZPCI_FN_STATE_CONFIGURED:
977 ret = sclp_pci_deconfigure(zdev->fid);
978 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, ret);
979 fallthrough;
980 case ZPCI_FN_STATE_STANDBY:
981 if (zdev->has_hp_slot)
982 zpci_exit_slot(zdev);
983 spin_lock(&zpci_list_lock);
984 list_del(&zdev->entry);
985 spin_unlock(&zpci_list_lock);
986 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
987 fallthrough;
988 case ZPCI_FN_STATE_RESERVED:
989 if (zdev->has_resources)
990 zpci_cleanup_bus_resources(zdev);
991 zpci_bus_device_unregister(zdev);
992 zpci_destroy_iommu(zdev);
993 fallthrough;
994 default:
995 break;
996 }
997 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
998 kfree(zdev);
999 }
1000
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)1001 int zpci_report_error(struct pci_dev *pdev,
1002 struct zpci_report_error_header *report)
1003 {
1004 struct zpci_dev *zdev = to_zpci(pdev);
1005
1006 return sclp_pci_report(report, zdev->fh, zdev->fid);
1007 }
1008 EXPORT_SYMBOL(zpci_report_error);
1009
1010 /**
1011 * zpci_clear_error_state() - Clears the zPCI error state of the device
1012 * @zdev: The zdev for which the zPCI error state should be reset
1013 *
1014 * Clear the zPCI error state of the device. If clearing the zPCI error state
1015 * fails the device is left in the error state. In this case it may make sense
1016 * to call zpci_io_perm_failure() on the associated pdev if it exists.
1017 *
1018 * Returns: 0 on success, -EIO otherwise
1019 */
zpci_clear_error_state(struct zpci_dev * zdev)1020 int zpci_clear_error_state(struct zpci_dev *zdev)
1021 {
1022 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
1023 struct zpci_fib fib = {0};
1024 u8 status;
1025 int cc;
1026
1027 cc = zpci_mod_fc(req, &fib, &status);
1028 if (cc) {
1029 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1030 return -EIO;
1031 }
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1038 * @zdev: The zdev for which to unblock load/store access
1039 *
1040 * Re-enables load/store access for a PCI function in the error state while
1041 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1042 * if error recovery is possible while catching any rogue DMA access from the
1043 * device.
1044 *
1045 * Returns: 0 on success, -EIO otherwise
1046 */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1047 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1048 {
1049 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1050 struct zpci_fib fib = {0};
1051 u8 status;
1052 int cc;
1053
1054 cc = zpci_mod_fc(req, &fib, &status);
1055 if (cc) {
1056 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1057 return -EIO;
1058 }
1059
1060 return 0;
1061 }
1062
zpci_mem_init(void)1063 static int zpci_mem_init(void)
1064 {
1065 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1066 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1067
1068 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1069 __alignof__(struct zpci_fmb), 0, NULL);
1070 if (!zdev_fmb_cache)
1071 goto error_fmb;
1072
1073 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1074 sizeof(*zpci_iomap_start), GFP_KERNEL);
1075 if (!zpci_iomap_start)
1076 goto error_iomap;
1077
1078 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1079 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1080 if (!zpci_iomap_bitmap)
1081 goto error_iomap_bitmap;
1082
1083 if (static_branch_likely(&have_mio))
1084 clp_setup_writeback_mio();
1085
1086 return 0;
1087 error_iomap_bitmap:
1088 kfree(zpci_iomap_start);
1089 error_iomap:
1090 kmem_cache_destroy(zdev_fmb_cache);
1091 error_fmb:
1092 return -ENOMEM;
1093 }
1094
zpci_mem_exit(void)1095 static void zpci_mem_exit(void)
1096 {
1097 kfree(zpci_iomap_bitmap);
1098 kfree(zpci_iomap_start);
1099 kmem_cache_destroy(zdev_fmb_cache);
1100 }
1101
1102 static unsigned int s390_pci_probe __initdata = 1;
1103 unsigned int s390_pci_force_floating __initdata;
1104 static unsigned int s390_pci_initialized;
1105
pcibios_setup(char * str)1106 char * __init pcibios_setup(char *str)
1107 {
1108 if (!strcmp(str, "off")) {
1109 s390_pci_probe = 0;
1110 return NULL;
1111 }
1112 if (!strcmp(str, "nomio")) {
1113 S390_lowcore.machine_flags &= ~MACHINE_FLAG_PCI_MIO;
1114 return NULL;
1115 }
1116 if (!strcmp(str, "force_floating")) {
1117 s390_pci_force_floating = 1;
1118 return NULL;
1119 }
1120 if (!strcmp(str, "norid")) {
1121 s390_pci_no_rid = 1;
1122 return NULL;
1123 }
1124 return str;
1125 }
1126
zpci_is_enabled(void)1127 bool zpci_is_enabled(void)
1128 {
1129 return s390_pci_initialized;
1130 }
1131
pci_base_init(void)1132 static int __init pci_base_init(void)
1133 {
1134 int rc;
1135
1136 if (!s390_pci_probe)
1137 return 0;
1138
1139 if (!test_facility(69) || !test_facility(71)) {
1140 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1141 return 0;
1142 }
1143
1144 if (MACHINE_HAS_PCI_MIO) {
1145 static_branch_enable(&have_mio);
1146 ctl_set_bit(2, 5);
1147 }
1148
1149 rc = zpci_debug_init();
1150 if (rc)
1151 goto out;
1152
1153 rc = zpci_mem_init();
1154 if (rc)
1155 goto out_mem;
1156
1157 rc = zpci_irq_init();
1158 if (rc)
1159 goto out_irq;
1160
1161 rc = zpci_dma_init();
1162 if (rc)
1163 goto out_dma;
1164
1165 rc = clp_scan_pci_devices();
1166 if (rc)
1167 goto out_find;
1168 zpci_bus_scan_busses();
1169
1170 s390_pci_initialized = 1;
1171 return 0;
1172
1173 out_find:
1174 zpci_dma_exit();
1175 out_dma:
1176 zpci_irq_exit();
1177 out_irq:
1178 zpci_mem_exit();
1179 out_mem:
1180 zpci_debug_exit();
1181 out:
1182 return rc;
1183 }
1184 subsys_initcall_sync(pci_base_init);
1185