1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-1998 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include <linux/zutil.h>
7 #include "inftrees.h"
8 #include "infutil.h"
9 
10 static const char inflate_copyright[] =
11    " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
12 /*
13   If you use the zlib library in a product, an acknowledgment is welcome
14   in the documentation of your product. If for some reason you cannot
15   include such an acknowledgment, I would appreciate that you keep this
16   copyright string in the executable of your product.
17  */
18 struct internal_state;
19 
20 /* simplify the use of the inflate_huft type with some defines */
21 #define exop word.what.Exop
22 #define bits word.what.Bits
23 
24 
25 local int huft_build OF((
26     uIntf *,            /* code lengths in bits */
27     uInt,               /* number of codes */
28     uInt,               /* number of "simple" codes */
29     const uIntf *,      /* list of base values for non-simple codes */
30     const uIntf *,      /* list of extra bits for non-simple codes */
31     inflate_huft * FAR*,/* result: starting table */
32     uIntf *,            /* maximum lookup bits (returns actual) */
33     inflate_huft *,     /* space for trees */
34     uInt *,             /* hufts used in space */
35     uIntf * ));         /* space for values */
36 
37 /* Tables for deflate from PKZIP's appnote.txt. */
38 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
39         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
40         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
41         /* see note #13 above about 258 */
42 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
43         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
44         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
45 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
46         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
47         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
48         8193, 12289, 16385, 24577};
49 local const uInt cpdext[30] = { /* Extra bits for distance codes */
50         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
51         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
52         12, 12, 13, 13};
53 
54 /*
55    Huffman code decoding is performed using a multi-level table lookup.
56    The fastest way to decode is to simply build a lookup table whose
57    size is determined by the longest code.  However, the time it takes
58    to build this table can also be a factor if the data being decoded
59    is not very long.  The most common codes are necessarily the
60    shortest codes, so those codes dominate the decoding time, and hence
61    the speed.  The idea is you can have a shorter table that decodes the
62    shorter, more probable codes, and then point to subsidiary tables for
63    the longer codes.  The time it costs to decode the longer codes is
64    then traded against the time it takes to make longer tables.
65 
66    This results of this trade are in the variables lbits and dbits
67    below.  lbits is the number of bits the first level table for literal/
68    length codes can decode in one step, and dbits is the same thing for
69    the distance codes.  Subsequent tables are also less than or equal to
70    those sizes.  These values may be adjusted either when all of the
71    codes are shorter than that, in which case the longest code length in
72    bits is used, or when the shortest code is *longer* than the requested
73    table size, in which case the length of the shortest code in bits is
74    used.
75 
76    There are two different values for the two tables, since they code a
77    different number of possibilities each.  The literal/length table
78    codes 286 possible values, or in a flat code, a little over eight
79    bits.  The distance table codes 30 possible values, or a little less
80    than five bits, flat.  The optimum values for speed end up being
81    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
82    The optimum values may differ though from machine to machine, and
83    possibly even between compilers.  Your mileage may vary.
84  */
85 
86 
87 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
88 #define BMAX 15         /* maximum bit length of any code */
89 
huft_build(b,n,s,d,e,t,m,hp,hn,v)90 local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
91 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
92 uInt n;                 /* number of codes (assumed <= 288) */
93 uInt s;                 /* number of simple-valued codes (0..s-1) */
94 const uIntf *d;         /* list of base values for non-simple codes */
95 const uIntf *e;         /* list of extra bits for non-simple codes */
96 inflate_huft * FAR *t;  /* result: starting table */
97 uIntf *m;               /* maximum lookup bits, returns actual */
98 inflate_huft *hp;       /* space for trees */
99 uInt *hn;               /* hufts used in space */
100 uIntf *v;               /* working area: values in order of bit length */
101 /* Given a list of code lengths and a maximum table size, make a set of
102    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
103    if the given code set is incomplete (the tables are still built in this
104    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
105    lengths), or Z_MEM_ERROR if not enough memory. */
106 {
107 
108   uInt a;                       /* counter for codes of length k */
109   uInt c[BMAX+1];               /* bit length count table */
110   uInt f;                       /* i repeats in table every f entries */
111   int g;                        /* maximum code length */
112   int h;                        /* table level */
113   register uInt i;              /* counter, current code */
114   register uInt j;              /* counter */
115   register int k;               /* number of bits in current code */
116   int l;                        /* bits per table (returned in m) */
117   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
118   register uIntf *p;            /* pointer into c[], b[], or v[] */
119   inflate_huft *q;              /* points to current table */
120   struct inflate_huft_s r;      /* table entry for structure assignment */
121   inflate_huft *u[BMAX];        /* table stack */
122   register int w;               /* bits before this table == (l * h) */
123   uInt x[BMAX+1];               /* bit offsets, then code stack */
124   uIntf *xp;                    /* pointer into x */
125   int y;                        /* number of dummy codes added */
126   uInt z;                       /* number of entries in current table */
127 
128 
129   /* Generate counts for each bit length */
130   p = c;
131 #define C0 *p++ = 0;
132 #define C2 C0 C0 C0 C0
133 #define C4 C2 C2 C2 C2
134   C4                            /* clear c[]--assume BMAX+1 is 16 */
135   p = b;  i = n;
136   do {
137     c[*p++]++;                  /* assume all entries <= BMAX */
138   } while (--i);
139   if (c[0] == n)                /* null input--all zero length codes */
140   {
141     *t = (inflate_huft *)Z_NULL;
142     *m = 0;
143     return Z_OK;
144   }
145 
146 
147   /* Find minimum and maximum length, bound *m by those */
148   l = *m;
149   for (j = 1; j <= BMAX; j++)
150     if (c[j])
151       break;
152   k = j;                        /* minimum code length */
153   if ((uInt)l < j)
154     l = j;
155   for (i = BMAX; i; i--)
156     if (c[i])
157       break;
158   g = i;                        /* maximum code length */
159   if ((uInt)l > i)
160     l = i;
161   *m = l;
162 
163 
164   /* Adjust last length count to fill out codes, if needed */
165   for (y = 1 << j; j < i; j++, y <<= 1)
166     if ((y -= c[j]) < 0)
167       return Z_DATA_ERROR;
168   if ((y -= c[i]) < 0)
169     return Z_DATA_ERROR;
170   c[i] += y;
171 
172 
173   /* Generate starting offsets into the value table for each length */
174   x[1] = j = 0;
175   p = c + 1;  xp = x + 2;
176   while (--i) {                 /* note that i == g from above */
177     *xp++ = (j += *p++);
178   }
179 
180 
181   /* Make a table of values in order of bit lengths */
182   p = b;  i = 0;
183   do {
184     if ((j = *p++) != 0)
185       v[x[j]++] = i;
186   } while (++i < n);
187   n = x[g];                     /* set n to length of v */
188 
189 
190   /* Generate the Huffman codes and for each, make the table entries */
191   x[0] = i = 0;                 /* first Huffman code is zero */
192   p = v;                        /* grab values in bit order */
193   h = -1;                       /* no tables yet--level -1 */
194   w = -l;                       /* bits decoded == (l * h) */
195   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
196   q = (inflate_huft *)Z_NULL;   /* ditto */
197   z = 0;                        /* ditto */
198 
199   /* go through the bit lengths (k already is bits in shortest code) */
200   for (; k <= g; k++)
201   {
202     a = c[k];
203     while (a--)
204     {
205       /* here i is the Huffman code of length k bits for value *p */
206       /* make tables up to required level */
207       while (k > w + l)
208       {
209         h++;
210         w += l;                 /* previous table always l bits */
211 
212         /* compute minimum size table less than or equal to l bits */
213         z = g - w;
214         z = z > (uInt)l ? l : z;        /* table size upper limit */
215         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
216         {                       /* too few codes for k-w bit table */
217           f -= a + 1;           /* deduct codes from patterns left */
218           xp = c + k;
219           if (j < z)
220             while (++j < z)     /* try smaller tables up to z bits */
221             {
222               if ((f <<= 1) <= *++xp)
223                 break;          /* enough codes to use up j bits */
224               f -= *xp;         /* else deduct codes from patterns */
225             }
226         }
227         z = 1 << j;             /* table entries for j-bit table */
228 
229         /* allocate new table */
230         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
231           return Z_MEM_ERROR;   /* not enough memory */
232         u[h] = q = hp + *hn;
233         *hn += z;
234 
235         /* connect to last table, if there is one */
236         if (h)
237         {
238           x[h] = i;             /* save pattern for backing up */
239           r.bits = (Byte)l;     /* bits to dump before this table */
240           r.exop = (Byte)j;     /* bits in this table */
241           j = i >> (w - l);
242           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
243           u[h-1][j] = r;        /* connect to last table */
244         }
245         else
246           *t = q;               /* first table is returned result */
247       }
248 
249       /* set up table entry in r */
250       r.bits = (Byte)(k - w);
251       if (p >= v + n)
252         r.exop = 128 + 64;      /* out of values--invalid code */
253       else if (*p < s)
254       {
255         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
256         r.base = *p++;          /* simple code is just the value */
257       }
258       else
259       {
260         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
261         r.base = d[*p++ - s];
262       }
263 
264       /* fill code-like entries with r */
265       f = 1 << (k - w);
266       for (j = i >> w; j < z; j += f)
267         q[j] = r;
268 
269       /* backwards increment the k-bit code i */
270       for (j = 1 << (k - 1); i & j; j >>= 1)
271         i ^= j;
272       i ^= j;
273 
274       /* backup over finished tables */
275       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
276       while ((i & mask) != x[h])
277       {
278         h--;                    /* don't need to update q */
279         w -= l;
280         mask = (1 << w) - 1;
281       }
282     }
283   }
284 
285 
286   /* Return Z_BUF_ERROR if we were given an incomplete table */
287   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
288 }
289 
290 
zlib_inflate_trees_bits(c,bb,tb,hp,z)291 int zlib_inflate_trees_bits(c, bb, tb, hp, z)
292 uIntf *c;               /* 19 code lengths */
293 uIntf *bb;              /* bits tree desired/actual depth */
294 inflate_huft * FAR *tb; /* bits tree result */
295 inflate_huft *hp;       /* space for trees */
296 z_streamp z;            /* for messages */
297 {
298   int r;
299   uInt hn = 0;          /* hufts used in space */
300   uIntf *v;             /* work area for huft_build */
301 
302   v = WS(z)->tree_work_area_1;
303   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
304                  tb, bb, hp, &hn, v);
305   if (r == Z_DATA_ERROR)
306     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
307   else if (r == Z_BUF_ERROR || *bb == 0)
308   {
309     z->msg = (char*)"incomplete dynamic bit lengths tree";
310     r = Z_DATA_ERROR;
311   }
312   return r;
313 }
314 
zlib_inflate_trees_dynamic(nl,nd,c,bl,bd,tl,td,hp,z)315 int zlib_inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
316 uInt nl;                /* number of literal/length codes */
317 uInt nd;                /* number of distance codes */
318 uIntf *c;               /* that many (total) code lengths */
319 uIntf *bl;              /* literal desired/actual bit depth */
320 uIntf *bd;              /* distance desired/actual bit depth */
321 inflate_huft * FAR *tl; /* literal/length tree result */
322 inflate_huft * FAR *td; /* distance tree result */
323 inflate_huft *hp;       /* space for trees */
324 z_streamp z;            /* for messages */
325 {
326   int r;
327   uInt hn = 0;          /* hufts used in space */
328   uIntf *v;             /* work area for huft_build */
329 
330   /* allocate work area */
331   v = WS(z)->tree_work_area_2;
332 
333   /* build literal/length tree */
334   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
335   if (r != Z_OK || *bl == 0)
336   {
337     if (r == Z_DATA_ERROR)
338       z->msg = (char*)"oversubscribed literal/length tree";
339     else if (r != Z_MEM_ERROR)
340     {
341       z->msg = (char*)"incomplete literal/length tree";
342       r = Z_DATA_ERROR;
343     }
344     return r;
345   }
346 
347   /* build distance tree */
348   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
349   if (r != Z_OK || (*bd == 0 && nl > 257))
350   {
351     if (r == Z_DATA_ERROR)
352       z->msg = (char*)"oversubscribed distance tree";
353     else if (r == Z_BUF_ERROR) {
354 #ifdef PKZIP_BUG_WORKAROUND
355       r = Z_OK;
356     }
357 #else
358       z->msg = (char*)"incomplete distance tree";
359       r = Z_DATA_ERROR;
360     }
361     else if (r != Z_MEM_ERROR)
362     {
363       z->msg = (char*)"empty distance tree with lengths";
364       r = Z_DATA_ERROR;
365     }
366     return r;
367 #endif
368   }
369 
370   /* done */
371   return Z_OK;
372 }
373 
374 
375 /* build fixed tables only once--keep them here */
376 #include "inffixed.h"
377 
378 
zlib_inflate_trees_fixed(bl,bd,tl,td,z)379 int zlib_inflate_trees_fixed(bl, bd, tl, td, z)
380 uIntf *bl;               /* literal desired/actual bit depth */
381 uIntf *bd;               /* distance desired/actual bit depth */
382 inflate_huft * FAR *tl;  /* literal/length tree result */
383 inflate_huft * FAR *td;  /* distance tree result */
384 z_streamp z;             /* for memory allocation */
385 {
386   *bl = fixed_bl;
387   *bd = fixed_bd;
388   *tl = fixed_tl;
389   *td = fixed_td;
390   return Z_OK;
391 }
392