1 /* infblock.c -- interpret and process block types to last block
2  * Copyright (C) 1995-1998 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include <linux/zutil.h>
7 #include "infblock.h"
8 #include "inftrees.h"
9 #include "infcodes.h"
10 #include "infutil.h"
11 
12 struct inflate_codes_state;
13 
14 /* simplify the use of the inflate_huft type with some defines */
15 #define exop word.what.Exop
16 #define bits word.what.Bits
17 
18 /* Table for deflate from PKZIP's appnote.txt. */
19 local const uInt border[] = { /* Order of the bit length code lengths */
20         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
21 
22 /*
23    Notes beyond the 1.93a appnote.txt:
24 
25    1. Distance pointers never point before the beginning of the output
26       stream.
27    2. Distance pointers can point back across blocks, up to 32k away.
28    3. There is an implied maximum of 7 bits for the bit length table and
29       15 bits for the actual data.
30    4. If only one code exists, then it is encoded using one bit.  (Zero
31       would be more efficient, but perhaps a little confusing.)  If two
32       codes exist, they are coded using one bit each (0 and 1).
33    5. There is no way of sending zero distance codes--a dummy must be
34       sent if there are none.  (History: a pre 2.0 version of PKZIP would
35       store blocks with no distance codes, but this was discovered to be
36       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
37       zero distance codes, which is sent as one code of zero bits in
38       length.
39    6. There are up to 286 literal/length codes.  Code 256 represents the
40       end-of-block.  Note however that the static length tree defines
41       288 codes just to fill out the Huffman codes.  Codes 286 and 287
42       cannot be used though, since there is no length base or extra bits
43       defined for them.  Similarily, there are up to 30 distance codes.
44       However, static trees define 32 codes (all 5 bits) to fill out the
45       Huffman codes, but the last two had better not show up in the data.
46    7. Unzip can check dynamic Huffman blocks for complete code sets.
47       The exception is that a single code would not be complete (see #4).
48    8. The five bits following the block type is really the number of
49       literal codes sent minus 257.
50    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
51       (1+6+6).  Therefore, to output three times the length, you output
52       three codes (1+1+1), whereas to output four times the same length,
53       you only need two codes (1+3).  Hmm.
54   10. In the tree reconstruction algorithm, Code = Code + Increment
55       only if BitLength(i) is not zero.  (Pretty obvious.)
56   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
57   12. Note: length code 284 can represent 227-258, but length code 285
58       really is 258.  The last length deserves its own, short code
59       since it gets used a lot in very redundant files.  The length
60       258 is special since 258 - 3 (the min match length) is 255.
61   13. The literal/length and distance code bit lengths are read as a
62       single stream of lengths.  It is possible (and advantageous) for
63       a repeat code (16, 17, or 18) to go across the boundary between
64       the two sets of lengths.
65  */
66 
67 
zlib_inflate_blocks_reset(s,z,c)68 void zlib_inflate_blocks_reset(s, z, c)
69 inflate_blocks_statef *s;
70 z_streamp z;
71 uLongf *c;
72 {
73   if (c != Z_NULL)
74     *c = s->check;
75   if (s->mode == CODES)
76     zlib_inflate_codes_free(s->sub.decode.codes, z);
77   s->mode = TYPE;
78   s->bitk = 0;
79   s->bitb = 0;
80   s->read = s->write = s->window;
81   if (s->checkfn != Z_NULL)
82     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
83 }
84 
zlib_inflate_blocks_new(z,c,w)85 inflate_blocks_statef *zlib_inflate_blocks_new(z, c, w)
86 z_streamp z;
87 check_func c;
88 uInt w;
89 {
90   inflate_blocks_statef *s;
91 
92   s = &WS(z)->working_blocks_state;
93   s->hufts = WS(z)->working_hufts;
94   s->window = WS(z)->working_window;
95   s->end = s->window + w;
96   s->checkfn = c;
97   s->mode = TYPE;
98   zlib_inflate_blocks_reset(s, z, Z_NULL);
99   return s;
100 }
101 
102 
zlib_inflate_blocks(s,z,r)103 int zlib_inflate_blocks(s, z, r)
104 inflate_blocks_statef *s;
105 z_streamp z;
106 int r;
107 {
108   uInt t;               /* temporary storage */
109   uLong b;              /* bit buffer */
110   uInt k;               /* bits in bit buffer */
111   Bytef *p;             /* input data pointer */
112   uInt n;               /* bytes available there */
113   Bytef *q;             /* output window write pointer */
114   uInt m;               /* bytes to end of window or read pointer */
115 
116   /* copy input/output information to locals (UPDATE macro restores) */
117   LOAD
118 
119   /* process input based on current state */
120   while (1) switch (s->mode)
121   {
122     case TYPE:
123       NEEDBITS(3)
124       t = (uInt)b & 7;
125       s->last = t & 1;
126       switch (t >> 1)
127       {
128         case 0:                         /* stored */
129           DUMPBITS(3)
130           t = k & 7;                    /* go to byte boundary */
131           DUMPBITS(t)
132           s->mode = LENS;               /* get length of stored block */
133           break;
134         case 1:                         /* fixed */
135           {
136             uInt bl, bd;
137             inflate_huft *tl, *td;
138 
139             zlib_inflate_trees_fixed(&bl, &bd, &tl, &td, z);
140             s->sub.decode.codes = zlib_inflate_codes_new(bl, bd, tl, td, z);
141             if (s->sub.decode.codes == Z_NULL)
142             {
143               r = Z_MEM_ERROR;
144               LEAVE
145             }
146           }
147           DUMPBITS(3)
148           s->mode = CODES;
149           break;
150         case 2:                         /* dynamic */
151           DUMPBITS(3)
152           s->mode = TABLE;
153           break;
154         case 3:                         /* illegal */
155           DUMPBITS(3)
156           s->mode = B_BAD;
157           z->msg = (char*)"invalid block type";
158           r = Z_DATA_ERROR;
159           LEAVE
160       }
161       break;
162     case LENS:
163       NEEDBITS(32)
164       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
165       {
166         s->mode = B_BAD;
167         z->msg = (char*)"invalid stored block lengths";
168         r = Z_DATA_ERROR;
169         LEAVE
170       }
171       s->sub.left = (uInt)b & 0xffff;
172       b = k = 0;                      /* dump bits */
173       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
174       break;
175     case STORED:
176       if (n == 0)
177         LEAVE
178       NEEDOUT
179       t = s->sub.left;
180       if (t > n) t = n;
181       if (t > m) t = m;
182       memcpy(q, p, t);
183       p += t;  n -= t;
184       q += t;  m -= t;
185       if ((s->sub.left -= t) != 0)
186         break;
187       s->mode = s->last ? DRY : TYPE;
188       break;
189     case TABLE:
190       NEEDBITS(14)
191       s->sub.trees.table = t = (uInt)b & 0x3fff;
192 #ifndef PKZIP_BUG_WORKAROUND
193       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
194       {
195         s->mode = B_BAD;
196         z->msg = (char*)"too many length or distance symbols";
197         r = Z_DATA_ERROR;
198         LEAVE
199       }
200 #endif
201       {
202       	s->sub.trees.blens = WS(z)->working_blens;
203       }
204       DUMPBITS(14)
205       s->sub.trees.index = 0;
206       s->mode = BTREE;
207     case BTREE:
208       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
209       {
210         NEEDBITS(3)
211         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
212         DUMPBITS(3)
213       }
214       while (s->sub.trees.index < 19)
215         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
216       s->sub.trees.bb = 7;
217       t = zlib_inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
218 				  &s->sub.trees.tb, s->hufts, z);
219       if (t != Z_OK)
220       {
221         r = t;
222         if (r == Z_DATA_ERROR)
223           s->mode = B_BAD;
224         LEAVE
225       }
226       s->sub.trees.index = 0;
227       s->mode = DTREE;
228     case DTREE:
229       while (t = s->sub.trees.table,
230              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
231       {
232         inflate_huft *h;
233         uInt i, j, c;
234 
235         t = s->sub.trees.bb;
236         NEEDBITS(t)
237         h = s->sub.trees.tb + ((uInt)b & zlib_inflate_mask[t]);
238         t = h->bits;
239         c = h->base;
240         if (c < 16)
241         {
242           DUMPBITS(t)
243           s->sub.trees.blens[s->sub.trees.index++] = c;
244         }
245         else /* c == 16..18 */
246         {
247           i = c == 18 ? 7 : c - 14;
248           j = c == 18 ? 11 : 3;
249           NEEDBITS(t + i)
250           DUMPBITS(t)
251           j += (uInt)b & zlib_inflate_mask[i];
252           DUMPBITS(i)
253           i = s->sub.trees.index;
254           t = s->sub.trees.table;
255           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
256               (c == 16 && i < 1))
257           {
258             s->mode = B_BAD;
259             z->msg = (char*)"invalid bit length repeat";
260             r = Z_DATA_ERROR;
261             LEAVE
262           }
263           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
264           do {
265             s->sub.trees.blens[i++] = c;
266           } while (--j);
267           s->sub.trees.index = i;
268         }
269       }
270       s->sub.trees.tb = Z_NULL;
271       {
272         uInt bl, bd;
273         inflate_huft *tl, *td;
274         inflate_codes_statef *c;
275 
276         bl = 9;         /* must be <= 9 for lookahead assumptions */
277         bd = 6;         /* must be <= 9 for lookahead assumptions */
278         t = s->sub.trees.table;
279         t = zlib_inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
280 				       s->sub.trees.blens, &bl, &bd, &tl, &td,
281 				       s->hufts, z);
282         if (t != Z_OK)
283         {
284           if (t == (uInt)Z_DATA_ERROR)
285             s->mode = B_BAD;
286           r = t;
287           LEAVE
288         }
289         if ((c = zlib_inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
290         {
291           r = Z_MEM_ERROR;
292           LEAVE
293         }
294         s->sub.decode.codes = c;
295       }
296       s->mode = CODES;
297     case CODES:
298       UPDATE
299       if ((r = zlib_inflate_codes(s, z, r)) != Z_STREAM_END)
300         return zlib_inflate_flush(s, z, r);
301       r = Z_OK;
302       zlib_inflate_codes_free(s->sub.decode.codes, z);
303       LOAD
304       if (!s->last)
305       {
306         s->mode = TYPE;
307         break;
308       }
309       s->mode = DRY;
310     case DRY:
311       FLUSH
312       if (s->read != s->write)
313         LEAVE
314       s->mode = B_DONE;
315     case B_DONE:
316       r = Z_STREAM_END;
317       LEAVE
318     case B_BAD:
319       r = Z_DATA_ERROR;
320       LEAVE
321     default:
322       r = Z_STREAM_ERROR;
323       LEAVE
324   }
325 }
326 
327 
zlib_inflate_blocks_free(s,z)328 int zlib_inflate_blocks_free(s, z)
329 inflate_blocks_statef *s;
330 z_streamp z;
331 {
332   zlib_inflate_blocks_reset(s, z, Z_NULL);
333   return Z_OK;
334 }
335 
336 
zlib_inflate_set_dictionary(s,d,n)337 void zlib_inflate_set_dictionary(s, d, n)
338 inflate_blocks_statef *s;
339 const Bytef *d;
340 uInt  n;
341 {
342   memcpy(s->window, d, n);
343   s->read = s->write = s->window + n;
344 }
345 
346 
347 /* Returns true if inflate is currently at the end of a block generated
348  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
349  * IN assertion: s != Z_NULL
350  */
zlib_inflate_blocks_sync_point(s)351 int zlib_inflate_blocks_sync_point(s)
352 inflate_blocks_statef *s;
353 {
354   return s->mode == LENS;
355 }
356