1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22 
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
29 
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34 
35 struct zd_reg_alpha2_map {
36 	u32 reg;
37 	char alpha2[2];
38 };
39 
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 	{ ZD_REGDOMAIN_FCC, "US" },
42 	{ ZD_REGDOMAIN_IC, "CA" },
43 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 	{ ZD_REGDOMAIN_JAPAN, "JP" },
45 	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
46 	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
47 	{ ZD_REGDOMAIN_SPAIN, "ES" },
48 	{ ZD_REGDOMAIN_FRANCE, "FR" },
49 };
50 
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 	{ .bitrate = 10,
54 	  .hw_value = ZD_CCK_RATE_1M, },
55 	{ .bitrate = 20,
56 	  .hw_value = ZD_CCK_RATE_2M,
57 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 	{ .bitrate = 55,
60 	  .hw_value = ZD_CCK_RATE_5_5M,
61 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 	{ .bitrate = 110,
64 	  .hw_value = ZD_CCK_RATE_11M,
65 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 	{ .bitrate = 60,
68 	  .hw_value = ZD_OFDM_RATE_6M,
69 	  .flags = 0 },
70 	{ .bitrate = 90,
71 	  .hw_value = ZD_OFDM_RATE_9M,
72 	  .flags = 0 },
73 	{ .bitrate = 120,
74 	  .hw_value = ZD_OFDM_RATE_12M,
75 	  .flags = 0 },
76 	{ .bitrate = 180,
77 	  .hw_value = ZD_OFDM_RATE_18M,
78 	  .flags = 0 },
79 	{ .bitrate = 240,
80 	  .hw_value = ZD_OFDM_RATE_24M,
81 	  .flags = 0 },
82 	{ .bitrate = 360,
83 	  .hw_value = ZD_OFDM_RATE_36M,
84 	  .flags = 0 },
85 	{ .bitrate = 480,
86 	  .hw_value = ZD_OFDM_RATE_48M,
87 	  .flags = 0 },
88 	{ .bitrate = 540,
89 	  .hw_value = ZD_OFDM_RATE_54M,
90 	  .flags = 0 },
91 };
92 
93 /*
94  * Zydas retry rates table. Each line is listed in the same order as
95  * in zd_rates[] and contains all the rate used when a packet is sent
96  * starting with a given rates. Let's consider an example :
97  *
98  * "11 Mbits : 4, 3, 2, 1, 0" means :
99  * - packet is sent using 4 different rates
100  * - 1st rate is index 3 (ie 11 Mbits)
101  * - 2nd rate is index 2 (ie 5.5 Mbits)
102  * - 3rd rate is index 1 (ie 2 Mbits)
103  * - 4th rate is index 0 (ie 1 Mbits)
104  */
105 
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 	{ /*  1 Mbits */	1, { 0 }},
108 	{ /*  2 Mbits */	2, { 1,  0 }},
109 	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
110 	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
111 	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
112 	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
113 	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
114 	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
115 	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
116 	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
117 	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
118 	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119 };
120 
121 static const struct ieee80211_channel zd_channels[] = {
122 	{ .center_freq = 2412, .hw_value = 1 },
123 	{ .center_freq = 2417, .hw_value = 2 },
124 	{ .center_freq = 2422, .hw_value = 3 },
125 	{ .center_freq = 2427, .hw_value = 4 },
126 	{ .center_freq = 2432, .hw_value = 5 },
127 	{ .center_freq = 2437, .hw_value = 6 },
128 	{ .center_freq = 2442, .hw_value = 7 },
129 	{ .center_freq = 2447, .hw_value = 8 },
130 	{ .center_freq = 2452, .hw_value = 9 },
131 	{ .center_freq = 2457, .hw_value = 10 },
132 	{ .center_freq = 2462, .hw_value = 11 },
133 	{ .center_freq = 2467, .hw_value = 12 },
134 	{ .center_freq = 2472, .hw_value = 13 },
135 	{ .center_freq = 2484, .hw_value = 14 },
136 };
137 
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 				struct sk_buff *beacon, bool in_intr);
147 
zd_reg2alpha2(u8 regdomain,char * alpha2)148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
149 {
150 	unsigned int i;
151 	struct zd_reg_alpha2_map *reg_map;
152 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 		reg_map = &reg_alpha2_map[i];
154 		if (regdomain == reg_map->reg) {
155 			alpha2[0] = reg_map->alpha2[0];
156 			alpha2[1] = reg_map->alpha2[1];
157 			return 0;
158 		}
159 	}
160 	return 1;
161 }
162 
zd_check_signal(struct ieee80211_hw * hw,int signal)163 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
164 {
165 	struct zd_mac *mac = zd_hw_mac(hw);
166 
167 	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
168 			"%s: signal value from device not in range 0..100, "
169 			"but %d.\n", __func__, signal);
170 
171 	if (signal < 0)
172 		signal = 0;
173 	else if (signal > 100)
174 		signal = 100;
175 
176 	return signal;
177 }
178 
zd_mac_preinit_hw(struct ieee80211_hw * hw)179 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
180 {
181 	int r;
182 	u8 addr[ETH_ALEN];
183 	struct zd_mac *mac = zd_hw_mac(hw);
184 
185 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
186 	if (r)
187 		return r;
188 
189 	SET_IEEE80211_PERM_ADDR(hw, addr);
190 
191 	return 0;
192 }
193 
zd_mac_init_hw(struct ieee80211_hw * hw)194 int zd_mac_init_hw(struct ieee80211_hw *hw)
195 {
196 	int r;
197 	struct zd_mac *mac = zd_hw_mac(hw);
198 	struct zd_chip *chip = &mac->chip;
199 	char alpha2[2];
200 	u8 default_regdomain;
201 
202 	r = zd_chip_enable_int(chip);
203 	if (r)
204 		goto out;
205 	r = zd_chip_init_hw(chip);
206 	if (r)
207 		goto disable_int;
208 
209 	ZD_ASSERT(!irqs_disabled());
210 
211 	r = zd_read_regdomain(chip, &default_regdomain);
212 	if (r)
213 		goto disable_int;
214 	spin_lock_irq(&mac->lock);
215 	mac->regdomain = mac->default_regdomain = default_regdomain;
216 	spin_unlock_irq(&mac->lock);
217 
218 	/* We must inform the device that we are doing encryption/decryption in
219 	 * software at the moment. */
220 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
221 	if (r)
222 		goto disable_int;
223 
224 	r = zd_reg2alpha2(mac->regdomain, alpha2);
225 	if (r)
226 		goto disable_int;
227 
228 	r = regulatory_hint(hw->wiphy, alpha2);
229 disable_int:
230 	zd_chip_disable_int(chip);
231 out:
232 	return r;
233 }
234 
zd_mac_clear(struct zd_mac * mac)235 void zd_mac_clear(struct zd_mac *mac)
236 {
237 	flush_workqueue(zd_workqueue);
238 	zd_chip_clear(&mac->chip);
239 	ZD_ASSERT(!spin_is_locked(&mac->lock));
240 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
241 }
242 
set_rx_filter(struct zd_mac * mac)243 static int set_rx_filter(struct zd_mac *mac)
244 {
245 	unsigned long flags;
246 	u32 filter = STA_RX_FILTER;
247 
248 	spin_lock_irqsave(&mac->lock, flags);
249 	if (mac->pass_ctrl)
250 		filter |= RX_FILTER_CTRL;
251 	spin_unlock_irqrestore(&mac->lock, flags);
252 
253 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
254 }
255 
set_mac_and_bssid(struct zd_mac * mac)256 static int set_mac_and_bssid(struct zd_mac *mac)
257 {
258 	int r;
259 
260 	if (!mac->vif)
261 		return -1;
262 
263 	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
264 	if (r)
265 		return r;
266 
267 	/* Vendor driver after setting MAC either sets BSSID for AP or
268 	 * filter for other modes.
269 	 */
270 	if (mac->type != NL80211_IFTYPE_AP)
271 		return set_rx_filter(mac);
272 	else
273 		return zd_write_bssid(&mac->chip, mac->vif->addr);
274 }
275 
set_mc_hash(struct zd_mac * mac)276 static int set_mc_hash(struct zd_mac *mac)
277 {
278 	struct zd_mc_hash hash;
279 	zd_mc_clear(&hash);
280 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
281 }
282 
zd_op_start(struct ieee80211_hw * hw)283 int zd_op_start(struct ieee80211_hw *hw)
284 {
285 	struct zd_mac *mac = zd_hw_mac(hw);
286 	struct zd_chip *chip = &mac->chip;
287 	struct zd_usb *usb = &chip->usb;
288 	int r;
289 
290 	if (!usb->initialized) {
291 		r = zd_usb_init_hw(usb);
292 		if (r)
293 			goto out;
294 	}
295 
296 	r = zd_chip_enable_int(chip);
297 	if (r < 0)
298 		goto out;
299 
300 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
301 	if (r < 0)
302 		goto disable_int;
303 	r = set_rx_filter(mac);
304 	if (r)
305 		goto disable_int;
306 	r = set_mc_hash(mac);
307 	if (r)
308 		goto disable_int;
309 
310 	/* Wait after setting the multicast hash table and powering on
311 	 * the radio otherwise interface bring up will fail. This matches
312 	 * what the vendor driver did.
313 	 */
314 	msleep(10);
315 
316 	r = zd_chip_switch_radio_on(chip);
317 	if (r < 0) {
318 		dev_err(zd_chip_dev(chip),
319 			"%s: failed to set radio on\n", __func__);
320 		goto disable_int;
321 	}
322 	r = zd_chip_enable_rxtx(chip);
323 	if (r < 0)
324 		goto disable_radio;
325 	r = zd_chip_enable_hwint(chip);
326 	if (r < 0)
327 		goto disable_rxtx;
328 
329 	housekeeping_enable(mac);
330 	beacon_enable(mac);
331 	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
332 	return 0;
333 disable_rxtx:
334 	zd_chip_disable_rxtx(chip);
335 disable_radio:
336 	zd_chip_switch_radio_off(chip);
337 disable_int:
338 	zd_chip_disable_int(chip);
339 out:
340 	return r;
341 }
342 
zd_op_stop(struct ieee80211_hw * hw)343 void zd_op_stop(struct ieee80211_hw *hw)
344 {
345 	struct zd_mac *mac = zd_hw_mac(hw);
346 	struct zd_chip *chip = &mac->chip;
347 	struct sk_buff *skb;
348 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
349 
350 	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
351 
352 	/* The order here deliberately is a little different from the open()
353 	 * method, since we need to make sure there is no opportunity for RX
354 	 * frames to be processed by mac80211 after we have stopped it.
355 	 */
356 
357 	zd_chip_disable_rxtx(chip);
358 	beacon_disable(mac);
359 	housekeeping_disable(mac);
360 	flush_workqueue(zd_workqueue);
361 
362 	zd_chip_disable_hwint(chip);
363 	zd_chip_switch_radio_off(chip);
364 	zd_chip_disable_int(chip);
365 
366 
367 	while ((skb = skb_dequeue(ack_wait_queue)))
368 		dev_kfree_skb_any(skb);
369 }
370 
zd_restore_settings(struct zd_mac * mac)371 int zd_restore_settings(struct zd_mac *mac)
372 {
373 	struct sk_buff *beacon;
374 	struct zd_mc_hash multicast_hash;
375 	unsigned int short_preamble;
376 	int r, beacon_interval, beacon_period;
377 	u8 channel;
378 
379 	dev_dbg_f(zd_mac_dev(mac), "\n");
380 
381 	spin_lock_irq(&mac->lock);
382 	multicast_hash = mac->multicast_hash;
383 	short_preamble = mac->short_preamble;
384 	beacon_interval = mac->beacon.interval;
385 	beacon_period = mac->beacon.period;
386 	channel = mac->channel;
387 	spin_unlock_irq(&mac->lock);
388 
389 	r = set_mac_and_bssid(mac);
390 	if (r < 0) {
391 		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
392 		return r;
393 	}
394 
395 	r = zd_chip_set_channel(&mac->chip, channel);
396 	if (r < 0) {
397 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
398 			  r);
399 		return r;
400 	}
401 
402 	set_rts_cts(mac, short_preamble);
403 
404 	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
405 	if (r < 0) {
406 		dev_dbg_f(zd_mac_dev(mac),
407 			  "zd_chip_set_multicast_hash failed, %d\n", r);
408 		return r;
409 	}
410 
411 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
412 	    mac->type == NL80211_IFTYPE_ADHOC ||
413 	    mac->type == NL80211_IFTYPE_AP) {
414 		if (mac->vif != NULL) {
415 			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
416 			if (beacon)
417 				zd_mac_config_beacon(mac->hw, beacon, false);
418 		}
419 
420 		zd_set_beacon_interval(&mac->chip, beacon_interval,
421 					beacon_period, mac->type);
422 
423 		spin_lock_irq(&mac->lock);
424 		mac->beacon.last_update = jiffies;
425 		spin_unlock_irq(&mac->lock);
426 	}
427 
428 	return 0;
429 }
430 
431 /**
432  * zd_mac_tx_status - reports tx status of a packet if required
433  * @hw - a &struct ieee80211_hw pointer
434  * @skb - a sk-buffer
435  * @flags: extra flags to set in the TX status info
436  * @ackssi: ACK signal strength
437  * @success - True for successful transmission of the frame
438  *
439  * This information calls ieee80211_tx_status_irqsafe() if required by the
440  * control information. It copies the control information into the status
441  * information.
442  *
443  * If no status information has been requested, the skb is freed.
444  */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)445 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
446 		      int ackssi, struct tx_status *tx_status)
447 {
448 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
449 	int i;
450 	int success = 1, retry = 1;
451 	int first_idx;
452 	const struct tx_retry_rate *retries;
453 
454 	ieee80211_tx_info_clear_status(info);
455 
456 	if (tx_status) {
457 		success = !tx_status->failure;
458 		retry = tx_status->retry + success;
459 	}
460 
461 	if (success) {
462 		/* success */
463 		info->flags |= IEEE80211_TX_STAT_ACK;
464 	} else {
465 		/* failure */
466 		info->flags &= ~IEEE80211_TX_STAT_ACK;
467 	}
468 
469 	first_idx = info->status.rates[0].idx;
470 	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
471 	retries = &zd_retry_rates[first_idx];
472 	ZD_ASSERT(1 <= retry && retry <= retries->count);
473 
474 	info->status.rates[0].idx = retries->rate[0];
475 	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
476 
477 	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
478 		info->status.rates[i].idx = retries->rate[i];
479 		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
480 	}
481 	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
482 		info->status.rates[i].idx = retries->rate[retry - 1];
483 		info->status.rates[i].count = 1; // (success ? 1:2);
484 	}
485 	if (i<IEEE80211_TX_MAX_RATES)
486 		info->status.rates[i].idx = -1; /* terminate */
487 
488 	info->status.ack_signal = zd_check_signal(hw, ackssi);
489 	ieee80211_tx_status_irqsafe(hw, skb);
490 }
491 
492 /**
493  * zd_mac_tx_failed - callback for failed frames
494  * @dev: the mac80211 wireless device
495  *
496  * This function is called if a frame couldn't be successfully
497  * transferred. The first frame from the tx queue, will be selected and
498  * reported as error to the upper layers.
499  */
zd_mac_tx_failed(struct urb * urb)500 void zd_mac_tx_failed(struct urb *urb)
501 {
502 	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
503 	struct zd_mac *mac = zd_hw_mac(hw);
504 	struct sk_buff_head *q = &mac->ack_wait_queue;
505 	struct sk_buff *skb;
506 	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
507 	unsigned long flags;
508 	int success = !tx_status->failure;
509 	int retry = tx_status->retry + success;
510 	int found = 0;
511 	int i, position = 0;
512 
513 	q = &mac->ack_wait_queue;
514 	spin_lock_irqsave(&q->lock, flags);
515 
516 	skb_queue_walk(q, skb) {
517 		struct ieee80211_hdr *tx_hdr;
518 		struct ieee80211_tx_info *info;
519 		int first_idx, final_idx;
520 		const struct tx_retry_rate *retries;
521 		u8 final_rate;
522 
523 		position ++;
524 
525 		/* if the hardware reports a failure and we had a 802.11 ACK
526 		 * pending, then we skip the first skb when searching for a
527 		 * matching frame */
528 		if (tx_status->failure && mac->ack_pending &&
529 		    skb_queue_is_first(q, skb)) {
530 			continue;
531 		}
532 
533 		tx_hdr = (struct ieee80211_hdr *)skb->data;
534 
535 		/* we skip all frames not matching the reported destination */
536 		if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
537 			continue;
538 		}
539 
540 		/* we skip all frames not matching the reported final rate */
541 
542 		info = IEEE80211_SKB_CB(skb);
543 		first_idx = info->status.rates[0].idx;
544 		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
545 		retries = &zd_retry_rates[first_idx];
546 		if (retry <= 0 || retry > retries->count)
547 			continue;
548 
549 		final_idx = retries->rate[retry - 1];
550 		final_rate = zd_rates[final_idx].hw_value;
551 
552 		if (final_rate != tx_status->rate) {
553 			continue;
554 		}
555 
556 		found = 1;
557 		break;
558 	}
559 
560 	if (found) {
561 		for (i=1; i<=position; i++) {
562 			skb = __skb_dequeue(q);
563 			zd_mac_tx_status(hw, skb,
564 					 mac->ack_pending ? mac->ack_signal : 0,
565 					 i == position ? tx_status : NULL);
566 			mac->ack_pending = 0;
567 		}
568 	}
569 
570 	spin_unlock_irqrestore(&q->lock, flags);
571 }
572 
573 /**
574  * zd_mac_tx_to_dev - callback for USB layer
575  * @skb: a &sk_buff pointer
576  * @error: error value, 0 if transmission successful
577  *
578  * Informs the MAC layer that the frame has successfully transferred to the
579  * device. If an ACK is required and the transfer to the device has been
580  * successful, the packets are put on the @ack_wait_queue with
581  * the control set removed.
582  */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)583 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
584 {
585 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
586 	struct ieee80211_hw *hw = info->rate_driver_data[0];
587 	struct zd_mac *mac = zd_hw_mac(hw);
588 
589 	ieee80211_tx_info_clear_status(info);
590 
591 	skb_pull(skb, sizeof(struct zd_ctrlset));
592 	if (unlikely(error ||
593 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
594 		/*
595 		 * FIXME : do we need to fill in anything ?
596 		 */
597 		ieee80211_tx_status_irqsafe(hw, skb);
598 	} else {
599 		struct sk_buff_head *q = &mac->ack_wait_queue;
600 
601 		skb_queue_tail(q, skb);
602 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
603 			zd_mac_tx_status(hw, skb_dequeue(q),
604 					 mac->ack_pending ? mac->ack_signal : 0,
605 					 NULL);
606 			mac->ack_pending = 0;
607 		}
608 	}
609 }
610 
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)611 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
612 {
613 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
614 	 * the zd-rate values.
615 	 */
616 	static const u8 rate_divisor[] = {
617 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
618 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
619 		/* Bits must be doubled. */
620 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
621 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
622 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
623 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
624 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
625 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
626 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
627 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
628 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
629 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
630 	};
631 
632 	u32 bits = (u32)tx_length * 8;
633 	u32 divisor;
634 
635 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
636 	if (divisor == 0)
637 		return -EINVAL;
638 
639 	switch (zd_rate) {
640 	case ZD_CCK_RATE_5_5M:
641 		bits = (2*bits) + 10; /* round up to the next integer */
642 		break;
643 	case ZD_CCK_RATE_11M:
644 		if (service) {
645 			u32 t = bits % 11;
646 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
647 			if (0 < t && t <= 3) {
648 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
649 			}
650 		}
651 		bits += 10; /* round up to the next integer */
652 		break;
653 	}
654 
655 	return bits/divisor;
656 }
657 
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)658 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
659 	                   struct ieee80211_hdr *header,
660 	                   struct ieee80211_tx_info *info)
661 {
662 	/*
663 	 * CONTROL TODO:
664 	 * - if backoff needed, enable bit 0
665 	 * - if burst (backoff not needed) disable bit 0
666 	 */
667 
668 	cs->control = 0;
669 
670 	/* First fragment */
671 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
672 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
673 
674 	/* No ACK expected (multicast, etc.) */
675 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
676 		cs->control |= ZD_CS_NO_ACK;
677 
678 	/* PS-POLL */
679 	if (ieee80211_is_pspoll(header->frame_control))
680 		cs->control |= ZD_CS_PS_POLL_FRAME;
681 
682 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
683 		cs->control |= ZD_CS_RTS;
684 
685 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
686 		cs->control |= ZD_CS_SELF_CTS;
687 
688 	/* FIXME: Management frame? */
689 }
690 
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)691 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
692 {
693 	if (!mac->beacon.cur_beacon)
694 		return false;
695 
696 	if (mac->beacon.cur_beacon->len != beacon->len)
697 		return false;
698 
699 	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
700 }
701 
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)702 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
703 {
704 	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
705 
706 	kfree_skb(mac->beacon.cur_beacon);
707 	mac->beacon.cur_beacon = NULL;
708 }
709 
zd_mac_free_cur_beacon(struct zd_mac * mac)710 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
711 {
712 	mutex_lock(&mac->chip.mutex);
713 	zd_mac_free_cur_beacon_locked(mac);
714 	mutex_unlock(&mac->chip.mutex);
715 }
716 
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)717 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
718 				bool in_intr)
719 {
720 	struct zd_mac *mac = zd_hw_mac(hw);
721 	int r, ret, num_cmds, req_pos = 0;
722 	u32 tmp, j = 0;
723 	/* 4 more bytes for tail CRC */
724 	u32 full_len = beacon->len + 4;
725 	unsigned long end_jiffies, message_jiffies;
726 	struct zd_ioreq32 *ioreqs;
727 
728 	mutex_lock(&mac->chip.mutex);
729 
730 	/* Check if hw already has this beacon. */
731 	if (zd_mac_match_cur_beacon(mac, beacon)) {
732 		r = 0;
733 		goto out_nofree;
734 	}
735 
736 	/* Alloc memory for full beacon write at once. */
737 	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
738 	ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
739 	if (!ioreqs) {
740 		r = -ENOMEM;
741 		goto out_nofree;
742 	}
743 
744 	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
745 	if (r < 0)
746 		goto out;
747 	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
748 	if (r < 0)
749 		goto release_sema;
750 	if (in_intr && tmp & 0x2) {
751 		r = -EBUSY;
752 		goto release_sema;
753 	}
754 
755 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
756 	message_jiffies = jiffies + HZ / 10; /*~100ms*/
757 	while (tmp & 0x2) {
758 		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
759 		if (r < 0)
760 			goto release_sema;
761 		if (time_is_before_eq_jiffies(message_jiffies)) {
762 			message_jiffies = jiffies + HZ / 10;
763 			dev_err(zd_mac_dev(mac),
764 					"CR_BCN_FIFO_SEMAPHORE not ready\n");
765 			if (time_is_before_eq_jiffies(end_jiffies))  {
766 				dev_err(zd_mac_dev(mac),
767 						"Giving up beacon config.\n");
768 				r = -ETIMEDOUT;
769 				goto reset_device;
770 			}
771 		}
772 		msleep(20);
773 	}
774 
775 	ioreqs[req_pos].addr = CR_BCN_FIFO;
776 	ioreqs[req_pos].value = full_len - 1;
777 	req_pos++;
778 	if (zd_chip_is_zd1211b(&mac->chip)) {
779 		ioreqs[req_pos].addr = CR_BCN_LENGTH;
780 		ioreqs[req_pos].value = full_len - 1;
781 		req_pos++;
782 	}
783 
784 	for (j = 0 ; j < beacon->len; j++) {
785 		ioreqs[req_pos].addr = CR_BCN_FIFO;
786 		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
787 		req_pos++;
788 	}
789 
790 	for (j = 0; j < 4; j++) {
791 		ioreqs[req_pos].addr = CR_BCN_FIFO;
792 		ioreqs[req_pos].value = 0x0;
793 		req_pos++;
794 	}
795 
796 	BUG_ON(req_pos != num_cmds);
797 
798 	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
799 
800 release_sema:
801 	/*
802 	 * Try very hard to release device beacon semaphore, as otherwise
803 	 * device/driver can be left in unusable state.
804 	 */
805 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
806 	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
807 	while (ret < 0) {
808 		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
809 			ret = -ETIMEDOUT;
810 			break;
811 		}
812 
813 		msleep(20);
814 		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
815 	}
816 
817 	if (ret < 0)
818 		dev_err(zd_mac_dev(mac), "Could not release "
819 					 "CR_BCN_FIFO_SEMAPHORE!\n");
820 	if (r < 0 || ret < 0) {
821 		if (r >= 0)
822 			r = ret;
823 
824 		/* We don't know if beacon was written successfully or not,
825 		 * so clear current. */
826 		zd_mac_free_cur_beacon_locked(mac);
827 
828 		goto out;
829 	}
830 
831 	/* Beacon has now been written successfully, update current. */
832 	zd_mac_free_cur_beacon_locked(mac);
833 	mac->beacon.cur_beacon = beacon;
834 	beacon = NULL;
835 
836 	/* 802.11b/g 2.4G CCK 1Mb
837 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
838 	 * driver)
839 	 */
840 	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
841 				CR_BCN_PLCP_CFG);
842 out:
843 	kfree(ioreqs);
844 out_nofree:
845 	kfree_skb(beacon);
846 	mutex_unlock(&mac->chip.mutex);
847 
848 	return r;
849 
850 reset_device:
851 	zd_mac_free_cur_beacon_locked(mac);
852 	kfree_skb(beacon);
853 
854 	mutex_unlock(&mac->chip.mutex);
855 	kfree(ioreqs);
856 
857 	/* semaphore stuck, reset device to avoid fw freeze later */
858 	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
859 				  "resetting device...");
860 	usb_queue_reset_device(mac->chip.usb.intf);
861 
862 	return r;
863 }
864 
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)865 static int fill_ctrlset(struct zd_mac *mac,
866 			struct sk_buff *skb)
867 {
868 	int r;
869 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
870 	unsigned int frag_len = skb->len + FCS_LEN;
871 	unsigned int packet_length;
872 	struct ieee80211_rate *txrate;
873 	struct zd_ctrlset *cs = (struct zd_ctrlset *)
874 		skb_push(skb, sizeof(struct zd_ctrlset));
875 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
876 
877 	ZD_ASSERT(frag_len <= 0xffff);
878 
879 	/*
880 	 * Firmware computes the duration itself (for all frames except PSPoll)
881 	 * and needs the field set to 0 at input, otherwise firmware messes up
882 	 * duration_id and sets bits 14 and 15 on.
883 	 */
884 	if (!ieee80211_is_pspoll(hdr->frame_control))
885 		hdr->duration_id = 0;
886 
887 	txrate = ieee80211_get_tx_rate(mac->hw, info);
888 
889 	cs->modulation = txrate->hw_value;
890 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
891 		cs->modulation = txrate->hw_value_short;
892 
893 	cs->tx_length = cpu_to_le16(frag_len);
894 
895 	cs_set_control(mac, cs, hdr, info);
896 
897 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
898 	ZD_ASSERT(packet_length <= 0xffff);
899 	/* ZD1211B: Computing the length difference this way, gives us
900 	 * flexibility to compute the packet length.
901 	 */
902 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
903 			packet_length - frag_len : packet_length);
904 
905 	/*
906 	 * CURRENT LENGTH:
907 	 * - transmit frame length in microseconds
908 	 * - seems to be derived from frame length
909 	 * - see Cal_Us_Service() in zdinlinef.h
910 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
911 	 *  - bTxBurstEnable is never set in the vendor driver
912 	 *
913 	 * SERVICE:
914 	 * - "for PLCP configuration"
915 	 * - always 0 except in some situations at 802.11b 11M
916 	 * - see line 53 of zdinlinef.h
917 	 */
918 	cs->service = 0;
919 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
920 		                 le16_to_cpu(cs->tx_length));
921 	if (r < 0)
922 		return r;
923 	cs->current_length = cpu_to_le16(r);
924 	cs->next_frame_length = 0;
925 
926 	return 0;
927 }
928 
929 /**
930  * zd_op_tx - transmits a network frame to the device
931  *
932  * @dev: mac80211 hardware device
933  * @skb: socket buffer
934  * @control: the control structure
935  *
936  * This function transmit an IEEE 802.11 network frame to the device. The
937  * control block of the skbuff will be initialized. If necessary the incoming
938  * mac80211 queues will be stopped.
939  */
zd_op_tx(struct ieee80211_hw * hw,struct sk_buff * skb)940 static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
941 {
942 	struct zd_mac *mac = zd_hw_mac(hw);
943 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
944 	int r;
945 
946 	r = fill_ctrlset(mac, skb);
947 	if (r)
948 		goto fail;
949 
950 	info->rate_driver_data[0] = hw;
951 
952 	r = zd_usb_tx(&mac->chip.usb, skb);
953 	if (r)
954 		goto fail;
955 	return;
956 
957 fail:
958 	dev_kfree_skb(skb);
959 }
960 
961 /**
962  * filter_ack - filters incoming packets for acknowledgements
963  * @dev: the mac80211 device
964  * @rx_hdr: received header
965  * @stats: the status for the received packet
966  *
967  * This functions looks for ACK packets and tries to match them with the
968  * frames in the tx queue. If a match is found the frame will be dequeued and
969  * the upper layers is informed about the successful transmission. If
970  * mac80211 queues have been stopped and the number of frames still to be
971  * transmitted is low the queues will be opened again.
972  *
973  * Returns 1 if the frame was an ACK, 0 if it was ignored.
974  */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)975 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
976 		      struct ieee80211_rx_status *stats)
977 {
978 	struct zd_mac *mac = zd_hw_mac(hw);
979 	struct sk_buff *skb;
980 	struct sk_buff_head *q;
981 	unsigned long flags;
982 	int found = 0;
983 	int i, position = 0;
984 
985 	if (!ieee80211_is_ack(rx_hdr->frame_control))
986 		return 0;
987 
988 	q = &mac->ack_wait_queue;
989 	spin_lock_irqsave(&q->lock, flags);
990 	skb_queue_walk(q, skb) {
991 		struct ieee80211_hdr *tx_hdr;
992 
993 		position ++;
994 
995 		if (mac->ack_pending && skb_queue_is_first(q, skb))
996 		    continue;
997 
998 		tx_hdr = (struct ieee80211_hdr *)skb->data;
999 		if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
1000 		{
1001 			found = 1;
1002 			break;
1003 		}
1004 	}
1005 
1006 	if (found) {
1007 		for (i=1; i<position; i++) {
1008 			skb = __skb_dequeue(q);
1009 			zd_mac_tx_status(hw, skb,
1010 					 mac->ack_pending ? mac->ack_signal : 0,
1011 					 NULL);
1012 			mac->ack_pending = 0;
1013 		}
1014 
1015 		mac->ack_pending = 1;
1016 		mac->ack_signal = stats->signal;
1017 
1018 		/* Prevent pending tx-packet on AP-mode */
1019 		if (mac->type == NL80211_IFTYPE_AP) {
1020 			skb = __skb_dequeue(q);
1021 			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1022 			mac->ack_pending = 0;
1023 		}
1024 	}
1025 
1026 	spin_unlock_irqrestore(&q->lock, flags);
1027 	return 1;
1028 }
1029 
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1030 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1031 {
1032 	struct zd_mac *mac = zd_hw_mac(hw);
1033 	struct ieee80211_rx_status stats;
1034 	const struct rx_status *status;
1035 	struct sk_buff *skb;
1036 	int bad_frame = 0;
1037 	__le16 fc;
1038 	int need_padding;
1039 	int i;
1040 	u8 rate;
1041 
1042 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1043 	             FCS_LEN + sizeof(struct rx_status))
1044 		return -EINVAL;
1045 
1046 	memset(&stats, 0, sizeof(stats));
1047 
1048 	/* Note about pass_failed_fcs and pass_ctrl access below:
1049 	 * mac locking intentionally omitted here, as this is the only unlocked
1050 	 * reader and the only writer is configure_filter. Plus, if there were
1051 	 * any races accessing these variables, it wouldn't really matter.
1052 	 * If mac80211 ever provides a way for us to access filter flags
1053 	 * from outside configure_filter, we could improve on this. Also, this
1054 	 * situation may change once we implement some kind of DMA-into-skb
1055 	 * RX path. */
1056 
1057 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
1058 	status = (struct rx_status *)
1059 		(buffer + (length - sizeof(struct rx_status)));
1060 	if (status->frame_status & ZD_RX_ERROR) {
1061 		if (mac->pass_failed_fcs &&
1062 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
1063 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1064 			bad_frame = 1;
1065 		} else {
1066 			return -EINVAL;
1067 		}
1068 	}
1069 
1070 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1071 	stats.band = IEEE80211_BAND_2GHZ;
1072 	stats.signal = zd_check_signal(hw, status->signal_strength);
1073 
1074 	rate = zd_rx_rate(buffer, status);
1075 
1076 	/* todo: return index in the big switches in zd_rx_rate instead */
1077 	for (i = 0; i < mac->band.n_bitrates; i++)
1078 		if (rate == mac->band.bitrates[i].hw_value)
1079 			stats.rate_idx = i;
1080 
1081 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1082 	buffer += ZD_PLCP_HEADER_SIZE;
1083 
1084 	/* Except for bad frames, filter each frame to see if it is an ACK, in
1085 	 * which case our internal TX tracking is updated. Normally we then
1086 	 * bail here as there's no need to pass ACKs on up to the stack, but
1087 	 * there is also the case where the stack has requested us to pass
1088 	 * control frames on up (pass_ctrl) which we must consider. */
1089 	if (!bad_frame &&
1090 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1091 			&& !mac->pass_ctrl)
1092 		return 0;
1093 
1094 	fc = get_unaligned((__le16*)buffer);
1095 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1096 
1097 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1098 	if (skb == NULL)
1099 		return -ENOMEM;
1100 	if (need_padding) {
1101 		/* Make sure the payload data is 4 byte aligned. */
1102 		skb_reserve(skb, 2);
1103 	}
1104 
1105 	/* FIXME : could we avoid this big memcpy ? */
1106 	memcpy(skb_put(skb, length), buffer, length);
1107 
1108 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1109 	ieee80211_rx_irqsafe(hw, skb);
1110 	return 0;
1111 }
1112 
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1113 static int zd_op_add_interface(struct ieee80211_hw *hw,
1114 				struct ieee80211_vif *vif)
1115 {
1116 	struct zd_mac *mac = zd_hw_mac(hw);
1117 
1118 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1119 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1120 		return -EOPNOTSUPP;
1121 
1122 	switch (vif->type) {
1123 	case NL80211_IFTYPE_MONITOR:
1124 	case NL80211_IFTYPE_MESH_POINT:
1125 	case NL80211_IFTYPE_STATION:
1126 	case NL80211_IFTYPE_ADHOC:
1127 	case NL80211_IFTYPE_AP:
1128 		mac->type = vif->type;
1129 		break;
1130 	default:
1131 		return -EOPNOTSUPP;
1132 	}
1133 
1134 	mac->vif = vif;
1135 
1136 	return set_mac_and_bssid(mac);
1137 }
1138 
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1139 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1140 				    struct ieee80211_vif *vif)
1141 {
1142 	struct zd_mac *mac = zd_hw_mac(hw);
1143 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1144 	mac->vif = NULL;
1145 	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1146 	zd_write_mac_addr(&mac->chip, NULL);
1147 
1148 	zd_mac_free_cur_beacon(mac);
1149 }
1150 
zd_op_config(struct ieee80211_hw * hw,u32 changed)1151 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1152 {
1153 	struct zd_mac *mac = zd_hw_mac(hw);
1154 	struct ieee80211_conf *conf = &hw->conf;
1155 
1156 	spin_lock_irq(&mac->lock);
1157 	mac->channel = conf->channel->hw_value;
1158 	spin_unlock_irq(&mac->lock);
1159 
1160 	return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1161 }
1162 
zd_beacon_done(struct zd_mac * mac)1163 static void zd_beacon_done(struct zd_mac *mac)
1164 {
1165 	struct sk_buff *skb, *beacon;
1166 
1167 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1168 		return;
1169 	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1170 		return;
1171 
1172 	/*
1173 	 * Send out buffered broad- and multicast frames.
1174 	 */
1175 	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1176 		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1177 		if (!skb)
1178 			break;
1179 		zd_op_tx(mac->hw, skb);
1180 	}
1181 
1182 	/*
1183 	 * Fetch next beacon so that tim_count is updated.
1184 	 */
1185 	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1186 	if (beacon)
1187 		zd_mac_config_beacon(mac->hw, beacon, true);
1188 
1189 	spin_lock_irq(&mac->lock);
1190 	mac->beacon.last_update = jiffies;
1191 	spin_unlock_irq(&mac->lock);
1192 }
1193 
zd_process_intr(struct work_struct * work)1194 static void zd_process_intr(struct work_struct *work)
1195 {
1196 	u16 int_status;
1197 	unsigned long flags;
1198 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1199 
1200 	spin_lock_irqsave(&mac->lock, flags);
1201 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1202 	spin_unlock_irqrestore(&mac->lock, flags);
1203 
1204 	if (int_status & INT_CFG_NEXT_BCN) {
1205 		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1206 		zd_beacon_done(mac);
1207 	} else {
1208 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1209 	}
1210 
1211 	zd_chip_enable_hwint(&mac->chip);
1212 }
1213 
1214 
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1215 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1216 				   struct netdev_hw_addr_list *mc_list)
1217 {
1218 	struct zd_mac *mac = zd_hw_mac(hw);
1219 	struct zd_mc_hash hash;
1220 	struct netdev_hw_addr *ha;
1221 
1222 	zd_mc_clear(&hash);
1223 
1224 	netdev_hw_addr_list_for_each(ha, mc_list) {
1225 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1226 		zd_mc_add_addr(&hash, ha->addr);
1227 	}
1228 
1229 	return hash.low | ((u64)hash.high << 32);
1230 }
1231 
1232 #define SUPPORTED_FIF_FLAGS \
1233 	(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1234 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1235 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1236 			unsigned int changed_flags,
1237 			unsigned int *new_flags,
1238 			u64 multicast)
1239 {
1240 	struct zd_mc_hash hash = {
1241 		.low = multicast,
1242 		.high = multicast >> 32,
1243 	};
1244 	struct zd_mac *mac = zd_hw_mac(hw);
1245 	unsigned long flags;
1246 	int r;
1247 
1248 	/* Only deal with supported flags */
1249 	changed_flags &= SUPPORTED_FIF_FLAGS;
1250 	*new_flags &= SUPPORTED_FIF_FLAGS;
1251 
1252 	/*
1253 	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1254 	 * has changed, no bit in changed_flags is set. To handle this
1255 	 * situation, we do not return if changed_flags is 0. If we do so,
1256 	 * we will have some issue with IPv6 which uses multicast for link
1257 	 * layer address resolution.
1258 	 */
1259 	if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1260 		zd_mc_add_all(&hash);
1261 
1262 	spin_lock_irqsave(&mac->lock, flags);
1263 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1264 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1265 	mac->multicast_hash = hash;
1266 	spin_unlock_irqrestore(&mac->lock, flags);
1267 
1268 	zd_chip_set_multicast_hash(&mac->chip, &hash);
1269 
1270 	if (changed_flags & FIF_CONTROL) {
1271 		r = set_rx_filter(mac);
1272 		if (r)
1273 			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1274 	}
1275 
1276 	/* no handling required for FIF_OTHER_BSS as we don't currently
1277 	 * do BSSID filtering */
1278 	/* FIXME: in future it would be nice to enable the probe response
1279 	 * filter (so that the driver doesn't see them) until
1280 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1281 	 * have to schedule work to enable prbresp reception, which might
1282 	 * happen too late. For now we'll just listen and forward them all the
1283 	 * time. */
1284 }
1285 
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1286 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1287 {
1288 	mutex_lock(&mac->chip.mutex);
1289 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1290 	mutex_unlock(&mac->chip.mutex);
1291 }
1292 
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1293 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1294 				   struct ieee80211_vif *vif,
1295 				   struct ieee80211_bss_conf *bss_conf,
1296 				   u32 changes)
1297 {
1298 	struct zd_mac *mac = zd_hw_mac(hw);
1299 	int associated;
1300 
1301 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1302 
1303 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1304 	    mac->type == NL80211_IFTYPE_ADHOC ||
1305 	    mac->type == NL80211_IFTYPE_AP) {
1306 		associated = true;
1307 		if (changes & BSS_CHANGED_BEACON) {
1308 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1309 
1310 			if (beacon) {
1311 				zd_chip_disable_hwint(&mac->chip);
1312 				zd_mac_config_beacon(hw, beacon, false);
1313 				zd_chip_enable_hwint(&mac->chip);
1314 			}
1315 		}
1316 
1317 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1318 			u16 interval = 0;
1319 			u8 period = 0;
1320 
1321 			if (bss_conf->enable_beacon) {
1322 				period = bss_conf->dtim_period;
1323 				interval = bss_conf->beacon_int;
1324 			}
1325 
1326 			spin_lock_irq(&mac->lock);
1327 			mac->beacon.period = period;
1328 			mac->beacon.interval = interval;
1329 			mac->beacon.last_update = jiffies;
1330 			spin_unlock_irq(&mac->lock);
1331 
1332 			zd_set_beacon_interval(&mac->chip, interval, period,
1333 					       mac->type);
1334 		}
1335 	} else
1336 		associated = is_valid_ether_addr(bss_conf->bssid);
1337 
1338 	spin_lock_irq(&mac->lock);
1339 	mac->associated = associated;
1340 	spin_unlock_irq(&mac->lock);
1341 
1342 	/* TODO: do hardware bssid filtering */
1343 
1344 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1345 		spin_lock_irq(&mac->lock);
1346 		mac->short_preamble = bss_conf->use_short_preamble;
1347 		spin_unlock_irq(&mac->lock);
1348 
1349 		set_rts_cts(mac, bss_conf->use_short_preamble);
1350 	}
1351 }
1352 
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1353 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1354 {
1355 	struct zd_mac *mac = zd_hw_mac(hw);
1356 	return zd_chip_get_tsf(&mac->chip);
1357 }
1358 
1359 static const struct ieee80211_ops zd_ops = {
1360 	.tx			= zd_op_tx,
1361 	.start			= zd_op_start,
1362 	.stop			= zd_op_stop,
1363 	.add_interface		= zd_op_add_interface,
1364 	.remove_interface	= zd_op_remove_interface,
1365 	.config			= zd_op_config,
1366 	.prepare_multicast	= zd_op_prepare_multicast,
1367 	.configure_filter	= zd_op_configure_filter,
1368 	.bss_info_changed	= zd_op_bss_info_changed,
1369 	.get_tsf		= zd_op_get_tsf,
1370 };
1371 
zd_mac_alloc_hw(struct usb_interface * intf)1372 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1373 {
1374 	struct zd_mac *mac;
1375 	struct ieee80211_hw *hw;
1376 
1377 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1378 	if (!hw) {
1379 		dev_dbg_f(&intf->dev, "out of memory\n");
1380 		return NULL;
1381 	}
1382 
1383 	mac = zd_hw_mac(hw);
1384 
1385 	memset(mac, 0, sizeof(*mac));
1386 	spin_lock_init(&mac->lock);
1387 	mac->hw = hw;
1388 
1389 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1390 
1391 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1392 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1393 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1394 	mac->band.bitrates = mac->rates;
1395 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1396 	mac->band.channels = mac->channels;
1397 
1398 	hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1399 
1400 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1401 		    IEEE80211_HW_SIGNAL_UNSPEC |
1402 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1403 
1404 	hw->wiphy->interface_modes =
1405 		BIT(NL80211_IFTYPE_MESH_POINT) |
1406 		BIT(NL80211_IFTYPE_STATION) |
1407 		BIT(NL80211_IFTYPE_ADHOC) |
1408 		BIT(NL80211_IFTYPE_AP);
1409 
1410 	hw->max_signal = 100;
1411 	hw->queues = 1;
1412 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1413 
1414 	/*
1415 	 * Tell mac80211 that we support multi rate retries
1416 	 */
1417 	hw->max_rates = IEEE80211_TX_MAX_RATES;
1418 	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1419 
1420 	skb_queue_head_init(&mac->ack_wait_queue);
1421 	mac->ack_pending = 0;
1422 
1423 	zd_chip_init(&mac->chip, hw, intf);
1424 	housekeeping_init(mac);
1425 	beacon_init(mac);
1426 	INIT_WORK(&mac->process_intr, zd_process_intr);
1427 
1428 	SET_IEEE80211_DEV(hw, &intf->dev);
1429 	return hw;
1430 }
1431 
1432 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1433 
beacon_watchdog_handler(struct work_struct * work)1434 static void beacon_watchdog_handler(struct work_struct *work)
1435 {
1436 	struct zd_mac *mac =
1437 		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1438 	struct sk_buff *beacon;
1439 	unsigned long timeout;
1440 	int interval, period;
1441 
1442 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1443 		goto rearm;
1444 	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1445 		goto rearm;
1446 
1447 	spin_lock_irq(&mac->lock);
1448 	interval = mac->beacon.interval;
1449 	period = mac->beacon.period;
1450 	timeout = mac->beacon.last_update +
1451 			msecs_to_jiffies(interval * 1024 / 1000) * 3;
1452 	spin_unlock_irq(&mac->lock);
1453 
1454 	if (interval > 0 && time_is_before_jiffies(timeout)) {
1455 		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1456 					   "restarting. "
1457 					   "(interval: %d, dtim: %d)\n",
1458 					   interval, period);
1459 
1460 		zd_chip_disable_hwint(&mac->chip);
1461 
1462 		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1463 		if (beacon) {
1464 			zd_mac_free_cur_beacon(mac);
1465 
1466 			zd_mac_config_beacon(mac->hw, beacon, false);
1467 		}
1468 
1469 		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1470 
1471 		zd_chip_enable_hwint(&mac->chip);
1472 
1473 		spin_lock_irq(&mac->lock);
1474 		mac->beacon.last_update = jiffies;
1475 		spin_unlock_irq(&mac->lock);
1476 	}
1477 
1478 rearm:
1479 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1480 			   BEACON_WATCHDOG_DELAY);
1481 }
1482 
beacon_init(struct zd_mac * mac)1483 static void beacon_init(struct zd_mac *mac)
1484 {
1485 	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1486 }
1487 
beacon_enable(struct zd_mac * mac)1488 static void beacon_enable(struct zd_mac *mac)
1489 {
1490 	dev_dbg_f(zd_mac_dev(mac), "\n");
1491 
1492 	mac->beacon.last_update = jiffies;
1493 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1494 			   BEACON_WATCHDOG_DELAY);
1495 }
1496 
beacon_disable(struct zd_mac * mac)1497 static void beacon_disable(struct zd_mac *mac)
1498 {
1499 	dev_dbg_f(zd_mac_dev(mac), "\n");
1500 	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1501 
1502 	zd_mac_free_cur_beacon(mac);
1503 }
1504 
1505 #define LINK_LED_WORK_DELAY HZ
1506 
link_led_handler(struct work_struct * work)1507 static void link_led_handler(struct work_struct *work)
1508 {
1509 	struct zd_mac *mac =
1510 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1511 	struct zd_chip *chip = &mac->chip;
1512 	int is_associated;
1513 	int r;
1514 
1515 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1516 		goto requeue;
1517 
1518 	spin_lock_irq(&mac->lock);
1519 	is_associated = mac->associated;
1520 	spin_unlock_irq(&mac->lock);
1521 
1522 	r = zd_chip_control_leds(chip,
1523 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1524 	if (r)
1525 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1526 
1527 requeue:
1528 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1529 		           LINK_LED_WORK_DELAY);
1530 }
1531 
housekeeping_init(struct zd_mac * mac)1532 static void housekeeping_init(struct zd_mac *mac)
1533 {
1534 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1535 }
1536 
housekeeping_enable(struct zd_mac * mac)1537 static void housekeeping_enable(struct zd_mac *mac)
1538 {
1539 	dev_dbg_f(zd_mac_dev(mac), "\n");
1540 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1541 			   0);
1542 }
1543 
housekeeping_disable(struct zd_mac * mac)1544 static void housekeeping_disable(struct zd_mac *mac)
1545 {
1546 	dev_dbg_f(zd_mac_dev(mac), "\n");
1547 	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1548 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1549 }
1550