1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
29
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34
35 struct zd_reg_alpha2_map {
36 u32 reg;
37 char alpha2[2];
38 };
39
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 { ZD_REGDOMAIN_FCC, "US" },
42 { ZD_REGDOMAIN_IC, "CA" },
43 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3, "JP" },
47 { ZD_REGDOMAIN_SPAIN, "ES" },
48 { ZD_REGDOMAIN_FRANCE, "FR" },
49 };
50
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 { .bitrate = 10,
54 .hw_value = ZD_CCK_RATE_1M, },
55 { .bitrate = 20,
56 .hw_value = ZD_CCK_RATE_2M,
57 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 { .bitrate = 55,
60 .hw_value = ZD_CCK_RATE_5_5M,
61 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 { .bitrate = 110,
64 .hw_value = ZD_CCK_RATE_11M,
65 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 { .bitrate = 60,
68 .hw_value = ZD_OFDM_RATE_6M,
69 .flags = 0 },
70 { .bitrate = 90,
71 .hw_value = ZD_OFDM_RATE_9M,
72 .flags = 0 },
73 { .bitrate = 120,
74 .hw_value = ZD_OFDM_RATE_12M,
75 .flags = 0 },
76 { .bitrate = 180,
77 .hw_value = ZD_OFDM_RATE_18M,
78 .flags = 0 },
79 { .bitrate = 240,
80 .hw_value = ZD_OFDM_RATE_24M,
81 .flags = 0 },
82 { .bitrate = 360,
83 .hw_value = ZD_OFDM_RATE_36M,
84 .flags = 0 },
85 { .bitrate = 480,
86 .hw_value = ZD_OFDM_RATE_48M,
87 .flags = 0 },
88 { .bitrate = 540,
89 .hw_value = ZD_OFDM_RATE_54M,
90 .flags = 0 },
91 };
92
93 /*
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
97 *
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
104 */
105
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119 };
120
121 static const struct ieee80211_channel zd_channels[] = {
122 { .center_freq = 2412, .hw_value = 1 },
123 { .center_freq = 2417, .hw_value = 2 },
124 { .center_freq = 2422, .hw_value = 3 },
125 { .center_freq = 2427, .hw_value = 4 },
126 { .center_freq = 2432, .hw_value = 5 },
127 { .center_freq = 2437, .hw_value = 6 },
128 { .center_freq = 2442, .hw_value = 7 },
129 { .center_freq = 2447, .hw_value = 8 },
130 { .center_freq = 2452, .hw_value = 9 },
131 { .center_freq = 2457, .hw_value = 10 },
132 { .center_freq = 2462, .hw_value = 11 },
133 { .center_freq = 2467, .hw_value = 12 },
134 { .center_freq = 2472, .hw_value = 13 },
135 { .center_freq = 2484, .hw_value = 14 },
136 };
137
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 struct sk_buff *beacon, bool in_intr);
147
zd_reg2alpha2(u8 regdomain,char * alpha2)148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
149 {
150 unsigned int i;
151 struct zd_reg_alpha2_map *reg_map;
152 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 reg_map = ®_alpha2_map[i];
154 if (regdomain == reg_map->reg) {
155 alpha2[0] = reg_map->alpha2[0];
156 alpha2[1] = reg_map->alpha2[1];
157 return 0;
158 }
159 }
160 return 1;
161 }
162
zd_check_signal(struct ieee80211_hw * hw,int signal)163 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
164 {
165 struct zd_mac *mac = zd_hw_mac(hw);
166
167 dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
168 "%s: signal value from device not in range 0..100, "
169 "but %d.\n", __func__, signal);
170
171 if (signal < 0)
172 signal = 0;
173 else if (signal > 100)
174 signal = 100;
175
176 return signal;
177 }
178
zd_mac_preinit_hw(struct ieee80211_hw * hw)179 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
180 {
181 int r;
182 u8 addr[ETH_ALEN];
183 struct zd_mac *mac = zd_hw_mac(hw);
184
185 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
186 if (r)
187 return r;
188
189 SET_IEEE80211_PERM_ADDR(hw, addr);
190
191 return 0;
192 }
193
zd_mac_init_hw(struct ieee80211_hw * hw)194 int zd_mac_init_hw(struct ieee80211_hw *hw)
195 {
196 int r;
197 struct zd_mac *mac = zd_hw_mac(hw);
198 struct zd_chip *chip = &mac->chip;
199 char alpha2[2];
200 u8 default_regdomain;
201
202 r = zd_chip_enable_int(chip);
203 if (r)
204 goto out;
205 r = zd_chip_init_hw(chip);
206 if (r)
207 goto disable_int;
208
209 ZD_ASSERT(!irqs_disabled());
210
211 r = zd_read_regdomain(chip, &default_regdomain);
212 if (r)
213 goto disable_int;
214 spin_lock_irq(&mac->lock);
215 mac->regdomain = mac->default_regdomain = default_regdomain;
216 spin_unlock_irq(&mac->lock);
217
218 /* We must inform the device that we are doing encryption/decryption in
219 * software at the moment. */
220 r = zd_set_encryption_type(chip, ENC_SNIFFER);
221 if (r)
222 goto disable_int;
223
224 r = zd_reg2alpha2(mac->regdomain, alpha2);
225 if (r)
226 goto disable_int;
227
228 r = regulatory_hint(hw->wiphy, alpha2);
229 disable_int:
230 zd_chip_disable_int(chip);
231 out:
232 return r;
233 }
234
zd_mac_clear(struct zd_mac * mac)235 void zd_mac_clear(struct zd_mac *mac)
236 {
237 flush_workqueue(zd_workqueue);
238 zd_chip_clear(&mac->chip);
239 ZD_ASSERT(!spin_is_locked(&mac->lock));
240 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
241 }
242
set_rx_filter(struct zd_mac * mac)243 static int set_rx_filter(struct zd_mac *mac)
244 {
245 unsigned long flags;
246 u32 filter = STA_RX_FILTER;
247
248 spin_lock_irqsave(&mac->lock, flags);
249 if (mac->pass_ctrl)
250 filter |= RX_FILTER_CTRL;
251 spin_unlock_irqrestore(&mac->lock, flags);
252
253 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
254 }
255
set_mac_and_bssid(struct zd_mac * mac)256 static int set_mac_and_bssid(struct zd_mac *mac)
257 {
258 int r;
259
260 if (!mac->vif)
261 return -1;
262
263 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
264 if (r)
265 return r;
266
267 /* Vendor driver after setting MAC either sets BSSID for AP or
268 * filter for other modes.
269 */
270 if (mac->type != NL80211_IFTYPE_AP)
271 return set_rx_filter(mac);
272 else
273 return zd_write_bssid(&mac->chip, mac->vif->addr);
274 }
275
set_mc_hash(struct zd_mac * mac)276 static int set_mc_hash(struct zd_mac *mac)
277 {
278 struct zd_mc_hash hash;
279 zd_mc_clear(&hash);
280 return zd_chip_set_multicast_hash(&mac->chip, &hash);
281 }
282
zd_op_start(struct ieee80211_hw * hw)283 int zd_op_start(struct ieee80211_hw *hw)
284 {
285 struct zd_mac *mac = zd_hw_mac(hw);
286 struct zd_chip *chip = &mac->chip;
287 struct zd_usb *usb = &chip->usb;
288 int r;
289
290 if (!usb->initialized) {
291 r = zd_usb_init_hw(usb);
292 if (r)
293 goto out;
294 }
295
296 r = zd_chip_enable_int(chip);
297 if (r < 0)
298 goto out;
299
300 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
301 if (r < 0)
302 goto disable_int;
303 r = set_rx_filter(mac);
304 if (r)
305 goto disable_int;
306 r = set_mc_hash(mac);
307 if (r)
308 goto disable_int;
309
310 /* Wait after setting the multicast hash table and powering on
311 * the radio otherwise interface bring up will fail. This matches
312 * what the vendor driver did.
313 */
314 msleep(10);
315
316 r = zd_chip_switch_radio_on(chip);
317 if (r < 0) {
318 dev_err(zd_chip_dev(chip),
319 "%s: failed to set radio on\n", __func__);
320 goto disable_int;
321 }
322 r = zd_chip_enable_rxtx(chip);
323 if (r < 0)
324 goto disable_radio;
325 r = zd_chip_enable_hwint(chip);
326 if (r < 0)
327 goto disable_rxtx;
328
329 housekeeping_enable(mac);
330 beacon_enable(mac);
331 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
332 return 0;
333 disable_rxtx:
334 zd_chip_disable_rxtx(chip);
335 disable_radio:
336 zd_chip_switch_radio_off(chip);
337 disable_int:
338 zd_chip_disable_int(chip);
339 out:
340 return r;
341 }
342
zd_op_stop(struct ieee80211_hw * hw)343 void zd_op_stop(struct ieee80211_hw *hw)
344 {
345 struct zd_mac *mac = zd_hw_mac(hw);
346 struct zd_chip *chip = &mac->chip;
347 struct sk_buff *skb;
348 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
349
350 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
351
352 /* The order here deliberately is a little different from the open()
353 * method, since we need to make sure there is no opportunity for RX
354 * frames to be processed by mac80211 after we have stopped it.
355 */
356
357 zd_chip_disable_rxtx(chip);
358 beacon_disable(mac);
359 housekeeping_disable(mac);
360 flush_workqueue(zd_workqueue);
361
362 zd_chip_disable_hwint(chip);
363 zd_chip_switch_radio_off(chip);
364 zd_chip_disable_int(chip);
365
366
367 while ((skb = skb_dequeue(ack_wait_queue)))
368 dev_kfree_skb_any(skb);
369 }
370
zd_restore_settings(struct zd_mac * mac)371 int zd_restore_settings(struct zd_mac *mac)
372 {
373 struct sk_buff *beacon;
374 struct zd_mc_hash multicast_hash;
375 unsigned int short_preamble;
376 int r, beacon_interval, beacon_period;
377 u8 channel;
378
379 dev_dbg_f(zd_mac_dev(mac), "\n");
380
381 spin_lock_irq(&mac->lock);
382 multicast_hash = mac->multicast_hash;
383 short_preamble = mac->short_preamble;
384 beacon_interval = mac->beacon.interval;
385 beacon_period = mac->beacon.period;
386 channel = mac->channel;
387 spin_unlock_irq(&mac->lock);
388
389 r = set_mac_and_bssid(mac);
390 if (r < 0) {
391 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
392 return r;
393 }
394
395 r = zd_chip_set_channel(&mac->chip, channel);
396 if (r < 0) {
397 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
398 r);
399 return r;
400 }
401
402 set_rts_cts(mac, short_preamble);
403
404 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
405 if (r < 0) {
406 dev_dbg_f(zd_mac_dev(mac),
407 "zd_chip_set_multicast_hash failed, %d\n", r);
408 return r;
409 }
410
411 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
412 mac->type == NL80211_IFTYPE_ADHOC ||
413 mac->type == NL80211_IFTYPE_AP) {
414 if (mac->vif != NULL) {
415 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
416 if (beacon)
417 zd_mac_config_beacon(mac->hw, beacon, false);
418 }
419
420 zd_set_beacon_interval(&mac->chip, beacon_interval,
421 beacon_period, mac->type);
422
423 spin_lock_irq(&mac->lock);
424 mac->beacon.last_update = jiffies;
425 spin_unlock_irq(&mac->lock);
426 }
427
428 return 0;
429 }
430
431 /**
432 * zd_mac_tx_status - reports tx status of a packet if required
433 * @hw - a &struct ieee80211_hw pointer
434 * @skb - a sk-buffer
435 * @flags: extra flags to set in the TX status info
436 * @ackssi: ACK signal strength
437 * @success - True for successful transmission of the frame
438 *
439 * This information calls ieee80211_tx_status_irqsafe() if required by the
440 * control information. It copies the control information into the status
441 * information.
442 *
443 * If no status information has been requested, the skb is freed.
444 */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)445 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
446 int ackssi, struct tx_status *tx_status)
447 {
448 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
449 int i;
450 int success = 1, retry = 1;
451 int first_idx;
452 const struct tx_retry_rate *retries;
453
454 ieee80211_tx_info_clear_status(info);
455
456 if (tx_status) {
457 success = !tx_status->failure;
458 retry = tx_status->retry + success;
459 }
460
461 if (success) {
462 /* success */
463 info->flags |= IEEE80211_TX_STAT_ACK;
464 } else {
465 /* failure */
466 info->flags &= ~IEEE80211_TX_STAT_ACK;
467 }
468
469 first_idx = info->status.rates[0].idx;
470 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
471 retries = &zd_retry_rates[first_idx];
472 ZD_ASSERT(1 <= retry && retry <= retries->count);
473
474 info->status.rates[0].idx = retries->rate[0];
475 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
476
477 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
478 info->status.rates[i].idx = retries->rate[i];
479 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
480 }
481 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
482 info->status.rates[i].idx = retries->rate[retry - 1];
483 info->status.rates[i].count = 1; // (success ? 1:2);
484 }
485 if (i<IEEE80211_TX_MAX_RATES)
486 info->status.rates[i].idx = -1; /* terminate */
487
488 info->status.ack_signal = zd_check_signal(hw, ackssi);
489 ieee80211_tx_status_irqsafe(hw, skb);
490 }
491
492 /**
493 * zd_mac_tx_failed - callback for failed frames
494 * @dev: the mac80211 wireless device
495 *
496 * This function is called if a frame couldn't be successfully
497 * transferred. The first frame from the tx queue, will be selected and
498 * reported as error to the upper layers.
499 */
zd_mac_tx_failed(struct urb * urb)500 void zd_mac_tx_failed(struct urb *urb)
501 {
502 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
503 struct zd_mac *mac = zd_hw_mac(hw);
504 struct sk_buff_head *q = &mac->ack_wait_queue;
505 struct sk_buff *skb;
506 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
507 unsigned long flags;
508 int success = !tx_status->failure;
509 int retry = tx_status->retry + success;
510 int found = 0;
511 int i, position = 0;
512
513 q = &mac->ack_wait_queue;
514 spin_lock_irqsave(&q->lock, flags);
515
516 skb_queue_walk(q, skb) {
517 struct ieee80211_hdr *tx_hdr;
518 struct ieee80211_tx_info *info;
519 int first_idx, final_idx;
520 const struct tx_retry_rate *retries;
521 u8 final_rate;
522
523 position ++;
524
525 /* if the hardware reports a failure and we had a 802.11 ACK
526 * pending, then we skip the first skb when searching for a
527 * matching frame */
528 if (tx_status->failure && mac->ack_pending &&
529 skb_queue_is_first(q, skb)) {
530 continue;
531 }
532
533 tx_hdr = (struct ieee80211_hdr *)skb->data;
534
535 /* we skip all frames not matching the reported destination */
536 if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
537 continue;
538 }
539
540 /* we skip all frames not matching the reported final rate */
541
542 info = IEEE80211_SKB_CB(skb);
543 first_idx = info->status.rates[0].idx;
544 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
545 retries = &zd_retry_rates[first_idx];
546 if (retry <= 0 || retry > retries->count)
547 continue;
548
549 final_idx = retries->rate[retry - 1];
550 final_rate = zd_rates[final_idx].hw_value;
551
552 if (final_rate != tx_status->rate) {
553 continue;
554 }
555
556 found = 1;
557 break;
558 }
559
560 if (found) {
561 for (i=1; i<=position; i++) {
562 skb = __skb_dequeue(q);
563 zd_mac_tx_status(hw, skb,
564 mac->ack_pending ? mac->ack_signal : 0,
565 i == position ? tx_status : NULL);
566 mac->ack_pending = 0;
567 }
568 }
569
570 spin_unlock_irqrestore(&q->lock, flags);
571 }
572
573 /**
574 * zd_mac_tx_to_dev - callback for USB layer
575 * @skb: a &sk_buff pointer
576 * @error: error value, 0 if transmission successful
577 *
578 * Informs the MAC layer that the frame has successfully transferred to the
579 * device. If an ACK is required and the transfer to the device has been
580 * successful, the packets are put on the @ack_wait_queue with
581 * the control set removed.
582 */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)583 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
584 {
585 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
586 struct ieee80211_hw *hw = info->rate_driver_data[0];
587 struct zd_mac *mac = zd_hw_mac(hw);
588
589 ieee80211_tx_info_clear_status(info);
590
591 skb_pull(skb, sizeof(struct zd_ctrlset));
592 if (unlikely(error ||
593 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
594 /*
595 * FIXME : do we need to fill in anything ?
596 */
597 ieee80211_tx_status_irqsafe(hw, skb);
598 } else {
599 struct sk_buff_head *q = &mac->ack_wait_queue;
600
601 skb_queue_tail(q, skb);
602 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
603 zd_mac_tx_status(hw, skb_dequeue(q),
604 mac->ack_pending ? mac->ack_signal : 0,
605 NULL);
606 mac->ack_pending = 0;
607 }
608 }
609 }
610
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)611 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
612 {
613 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
614 * the zd-rate values.
615 */
616 static const u8 rate_divisor[] = {
617 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
618 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
619 /* Bits must be doubled. */
620 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
621 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
622 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
623 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
624 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
625 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
626 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
627 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
628 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
629 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
630 };
631
632 u32 bits = (u32)tx_length * 8;
633 u32 divisor;
634
635 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
636 if (divisor == 0)
637 return -EINVAL;
638
639 switch (zd_rate) {
640 case ZD_CCK_RATE_5_5M:
641 bits = (2*bits) + 10; /* round up to the next integer */
642 break;
643 case ZD_CCK_RATE_11M:
644 if (service) {
645 u32 t = bits % 11;
646 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
647 if (0 < t && t <= 3) {
648 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
649 }
650 }
651 bits += 10; /* round up to the next integer */
652 break;
653 }
654
655 return bits/divisor;
656 }
657
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)658 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
659 struct ieee80211_hdr *header,
660 struct ieee80211_tx_info *info)
661 {
662 /*
663 * CONTROL TODO:
664 * - if backoff needed, enable bit 0
665 * - if burst (backoff not needed) disable bit 0
666 */
667
668 cs->control = 0;
669
670 /* First fragment */
671 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
672 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
673
674 /* No ACK expected (multicast, etc.) */
675 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
676 cs->control |= ZD_CS_NO_ACK;
677
678 /* PS-POLL */
679 if (ieee80211_is_pspoll(header->frame_control))
680 cs->control |= ZD_CS_PS_POLL_FRAME;
681
682 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
683 cs->control |= ZD_CS_RTS;
684
685 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
686 cs->control |= ZD_CS_SELF_CTS;
687
688 /* FIXME: Management frame? */
689 }
690
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)691 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
692 {
693 if (!mac->beacon.cur_beacon)
694 return false;
695
696 if (mac->beacon.cur_beacon->len != beacon->len)
697 return false;
698
699 return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
700 }
701
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)702 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
703 {
704 ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
705
706 kfree_skb(mac->beacon.cur_beacon);
707 mac->beacon.cur_beacon = NULL;
708 }
709
zd_mac_free_cur_beacon(struct zd_mac * mac)710 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
711 {
712 mutex_lock(&mac->chip.mutex);
713 zd_mac_free_cur_beacon_locked(mac);
714 mutex_unlock(&mac->chip.mutex);
715 }
716
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)717 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
718 bool in_intr)
719 {
720 struct zd_mac *mac = zd_hw_mac(hw);
721 int r, ret, num_cmds, req_pos = 0;
722 u32 tmp, j = 0;
723 /* 4 more bytes for tail CRC */
724 u32 full_len = beacon->len + 4;
725 unsigned long end_jiffies, message_jiffies;
726 struct zd_ioreq32 *ioreqs;
727
728 mutex_lock(&mac->chip.mutex);
729
730 /* Check if hw already has this beacon. */
731 if (zd_mac_match_cur_beacon(mac, beacon)) {
732 r = 0;
733 goto out_nofree;
734 }
735
736 /* Alloc memory for full beacon write at once. */
737 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
738 ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
739 if (!ioreqs) {
740 r = -ENOMEM;
741 goto out_nofree;
742 }
743
744 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
745 if (r < 0)
746 goto out;
747 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
748 if (r < 0)
749 goto release_sema;
750 if (in_intr && tmp & 0x2) {
751 r = -EBUSY;
752 goto release_sema;
753 }
754
755 end_jiffies = jiffies + HZ / 2; /*~500ms*/
756 message_jiffies = jiffies + HZ / 10; /*~100ms*/
757 while (tmp & 0x2) {
758 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
759 if (r < 0)
760 goto release_sema;
761 if (time_is_before_eq_jiffies(message_jiffies)) {
762 message_jiffies = jiffies + HZ / 10;
763 dev_err(zd_mac_dev(mac),
764 "CR_BCN_FIFO_SEMAPHORE not ready\n");
765 if (time_is_before_eq_jiffies(end_jiffies)) {
766 dev_err(zd_mac_dev(mac),
767 "Giving up beacon config.\n");
768 r = -ETIMEDOUT;
769 goto reset_device;
770 }
771 }
772 msleep(20);
773 }
774
775 ioreqs[req_pos].addr = CR_BCN_FIFO;
776 ioreqs[req_pos].value = full_len - 1;
777 req_pos++;
778 if (zd_chip_is_zd1211b(&mac->chip)) {
779 ioreqs[req_pos].addr = CR_BCN_LENGTH;
780 ioreqs[req_pos].value = full_len - 1;
781 req_pos++;
782 }
783
784 for (j = 0 ; j < beacon->len; j++) {
785 ioreqs[req_pos].addr = CR_BCN_FIFO;
786 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
787 req_pos++;
788 }
789
790 for (j = 0; j < 4; j++) {
791 ioreqs[req_pos].addr = CR_BCN_FIFO;
792 ioreqs[req_pos].value = 0x0;
793 req_pos++;
794 }
795
796 BUG_ON(req_pos != num_cmds);
797
798 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
799
800 release_sema:
801 /*
802 * Try very hard to release device beacon semaphore, as otherwise
803 * device/driver can be left in unusable state.
804 */
805 end_jiffies = jiffies + HZ / 2; /*~500ms*/
806 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
807 while (ret < 0) {
808 if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
809 ret = -ETIMEDOUT;
810 break;
811 }
812
813 msleep(20);
814 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
815 }
816
817 if (ret < 0)
818 dev_err(zd_mac_dev(mac), "Could not release "
819 "CR_BCN_FIFO_SEMAPHORE!\n");
820 if (r < 0 || ret < 0) {
821 if (r >= 0)
822 r = ret;
823
824 /* We don't know if beacon was written successfully or not,
825 * so clear current. */
826 zd_mac_free_cur_beacon_locked(mac);
827
828 goto out;
829 }
830
831 /* Beacon has now been written successfully, update current. */
832 zd_mac_free_cur_beacon_locked(mac);
833 mac->beacon.cur_beacon = beacon;
834 beacon = NULL;
835
836 /* 802.11b/g 2.4G CCK 1Mb
837 * 802.11a, not yet implemented, uses different values (see GPL vendor
838 * driver)
839 */
840 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
841 CR_BCN_PLCP_CFG);
842 out:
843 kfree(ioreqs);
844 out_nofree:
845 kfree_skb(beacon);
846 mutex_unlock(&mac->chip.mutex);
847
848 return r;
849
850 reset_device:
851 zd_mac_free_cur_beacon_locked(mac);
852 kfree_skb(beacon);
853
854 mutex_unlock(&mac->chip.mutex);
855 kfree(ioreqs);
856
857 /* semaphore stuck, reset device to avoid fw freeze later */
858 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
859 "resetting device...");
860 usb_queue_reset_device(mac->chip.usb.intf);
861
862 return r;
863 }
864
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)865 static int fill_ctrlset(struct zd_mac *mac,
866 struct sk_buff *skb)
867 {
868 int r;
869 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
870 unsigned int frag_len = skb->len + FCS_LEN;
871 unsigned int packet_length;
872 struct ieee80211_rate *txrate;
873 struct zd_ctrlset *cs = (struct zd_ctrlset *)
874 skb_push(skb, sizeof(struct zd_ctrlset));
875 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
876
877 ZD_ASSERT(frag_len <= 0xffff);
878
879 /*
880 * Firmware computes the duration itself (for all frames except PSPoll)
881 * and needs the field set to 0 at input, otherwise firmware messes up
882 * duration_id and sets bits 14 and 15 on.
883 */
884 if (!ieee80211_is_pspoll(hdr->frame_control))
885 hdr->duration_id = 0;
886
887 txrate = ieee80211_get_tx_rate(mac->hw, info);
888
889 cs->modulation = txrate->hw_value;
890 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
891 cs->modulation = txrate->hw_value_short;
892
893 cs->tx_length = cpu_to_le16(frag_len);
894
895 cs_set_control(mac, cs, hdr, info);
896
897 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
898 ZD_ASSERT(packet_length <= 0xffff);
899 /* ZD1211B: Computing the length difference this way, gives us
900 * flexibility to compute the packet length.
901 */
902 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
903 packet_length - frag_len : packet_length);
904
905 /*
906 * CURRENT LENGTH:
907 * - transmit frame length in microseconds
908 * - seems to be derived from frame length
909 * - see Cal_Us_Service() in zdinlinef.h
910 * - if macp->bTxBurstEnable is enabled, then multiply by 4
911 * - bTxBurstEnable is never set in the vendor driver
912 *
913 * SERVICE:
914 * - "for PLCP configuration"
915 * - always 0 except in some situations at 802.11b 11M
916 * - see line 53 of zdinlinef.h
917 */
918 cs->service = 0;
919 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
920 le16_to_cpu(cs->tx_length));
921 if (r < 0)
922 return r;
923 cs->current_length = cpu_to_le16(r);
924 cs->next_frame_length = 0;
925
926 return 0;
927 }
928
929 /**
930 * zd_op_tx - transmits a network frame to the device
931 *
932 * @dev: mac80211 hardware device
933 * @skb: socket buffer
934 * @control: the control structure
935 *
936 * This function transmit an IEEE 802.11 network frame to the device. The
937 * control block of the skbuff will be initialized. If necessary the incoming
938 * mac80211 queues will be stopped.
939 */
zd_op_tx(struct ieee80211_hw * hw,struct sk_buff * skb)940 static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
941 {
942 struct zd_mac *mac = zd_hw_mac(hw);
943 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
944 int r;
945
946 r = fill_ctrlset(mac, skb);
947 if (r)
948 goto fail;
949
950 info->rate_driver_data[0] = hw;
951
952 r = zd_usb_tx(&mac->chip.usb, skb);
953 if (r)
954 goto fail;
955 return;
956
957 fail:
958 dev_kfree_skb(skb);
959 }
960
961 /**
962 * filter_ack - filters incoming packets for acknowledgements
963 * @dev: the mac80211 device
964 * @rx_hdr: received header
965 * @stats: the status for the received packet
966 *
967 * This functions looks for ACK packets and tries to match them with the
968 * frames in the tx queue. If a match is found the frame will be dequeued and
969 * the upper layers is informed about the successful transmission. If
970 * mac80211 queues have been stopped and the number of frames still to be
971 * transmitted is low the queues will be opened again.
972 *
973 * Returns 1 if the frame was an ACK, 0 if it was ignored.
974 */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)975 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
976 struct ieee80211_rx_status *stats)
977 {
978 struct zd_mac *mac = zd_hw_mac(hw);
979 struct sk_buff *skb;
980 struct sk_buff_head *q;
981 unsigned long flags;
982 int found = 0;
983 int i, position = 0;
984
985 if (!ieee80211_is_ack(rx_hdr->frame_control))
986 return 0;
987
988 q = &mac->ack_wait_queue;
989 spin_lock_irqsave(&q->lock, flags);
990 skb_queue_walk(q, skb) {
991 struct ieee80211_hdr *tx_hdr;
992
993 position ++;
994
995 if (mac->ack_pending && skb_queue_is_first(q, skb))
996 continue;
997
998 tx_hdr = (struct ieee80211_hdr *)skb->data;
999 if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
1000 {
1001 found = 1;
1002 break;
1003 }
1004 }
1005
1006 if (found) {
1007 for (i=1; i<position; i++) {
1008 skb = __skb_dequeue(q);
1009 zd_mac_tx_status(hw, skb,
1010 mac->ack_pending ? mac->ack_signal : 0,
1011 NULL);
1012 mac->ack_pending = 0;
1013 }
1014
1015 mac->ack_pending = 1;
1016 mac->ack_signal = stats->signal;
1017
1018 /* Prevent pending tx-packet on AP-mode */
1019 if (mac->type == NL80211_IFTYPE_AP) {
1020 skb = __skb_dequeue(q);
1021 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1022 mac->ack_pending = 0;
1023 }
1024 }
1025
1026 spin_unlock_irqrestore(&q->lock, flags);
1027 return 1;
1028 }
1029
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1030 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1031 {
1032 struct zd_mac *mac = zd_hw_mac(hw);
1033 struct ieee80211_rx_status stats;
1034 const struct rx_status *status;
1035 struct sk_buff *skb;
1036 int bad_frame = 0;
1037 __le16 fc;
1038 int need_padding;
1039 int i;
1040 u8 rate;
1041
1042 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1043 FCS_LEN + sizeof(struct rx_status))
1044 return -EINVAL;
1045
1046 memset(&stats, 0, sizeof(stats));
1047
1048 /* Note about pass_failed_fcs and pass_ctrl access below:
1049 * mac locking intentionally omitted here, as this is the only unlocked
1050 * reader and the only writer is configure_filter. Plus, if there were
1051 * any races accessing these variables, it wouldn't really matter.
1052 * If mac80211 ever provides a way for us to access filter flags
1053 * from outside configure_filter, we could improve on this. Also, this
1054 * situation may change once we implement some kind of DMA-into-skb
1055 * RX path. */
1056
1057 /* Caller has to ensure that length >= sizeof(struct rx_status). */
1058 status = (struct rx_status *)
1059 (buffer + (length - sizeof(struct rx_status)));
1060 if (status->frame_status & ZD_RX_ERROR) {
1061 if (mac->pass_failed_fcs &&
1062 (status->frame_status & ZD_RX_CRC32_ERROR)) {
1063 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1064 bad_frame = 1;
1065 } else {
1066 return -EINVAL;
1067 }
1068 }
1069
1070 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1071 stats.band = IEEE80211_BAND_2GHZ;
1072 stats.signal = zd_check_signal(hw, status->signal_strength);
1073
1074 rate = zd_rx_rate(buffer, status);
1075
1076 /* todo: return index in the big switches in zd_rx_rate instead */
1077 for (i = 0; i < mac->band.n_bitrates; i++)
1078 if (rate == mac->band.bitrates[i].hw_value)
1079 stats.rate_idx = i;
1080
1081 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1082 buffer += ZD_PLCP_HEADER_SIZE;
1083
1084 /* Except for bad frames, filter each frame to see if it is an ACK, in
1085 * which case our internal TX tracking is updated. Normally we then
1086 * bail here as there's no need to pass ACKs on up to the stack, but
1087 * there is also the case where the stack has requested us to pass
1088 * control frames on up (pass_ctrl) which we must consider. */
1089 if (!bad_frame &&
1090 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1091 && !mac->pass_ctrl)
1092 return 0;
1093
1094 fc = get_unaligned((__le16*)buffer);
1095 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1096
1097 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1098 if (skb == NULL)
1099 return -ENOMEM;
1100 if (need_padding) {
1101 /* Make sure the payload data is 4 byte aligned. */
1102 skb_reserve(skb, 2);
1103 }
1104
1105 /* FIXME : could we avoid this big memcpy ? */
1106 memcpy(skb_put(skb, length), buffer, length);
1107
1108 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1109 ieee80211_rx_irqsafe(hw, skb);
1110 return 0;
1111 }
1112
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1113 static int zd_op_add_interface(struct ieee80211_hw *hw,
1114 struct ieee80211_vif *vif)
1115 {
1116 struct zd_mac *mac = zd_hw_mac(hw);
1117
1118 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1119 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1120 return -EOPNOTSUPP;
1121
1122 switch (vif->type) {
1123 case NL80211_IFTYPE_MONITOR:
1124 case NL80211_IFTYPE_MESH_POINT:
1125 case NL80211_IFTYPE_STATION:
1126 case NL80211_IFTYPE_ADHOC:
1127 case NL80211_IFTYPE_AP:
1128 mac->type = vif->type;
1129 break;
1130 default:
1131 return -EOPNOTSUPP;
1132 }
1133
1134 mac->vif = vif;
1135
1136 return set_mac_and_bssid(mac);
1137 }
1138
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1139 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1140 struct ieee80211_vif *vif)
1141 {
1142 struct zd_mac *mac = zd_hw_mac(hw);
1143 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1144 mac->vif = NULL;
1145 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1146 zd_write_mac_addr(&mac->chip, NULL);
1147
1148 zd_mac_free_cur_beacon(mac);
1149 }
1150
zd_op_config(struct ieee80211_hw * hw,u32 changed)1151 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1152 {
1153 struct zd_mac *mac = zd_hw_mac(hw);
1154 struct ieee80211_conf *conf = &hw->conf;
1155
1156 spin_lock_irq(&mac->lock);
1157 mac->channel = conf->channel->hw_value;
1158 spin_unlock_irq(&mac->lock);
1159
1160 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1161 }
1162
zd_beacon_done(struct zd_mac * mac)1163 static void zd_beacon_done(struct zd_mac *mac)
1164 {
1165 struct sk_buff *skb, *beacon;
1166
1167 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1168 return;
1169 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1170 return;
1171
1172 /*
1173 * Send out buffered broad- and multicast frames.
1174 */
1175 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1176 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1177 if (!skb)
1178 break;
1179 zd_op_tx(mac->hw, skb);
1180 }
1181
1182 /*
1183 * Fetch next beacon so that tim_count is updated.
1184 */
1185 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1186 if (beacon)
1187 zd_mac_config_beacon(mac->hw, beacon, true);
1188
1189 spin_lock_irq(&mac->lock);
1190 mac->beacon.last_update = jiffies;
1191 spin_unlock_irq(&mac->lock);
1192 }
1193
zd_process_intr(struct work_struct * work)1194 static void zd_process_intr(struct work_struct *work)
1195 {
1196 u16 int_status;
1197 unsigned long flags;
1198 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1199
1200 spin_lock_irqsave(&mac->lock, flags);
1201 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1202 spin_unlock_irqrestore(&mac->lock, flags);
1203
1204 if (int_status & INT_CFG_NEXT_BCN) {
1205 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1206 zd_beacon_done(mac);
1207 } else {
1208 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1209 }
1210
1211 zd_chip_enable_hwint(&mac->chip);
1212 }
1213
1214
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1215 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1216 struct netdev_hw_addr_list *mc_list)
1217 {
1218 struct zd_mac *mac = zd_hw_mac(hw);
1219 struct zd_mc_hash hash;
1220 struct netdev_hw_addr *ha;
1221
1222 zd_mc_clear(&hash);
1223
1224 netdev_hw_addr_list_for_each(ha, mc_list) {
1225 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1226 zd_mc_add_addr(&hash, ha->addr);
1227 }
1228
1229 return hash.low | ((u64)hash.high << 32);
1230 }
1231
1232 #define SUPPORTED_FIF_FLAGS \
1233 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1234 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1235 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1236 unsigned int changed_flags,
1237 unsigned int *new_flags,
1238 u64 multicast)
1239 {
1240 struct zd_mc_hash hash = {
1241 .low = multicast,
1242 .high = multicast >> 32,
1243 };
1244 struct zd_mac *mac = zd_hw_mac(hw);
1245 unsigned long flags;
1246 int r;
1247
1248 /* Only deal with supported flags */
1249 changed_flags &= SUPPORTED_FIF_FLAGS;
1250 *new_flags &= SUPPORTED_FIF_FLAGS;
1251
1252 /*
1253 * If multicast parameter (as returned by zd_op_prepare_multicast)
1254 * has changed, no bit in changed_flags is set. To handle this
1255 * situation, we do not return if changed_flags is 0. If we do so,
1256 * we will have some issue with IPv6 which uses multicast for link
1257 * layer address resolution.
1258 */
1259 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1260 zd_mc_add_all(&hash);
1261
1262 spin_lock_irqsave(&mac->lock, flags);
1263 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1264 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1265 mac->multicast_hash = hash;
1266 spin_unlock_irqrestore(&mac->lock, flags);
1267
1268 zd_chip_set_multicast_hash(&mac->chip, &hash);
1269
1270 if (changed_flags & FIF_CONTROL) {
1271 r = set_rx_filter(mac);
1272 if (r)
1273 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1274 }
1275
1276 /* no handling required for FIF_OTHER_BSS as we don't currently
1277 * do BSSID filtering */
1278 /* FIXME: in future it would be nice to enable the probe response
1279 * filter (so that the driver doesn't see them) until
1280 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1281 * have to schedule work to enable prbresp reception, which might
1282 * happen too late. For now we'll just listen and forward them all the
1283 * time. */
1284 }
1285
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1286 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1287 {
1288 mutex_lock(&mac->chip.mutex);
1289 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1290 mutex_unlock(&mac->chip.mutex);
1291 }
1292
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1293 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1294 struct ieee80211_vif *vif,
1295 struct ieee80211_bss_conf *bss_conf,
1296 u32 changes)
1297 {
1298 struct zd_mac *mac = zd_hw_mac(hw);
1299 int associated;
1300
1301 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1302
1303 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1304 mac->type == NL80211_IFTYPE_ADHOC ||
1305 mac->type == NL80211_IFTYPE_AP) {
1306 associated = true;
1307 if (changes & BSS_CHANGED_BEACON) {
1308 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1309
1310 if (beacon) {
1311 zd_chip_disable_hwint(&mac->chip);
1312 zd_mac_config_beacon(hw, beacon, false);
1313 zd_chip_enable_hwint(&mac->chip);
1314 }
1315 }
1316
1317 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1318 u16 interval = 0;
1319 u8 period = 0;
1320
1321 if (bss_conf->enable_beacon) {
1322 period = bss_conf->dtim_period;
1323 interval = bss_conf->beacon_int;
1324 }
1325
1326 spin_lock_irq(&mac->lock);
1327 mac->beacon.period = period;
1328 mac->beacon.interval = interval;
1329 mac->beacon.last_update = jiffies;
1330 spin_unlock_irq(&mac->lock);
1331
1332 zd_set_beacon_interval(&mac->chip, interval, period,
1333 mac->type);
1334 }
1335 } else
1336 associated = is_valid_ether_addr(bss_conf->bssid);
1337
1338 spin_lock_irq(&mac->lock);
1339 mac->associated = associated;
1340 spin_unlock_irq(&mac->lock);
1341
1342 /* TODO: do hardware bssid filtering */
1343
1344 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1345 spin_lock_irq(&mac->lock);
1346 mac->short_preamble = bss_conf->use_short_preamble;
1347 spin_unlock_irq(&mac->lock);
1348
1349 set_rts_cts(mac, bss_conf->use_short_preamble);
1350 }
1351 }
1352
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1353 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1354 {
1355 struct zd_mac *mac = zd_hw_mac(hw);
1356 return zd_chip_get_tsf(&mac->chip);
1357 }
1358
1359 static const struct ieee80211_ops zd_ops = {
1360 .tx = zd_op_tx,
1361 .start = zd_op_start,
1362 .stop = zd_op_stop,
1363 .add_interface = zd_op_add_interface,
1364 .remove_interface = zd_op_remove_interface,
1365 .config = zd_op_config,
1366 .prepare_multicast = zd_op_prepare_multicast,
1367 .configure_filter = zd_op_configure_filter,
1368 .bss_info_changed = zd_op_bss_info_changed,
1369 .get_tsf = zd_op_get_tsf,
1370 };
1371
zd_mac_alloc_hw(struct usb_interface * intf)1372 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1373 {
1374 struct zd_mac *mac;
1375 struct ieee80211_hw *hw;
1376
1377 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1378 if (!hw) {
1379 dev_dbg_f(&intf->dev, "out of memory\n");
1380 return NULL;
1381 }
1382
1383 mac = zd_hw_mac(hw);
1384
1385 memset(mac, 0, sizeof(*mac));
1386 spin_lock_init(&mac->lock);
1387 mac->hw = hw;
1388
1389 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1390
1391 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1392 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1393 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1394 mac->band.bitrates = mac->rates;
1395 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1396 mac->band.channels = mac->channels;
1397
1398 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1399
1400 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1401 IEEE80211_HW_SIGNAL_UNSPEC |
1402 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1403
1404 hw->wiphy->interface_modes =
1405 BIT(NL80211_IFTYPE_MESH_POINT) |
1406 BIT(NL80211_IFTYPE_STATION) |
1407 BIT(NL80211_IFTYPE_ADHOC) |
1408 BIT(NL80211_IFTYPE_AP);
1409
1410 hw->max_signal = 100;
1411 hw->queues = 1;
1412 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1413
1414 /*
1415 * Tell mac80211 that we support multi rate retries
1416 */
1417 hw->max_rates = IEEE80211_TX_MAX_RATES;
1418 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1419
1420 skb_queue_head_init(&mac->ack_wait_queue);
1421 mac->ack_pending = 0;
1422
1423 zd_chip_init(&mac->chip, hw, intf);
1424 housekeeping_init(mac);
1425 beacon_init(mac);
1426 INIT_WORK(&mac->process_intr, zd_process_intr);
1427
1428 SET_IEEE80211_DEV(hw, &intf->dev);
1429 return hw;
1430 }
1431
1432 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1433
beacon_watchdog_handler(struct work_struct * work)1434 static void beacon_watchdog_handler(struct work_struct *work)
1435 {
1436 struct zd_mac *mac =
1437 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1438 struct sk_buff *beacon;
1439 unsigned long timeout;
1440 int interval, period;
1441
1442 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1443 goto rearm;
1444 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1445 goto rearm;
1446
1447 spin_lock_irq(&mac->lock);
1448 interval = mac->beacon.interval;
1449 period = mac->beacon.period;
1450 timeout = mac->beacon.last_update +
1451 msecs_to_jiffies(interval * 1024 / 1000) * 3;
1452 spin_unlock_irq(&mac->lock);
1453
1454 if (interval > 0 && time_is_before_jiffies(timeout)) {
1455 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1456 "restarting. "
1457 "(interval: %d, dtim: %d)\n",
1458 interval, period);
1459
1460 zd_chip_disable_hwint(&mac->chip);
1461
1462 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1463 if (beacon) {
1464 zd_mac_free_cur_beacon(mac);
1465
1466 zd_mac_config_beacon(mac->hw, beacon, false);
1467 }
1468
1469 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1470
1471 zd_chip_enable_hwint(&mac->chip);
1472
1473 spin_lock_irq(&mac->lock);
1474 mac->beacon.last_update = jiffies;
1475 spin_unlock_irq(&mac->lock);
1476 }
1477
1478 rearm:
1479 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1480 BEACON_WATCHDOG_DELAY);
1481 }
1482
beacon_init(struct zd_mac * mac)1483 static void beacon_init(struct zd_mac *mac)
1484 {
1485 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1486 }
1487
beacon_enable(struct zd_mac * mac)1488 static void beacon_enable(struct zd_mac *mac)
1489 {
1490 dev_dbg_f(zd_mac_dev(mac), "\n");
1491
1492 mac->beacon.last_update = jiffies;
1493 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1494 BEACON_WATCHDOG_DELAY);
1495 }
1496
beacon_disable(struct zd_mac * mac)1497 static void beacon_disable(struct zd_mac *mac)
1498 {
1499 dev_dbg_f(zd_mac_dev(mac), "\n");
1500 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1501
1502 zd_mac_free_cur_beacon(mac);
1503 }
1504
1505 #define LINK_LED_WORK_DELAY HZ
1506
link_led_handler(struct work_struct * work)1507 static void link_led_handler(struct work_struct *work)
1508 {
1509 struct zd_mac *mac =
1510 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1511 struct zd_chip *chip = &mac->chip;
1512 int is_associated;
1513 int r;
1514
1515 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1516 goto requeue;
1517
1518 spin_lock_irq(&mac->lock);
1519 is_associated = mac->associated;
1520 spin_unlock_irq(&mac->lock);
1521
1522 r = zd_chip_control_leds(chip,
1523 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1524 if (r)
1525 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1526
1527 requeue:
1528 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1529 LINK_LED_WORK_DELAY);
1530 }
1531
housekeeping_init(struct zd_mac * mac)1532 static void housekeeping_init(struct zd_mac *mac)
1533 {
1534 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1535 }
1536
housekeeping_enable(struct zd_mac * mac)1537 static void housekeeping_enable(struct zd_mac *mac)
1538 {
1539 dev_dbg_f(zd_mac_dev(mac), "\n");
1540 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1541 0);
1542 }
1543
housekeeping_disable(struct zd_mac * mac)1544 static void housekeeping_disable(struct zd_mac *mac)
1545 {
1546 dev_dbg_f(zd_mac_dev(mac), "\n");
1547 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1548 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1549 }
1550