1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
9 *
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
12 *
13 * ChangeLog:
14 *
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
17 *
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
19 * boundary.
20 *
21 * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
22 *
23 * Performance
24 *
25 * Z85230:
26 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
27 * X.25 is not unrealistic on all machines. DMA mode can in theory
28 * handle T1/E1 quite nicely. In practice the limit seems to be about
29 * 512Kbit->1Mbit depending on motherboard.
30 *
31 * Z85C30:
32 * 64K will take DMA, 9600 baud X.25 should be ok.
33 *
34 * Z8530:
35 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
36 */
37
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/net.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if_arp.h>
45 #include <linux/delay.h>
46 #include <linux/ioport.h>
47 #include <linux/init.h>
48 #include <asm/dma.h>
49 #include <asm/io.h>
50 #define RT_LOCK
51 #define RT_UNLOCK
52 #include <linux/spinlock.h>
53
54 #include <net/syncppp.h>
55 #include "z85230.h"
56
57
58 /**
59 * z8530_read_port - Architecture specific interface function
60 * @p: port to read
61 *
62 * Provided port access methods. The Comtrol SV11 requires no delays
63 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
64 *
65 * In the longer term this should become an architecture specific
66 * section so that this can become a generic driver interface for all
67 * platforms. For now we only handle PC I/O ports with or without the
68 * dread 5uS sanity delay.
69 *
70 * The caller must hold sufficient locks to avoid violating the horrible
71 * 5uS delay rule.
72 */
73
z8530_read_port(unsigned long p)74 static inline int z8530_read_port(unsigned long p)
75 {
76 u8 r=inb(Z8530_PORT_OF(p));
77 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
78 udelay(5);
79 return r;
80 }
81
82 /**
83 * z8530_write_port - Architecture specific interface function
84 * @p: port to write
85 * @d: value to write
86 *
87 * Write a value to a port with delays if need be. Note that the
88 * caller must hold locks to avoid read/writes from other contexts
89 * violating the 5uS rule
90 *
91 * In the longer term this should become an architecture specific
92 * section so that this can become a generic driver interface for all
93 * platforms. For now we only handle PC I/O ports with or without the
94 * dread 5uS sanity delay.
95 */
96
97
z8530_write_port(unsigned long p,u8 d)98 static inline void z8530_write_port(unsigned long p, u8 d)
99 {
100 outb(d,Z8530_PORT_OF(p));
101 if(p&Z8530_PORT_SLEEP)
102 udelay(5);
103 }
104
105
106
107 static void z8530_rx_done(struct z8530_channel *c);
108 static void z8530_tx_done(struct z8530_channel *c);
109
110
111 /**
112 * read_zsreg - Read a register from a Z85230
113 * @c: Z8530 channel to read from (2 per chip)
114 * @reg: Register to read
115 * FIXME: Use a spinlock.
116 *
117 * Most of the Z8530 registers are indexed off the control registers.
118 * A read is done by writing to the control register and reading the
119 * register back. The caller must hold the lock
120 */
121
read_zsreg(struct z8530_channel * c,u8 reg)122 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
123 {
124 if(reg)
125 z8530_write_port(c->ctrlio, reg);
126 return z8530_read_port(c->ctrlio);
127 }
128
129 /**
130 * read_zsdata - Read the data port of a Z8530 channel
131 * @c: The Z8530 channel to read the data port from
132 *
133 * The data port provides fast access to some things. We still
134 * have all the 5uS delays to worry about.
135 */
136
read_zsdata(struct z8530_channel * c)137 static inline u8 read_zsdata(struct z8530_channel *c)
138 {
139 u8 r;
140 r=z8530_read_port(c->dataio);
141 return r;
142 }
143
144 /**
145 * write_zsreg - Write to a Z8530 channel register
146 * @c: The Z8530 channel
147 * @reg: Register number
148 * @val: Value to write
149 *
150 * Write a value to an indexed register. The caller must hold the lock
151 * to honour the irritating delay rules. We know about register 0
152 * being fast to access.
153 */
154
write_zsreg(struct z8530_channel * c,u8 reg,u8 val)155 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
156 {
157 unsigned long flags;
158
159 spin_lock_irqsave(c->lock, flags);
160
161 if(reg)
162 z8530_write_port(c->ctrlio, reg);
163 z8530_write_port(c->ctrlio, val);
164
165 spin_unlock_irqrestore(c->lock, flags);
166 }
167
168 /**
169 * write_zsctrl - Write to a Z8530 control register
170 * @c: The Z8530 channel
171 * @val: Value to write
172 *
173 * Write directly to the control register on the Z8530
174 */
175
write_zsctrl(struct z8530_channel * c,u8 val)176 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
177 {
178 z8530_write_port(c->ctrlio, val);
179 }
180
181 /**
182 * write_zsdata - Write to a Z8530 control register
183 * @c: The Z8530 channel
184 * @val: Value to write
185 *
186 * Write directly to the data register on the Z8530
187 */
188
189
write_zsdata(struct z8530_channel * c,u8 val)190 static inline void write_zsdata(struct z8530_channel *c, u8 val)
191 {
192 z8530_write_port(c->dataio, val);
193 }
194
195 /*
196 * Register loading parameters for a dead port
197 */
198
199 u8 z8530_dead_port[]=
200 {
201 255
202 };
203
204 EXPORT_SYMBOL(z8530_dead_port);
205
206 /*
207 * Register loading parameters for currently supported circuit types
208 */
209
210
211 /*
212 * Data clocked by telco end. This is the correct data for the UK
213 * "kilostream" service, and most other similar services.
214 */
215
216 u8 z8530_hdlc_kilostream[]=
217 {
218 4, SYNC_ENAB|SDLC|X1CLK,
219 2, 0, /* No vector */
220 1, 0,
221 3, ENT_HM|RxCRC_ENAB|Rx8,
222 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
223 9, 0, /* Disable interrupts */
224 6, 0xFF,
225 7, FLAG,
226 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
227 11, TCTRxCP,
228 14, DISDPLL,
229 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
230 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
231 9, NV|MIE|NORESET,
232 255
233 };
234
235 EXPORT_SYMBOL(z8530_hdlc_kilostream);
236
237 /*
238 * As above but for enhanced chips.
239 */
240
241 u8 z8530_hdlc_kilostream_85230[]=
242 {
243 4, SYNC_ENAB|SDLC|X1CLK,
244 2, 0, /* No vector */
245 1, 0,
246 3, ENT_HM|RxCRC_ENAB|Rx8,
247 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
248 9, 0, /* Disable interrupts */
249 6, 0xFF,
250 7, FLAG,
251 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
252 11, TCTRxCP,
253 14, DISDPLL,
254 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
255 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
256 9, NV|MIE|NORESET,
257 23, 3, /* Extended mode AUTO TX and EOM*/
258
259 255
260 };
261
262 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
263
264 /**
265 * z8530_flush_fifo - Flush on chip RX FIFO
266 * @c: Channel to flush
267 *
268 * Flush the receive FIFO. There is no specific option for this, we
269 * blindly read bytes and discard them. Reading when there is no data
270 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
271 *
272 * All locking is handled for the caller. On return data may still be
273 * present if it arrived during the flush.
274 */
275
z8530_flush_fifo(struct z8530_channel * c)276 static void z8530_flush_fifo(struct z8530_channel *c)
277 {
278 read_zsreg(c, R1);
279 read_zsreg(c, R1);
280 read_zsreg(c, R1);
281 read_zsreg(c, R1);
282 if(c->dev->type==Z85230)
283 {
284 read_zsreg(c, R1);
285 read_zsreg(c, R1);
286 read_zsreg(c, R1);
287 read_zsreg(c, R1);
288 }
289 }
290
291 /**
292 * z8530_rtsdtr - Control the outgoing DTS/RTS line
293 * @c: The Z8530 channel to control;
294 * @set: 1 to set, 0 to clear
295 *
296 * Sets or clears DTR/RTS on the requested line. All locking is handled
297 * by the caller. For now we assume all boards use the actual RTS/DTR
298 * on the chip. Apparently one or two don't. We'll scream about them
299 * later.
300 */
301
z8530_rtsdtr(struct z8530_channel * c,int set)302 static void z8530_rtsdtr(struct z8530_channel *c, int set)
303 {
304 if (set)
305 c->regs[5] |= (RTS | DTR);
306 else
307 c->regs[5] &= ~(RTS | DTR);
308 write_zsreg(c, R5, c->regs[5]);
309 }
310
311 /**
312 * z8530_rx - Handle a PIO receive event
313 * @c: Z8530 channel to process
314 *
315 * Receive handler for receiving in PIO mode. This is much like the
316 * async one but not quite the same or as complex
317 *
318 * Note: Its intended that this handler can easily be separated from
319 * the main code to run realtime. That'll be needed for some machines
320 * (eg to ever clock 64kbits on a sparc ;)).
321 *
322 * The RT_LOCK macros don't do anything now. Keep the code covered
323 * by them as short as possible in all circumstances - clocks cost
324 * baud. The interrupt handler is assumed to be atomic w.r.t. to
325 * other code - this is true in the RT case too.
326 *
327 * We only cover the sync cases for this. If you want 2Mbit async
328 * do it yourself but consider medical assistance first. This non DMA
329 * synchronous mode is portable code. The DMA mode assumes PCI like
330 * ISA DMA
331 *
332 * Called with the device lock held
333 */
334
z8530_rx(struct z8530_channel * c)335 static void z8530_rx(struct z8530_channel *c)
336 {
337 u8 ch,stat;
338
339 while(1)
340 {
341 /* FIFO empty ? */
342 if(!(read_zsreg(c, R0)&1))
343 break;
344 ch=read_zsdata(c);
345 stat=read_zsreg(c, R1);
346
347 /*
348 * Overrun ?
349 */
350 if(c->count < c->max)
351 {
352 *c->dptr++=ch;
353 c->count++;
354 }
355
356 if(stat&END_FR)
357 {
358
359 /*
360 * Error ?
361 */
362 if(stat&(Rx_OVR|CRC_ERR))
363 {
364 /* Rewind the buffer and return */
365 if(c->skb)
366 c->dptr=c->skb->data;
367 c->count=0;
368 if(stat&Rx_OVR)
369 {
370 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
371 c->rx_overrun++;
372 }
373 if(stat&CRC_ERR)
374 {
375 c->rx_crc_err++;
376 /* printk("crc error\n"); */
377 }
378 /* Shove the frame upstream */
379 }
380 else
381 {
382 /*
383 * Drop the lock for RX processing, or
384 * there are deadlocks
385 */
386 z8530_rx_done(c);
387 write_zsctrl(c, RES_Rx_CRC);
388 }
389 }
390 }
391 /*
392 * Clear irq
393 */
394 write_zsctrl(c, ERR_RES);
395 write_zsctrl(c, RES_H_IUS);
396 }
397
398
399 /**
400 * z8530_tx - Handle a PIO transmit event
401 * @c: Z8530 channel to process
402 *
403 * Z8530 transmit interrupt handler for the PIO mode. The basic
404 * idea is to attempt to keep the FIFO fed. We fill as many bytes
405 * in as possible, its quite possible that we won't keep up with the
406 * data rate otherwise.
407 */
408
z8530_tx(struct z8530_channel * c)409 static void z8530_tx(struct z8530_channel *c)
410 {
411 while(c->txcount) {
412 /* FIFO full ? */
413 if(!(read_zsreg(c, R0)&4))
414 break;
415 c->txcount--;
416 /*
417 * Shovel out the byte
418 */
419 write_zsreg(c, R8, *c->tx_ptr++);
420 write_zsctrl(c, RES_H_IUS);
421 /* We are about to underflow */
422 if(c->txcount==0)
423 {
424 write_zsctrl(c, RES_EOM_L);
425 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
426 }
427 }
428
429
430 /*
431 * End of frame TX - fire another one
432 */
433
434 write_zsctrl(c, RES_Tx_P);
435
436 z8530_tx_done(c);
437 write_zsctrl(c, RES_H_IUS);
438 }
439
440 /**
441 * z8530_status - Handle a PIO status exception
442 * @chan: Z8530 channel to process
443 *
444 * A status event occurred in PIO synchronous mode. There are several
445 * reasons the chip will bother us here. A transmit underrun means we
446 * failed to feed the chip fast enough and just broke a packet. A DCD
447 * change is a line up or down. We communicate that back to the protocol
448 * layer for synchronous PPP to renegotiate.
449 */
450
z8530_status(struct z8530_channel * chan)451 static void z8530_status(struct z8530_channel *chan)
452 {
453 u8 status, altered;
454
455 status=read_zsreg(chan, R0);
456 altered=chan->status^status;
457
458 chan->status=status;
459
460 if(status&TxEOM)
461 {
462 /* printk("%s: Tx underrun.\n", chan->dev->name); */
463 chan->stats.tx_fifo_errors++;
464 write_zsctrl(chan, ERR_RES);
465 z8530_tx_done(chan);
466 }
467
468 if(altered&chan->dcdcheck)
469 {
470 if(status&chan->dcdcheck)
471 {
472 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
473 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
474 if(chan->netdevice &&
475 ((chan->netdevice->type == ARPHRD_HDLC) ||
476 (chan->netdevice->type == ARPHRD_PPP)))
477 sppp_reopen(chan->netdevice);
478 }
479 else
480 {
481 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
482 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
483 z8530_flush_fifo(chan);
484 }
485
486 }
487 write_zsctrl(chan, RES_EXT_INT);
488 write_zsctrl(chan, RES_H_IUS);
489 }
490
491 struct z8530_irqhandler z8530_sync=
492 {
493 z8530_rx,
494 z8530_tx,
495 z8530_status
496 };
497
498 EXPORT_SYMBOL(z8530_sync);
499
500 /**
501 * z8530_dma_rx - Handle a DMA RX event
502 * @chan: Channel to handle
503 *
504 * Non bus mastering DMA interfaces for the Z8x30 devices. This
505 * is really pretty PC specific. The DMA mode means that most receive
506 * events are handled by the DMA hardware. We get a kick here only if
507 * a frame ended.
508 */
509
z8530_dma_rx(struct z8530_channel * chan)510 static void z8530_dma_rx(struct z8530_channel *chan)
511 {
512 if(chan->rxdma_on)
513 {
514 /* Special condition check only */
515 u8 status;
516
517 read_zsreg(chan, R7);
518 read_zsreg(chan, R6);
519
520 status=read_zsreg(chan, R1);
521
522 if(status&END_FR)
523 {
524 z8530_rx_done(chan); /* Fire up the next one */
525 }
526 write_zsctrl(chan, ERR_RES);
527 write_zsctrl(chan, RES_H_IUS);
528 }
529 else
530 {
531 /* DMA is off right now, drain the slow way */
532 z8530_rx(chan);
533 }
534 }
535
536 /**
537 * z8530_dma_tx - Handle a DMA TX event
538 * @chan: The Z8530 channel to handle
539 *
540 * We have received an interrupt while doing DMA transmissions. It
541 * shouldn't happen. Scream loudly if it does.
542 */
543
z8530_dma_tx(struct z8530_channel * chan)544 static void z8530_dma_tx(struct z8530_channel *chan)
545 {
546 if(!chan->dma_tx)
547 {
548 printk(KERN_WARNING "Hey who turned the DMA off?\n");
549 z8530_tx(chan);
550 return;
551 }
552 /* This shouldnt occur in DMA mode */
553 printk(KERN_ERR "DMA tx - bogus event!\n");
554 z8530_tx(chan);
555 }
556
557 /**
558 * z8530_dma_status - Handle a DMA status exception
559 * @chan: Z8530 channel to process
560 *
561 * A status event occurred on the Z8530. We receive these for two reasons
562 * when in DMA mode. Firstly if we finished a packet transfer we get one
563 * and kick the next packet out. Secondly we may see a DCD change and
564 * have to poke the protocol layer.
565 *
566 */
567
z8530_dma_status(struct z8530_channel * chan)568 static void z8530_dma_status(struct z8530_channel *chan)
569 {
570 u8 status, altered;
571
572 status=read_zsreg(chan, R0);
573 altered=chan->status^status;
574
575 chan->status=status;
576
577
578 if(chan->dma_tx)
579 {
580 if(status&TxEOM)
581 {
582 unsigned long flags;
583
584 flags=claim_dma_lock();
585 disable_dma(chan->txdma);
586 clear_dma_ff(chan->txdma);
587 chan->txdma_on=0;
588 release_dma_lock(flags);
589 z8530_tx_done(chan);
590 }
591 }
592 if(altered&chan->dcdcheck)
593 {
594 if(status&chan->dcdcheck)
595 {
596 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
597 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
598 if(chan->netdevice &&
599 ((chan->netdevice->type == ARPHRD_HDLC) ||
600 (chan->netdevice->type == ARPHRD_PPP)))
601 sppp_reopen(chan->netdevice);
602 }
603 else
604 {
605 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
606 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
607 z8530_flush_fifo(chan);
608 }
609 }
610 write_zsctrl(chan, RES_EXT_INT);
611 write_zsctrl(chan, RES_H_IUS);
612 }
613
614 struct z8530_irqhandler z8530_dma_sync=
615 {
616 z8530_dma_rx,
617 z8530_dma_tx,
618 z8530_dma_status
619 };
620
621 EXPORT_SYMBOL(z8530_dma_sync);
622
623 struct z8530_irqhandler z8530_txdma_sync=
624 {
625 z8530_rx,
626 z8530_dma_tx,
627 z8530_dma_status
628 };
629
630 EXPORT_SYMBOL(z8530_txdma_sync);
631
632 /**
633 * z8530_rx_clear - Handle RX events from a stopped chip
634 * @c: Z8530 channel to shut up
635 *
636 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
637 * For machines with PCI Z85x30 cards, or level triggered interrupts
638 * (eg the MacII) we must clear the interrupt cause or die.
639 */
640
641
z8530_rx_clear(struct z8530_channel * c)642 static void z8530_rx_clear(struct z8530_channel *c)
643 {
644 /*
645 * Data and status bytes
646 */
647 u8 stat;
648
649 read_zsdata(c);
650 stat=read_zsreg(c, R1);
651
652 if(stat&END_FR)
653 write_zsctrl(c, RES_Rx_CRC);
654 /*
655 * Clear irq
656 */
657 write_zsctrl(c, ERR_RES);
658 write_zsctrl(c, RES_H_IUS);
659 }
660
661 /**
662 * z8530_tx_clear - Handle TX events from a stopped chip
663 * @c: Z8530 channel to shut up
664 *
665 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
666 * For machines with PCI Z85x30 cards, or level triggered interrupts
667 * (eg the MacII) we must clear the interrupt cause or die.
668 */
669
z8530_tx_clear(struct z8530_channel * c)670 static void z8530_tx_clear(struct z8530_channel *c)
671 {
672 write_zsctrl(c, RES_Tx_P);
673 write_zsctrl(c, RES_H_IUS);
674 }
675
676 /**
677 * z8530_status_clear - Handle status events from a stopped chip
678 * @chan: Z8530 channel to shut up
679 *
680 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
681 * For machines with PCI Z85x30 cards, or level triggered interrupts
682 * (eg the MacII) we must clear the interrupt cause or die.
683 */
684
z8530_status_clear(struct z8530_channel * chan)685 static void z8530_status_clear(struct z8530_channel *chan)
686 {
687 u8 status=read_zsreg(chan, R0);
688 if(status&TxEOM)
689 write_zsctrl(chan, ERR_RES);
690 write_zsctrl(chan, RES_EXT_INT);
691 write_zsctrl(chan, RES_H_IUS);
692 }
693
694 struct z8530_irqhandler z8530_nop=
695 {
696 z8530_rx_clear,
697 z8530_tx_clear,
698 z8530_status_clear
699 };
700
701
702 EXPORT_SYMBOL(z8530_nop);
703
704 /**
705 * z8530_interrupt - Handle an interrupt from a Z8530
706 * @irq: Interrupt number
707 * @dev_id: The Z8530 device that is interrupting.
708 * @regs: unused
709 *
710 * A Z85[2]30 device has stuck its hand in the air for attention.
711 * We scan both the channels on the chip for events and then call
712 * the channel specific call backs for each channel that has events.
713 * We have to use callback functions because the two channels can be
714 * in different modes.
715 *
716 * Locking is done for the handlers. Note that locking is done
717 * at the chip level (the 5uS delay issue is per chip not per
718 * channel). c->lock for both channels points to dev->lock
719 */
720
z8530_interrupt(int irq,void * dev_id,struct pt_regs * regs)721 void z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs)
722 {
723 struct z8530_dev *dev=dev_id;
724 u8 intr;
725 static volatile int locker=0;
726 int work=0;
727 struct z8530_irqhandler *irqs=dev->chanA.irqs;
728
729 if(locker)
730 {
731 printk(KERN_ERR "IRQ re-enter\n");
732 return;
733 }
734 locker=1;
735
736 spin_lock(&dev->lock);
737
738 while(++work<5000)
739 {
740
741 intr = read_zsreg(&dev->chanA, R3);
742 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
743 break;
744
745 /* This holds the IRQ status. On the 8530 you must read it from chan
746 A even though it applies to the whole chip */
747
748 /* Now walk the chip and see what it is wanting - it may be
749 an IRQ for someone else remember */
750
751 if(intr & (CHARxIP|CHATxIP|CHAEXT))
752 {
753 if(intr&CHARxIP)
754 irqs->rx(&dev->chanA);
755 if(intr&CHATxIP)
756 irqs->tx(&dev->chanA);
757 if(intr&CHAEXT)
758 irqs->status(&dev->chanA);
759 }
760
761 irqs=dev->chanB.irqs;
762
763 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
764 {
765 if(intr&CHBRxIP)
766 irqs->rx(&dev->chanB);
767 if(intr&CHBTxIP)
768 irqs->tx(&dev->chanB);
769 if(intr&CHBEXT)
770 irqs->status(&dev->chanB);
771 }
772 }
773 spin_unlock(&dev->lock);
774 if(work==5000)
775 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
776 /* Ok all done */
777 locker=0;
778 }
779
780 EXPORT_SYMBOL(z8530_interrupt);
781
782 static char reg_init[16]=
783 {
784 0,0,0,0,
785 0,0,0,0,
786 0,0,0,0,
787 0x55,0,0,0
788 };
789
790
791 /**
792 * z8530_sync_open - Open a Z8530 channel for PIO
793 * @dev: The network interface we are using
794 * @c: The Z8530 channel to open in synchronous PIO mode
795 *
796 * Switch a Z8530 into synchronous mode without DMA assist. We
797 * raise the RTS/DTR and commence network operation.
798 */
799
z8530_sync_open(struct net_device * dev,struct z8530_channel * c)800 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
801 {
802 unsigned long flags;
803
804 spin_lock_irqsave(c->lock, flags);
805
806 c->sync = 1;
807 c->mtu = dev->mtu+64;
808 c->count = 0;
809 c->skb = NULL;
810 c->skb2 = NULL;
811 c->irqs = &z8530_sync;
812
813 /* This loads the double buffer up */
814 z8530_rx_done(c); /* Load the frame ring */
815 z8530_rx_done(c); /* Load the backup frame */
816 z8530_rtsdtr(c,1);
817 c->dma_tx = 0;
818 c->regs[R1]|=TxINT_ENAB;
819 write_zsreg(c, R1, c->regs[R1]);
820 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
821
822 spin_unlock_irqrestore(c->lock, flags);
823 return 0;
824 }
825
826
827 EXPORT_SYMBOL(z8530_sync_open);
828
829 /**
830 * z8530_sync_close - Close a PIO Z8530 channel
831 * @dev: Network device to close
832 * @c: Z8530 channel to disassociate and move to idle
833 *
834 * Close down a Z8530 interface and switch its interrupt handlers
835 * to discard future events.
836 */
837
z8530_sync_close(struct net_device * dev,struct z8530_channel * c)838 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
839 {
840 u8 chk;
841 unsigned long flags;
842
843 spin_lock_irqsave(c->lock, flags);
844 c->irqs = &z8530_nop;
845 c->max = 0;
846 c->sync = 0;
847
848 chk=read_zsreg(c,R0);
849 write_zsreg(c, R3, c->regs[R3]);
850 z8530_rtsdtr(c,0);
851
852 spin_unlock_irqrestore(c->lock, flags);
853 return 0;
854 }
855
856 EXPORT_SYMBOL(z8530_sync_close);
857
858 /**
859 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
860 * @dev: The network device to attach
861 * @c: The Z8530 channel to configure in sync DMA mode.
862 *
863 * Set up a Z85x30 device for synchronous DMA in both directions. Two
864 * ISA DMA channels must be available for this to work. We assume ISA
865 * DMA driven I/O and PC limits on access.
866 */
867
z8530_sync_dma_open(struct net_device * dev,struct z8530_channel * c)868 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
869 {
870 unsigned long flags;
871
872 c->sync = 1;
873 c->mtu = dev->mtu+64;
874 c->count = 0;
875 c->skb = NULL;
876 c->skb2 = NULL;
877 /*
878 * Load the DMA interfaces up
879 */
880 c->rxdma_on = 0;
881 c->txdma_on = 0;
882
883 /*
884 * Allocate the DMA flip buffers. Limit by page size.
885 * Everyone runs 1500 mtu or less on wan links so this
886 * should be fine.
887 */
888
889 if(c->mtu > PAGE_SIZE/2)
890 return -EMSGSIZE;
891
892 c->rx_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
893 if(c->rx_buf[0]==NULL)
894 return -ENOBUFS;
895 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
896
897 c->tx_dma_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
898 if(c->tx_dma_buf[0]==NULL)
899 {
900 free_page((unsigned long)c->rx_buf[0]);
901 c->rx_buf[0]=NULL;
902 return -ENOBUFS;
903 }
904 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
905
906 c->tx_dma_used=0;
907 c->dma_tx = 1;
908 c->dma_num=0;
909 c->dma_ready=1;
910
911 /*
912 * Enable DMA control mode
913 */
914
915 spin_lock_irqsave(c->lock, flags);
916
917 /*
918 * TX DMA via DIR/REQ
919 */
920
921 c->regs[R14]|= DTRREQ;
922 write_zsreg(c, R14, c->regs[R14]);
923
924 c->regs[R1]&= ~TxINT_ENAB;
925 write_zsreg(c, R1, c->regs[R1]);
926
927 /*
928 * RX DMA via W/Req
929 */
930
931 c->regs[R1]|= WT_FN_RDYFN;
932 c->regs[R1]|= WT_RDY_RT;
933 c->regs[R1]|= INT_ERR_Rx;
934 c->regs[R1]&= ~TxINT_ENAB;
935 write_zsreg(c, R1, c->regs[R1]);
936 c->regs[R1]|= WT_RDY_ENAB;
937 write_zsreg(c, R1, c->regs[R1]);
938
939 /*
940 * DMA interrupts
941 */
942
943 /*
944 * Set up the DMA configuration
945 */
946
947 flags=claim_dma_lock();
948
949 disable_dma(c->rxdma);
950 clear_dma_ff(c->rxdma);
951 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
952 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
953 set_dma_count(c->rxdma, c->mtu);
954 enable_dma(c->rxdma);
955
956 disable_dma(c->txdma);
957 clear_dma_ff(c->txdma);
958 set_dma_mode(c->txdma, DMA_MODE_WRITE);
959 disable_dma(c->txdma);
960
961 release_dma_lock(flags);
962
963 /*
964 * Select the DMA interrupt handlers
965 */
966
967 c->rxdma_on = 1;
968 c->txdma_on = 1;
969 c->tx_dma_used = 1;
970
971 c->irqs = &z8530_dma_sync;
972 z8530_rtsdtr(c,1);
973 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
974
975 spin_unlock_irqrestore(c->lock, flags);
976
977 return 0;
978 }
979
980 EXPORT_SYMBOL(z8530_sync_dma_open);
981
982 /**
983 * z8530_sync_dma_close - Close down DMA I/O
984 * @dev: Network device to detach
985 * @c: Z8530 channel to move into discard mode
986 *
987 * Shut down a DMA mode synchronous interface. Halt the DMA, and
988 * free the buffers.
989 */
990
z8530_sync_dma_close(struct net_device * dev,struct z8530_channel * c)991 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
992 {
993 u8 chk;
994 unsigned long flags;
995
996 c->irqs = &z8530_nop;
997 c->max = 0;
998 c->sync = 0;
999
1000 /*
1001 * Disable the PC DMA channels
1002 */
1003
1004 flags=claim_dma_lock();
1005 disable_dma(c->rxdma);
1006 clear_dma_ff(c->rxdma);
1007
1008 c->rxdma_on = 0;
1009
1010 disable_dma(c->txdma);
1011 clear_dma_ff(c->txdma);
1012 release_dma_lock(flags);
1013
1014 c->txdma_on = 0;
1015 c->tx_dma_used = 0;
1016
1017 spin_lock_irqsave(c->lock, flags);
1018
1019 /*
1020 * Disable DMA control mode
1021 */
1022
1023 c->regs[R1]&= ~WT_RDY_ENAB;
1024 write_zsreg(c, R1, c->regs[R1]);
1025 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1026 c->regs[R1]|= INT_ALL_Rx;
1027 write_zsreg(c, R1, c->regs[R1]);
1028 c->regs[R14]&= ~DTRREQ;
1029 write_zsreg(c, R14, c->regs[R14]);
1030
1031 if(c->rx_buf[0])
1032 {
1033 free_page((unsigned long)c->rx_buf[0]);
1034 c->rx_buf[0]=NULL;
1035 }
1036 if(c->tx_dma_buf[0])
1037 {
1038 free_page((unsigned long)c->tx_dma_buf[0]);
1039 c->tx_dma_buf[0]=NULL;
1040 }
1041 chk=read_zsreg(c,R0);
1042 write_zsreg(c, R3, c->regs[R3]);
1043 z8530_rtsdtr(c,0);
1044
1045 spin_unlock_irqrestore(c->lock, flags);
1046
1047 return 0;
1048 }
1049
1050 EXPORT_SYMBOL(z8530_sync_dma_close);
1051
1052 /**
1053 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1054 * @dev: The network device to attach
1055 * @c: The Z8530 channel to configure in sync DMA mode.
1056 *
1057 * Set up a Z85x30 device for synchronous DMA tranmission. One
1058 * ISA DMA channel must be available for this to work. The receive
1059 * side is run in PIO mode, but then it has the bigger FIFO.
1060 */
1061
z8530_sync_txdma_open(struct net_device * dev,struct z8530_channel * c)1062 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1063 {
1064 unsigned long flags;
1065
1066 printk("Opening sync interface for TX-DMA\n");
1067 c->sync = 1;
1068 c->mtu = dev->mtu+64;
1069 c->count = 0;
1070 c->skb = NULL;
1071 c->skb2 = NULL;
1072
1073 /*
1074 * Allocate the DMA flip buffers. Limit by page size.
1075 * Everyone runs 1500 mtu or less on wan links so this
1076 * should be fine.
1077 */
1078
1079 if(c->mtu > PAGE_SIZE/2)
1080 return -EMSGSIZE;
1081
1082 c->tx_dma_buf[0]=(void *)get_free_page(GFP_KERNEL|GFP_DMA);
1083 if(c->tx_dma_buf[0]==NULL)
1084 return -ENOBUFS;
1085
1086 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1087
1088
1089 spin_lock_irqsave(c->lock, flags);
1090
1091 /*
1092 * Load the PIO receive ring
1093 */
1094
1095 z8530_rx_done(c);
1096 z8530_rx_done(c);
1097
1098 /*
1099 * Load the DMA interfaces up
1100 */
1101
1102 c->rxdma_on = 0;
1103 c->txdma_on = 0;
1104
1105 c->tx_dma_used=0;
1106 c->dma_num=0;
1107 c->dma_ready=1;
1108 c->dma_tx = 1;
1109
1110 /*
1111 * Enable DMA control mode
1112 */
1113
1114 /*
1115 * TX DMA via DIR/REQ
1116 */
1117 c->regs[R14]|= DTRREQ;
1118 write_zsreg(c, R14, c->regs[R14]);
1119
1120 c->regs[R1]&= ~TxINT_ENAB;
1121 write_zsreg(c, R1, c->regs[R1]);
1122
1123 /*
1124 * Set up the DMA configuration
1125 */
1126
1127 flags = claim_dma_lock();
1128
1129 disable_dma(c->txdma);
1130 clear_dma_ff(c->txdma);
1131 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1132 disable_dma(c->txdma);
1133
1134 release_dma_lock(flags);
1135
1136 /*
1137 * Select the DMA interrupt handlers
1138 */
1139
1140 c->rxdma_on = 0;
1141 c->txdma_on = 1;
1142 c->tx_dma_used = 1;
1143
1144 c->irqs = &z8530_txdma_sync;
1145 z8530_rtsdtr(c,1);
1146 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1147 spin_unlock_irqrestore(c->lock, flags);
1148
1149 return 0;
1150 }
1151
1152 EXPORT_SYMBOL(z8530_sync_txdma_open);
1153
1154 /**
1155 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1156 * @dev: Network device to detach
1157 * @c: Z8530 channel to move into discard mode
1158 *
1159 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1160 * and free the buffers.
1161 */
1162
z8530_sync_txdma_close(struct net_device * dev,struct z8530_channel * c)1163 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1164 {
1165 unsigned long flags;
1166 u8 chk;
1167
1168
1169 spin_lock_irqsave(c->lock, flags);
1170
1171 c->irqs = &z8530_nop;
1172 c->max = 0;
1173 c->sync = 0;
1174
1175 /*
1176 * Disable the PC DMA channels
1177 */
1178
1179 flags = claim_dma_lock();
1180
1181 disable_dma(c->txdma);
1182 clear_dma_ff(c->txdma);
1183 c->txdma_on = 0;
1184 c->tx_dma_used = 0;
1185
1186 release_dma_lock(flags);
1187
1188 /*
1189 * Disable DMA control mode
1190 */
1191
1192 c->regs[R1]&= ~WT_RDY_ENAB;
1193 write_zsreg(c, R1, c->regs[R1]);
1194 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1195 c->regs[R1]|= INT_ALL_Rx;
1196 write_zsreg(c, R1, c->regs[R1]);
1197 c->regs[R14]&= ~DTRREQ;
1198 write_zsreg(c, R14, c->regs[R14]);
1199
1200 if(c->tx_dma_buf[0])
1201 {
1202 free_page((unsigned long)c->tx_dma_buf[0]);
1203 c->tx_dma_buf[0]=NULL;
1204 }
1205 chk=read_zsreg(c,R0);
1206 write_zsreg(c, R3, c->regs[R3]);
1207 z8530_rtsdtr(c,0);
1208 return 0;
1209 }
1210
1211
1212 EXPORT_SYMBOL(z8530_sync_txdma_close);
1213
1214
1215 /*
1216 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1217 * it exists...
1218 */
1219
1220 static char *z8530_type_name[]={
1221 "Z8530",
1222 "Z85C30",
1223 "Z85230"
1224 };
1225
1226 /**
1227 * z8530_describe - Uniformly describe a Z8530 port
1228 * @dev: Z8530 device to describe
1229 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1230 * @io: the port value in question
1231 *
1232 * Describe a Z8530 in a standard format. We must pass the I/O as
1233 * the port offset isnt predictable. The main reason for this function
1234 * is to try and get a common format of report.
1235 */
1236
z8530_describe(struct z8530_dev * dev,char * mapping,unsigned long io)1237 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1238 {
1239 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1240 dev->name,
1241 z8530_type_name[dev->type],
1242 mapping,
1243 Z8530_PORT_OF(io),
1244 dev->irq);
1245 }
1246
1247 EXPORT_SYMBOL(z8530_describe);
1248
1249 /*
1250 * Locked operation part of the z8530 init code
1251 */
1252
do_z8530_init(struct z8530_dev * dev)1253 static int do_z8530_init(struct z8530_dev *dev)
1254 {
1255 /* NOP the interrupt handlers first - we might get a
1256 floating IRQ transition when we reset the chip */
1257 dev->chanA.irqs=&z8530_nop;
1258 dev->chanB.irqs=&z8530_nop;
1259 dev->chanA.dcdcheck=DCD;
1260 dev->chanB.dcdcheck=DCD;
1261
1262 /* Set up the chip level lock */
1263 spin_lock_init(&dev->lock);
1264 dev->chanA.lock = &dev->lock;
1265 dev->chanB.lock = &dev->lock;
1266
1267 /* Reset the chip */
1268 write_zsreg(&dev->chanA, R9, 0xC0);
1269 udelay(200);
1270 /* Now check its valid */
1271 write_zsreg(&dev->chanA, R12, 0xAA);
1272 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1273 return -ENODEV;
1274 write_zsreg(&dev->chanA, R12, 0x55);
1275 if(read_zsreg(&dev->chanA, R12)!=0x55)
1276 return -ENODEV;
1277
1278 dev->type=Z8530;
1279
1280 /*
1281 * See the application note.
1282 */
1283
1284 write_zsreg(&dev->chanA, R15, 0x01);
1285
1286 /*
1287 * If we can set the low bit of R15 then
1288 * the chip is enhanced.
1289 */
1290
1291 if(read_zsreg(&dev->chanA, R15)==0x01)
1292 {
1293 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1294 /* Put a char in the fifo */
1295 write_zsreg(&dev->chanA, R8, 0);
1296 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1297 dev->type = Z85230; /* Has a FIFO */
1298 else
1299 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1300 }
1301
1302 /*
1303 * The code assumes R7' and friends are
1304 * off. Use write_zsext() for these and keep
1305 * this bit clear.
1306 */
1307
1308 write_zsreg(&dev->chanA, R15, 0);
1309
1310 /*
1311 * At this point it looks like the chip is behaving
1312 */
1313
1314 memcpy(dev->chanA.regs, reg_init, 16);
1315 memcpy(dev->chanB.regs, reg_init ,16);
1316
1317 return 0;
1318 }
1319
1320 /**
1321 * z8530_init - Initialise a Z8530 device
1322 * @dev: Z8530 device to initialise.
1323 *
1324 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1325 * is present, identify the type and then program it to hopefully
1326 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1327 * state will sometimes get into stupid modes generating 10Khz
1328 * interrupt streams and the like.
1329 *
1330 * We set the interrupt handler up to discard any events, in case
1331 * we get them during reset or setp.
1332 *
1333 * Return 0 for success, or a negative value indicating the problem
1334 * in errno form.
1335 */
1336
z8530_init(struct z8530_dev * dev)1337 int z8530_init(struct z8530_dev *dev)
1338 {
1339 unsigned long flags;
1340 int ret;
1341
1342 /* Set up the chip level lock */
1343 spin_lock_init(&dev->lock);
1344 dev->chanA.lock = &dev->lock;
1345 dev->chanB.lock = &dev->lock;
1346
1347 spin_lock_irqsave(&dev->lock, flags);
1348 ret = do_z8530_init(dev);
1349 spin_unlock_irqrestore(&dev->lock, flags);
1350
1351 return ret;
1352 }
1353
1354
1355 EXPORT_SYMBOL(z8530_init);
1356
1357 /**
1358 * z8530_shutdown - Shutdown a Z8530 device
1359 * @dev: The Z8530 chip to shutdown
1360 *
1361 * We set the interrupt handlers to silence any interrupts. We then
1362 * reset the chip and wait 100uS to be sure the reset completed. Just
1363 * in case the caller then tries to do stuff.
1364 *
1365 * This is called without the lock held
1366 */
1367
z8530_shutdown(struct z8530_dev * dev)1368 int z8530_shutdown(struct z8530_dev *dev)
1369 {
1370 unsigned long flags;
1371 /* Reset the chip */
1372
1373 spin_lock_irqsave(&dev->lock, flags);
1374 dev->chanA.irqs=&z8530_nop;
1375 dev->chanB.irqs=&z8530_nop;
1376 write_zsreg(&dev->chanA, R9, 0xC0);
1377 /* We must lock the udelay, the chip is offlimits here */
1378 udelay(100);
1379 spin_unlock_irqrestore(&dev->lock, flags);
1380 return 0;
1381 }
1382
1383 EXPORT_SYMBOL(z8530_shutdown);
1384
1385 /**
1386 * z8530_channel_load - Load channel data
1387 * @c: Z8530 channel to configure
1388 * @rtable: table of register, value pairs
1389 * FIXME: ioctl to allow user uploaded tables
1390 *
1391 * Load a Z8530 channel up from the system data. We use +16 to
1392 * indicate the "prime" registers. The value 255 terminates the
1393 * table.
1394 */
1395
z8530_channel_load(struct z8530_channel * c,u8 * rtable)1396 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1397 {
1398 unsigned long flags;
1399
1400 spin_lock_irqsave(c->lock, flags);
1401
1402 while(*rtable!=255)
1403 {
1404 int reg=*rtable++;
1405 if(reg>0x0F)
1406 write_zsreg(c, R15, c->regs[15]|1);
1407 write_zsreg(c, reg&0x0F, *rtable);
1408 if(reg>0x0F)
1409 write_zsreg(c, R15, c->regs[15]&~1);
1410 c->regs[reg]=*rtable++;
1411 }
1412 c->rx_function=z8530_null_rx;
1413 c->skb=NULL;
1414 c->tx_skb=NULL;
1415 c->tx_next_skb=NULL;
1416 c->mtu=1500;
1417 c->max=0;
1418 c->count=0;
1419 c->status=read_zsreg(c, R0);
1420 c->sync=1;
1421 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1422
1423 spin_unlock_irqrestore(c->lock, flags);
1424 return 0;
1425 }
1426
1427 EXPORT_SYMBOL(z8530_channel_load);
1428
1429
1430 /**
1431 * z8530_tx_begin - Begin packet transmission
1432 * @c: The Z8530 channel to kick
1433 *
1434 * This is the speed sensitive side of transmission. If we are called
1435 * and no buffer is being transmitted we commence the next buffer. If
1436 * nothing is queued we idle the sync.
1437 *
1438 * Note: We are handling this code path in the interrupt path, keep it
1439 * fast or bad things will happen.
1440 *
1441 * Called with the lock held.
1442 */
1443
z8530_tx_begin(struct z8530_channel * c)1444 static void z8530_tx_begin(struct z8530_channel *c)
1445 {
1446 unsigned long flags;
1447 if(c->tx_skb)
1448 return;
1449
1450 c->tx_skb=c->tx_next_skb;
1451 c->tx_next_skb=NULL;
1452 c->tx_ptr=c->tx_next_ptr;
1453
1454 if(c->tx_skb==NULL)
1455 {
1456 /* Idle on */
1457 if(c->dma_tx)
1458 {
1459 flags=claim_dma_lock();
1460 disable_dma(c->txdma);
1461 /*
1462 * Check if we crapped out.
1463 */
1464 if(get_dma_residue(c->txdma))
1465 {
1466 c->stats.tx_dropped++;
1467 c->stats.tx_fifo_errors++;
1468 }
1469 release_dma_lock(flags);
1470 }
1471 c->txcount=0;
1472 }
1473 else
1474 {
1475 c->txcount=c->tx_skb->len;
1476
1477
1478 if(c->dma_tx)
1479 {
1480 /*
1481 * FIXME. DMA is broken for the original 8530,
1482 * on the older parts we need to set a flag and
1483 * wait for a further TX interrupt to fire this
1484 * stage off
1485 */
1486
1487 flags=claim_dma_lock();
1488 disable_dma(c->txdma);
1489
1490 /*
1491 * These two are needed by the 8530/85C30
1492 * and must be issued when idling.
1493 */
1494
1495 if(c->dev->type!=Z85230)
1496 {
1497 write_zsctrl(c, RES_Tx_CRC);
1498 write_zsctrl(c, RES_EOM_L);
1499 }
1500 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1501 clear_dma_ff(c->txdma);
1502 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1503 set_dma_count(c->txdma, c->txcount);
1504 enable_dma(c->txdma);
1505 release_dma_lock(flags);
1506 write_zsctrl(c, RES_EOM_L);
1507 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1508 }
1509 else
1510 {
1511
1512 /* ABUNDER off */
1513 write_zsreg(c, R10, c->regs[10]);
1514 write_zsctrl(c, RES_Tx_CRC);
1515
1516 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1517 {
1518 write_zsreg(c, R8, *c->tx_ptr++);
1519 c->txcount--;
1520 }
1521
1522 }
1523 }
1524 /*
1525 * Since we emptied tx_skb we can ask for more
1526 */
1527 netif_wake_queue(c->netdevice);
1528 }
1529
1530 /**
1531 * z8530_tx_done - TX complete callback
1532 * @c: The channel that completed a transmit.
1533 *
1534 * This is called when we complete a packet send. We wake the queue,
1535 * start the next packet going and then free the buffer of the existing
1536 * packet. This code is fairly timing sensitive.
1537 *
1538 * Called with the register lock held.
1539 */
1540
z8530_tx_done(struct z8530_channel * c)1541 static void z8530_tx_done(struct z8530_channel *c)
1542 {
1543 struct sk_buff *skb;
1544
1545 /* Actually this can happen.*/
1546 if(c->tx_skb==NULL)
1547 return;
1548
1549 skb=c->tx_skb;
1550 c->tx_skb=NULL;
1551 z8530_tx_begin(c);
1552 c->stats.tx_packets++;
1553 c->stats.tx_bytes+=skb->len;
1554 dev_kfree_skb_irq(skb);
1555 }
1556
1557 /**
1558 * z8530_null_rx - Discard a packet
1559 * @c: The channel the packet arrived on
1560 * @skb: The buffer
1561 *
1562 * We point the receive handler at this function when idle. Instead
1563 * of syncppp processing the frames we get to throw them away.
1564 */
1565
z8530_null_rx(struct z8530_channel * c,struct sk_buff * skb)1566 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1567 {
1568 dev_kfree_skb_any(skb);
1569 }
1570
1571 EXPORT_SYMBOL(z8530_null_rx);
1572
1573 /**
1574 * z8530_rx_done - Receive completion callback
1575 * @c: The channel that completed a receive
1576 *
1577 * A new packet is complete. Our goal here is to get back into receive
1578 * mode as fast as possible. On the Z85230 we could change to using
1579 * ESCC mode, but on the older chips we have no choice. We flip to the
1580 * new buffer immediately in DMA mode so that the DMA of the next
1581 * frame can occur while we are copying the previous buffer to an sk_buff
1582 *
1583 * Called with the lock held
1584 */
1585
z8530_rx_done(struct z8530_channel * c)1586 static void z8530_rx_done(struct z8530_channel *c)
1587 {
1588 struct sk_buff *skb;
1589 int ct;
1590
1591 /*
1592 * Is our receive engine in DMA mode
1593 */
1594
1595 if(c->rxdma_on)
1596 {
1597 /*
1598 * Save the ready state and the buffer currently
1599 * being used as the DMA target
1600 */
1601
1602 int ready=c->dma_ready;
1603 unsigned char *rxb=c->rx_buf[c->dma_num];
1604 unsigned long flags;
1605
1606 /*
1607 * Complete this DMA. Neccessary to find the length
1608 */
1609
1610 flags=claim_dma_lock();
1611
1612 disable_dma(c->rxdma);
1613 clear_dma_ff(c->rxdma);
1614 c->rxdma_on=0;
1615 ct=c->mtu-get_dma_residue(c->rxdma);
1616 if(ct<0)
1617 ct=2; /* Shit happens.. */
1618 c->dma_ready=0;
1619
1620 /*
1621 * Normal case: the other slot is free, start the next DMA
1622 * into it immediately.
1623 */
1624
1625 if(ready)
1626 {
1627 c->dma_num^=1;
1628 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1629 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1630 set_dma_count(c->rxdma, c->mtu);
1631 c->rxdma_on = 1;
1632 enable_dma(c->rxdma);
1633 /* Stop any frames that we missed the head of
1634 from passing */
1635 write_zsreg(c, R0, RES_Rx_CRC);
1636 }
1637 else
1638 /* Can't occur as we dont reenable the DMA irq until
1639 after the flip is done */
1640 printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
1641
1642 release_dma_lock(flags);
1643
1644 /*
1645 * Shove the old buffer into an sk_buff. We can't DMA
1646 * directly into one on a PC - it might be above the 16Mb
1647 * boundary. Optimisation - we could check to see if we
1648 * can avoid the copy. Optimisation 2 - make the memcpy
1649 * a copychecksum.
1650 */
1651
1652 skb=dev_alloc_skb(ct);
1653 if(skb==NULL)
1654 {
1655 c->stats.rx_dropped++;
1656 printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
1657 }
1658 else
1659 {
1660 skb_put(skb, ct);
1661 memcpy(skb->data, rxb, ct);
1662 c->stats.rx_packets++;
1663 c->stats.rx_bytes+=ct;
1664 }
1665 c->dma_ready=1;
1666 }
1667 else
1668 {
1669 RT_LOCK;
1670 skb=c->skb;
1671
1672 /*
1673 * The game we play for non DMA is similar. We want to
1674 * get the controller set up for the next packet as fast
1675 * as possible. We potentially only have one byte + the
1676 * fifo length for this. Thus we want to flip to the new
1677 * buffer and then mess around copying and allocating
1678 * things. For the current case it doesn't matter but
1679 * if you build a system where the sync irq isnt blocked
1680 * by the kernel IRQ disable then you need only block the
1681 * sync IRQ for the RT_LOCK area.
1682 *
1683 */
1684 ct=c->count;
1685
1686 c->skb = c->skb2;
1687 c->count = 0;
1688 c->max = c->mtu;
1689 if(c->skb)
1690 {
1691 c->dptr = c->skb->data;
1692 c->max = c->mtu;
1693 }
1694 else
1695 {
1696 c->count= 0;
1697 c->max = 0;
1698 }
1699 RT_UNLOCK;
1700
1701 c->skb2 = dev_alloc_skb(c->mtu);
1702 if(c->skb2==NULL)
1703 printk(KERN_WARNING "%s: memory squeeze.\n",
1704 c->netdevice->name);
1705 else
1706 {
1707 skb_put(c->skb2,c->mtu);
1708 }
1709 c->stats.rx_packets++;
1710 c->stats.rx_bytes+=ct;
1711
1712 }
1713 /*
1714 * If we received a frame we must now process it.
1715 */
1716 if(skb)
1717 {
1718 skb_trim(skb, ct);
1719 c->rx_function(c,skb);
1720 }
1721 else
1722 {
1723 c->stats.rx_dropped++;
1724 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1725 }
1726 }
1727
1728 /**
1729 * spans_boundary - Check a packet can be ISA DMA'd
1730 * @skb: The buffer to check
1731 *
1732 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1733 * thing can only DMA within a 64K block not across the edges of it.
1734 */
1735
spans_boundary(struct sk_buff * skb)1736 static inline int spans_boundary(struct sk_buff *skb)
1737 {
1738 unsigned long a=(unsigned long)skb->data;
1739 a^=(a+skb->len);
1740 if(a&0x00010000) /* If the 64K bit is different.. */
1741 return 1;
1742 return 0;
1743 }
1744
1745 /**
1746 * z8530_queue_xmit - Queue a packet
1747 * @c: The channel to use
1748 * @skb: The packet to kick down the channel
1749 *
1750 * Queue a packet for transmission. Because we have rather
1751 * hard to hit interrupt latencies for the Z85230 per packet
1752 * even in DMA mode we do the flip to DMA buffer if needed here
1753 * not in the IRQ.
1754 *
1755 * Called from the network code. The lock is not held at this
1756 * point.
1757 */
1758
z8530_queue_xmit(struct z8530_channel * c,struct sk_buff * skb)1759 int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1760 {
1761 unsigned long flags;
1762
1763 netif_stop_queue(c->netdevice);
1764 if(c->tx_next_skb)
1765 {
1766 return 1;
1767 }
1768
1769 /* PC SPECIFIC - DMA limits */
1770
1771 /*
1772 * If we will DMA the transmit and its gone over the ISA bus
1773 * limit, then copy to the flip buffer
1774 */
1775
1776 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1777 {
1778 /*
1779 * Send the flip buffer, and flip the flippy bit.
1780 * We don't care which is used when just so long as
1781 * we never use the same buffer twice in a row. Since
1782 * only one buffer can be going out at a time the other
1783 * has to be safe.
1784 */
1785 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1786 c->tx_dma_used^=1; /* Flip temp buffer */
1787 memcpy(c->tx_next_ptr, skb->data, skb->len);
1788 }
1789 else
1790 c->tx_next_ptr=skb->data;
1791 RT_LOCK;
1792 c->tx_next_skb=skb;
1793 RT_UNLOCK;
1794
1795 spin_lock_irqsave(c->lock, flags);
1796 z8530_tx_begin(c);
1797 spin_unlock_irqrestore(c->lock, flags);
1798
1799 return 0;
1800 }
1801
1802 EXPORT_SYMBOL(z8530_queue_xmit);
1803
1804 /**
1805 * z8530_get_stats - Get network statistics
1806 * @c: The channel to use
1807 *
1808 * Get the statistics block. We keep the statistics in software as
1809 * the chip doesn't do it for us.
1810 *
1811 * Locking is ignored here - we could lock for a copy but its
1812 * not likely to be that big an issue
1813 */
1814
z8530_get_stats(struct z8530_channel * c)1815 struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
1816 {
1817 return &c->stats;
1818 }
1819
1820 EXPORT_SYMBOL(z8530_get_stats);
1821
1822 /*
1823 * Module support
1824 */
1825 static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1826
z85230_init_driver(void)1827 static int __init z85230_init_driver(void)
1828 {
1829 printk(banner);
1830 return 0;
1831 }
1832 module_init(z85230_init_driver);
1833
z85230_cleanup_driver(void)1834 static void __exit z85230_cleanup_driver(void)
1835 {
1836 }
1837 module_exit(z85230_cleanup_driver);
1838
1839 MODULE_AUTHOR("Red Hat Inc.");
1840 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1841 MODULE_LICENSE("GPL");
1842