1 /*
2  *	This program is free software; you can redistribute it and/or
3  *	modify it under the terms of the GNU General Public License
4  *	as published by the Free Software Foundation; either version
5  *	2 of the License, or (at your option) any later version.
6  *
7  *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8  *	(c) Copyright 2000, 2001 Red Hat Inc
9  *
10  *	Development of this driver was funded by Equiinet Ltd
11  *			http://www.equiinet.com
12  *
13  *	ChangeLog:
14  *
15  *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16  *	unification of all the Z85x30 asynchronous drivers for real.
17  *
18  *	DMA now uses get_free_page as kmalloc buffers may span a 64K
19  *	boundary.
20  *
21  *	Modified for SMP safety and SMP locking by Alan Cox
22  *					<alan@lxorguk.ukuu.org.uk>
23  *
24  *	Performance
25  *
26  *	Z85230:
27  *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
28  *	X.25 is not unrealistic on all machines. DMA mode can in theory
29  *	handle T1/E1 quite nicely. In practice the limit seems to be about
30  *	512Kbit->1Mbit depending on motherboard.
31  *
32  *	Z85C30:
33  *	64K will take DMA, 9600 baud X.25 should be ok.
34  *
35  *	Z8530:
36  *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/net.h>
45 #include <linux/skbuff.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/delay.h>
49 #include <linux/hdlc.h>
50 #include <linux/ioport.h>
51 #include <linux/init.h>
52 #include <linux/gfp.h>
53 #include <asm/dma.h>
54 #include <asm/io.h>
55 #define RT_LOCK
56 #define RT_UNLOCK
57 #include <linux/spinlock.h>
58 
59 #include "z85230.h"
60 
61 
62 /**
63  *	z8530_read_port - Architecture specific interface function
64  *	@p: port to read
65  *
66  *	Provided port access methods. The Comtrol SV11 requires no delays
67  *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
68  *
69  *	In the longer term this should become an architecture specific
70  *	section so that this can become a generic driver interface for all
71  *	platforms. For now we only handle PC I/O ports with or without the
72  *	dread 5uS sanity delay.
73  *
74  *	The caller must hold sufficient locks to avoid violating the horrible
75  *	5uS delay rule.
76  */
77 
z8530_read_port(unsigned long p)78 static inline int z8530_read_port(unsigned long p)
79 {
80 	u8 r=inb(Z8530_PORT_OF(p));
81 	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
82 		udelay(5);
83 	return r;
84 }
85 
86 /**
87  *	z8530_write_port - Architecture specific interface function
88  *	@p: port to write
89  *	@d: value to write
90  *
91  *	Write a value to a port with delays if need be. Note that the
92  *	caller must hold locks to avoid read/writes from other contexts
93  *	violating the 5uS rule
94  *
95  *	In the longer term this should become an architecture specific
96  *	section so that this can become a generic driver interface for all
97  *	platforms. For now we only handle PC I/O ports with or without the
98  *	dread 5uS sanity delay.
99  */
100 
101 
z8530_write_port(unsigned long p,u8 d)102 static inline void z8530_write_port(unsigned long p, u8 d)
103 {
104 	outb(d,Z8530_PORT_OF(p));
105 	if(p&Z8530_PORT_SLEEP)
106 		udelay(5);
107 }
108 
109 
110 
111 static void z8530_rx_done(struct z8530_channel *c);
112 static void z8530_tx_done(struct z8530_channel *c);
113 
114 
115 /**
116  *	read_zsreg - Read a register from a Z85230
117  *	@c: Z8530 channel to read from (2 per chip)
118  *	@reg: Register to read
119  *	FIXME: Use a spinlock.
120  *
121  *	Most of the Z8530 registers are indexed off the control registers.
122  *	A read is done by writing to the control register and reading the
123  *	register back.  The caller must hold the lock
124  */
125 
read_zsreg(struct z8530_channel * c,u8 reg)126 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
127 {
128 	if(reg)
129 		z8530_write_port(c->ctrlio, reg);
130 	return z8530_read_port(c->ctrlio);
131 }
132 
133 /**
134  *	read_zsdata - Read the data port of a Z8530 channel
135  *	@c: The Z8530 channel to read the data port from
136  *
137  *	The data port provides fast access to some things. We still
138  *	have all the 5uS delays to worry about.
139  */
140 
read_zsdata(struct z8530_channel * c)141 static inline u8 read_zsdata(struct z8530_channel *c)
142 {
143 	u8 r;
144 	r=z8530_read_port(c->dataio);
145 	return r;
146 }
147 
148 /**
149  *	write_zsreg - Write to a Z8530 channel register
150  *	@c: The Z8530 channel
151  *	@reg: Register number
152  *	@val: Value to write
153  *
154  *	Write a value to an indexed register. The caller must hold the lock
155  *	to honour the irritating delay rules. We know about register 0
156  *	being fast to access.
157  *
158  *      Assumes c->lock is held.
159  */
write_zsreg(struct z8530_channel * c,u8 reg,u8 val)160 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
161 {
162 	if(reg)
163 		z8530_write_port(c->ctrlio, reg);
164 	z8530_write_port(c->ctrlio, val);
165 
166 }
167 
168 /**
169  *	write_zsctrl - Write to a Z8530 control register
170  *	@c: The Z8530 channel
171  *	@val: Value to write
172  *
173  *	Write directly to the control register on the Z8530
174  */
175 
write_zsctrl(struct z8530_channel * c,u8 val)176 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
177 {
178 	z8530_write_port(c->ctrlio, val);
179 }
180 
181 /**
182  *	write_zsdata - Write to a Z8530 control register
183  *	@c: The Z8530 channel
184  *	@val: Value to write
185  *
186  *	Write directly to the data register on the Z8530
187  */
188 
189 
write_zsdata(struct z8530_channel * c,u8 val)190 static inline void write_zsdata(struct z8530_channel *c, u8 val)
191 {
192 	z8530_write_port(c->dataio, val);
193 }
194 
195 /*
196  *	Register loading parameters for a dead port
197  */
198 
199 u8 z8530_dead_port[]=
200 {
201 	255
202 };
203 
204 EXPORT_SYMBOL(z8530_dead_port);
205 
206 /*
207  *	Register loading parameters for currently supported circuit types
208  */
209 
210 
211 /*
212  *	Data clocked by telco end. This is the correct data for the UK
213  *	"kilostream" service, and most other similar services.
214  */
215 
216 u8 z8530_hdlc_kilostream[]=
217 {
218 	4,	SYNC_ENAB|SDLC|X1CLK,
219 	2,	0,	/* No vector */
220 	1,	0,
221 	3,	ENT_HM|RxCRC_ENAB|Rx8,
222 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
223 	9,	0,		/* Disable interrupts */
224 	6,	0xFF,
225 	7,	FLAG,
226 	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
227 	11,	TCTRxCP,
228 	14,	DISDPLL,
229 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
230 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
231 	9,	NV|MIE|NORESET,
232 	255
233 };
234 
235 EXPORT_SYMBOL(z8530_hdlc_kilostream);
236 
237 /*
238  *	As above but for enhanced chips.
239  */
240 
241 u8 z8530_hdlc_kilostream_85230[]=
242 {
243 	4,	SYNC_ENAB|SDLC|X1CLK,
244 	2,	0,	/* No vector */
245 	1,	0,
246 	3,	ENT_HM|RxCRC_ENAB|Rx8,
247 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
248 	9,	0,		/* Disable interrupts */
249 	6,	0xFF,
250 	7,	FLAG,
251 	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
252 	11,	TCTRxCP,
253 	14,	DISDPLL,
254 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
255 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
256 	9,	NV|MIE|NORESET,
257 	23,	3,		/* Extended mode AUTO TX and EOM*/
258 
259 	255
260 };
261 
262 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
263 
264 /**
265  *	z8530_flush_fifo - Flush on chip RX FIFO
266  *	@c: Channel to flush
267  *
268  *	Flush the receive FIFO. There is no specific option for this, we
269  *	blindly read bytes and discard them. Reading when there is no data
270  *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
271  *
272  *	All locking is handled for the caller. On return data may still be
273  *	present if it arrived during the flush.
274  */
275 
z8530_flush_fifo(struct z8530_channel * c)276 static void z8530_flush_fifo(struct z8530_channel *c)
277 {
278 	read_zsreg(c, R1);
279 	read_zsreg(c, R1);
280 	read_zsreg(c, R1);
281 	read_zsreg(c, R1);
282 	if(c->dev->type==Z85230)
283 	{
284 		read_zsreg(c, R1);
285 		read_zsreg(c, R1);
286 		read_zsreg(c, R1);
287 		read_zsreg(c, R1);
288 	}
289 }
290 
291 /**
292  *	z8530_rtsdtr - Control the outgoing DTS/RTS line
293  *	@c: The Z8530 channel to control;
294  *	@set: 1 to set, 0 to clear
295  *
296  *	Sets or clears DTR/RTS on the requested line. All locking is handled
297  *	by the caller. For now we assume all boards use the actual RTS/DTR
298  *	on the chip. Apparently one or two don't. We'll scream about them
299  *	later.
300  */
301 
z8530_rtsdtr(struct z8530_channel * c,int set)302 static void z8530_rtsdtr(struct z8530_channel *c, int set)
303 {
304 	if (set)
305 		c->regs[5] |= (RTS | DTR);
306 	else
307 		c->regs[5] &= ~(RTS | DTR);
308 	write_zsreg(c, R5, c->regs[5]);
309 }
310 
311 /**
312  *	z8530_rx - Handle a PIO receive event
313  *	@c: Z8530 channel to process
314  *
315  *	Receive handler for receiving in PIO mode. This is much like the
316  *	async one but not quite the same or as complex
317  *
318  *	Note: Its intended that this handler can easily be separated from
319  *	the main code to run realtime. That'll be needed for some machines
320  *	(eg to ever clock 64kbits on a sparc ;)).
321  *
322  *	The RT_LOCK macros don't do anything now. Keep the code covered
323  *	by them as short as possible in all circumstances - clocks cost
324  *	baud. The interrupt handler is assumed to be atomic w.r.t. to
325  *	other code - this is true in the RT case too.
326  *
327  *	We only cover the sync cases for this. If you want 2Mbit async
328  *	do it yourself but consider medical assistance first. This non DMA
329  *	synchronous mode is portable code. The DMA mode assumes PCI like
330  *	ISA DMA
331  *
332  *	Called with the device lock held
333  */
334 
z8530_rx(struct z8530_channel * c)335 static void z8530_rx(struct z8530_channel *c)
336 {
337 	u8 ch,stat;
338 
339 	while(1)
340 	{
341 		/* FIFO empty ? */
342 		if(!(read_zsreg(c, R0)&1))
343 			break;
344 		ch=read_zsdata(c);
345 		stat=read_zsreg(c, R1);
346 
347 		/*
348 		 *	Overrun ?
349 		 */
350 		if(c->count < c->max)
351 		{
352 			*c->dptr++=ch;
353 			c->count++;
354 		}
355 
356 		if(stat&END_FR)
357 		{
358 
359 			/*
360 			 *	Error ?
361 			 */
362 			if(stat&(Rx_OVR|CRC_ERR))
363 			{
364 				/* Rewind the buffer and return */
365 				if(c->skb)
366 					c->dptr=c->skb->data;
367 				c->count=0;
368 				if(stat&Rx_OVR)
369 				{
370 					pr_warn("%s: overrun\n", c->dev->name);
371 					c->rx_overrun++;
372 				}
373 				if(stat&CRC_ERR)
374 				{
375 					c->rx_crc_err++;
376 					/* printk("crc error\n"); */
377 				}
378 				/* Shove the frame upstream */
379 			}
380 			else
381 			{
382 				/*
383 				 *	Drop the lock for RX processing, or
384 		 		 *	there are deadlocks
385 		 		 */
386 				z8530_rx_done(c);
387 				write_zsctrl(c, RES_Rx_CRC);
388 			}
389 		}
390 	}
391 	/*
392 	 *	Clear irq
393 	 */
394 	write_zsctrl(c, ERR_RES);
395 	write_zsctrl(c, RES_H_IUS);
396 }
397 
398 
399 /**
400  *	z8530_tx - Handle a PIO transmit event
401  *	@c: Z8530 channel to process
402  *
403  *	Z8530 transmit interrupt handler for the PIO mode. The basic
404  *	idea is to attempt to keep the FIFO fed. We fill as many bytes
405  *	in as possible, its quite possible that we won't keep up with the
406  *	data rate otherwise.
407  */
408 
z8530_tx(struct z8530_channel * c)409 static void z8530_tx(struct z8530_channel *c)
410 {
411 	while(c->txcount) {
412 		/* FIFO full ? */
413 		if(!(read_zsreg(c, R0)&4))
414 			return;
415 		c->txcount--;
416 		/*
417 		 *	Shovel out the byte
418 		 */
419 		write_zsreg(c, R8, *c->tx_ptr++);
420 		write_zsctrl(c, RES_H_IUS);
421 		/* We are about to underflow */
422 		if(c->txcount==0)
423 		{
424 			write_zsctrl(c, RES_EOM_L);
425 			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
426 		}
427 	}
428 
429 
430 	/*
431 	 *	End of frame TX - fire another one
432 	 */
433 
434 	write_zsctrl(c, RES_Tx_P);
435 
436 	z8530_tx_done(c);
437 	write_zsctrl(c, RES_H_IUS);
438 }
439 
440 /**
441  *	z8530_status - Handle a PIO status exception
442  *	@chan: Z8530 channel to process
443  *
444  *	A status event occurred in PIO synchronous mode. There are several
445  *	reasons the chip will bother us here. A transmit underrun means we
446  *	failed to feed the chip fast enough and just broke a packet. A DCD
447  *	change is a line up or down.
448  */
449 
z8530_status(struct z8530_channel * chan)450 static void z8530_status(struct z8530_channel *chan)
451 {
452 	u8 status, altered;
453 
454 	status = read_zsreg(chan, R0);
455 	altered = chan->status ^ status;
456 
457 	chan->status = status;
458 
459 	if (status & TxEOM) {
460 /*		printk("%s: Tx underrun.\n", chan->dev->name); */
461 		chan->netdevice->stats.tx_fifo_errors++;
462 		write_zsctrl(chan, ERR_RES);
463 		z8530_tx_done(chan);
464 	}
465 
466 	if (altered & chan->dcdcheck)
467 	{
468 		if (status & chan->dcdcheck) {
469 			pr_info("%s: DCD raised\n", chan->dev->name);
470 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
471 			if (chan->netdevice)
472 				netif_carrier_on(chan->netdevice);
473 		} else {
474 			pr_info("%s: DCD lost\n", chan->dev->name);
475 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
476 			z8530_flush_fifo(chan);
477 			if (chan->netdevice)
478 				netif_carrier_off(chan->netdevice);
479 		}
480 
481 	}
482 	write_zsctrl(chan, RES_EXT_INT);
483 	write_zsctrl(chan, RES_H_IUS);
484 }
485 
486 struct z8530_irqhandler z8530_sync =
487 {
488 	z8530_rx,
489 	z8530_tx,
490 	z8530_status
491 };
492 
493 EXPORT_SYMBOL(z8530_sync);
494 
495 /**
496  *	z8530_dma_rx - Handle a DMA RX event
497  *	@chan: Channel to handle
498  *
499  *	Non bus mastering DMA interfaces for the Z8x30 devices. This
500  *	is really pretty PC specific. The DMA mode means that most receive
501  *	events are handled by the DMA hardware. We get a kick here only if
502  *	a frame ended.
503  */
504 
z8530_dma_rx(struct z8530_channel * chan)505 static void z8530_dma_rx(struct z8530_channel *chan)
506 {
507 	if(chan->rxdma_on)
508 	{
509 		/* Special condition check only */
510 		u8 status;
511 
512 		read_zsreg(chan, R7);
513 		read_zsreg(chan, R6);
514 
515 		status=read_zsreg(chan, R1);
516 
517 		if(status&END_FR)
518 		{
519 			z8530_rx_done(chan);	/* Fire up the next one */
520 		}
521 		write_zsctrl(chan, ERR_RES);
522 		write_zsctrl(chan, RES_H_IUS);
523 	}
524 	else
525 	{
526 		/* DMA is off right now, drain the slow way */
527 		z8530_rx(chan);
528 	}
529 }
530 
531 /**
532  *	z8530_dma_tx - Handle a DMA TX event
533  *	@chan:	The Z8530 channel to handle
534  *
535  *	We have received an interrupt while doing DMA transmissions. It
536  *	shouldn't happen. Scream loudly if it does.
537  */
538 
z8530_dma_tx(struct z8530_channel * chan)539 static void z8530_dma_tx(struct z8530_channel *chan)
540 {
541 	if(!chan->dma_tx)
542 	{
543 		pr_warn("Hey who turned the DMA off?\n");
544 		z8530_tx(chan);
545 		return;
546 	}
547 	/* This shouldn't occur in DMA mode */
548 	pr_err("DMA tx - bogus event!\n");
549 	z8530_tx(chan);
550 }
551 
552 /**
553  *	z8530_dma_status - Handle a DMA status exception
554  *	@chan: Z8530 channel to process
555  *
556  *	A status event occurred on the Z8530. We receive these for two reasons
557  *	when in DMA mode. Firstly if we finished a packet transfer we get one
558  *	and kick the next packet out. Secondly we may see a DCD change.
559  *
560  */
561 
z8530_dma_status(struct z8530_channel * chan)562 static void z8530_dma_status(struct z8530_channel *chan)
563 {
564 	u8 status, altered;
565 
566 	status=read_zsreg(chan, R0);
567 	altered=chan->status^status;
568 
569 	chan->status=status;
570 
571 
572 	if(chan->dma_tx)
573 	{
574 		if(status&TxEOM)
575 		{
576 			unsigned long flags;
577 
578 			flags=claim_dma_lock();
579 			disable_dma(chan->txdma);
580 			clear_dma_ff(chan->txdma);
581 			chan->txdma_on=0;
582 			release_dma_lock(flags);
583 			z8530_tx_done(chan);
584 		}
585 	}
586 
587 	if (altered & chan->dcdcheck)
588 	{
589 		if (status & chan->dcdcheck) {
590 			pr_info("%s: DCD raised\n", chan->dev->name);
591 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
592 			if (chan->netdevice)
593 				netif_carrier_on(chan->netdevice);
594 		} else {
595 			pr_info("%s: DCD lost\n", chan->dev->name);
596 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
597 			z8530_flush_fifo(chan);
598 			if (chan->netdevice)
599 				netif_carrier_off(chan->netdevice);
600 		}
601 	}
602 
603 	write_zsctrl(chan, RES_EXT_INT);
604 	write_zsctrl(chan, RES_H_IUS);
605 }
606 
607 static struct z8530_irqhandler z8530_dma_sync = {
608 	z8530_dma_rx,
609 	z8530_dma_tx,
610 	z8530_dma_status
611 };
612 
613 static struct z8530_irqhandler z8530_txdma_sync = {
614 	z8530_rx,
615 	z8530_dma_tx,
616 	z8530_dma_status
617 };
618 
619 /**
620  *	z8530_rx_clear - Handle RX events from a stopped chip
621  *	@c: Z8530 channel to shut up
622  *
623  *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
624  *	For machines with PCI Z85x30 cards, or level triggered interrupts
625  *	(eg the MacII) we must clear the interrupt cause or die.
626  */
627 
628 
z8530_rx_clear(struct z8530_channel * c)629 static void z8530_rx_clear(struct z8530_channel *c)
630 {
631 	/*
632 	 *	Data and status bytes
633 	 */
634 	u8 stat;
635 
636 	read_zsdata(c);
637 	stat=read_zsreg(c, R1);
638 
639 	if(stat&END_FR)
640 		write_zsctrl(c, RES_Rx_CRC);
641 	/*
642 	 *	Clear irq
643 	 */
644 	write_zsctrl(c, ERR_RES);
645 	write_zsctrl(c, RES_H_IUS);
646 }
647 
648 /**
649  *	z8530_tx_clear - Handle TX events from a stopped chip
650  *	@c: Z8530 channel to shut up
651  *
652  *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
653  *	For machines with PCI Z85x30 cards, or level triggered interrupts
654  *	(eg the MacII) we must clear the interrupt cause or die.
655  */
656 
z8530_tx_clear(struct z8530_channel * c)657 static void z8530_tx_clear(struct z8530_channel *c)
658 {
659 	write_zsctrl(c, RES_Tx_P);
660 	write_zsctrl(c, RES_H_IUS);
661 }
662 
663 /**
664  *	z8530_status_clear - Handle status events from a stopped chip
665  *	@chan: Z8530 channel to shut up
666  *
667  *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
668  *	For machines with PCI Z85x30 cards, or level triggered interrupts
669  *	(eg the MacII) we must clear the interrupt cause or die.
670  */
671 
z8530_status_clear(struct z8530_channel * chan)672 static void z8530_status_clear(struct z8530_channel *chan)
673 {
674 	u8 status=read_zsreg(chan, R0);
675 	if(status&TxEOM)
676 		write_zsctrl(chan, ERR_RES);
677 	write_zsctrl(chan, RES_EXT_INT);
678 	write_zsctrl(chan, RES_H_IUS);
679 }
680 
681 struct z8530_irqhandler z8530_nop=
682 {
683 	z8530_rx_clear,
684 	z8530_tx_clear,
685 	z8530_status_clear
686 };
687 
688 
689 EXPORT_SYMBOL(z8530_nop);
690 
691 /**
692  *	z8530_interrupt - Handle an interrupt from a Z8530
693  *	@irq: 	Interrupt number
694  *	@dev_id: The Z8530 device that is interrupting.
695  *
696  *	A Z85[2]30 device has stuck its hand in the air for attention.
697  *	We scan both the channels on the chip for events and then call
698  *	the channel specific call backs for each channel that has events.
699  *	We have to use callback functions because the two channels can be
700  *	in different modes.
701  *
702  *	Locking is done for the handlers. Note that locking is done
703  *	at the chip level (the 5uS delay issue is per chip not per
704  *	channel). c->lock for both channels points to dev->lock
705  */
706 
z8530_interrupt(int irq,void * dev_id)707 irqreturn_t z8530_interrupt(int irq, void *dev_id)
708 {
709 	struct z8530_dev *dev=dev_id;
710 	u8 uninitialized_var(intr);
711 	static volatile int locker=0;
712 	int work=0;
713 	struct z8530_irqhandler *irqs;
714 
715 	if(locker)
716 	{
717 		pr_err("IRQ re-enter\n");
718 		return IRQ_NONE;
719 	}
720 	locker=1;
721 
722 	spin_lock(&dev->lock);
723 
724 	while(++work<5000)
725 	{
726 
727 		intr = read_zsreg(&dev->chanA, R3);
728 		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
729 			break;
730 
731 		/* This holds the IRQ status. On the 8530 you must read it from chan
732 		   A even though it applies to the whole chip */
733 
734 		/* Now walk the chip and see what it is wanting - it may be
735 		   an IRQ for someone else remember */
736 
737 		irqs=dev->chanA.irqs;
738 
739 		if(intr & (CHARxIP|CHATxIP|CHAEXT))
740 		{
741 			if(intr&CHARxIP)
742 				irqs->rx(&dev->chanA);
743 			if(intr&CHATxIP)
744 				irqs->tx(&dev->chanA);
745 			if(intr&CHAEXT)
746 				irqs->status(&dev->chanA);
747 		}
748 
749 		irqs=dev->chanB.irqs;
750 
751 		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
752 		{
753 			if(intr&CHBRxIP)
754 				irqs->rx(&dev->chanB);
755 			if(intr&CHBTxIP)
756 				irqs->tx(&dev->chanB);
757 			if(intr&CHBEXT)
758 				irqs->status(&dev->chanB);
759 		}
760 	}
761 	spin_unlock(&dev->lock);
762 	if(work==5000)
763 		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
764 		       dev->name, intr);
765 	/* Ok all done */
766 	locker=0;
767 	return IRQ_HANDLED;
768 }
769 
770 EXPORT_SYMBOL(z8530_interrupt);
771 
772 static const u8 reg_init[16]=
773 {
774 	0,0,0,0,
775 	0,0,0,0,
776 	0,0,0,0,
777 	0x55,0,0,0
778 };
779 
780 
781 /**
782  *	z8530_sync_open - Open a Z8530 channel for PIO
783  *	@dev:	The network interface we are using
784  *	@c:	The Z8530 channel to open in synchronous PIO mode
785  *
786  *	Switch a Z8530 into synchronous mode without DMA assist. We
787  *	raise the RTS/DTR and commence network operation.
788  */
789 
z8530_sync_open(struct net_device * dev,struct z8530_channel * c)790 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
791 {
792 	unsigned long flags;
793 
794 	spin_lock_irqsave(c->lock, flags);
795 
796 	c->sync = 1;
797 	c->mtu = dev->mtu+64;
798 	c->count = 0;
799 	c->skb = NULL;
800 	c->skb2 = NULL;
801 	c->irqs = &z8530_sync;
802 
803 	/* This loads the double buffer up */
804 	z8530_rx_done(c);	/* Load the frame ring */
805 	z8530_rx_done(c);	/* Load the backup frame */
806 	z8530_rtsdtr(c,1);
807 	c->dma_tx = 0;
808 	c->regs[R1]|=TxINT_ENAB;
809 	write_zsreg(c, R1, c->regs[R1]);
810 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
811 
812 	spin_unlock_irqrestore(c->lock, flags);
813 	return 0;
814 }
815 
816 
817 EXPORT_SYMBOL(z8530_sync_open);
818 
819 /**
820  *	z8530_sync_close - Close a PIO Z8530 channel
821  *	@dev: Network device to close
822  *	@c: Z8530 channel to disassociate and move to idle
823  *
824  *	Close down a Z8530 interface and switch its interrupt handlers
825  *	to discard future events.
826  */
827 
z8530_sync_close(struct net_device * dev,struct z8530_channel * c)828 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
829 {
830 	u8 chk;
831 	unsigned long flags;
832 
833 	spin_lock_irqsave(c->lock, flags);
834 	c->irqs = &z8530_nop;
835 	c->max = 0;
836 	c->sync = 0;
837 
838 	chk=read_zsreg(c,R0);
839 	write_zsreg(c, R3, c->regs[R3]);
840 	z8530_rtsdtr(c,0);
841 
842 	spin_unlock_irqrestore(c->lock, flags);
843 	return 0;
844 }
845 
846 EXPORT_SYMBOL(z8530_sync_close);
847 
848 /**
849  *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
850  *	@dev: The network device to attach
851  *	@c: The Z8530 channel to configure in sync DMA mode.
852  *
853  *	Set up a Z85x30 device for synchronous DMA in both directions. Two
854  *	ISA DMA channels must be available for this to work. We assume ISA
855  *	DMA driven I/O and PC limits on access.
856  */
857 
z8530_sync_dma_open(struct net_device * dev,struct z8530_channel * c)858 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
859 {
860 	unsigned long cflags, dflags;
861 
862 	c->sync = 1;
863 	c->mtu = dev->mtu+64;
864 	c->count = 0;
865 	c->skb = NULL;
866 	c->skb2 = NULL;
867 	/*
868 	 *	Load the DMA interfaces up
869 	 */
870 	c->rxdma_on = 0;
871 	c->txdma_on = 0;
872 
873 	/*
874 	 *	Allocate the DMA flip buffers. Limit by page size.
875 	 *	Everyone runs 1500 mtu or less on wan links so this
876 	 *	should be fine.
877 	 */
878 
879 	if(c->mtu  > PAGE_SIZE/2)
880 		return -EMSGSIZE;
881 
882 	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
883 	if(c->rx_buf[0]==NULL)
884 		return -ENOBUFS;
885 	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
886 
887 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
888 	if(c->tx_dma_buf[0]==NULL)
889 	{
890 		free_page((unsigned long)c->rx_buf[0]);
891 		c->rx_buf[0]=NULL;
892 		return -ENOBUFS;
893 	}
894 	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
895 
896 	c->tx_dma_used=0;
897 	c->dma_tx = 1;
898 	c->dma_num=0;
899 	c->dma_ready=1;
900 
901 	/*
902 	 *	Enable DMA control mode
903 	 */
904 
905 	spin_lock_irqsave(c->lock, cflags);
906 
907 	/*
908 	 *	TX DMA via DIR/REQ
909 	 */
910 
911 	c->regs[R14]|= DTRREQ;
912 	write_zsreg(c, R14, c->regs[R14]);
913 
914 	c->regs[R1]&= ~TxINT_ENAB;
915 	write_zsreg(c, R1, c->regs[R1]);
916 
917 	/*
918 	 *	RX DMA via W/Req
919 	 */
920 
921 	c->regs[R1]|= WT_FN_RDYFN;
922 	c->regs[R1]|= WT_RDY_RT;
923 	c->regs[R1]|= INT_ERR_Rx;
924 	c->regs[R1]&= ~TxINT_ENAB;
925 	write_zsreg(c, R1, c->regs[R1]);
926 	c->regs[R1]|= WT_RDY_ENAB;
927 	write_zsreg(c, R1, c->regs[R1]);
928 
929 	/*
930 	 *	DMA interrupts
931 	 */
932 
933 	/*
934 	 *	Set up the DMA configuration
935 	 */
936 
937 	dflags=claim_dma_lock();
938 
939 	disable_dma(c->rxdma);
940 	clear_dma_ff(c->rxdma);
941 	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
942 	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
943 	set_dma_count(c->rxdma, c->mtu);
944 	enable_dma(c->rxdma);
945 
946 	disable_dma(c->txdma);
947 	clear_dma_ff(c->txdma);
948 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
949 	disable_dma(c->txdma);
950 
951 	release_dma_lock(dflags);
952 
953 	/*
954 	 *	Select the DMA interrupt handlers
955 	 */
956 
957 	c->rxdma_on = 1;
958 	c->txdma_on = 1;
959 	c->tx_dma_used = 1;
960 
961 	c->irqs = &z8530_dma_sync;
962 	z8530_rtsdtr(c,1);
963 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
964 
965 	spin_unlock_irqrestore(c->lock, cflags);
966 
967 	return 0;
968 }
969 
970 EXPORT_SYMBOL(z8530_sync_dma_open);
971 
972 /**
973  *	z8530_sync_dma_close - Close down DMA I/O
974  *	@dev: Network device to detach
975  *	@c: Z8530 channel to move into discard mode
976  *
977  *	Shut down a DMA mode synchronous interface. Halt the DMA, and
978  *	free the buffers.
979  */
980 
z8530_sync_dma_close(struct net_device * dev,struct z8530_channel * c)981 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
982 {
983 	u8 chk;
984 	unsigned long flags;
985 
986 	c->irqs = &z8530_nop;
987 	c->max = 0;
988 	c->sync = 0;
989 
990 	/*
991 	 *	Disable the PC DMA channels
992 	 */
993 
994 	flags=claim_dma_lock();
995 	disable_dma(c->rxdma);
996 	clear_dma_ff(c->rxdma);
997 
998 	c->rxdma_on = 0;
999 
1000 	disable_dma(c->txdma);
1001 	clear_dma_ff(c->txdma);
1002 	release_dma_lock(flags);
1003 
1004 	c->txdma_on = 0;
1005 	c->tx_dma_used = 0;
1006 
1007 	spin_lock_irqsave(c->lock, flags);
1008 
1009 	/*
1010 	 *	Disable DMA control mode
1011 	 */
1012 
1013 	c->regs[R1]&= ~WT_RDY_ENAB;
1014 	write_zsreg(c, R1, c->regs[R1]);
1015 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1016 	c->regs[R1]|= INT_ALL_Rx;
1017 	write_zsreg(c, R1, c->regs[R1]);
1018 	c->regs[R14]&= ~DTRREQ;
1019 	write_zsreg(c, R14, c->regs[R14]);
1020 
1021 	if(c->rx_buf[0])
1022 	{
1023 		free_page((unsigned long)c->rx_buf[0]);
1024 		c->rx_buf[0]=NULL;
1025 	}
1026 	if(c->tx_dma_buf[0])
1027 	{
1028 		free_page((unsigned  long)c->tx_dma_buf[0]);
1029 		c->tx_dma_buf[0]=NULL;
1030 	}
1031 	chk=read_zsreg(c,R0);
1032 	write_zsreg(c, R3, c->regs[R3]);
1033 	z8530_rtsdtr(c,0);
1034 
1035 	spin_unlock_irqrestore(c->lock, flags);
1036 
1037 	return 0;
1038 }
1039 
1040 EXPORT_SYMBOL(z8530_sync_dma_close);
1041 
1042 /**
1043  *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1044  *	@dev: The network device to attach
1045  *	@c: The Z8530 channel to configure in sync DMA mode.
1046  *
1047  *	Set up a Z85x30 device for synchronous DMA tranmission. One
1048  *	ISA DMA channel must be available for this to work. The receive
1049  *	side is run in PIO mode, but then it has the bigger FIFO.
1050  */
1051 
z8530_sync_txdma_open(struct net_device * dev,struct z8530_channel * c)1052 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1053 {
1054 	unsigned long cflags, dflags;
1055 
1056 	printk("Opening sync interface for TX-DMA\n");
1057 	c->sync = 1;
1058 	c->mtu = dev->mtu+64;
1059 	c->count = 0;
1060 	c->skb = NULL;
1061 	c->skb2 = NULL;
1062 
1063 	/*
1064 	 *	Allocate the DMA flip buffers. Limit by page size.
1065 	 *	Everyone runs 1500 mtu or less on wan links so this
1066 	 *	should be fine.
1067 	 */
1068 
1069 	if(c->mtu  > PAGE_SIZE/2)
1070 		return -EMSGSIZE;
1071 
1072 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1073 	if(c->tx_dma_buf[0]==NULL)
1074 		return -ENOBUFS;
1075 
1076 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1077 
1078 
1079 	spin_lock_irqsave(c->lock, cflags);
1080 
1081 	/*
1082 	 *	Load the PIO receive ring
1083 	 */
1084 
1085 	z8530_rx_done(c);
1086 	z8530_rx_done(c);
1087 
1088  	/*
1089 	 *	Load the DMA interfaces up
1090 	 */
1091 
1092 	c->rxdma_on = 0;
1093 	c->txdma_on = 0;
1094 
1095 	c->tx_dma_used=0;
1096 	c->dma_num=0;
1097 	c->dma_ready=1;
1098 	c->dma_tx = 1;
1099 
1100  	/*
1101 	 *	Enable DMA control mode
1102 	 */
1103 
1104  	/*
1105 	 *	TX DMA via DIR/REQ
1106  	 */
1107 	c->regs[R14]|= DTRREQ;
1108 	write_zsreg(c, R14, c->regs[R14]);
1109 
1110 	c->regs[R1]&= ~TxINT_ENAB;
1111 	write_zsreg(c, R1, c->regs[R1]);
1112 
1113 	/*
1114 	 *	Set up the DMA configuration
1115 	 */
1116 
1117 	dflags = claim_dma_lock();
1118 
1119 	disable_dma(c->txdma);
1120 	clear_dma_ff(c->txdma);
1121 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1122 	disable_dma(c->txdma);
1123 
1124 	release_dma_lock(dflags);
1125 
1126 	/*
1127 	 *	Select the DMA interrupt handlers
1128 	 */
1129 
1130 	c->rxdma_on = 0;
1131 	c->txdma_on = 1;
1132 	c->tx_dma_used = 1;
1133 
1134 	c->irqs = &z8530_txdma_sync;
1135 	z8530_rtsdtr(c,1);
1136 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1137 	spin_unlock_irqrestore(c->lock, cflags);
1138 
1139 	return 0;
1140 }
1141 
1142 EXPORT_SYMBOL(z8530_sync_txdma_open);
1143 
1144 /**
1145  *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1146  *	@dev: Network device to detach
1147  *	@c: Z8530 channel to move into discard mode
1148  *
1149  *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1150  *	and  free the buffers.
1151  */
1152 
z8530_sync_txdma_close(struct net_device * dev,struct z8530_channel * c)1153 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1154 {
1155 	unsigned long dflags, cflags;
1156 	u8 chk;
1157 
1158 
1159 	spin_lock_irqsave(c->lock, cflags);
1160 
1161 	c->irqs = &z8530_nop;
1162 	c->max = 0;
1163 	c->sync = 0;
1164 
1165 	/*
1166 	 *	Disable the PC DMA channels
1167 	 */
1168 
1169 	dflags = claim_dma_lock();
1170 
1171 	disable_dma(c->txdma);
1172 	clear_dma_ff(c->txdma);
1173 	c->txdma_on = 0;
1174 	c->tx_dma_used = 0;
1175 
1176 	release_dma_lock(dflags);
1177 
1178 	/*
1179 	 *	Disable DMA control mode
1180 	 */
1181 
1182 	c->regs[R1]&= ~WT_RDY_ENAB;
1183 	write_zsreg(c, R1, c->regs[R1]);
1184 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1185 	c->regs[R1]|= INT_ALL_Rx;
1186 	write_zsreg(c, R1, c->regs[R1]);
1187 	c->regs[R14]&= ~DTRREQ;
1188 	write_zsreg(c, R14, c->regs[R14]);
1189 
1190 	if(c->tx_dma_buf[0])
1191 	{
1192 		free_page((unsigned long)c->tx_dma_buf[0]);
1193 		c->tx_dma_buf[0]=NULL;
1194 	}
1195 	chk=read_zsreg(c,R0);
1196 	write_zsreg(c, R3, c->regs[R3]);
1197 	z8530_rtsdtr(c,0);
1198 
1199 	spin_unlock_irqrestore(c->lock, cflags);
1200 	return 0;
1201 }
1202 
1203 
1204 EXPORT_SYMBOL(z8530_sync_txdma_close);
1205 
1206 
1207 /*
1208  *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1209  *	it exists...
1210  */
1211 
1212 static const char *z8530_type_name[]={
1213 	"Z8530",
1214 	"Z85C30",
1215 	"Z85230"
1216 };
1217 
1218 /**
1219  *	z8530_describe - Uniformly describe a Z8530 port
1220  *	@dev: Z8530 device to describe
1221  *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1222  *	@io: the port value in question
1223  *
1224  *	Describe a Z8530 in a standard format. We must pass the I/O as
1225  *	the port offset isn't predictable. The main reason for this function
1226  *	is to try and get a common format of report.
1227  */
1228 
z8530_describe(struct z8530_dev * dev,char * mapping,unsigned long io)1229 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1230 {
1231 	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1232 		dev->name,
1233 		z8530_type_name[dev->type],
1234 		mapping,
1235 		Z8530_PORT_OF(io),
1236 		dev->irq);
1237 }
1238 
1239 EXPORT_SYMBOL(z8530_describe);
1240 
1241 /*
1242  *	Locked operation part of the z8530 init code
1243  */
1244 
do_z8530_init(struct z8530_dev * dev)1245 static inline int do_z8530_init(struct z8530_dev *dev)
1246 {
1247 	/* NOP the interrupt handlers first - we might get a
1248 	   floating IRQ transition when we reset the chip */
1249 	dev->chanA.irqs=&z8530_nop;
1250 	dev->chanB.irqs=&z8530_nop;
1251 	dev->chanA.dcdcheck=DCD;
1252 	dev->chanB.dcdcheck=DCD;
1253 
1254 	/* Reset the chip */
1255 	write_zsreg(&dev->chanA, R9, 0xC0);
1256 	udelay(200);
1257 	/* Now check its valid */
1258 	write_zsreg(&dev->chanA, R12, 0xAA);
1259 	if(read_zsreg(&dev->chanA, R12)!=0xAA)
1260 		return -ENODEV;
1261 	write_zsreg(&dev->chanA, R12, 0x55);
1262 	if(read_zsreg(&dev->chanA, R12)!=0x55)
1263 		return -ENODEV;
1264 
1265 	dev->type=Z8530;
1266 
1267 	/*
1268 	 *	See the application note.
1269 	 */
1270 
1271 	write_zsreg(&dev->chanA, R15, 0x01);
1272 
1273 	/*
1274 	 *	If we can set the low bit of R15 then
1275 	 *	the chip is enhanced.
1276 	 */
1277 
1278 	if(read_zsreg(&dev->chanA, R15)==0x01)
1279 	{
1280 		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1281 		/* Put a char in the fifo */
1282 		write_zsreg(&dev->chanA, R8, 0);
1283 		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1284 			dev->type = Z85230;	/* Has a FIFO */
1285 		else
1286 			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1287 	}
1288 
1289 	/*
1290 	 *	The code assumes R7' and friends are
1291 	 *	off. Use write_zsext() for these and keep
1292 	 *	this bit clear.
1293 	 */
1294 
1295 	write_zsreg(&dev->chanA, R15, 0);
1296 
1297 	/*
1298 	 *	At this point it looks like the chip is behaving
1299 	 */
1300 
1301 	memcpy(dev->chanA.regs, reg_init, 16);
1302 	memcpy(dev->chanB.regs, reg_init ,16);
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  *	z8530_init - Initialise a Z8530 device
1309  *	@dev: Z8530 device to initialise.
1310  *
1311  *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1312  *	is present, identify the type and then program it to hopefully
1313  *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1314  *	state will sometimes get into stupid modes generating 10Khz
1315  *	interrupt streams and the like.
1316  *
1317  *	We set the interrupt handler up to discard any events, in case
1318  *	we get them during reset or setp.
1319  *
1320  *	Return 0 for success, or a negative value indicating the problem
1321  *	in errno form.
1322  */
1323 
z8530_init(struct z8530_dev * dev)1324 int z8530_init(struct z8530_dev *dev)
1325 {
1326 	unsigned long flags;
1327 	int ret;
1328 
1329 	/* Set up the chip level lock */
1330 	spin_lock_init(&dev->lock);
1331 	dev->chanA.lock = &dev->lock;
1332 	dev->chanB.lock = &dev->lock;
1333 
1334 	spin_lock_irqsave(&dev->lock, flags);
1335 	ret = do_z8530_init(dev);
1336 	spin_unlock_irqrestore(&dev->lock, flags);
1337 
1338 	return ret;
1339 }
1340 
1341 
1342 EXPORT_SYMBOL(z8530_init);
1343 
1344 /**
1345  *	z8530_shutdown - Shutdown a Z8530 device
1346  *	@dev: The Z8530 chip to shutdown
1347  *
1348  *	We set the interrupt handlers to silence any interrupts. We then
1349  *	reset the chip and wait 100uS to be sure the reset completed. Just
1350  *	in case the caller then tries to do stuff.
1351  *
1352  *	This is called without the lock held
1353  */
1354 
z8530_shutdown(struct z8530_dev * dev)1355 int z8530_shutdown(struct z8530_dev *dev)
1356 {
1357 	unsigned long flags;
1358 	/* Reset the chip */
1359 
1360 	spin_lock_irqsave(&dev->lock, flags);
1361 	dev->chanA.irqs=&z8530_nop;
1362 	dev->chanB.irqs=&z8530_nop;
1363 	write_zsreg(&dev->chanA, R9, 0xC0);
1364 	/* We must lock the udelay, the chip is offlimits here */
1365 	udelay(100);
1366 	spin_unlock_irqrestore(&dev->lock, flags);
1367 	return 0;
1368 }
1369 
1370 EXPORT_SYMBOL(z8530_shutdown);
1371 
1372 /**
1373  *	z8530_channel_load - Load channel data
1374  *	@c: Z8530 channel to configure
1375  *	@rtable: table of register, value pairs
1376  *	FIXME: ioctl to allow user uploaded tables
1377  *
1378  *	Load a Z8530 channel up from the system data. We use +16 to
1379  *	indicate the "prime" registers. The value 255 terminates the
1380  *	table.
1381  */
1382 
z8530_channel_load(struct z8530_channel * c,u8 * rtable)1383 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1384 {
1385 	unsigned long flags;
1386 
1387 	spin_lock_irqsave(c->lock, flags);
1388 
1389 	while(*rtable!=255)
1390 	{
1391 		int reg=*rtable++;
1392 		if(reg>0x0F)
1393 			write_zsreg(c, R15, c->regs[15]|1);
1394 		write_zsreg(c, reg&0x0F, *rtable);
1395 		if(reg>0x0F)
1396 			write_zsreg(c, R15, c->regs[15]&~1);
1397 		c->regs[reg]=*rtable++;
1398 	}
1399 	c->rx_function=z8530_null_rx;
1400 	c->skb=NULL;
1401 	c->tx_skb=NULL;
1402 	c->tx_next_skb=NULL;
1403 	c->mtu=1500;
1404 	c->max=0;
1405 	c->count=0;
1406 	c->status=read_zsreg(c, R0);
1407 	c->sync=1;
1408 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1409 
1410 	spin_unlock_irqrestore(c->lock, flags);
1411 	return 0;
1412 }
1413 
1414 EXPORT_SYMBOL(z8530_channel_load);
1415 
1416 
1417 /**
1418  *	z8530_tx_begin - Begin packet transmission
1419  *	@c: The Z8530 channel to kick
1420  *
1421  *	This is the speed sensitive side of transmission. If we are called
1422  *	and no buffer is being transmitted we commence the next buffer. If
1423  *	nothing is queued we idle the sync.
1424  *
1425  *	Note: We are handling this code path in the interrupt path, keep it
1426  *	fast or bad things will happen.
1427  *
1428  *	Called with the lock held.
1429  */
1430 
z8530_tx_begin(struct z8530_channel * c)1431 static void z8530_tx_begin(struct z8530_channel *c)
1432 {
1433 	unsigned long flags;
1434 	if(c->tx_skb)
1435 		return;
1436 
1437 	c->tx_skb=c->tx_next_skb;
1438 	c->tx_next_skb=NULL;
1439 	c->tx_ptr=c->tx_next_ptr;
1440 
1441 	if(c->tx_skb==NULL)
1442 	{
1443 		/* Idle on */
1444 		if(c->dma_tx)
1445 		{
1446 			flags=claim_dma_lock();
1447 			disable_dma(c->txdma);
1448 			/*
1449 			 *	Check if we crapped out.
1450 			 */
1451 			if (get_dma_residue(c->txdma))
1452 			{
1453 				c->netdevice->stats.tx_dropped++;
1454 				c->netdevice->stats.tx_fifo_errors++;
1455 			}
1456 			release_dma_lock(flags);
1457 		}
1458 		c->txcount=0;
1459 	}
1460 	else
1461 	{
1462 		c->txcount=c->tx_skb->len;
1463 
1464 
1465 		if(c->dma_tx)
1466 		{
1467 			/*
1468 			 *	FIXME. DMA is broken for the original 8530,
1469 			 *	on the older parts we need to set a flag and
1470 			 *	wait for a further TX interrupt to fire this
1471 			 *	stage off
1472 			 */
1473 
1474 			flags=claim_dma_lock();
1475 			disable_dma(c->txdma);
1476 
1477 			/*
1478 			 *	These two are needed by the 8530/85C30
1479 			 *	and must be issued when idling.
1480 			 */
1481 
1482 			if(c->dev->type!=Z85230)
1483 			{
1484 				write_zsctrl(c, RES_Tx_CRC);
1485 				write_zsctrl(c, RES_EOM_L);
1486 			}
1487 			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1488 			clear_dma_ff(c->txdma);
1489 			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1490 			set_dma_count(c->txdma, c->txcount);
1491 			enable_dma(c->txdma);
1492 			release_dma_lock(flags);
1493 			write_zsctrl(c, RES_EOM_L);
1494 			write_zsreg(c, R5, c->regs[R5]|TxENAB);
1495 		}
1496 		else
1497 		{
1498 
1499 			/* ABUNDER off */
1500 			write_zsreg(c, R10, c->regs[10]);
1501 			write_zsctrl(c, RES_Tx_CRC);
1502 
1503 			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1504 			{
1505 				write_zsreg(c, R8, *c->tx_ptr++);
1506 				c->txcount--;
1507 			}
1508 
1509 		}
1510 	}
1511 	/*
1512 	 *	Since we emptied tx_skb we can ask for more
1513 	 */
1514 	netif_wake_queue(c->netdevice);
1515 }
1516 
1517 /**
1518  *	z8530_tx_done - TX complete callback
1519  *	@c: The channel that completed a transmit.
1520  *
1521  *	This is called when we complete a packet send. We wake the queue,
1522  *	start the next packet going and then free the buffer of the existing
1523  *	packet. This code is fairly timing sensitive.
1524  *
1525  *	Called with the register lock held.
1526  */
1527 
z8530_tx_done(struct z8530_channel * c)1528 static void z8530_tx_done(struct z8530_channel *c)
1529 {
1530 	struct sk_buff *skb;
1531 
1532 	/* Actually this can happen.*/
1533 	if (c->tx_skb == NULL)
1534 		return;
1535 
1536 	skb = c->tx_skb;
1537 	c->tx_skb = NULL;
1538 	z8530_tx_begin(c);
1539 	c->netdevice->stats.tx_packets++;
1540 	c->netdevice->stats.tx_bytes += skb->len;
1541 	dev_kfree_skb_irq(skb);
1542 }
1543 
1544 /**
1545  *	z8530_null_rx - Discard a packet
1546  *	@c: The channel the packet arrived on
1547  *	@skb: The buffer
1548  *
1549  *	We point the receive handler at this function when idle. Instead
1550  *	of processing the frames we get to throw them away.
1551  */
1552 
z8530_null_rx(struct z8530_channel * c,struct sk_buff * skb)1553 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1554 {
1555 	dev_kfree_skb_any(skb);
1556 }
1557 
1558 EXPORT_SYMBOL(z8530_null_rx);
1559 
1560 /**
1561  *	z8530_rx_done - Receive completion callback
1562  *	@c: The channel that completed a receive
1563  *
1564  *	A new packet is complete. Our goal here is to get back into receive
1565  *	mode as fast as possible. On the Z85230 we could change to using
1566  *	ESCC mode, but on the older chips we have no choice. We flip to the
1567  *	new buffer immediately in DMA mode so that the DMA of the next
1568  *	frame can occur while we are copying the previous buffer to an sk_buff
1569  *
1570  *	Called with the lock held
1571  */
1572 
z8530_rx_done(struct z8530_channel * c)1573 static void z8530_rx_done(struct z8530_channel *c)
1574 {
1575 	struct sk_buff *skb;
1576 	int ct;
1577 
1578 	/*
1579 	 *	Is our receive engine in DMA mode
1580 	 */
1581 
1582 	if(c->rxdma_on)
1583 	{
1584 		/*
1585 		 *	Save the ready state and the buffer currently
1586 		 *	being used as the DMA target
1587 		 */
1588 
1589 		int ready=c->dma_ready;
1590 		unsigned char *rxb=c->rx_buf[c->dma_num];
1591 		unsigned long flags;
1592 
1593 		/*
1594 		 *	Complete this DMA. Necessary to find the length
1595 		 */
1596 
1597 		flags=claim_dma_lock();
1598 
1599 		disable_dma(c->rxdma);
1600 		clear_dma_ff(c->rxdma);
1601 		c->rxdma_on=0;
1602 		ct=c->mtu-get_dma_residue(c->rxdma);
1603 		if(ct<0)
1604 			ct=2;	/* Shit happens.. */
1605 		c->dma_ready=0;
1606 
1607 		/*
1608 		 *	Normal case: the other slot is free, start the next DMA
1609 		 *	into it immediately.
1610 		 */
1611 
1612 		if(ready)
1613 		{
1614 			c->dma_num^=1;
1615 			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1616 			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1617 			set_dma_count(c->rxdma, c->mtu);
1618 			c->rxdma_on = 1;
1619 			enable_dma(c->rxdma);
1620 			/* Stop any frames that we missed the head of
1621 			   from passing */
1622 			write_zsreg(c, R0, RES_Rx_CRC);
1623 		}
1624 		else
1625 			/* Can't occur as we dont reenable the DMA irq until
1626 			   after the flip is done */
1627 			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1628 
1629 		release_dma_lock(flags);
1630 
1631 		/*
1632 		 *	Shove the old buffer into an sk_buff. We can't DMA
1633 		 *	directly into one on a PC - it might be above the 16Mb
1634 		 *	boundary. Optimisation - we could check to see if we
1635 		 *	can avoid the copy. Optimisation 2 - make the memcpy
1636 		 *	a copychecksum.
1637 		 */
1638 
1639 		skb = dev_alloc_skb(ct);
1640 		if (skb == NULL) {
1641 			c->netdevice->stats.rx_dropped++;
1642 			netdev_warn(c->netdevice, "Memory squeeze\n");
1643 		} else {
1644 			skb_put(skb, ct);
1645 			skb_copy_to_linear_data(skb, rxb, ct);
1646 			c->netdevice->stats.rx_packets++;
1647 			c->netdevice->stats.rx_bytes += ct;
1648 		}
1649 		c->dma_ready = 1;
1650 	} else {
1651 		RT_LOCK;
1652 		skb = c->skb;
1653 
1654 		/*
1655 		 *	The game we play for non DMA is similar. We want to
1656 		 *	get the controller set up for the next packet as fast
1657 		 *	as possible. We potentially only have one byte + the
1658 		 *	fifo length for this. Thus we want to flip to the new
1659 		 *	buffer and then mess around copying and allocating
1660 		 *	things. For the current case it doesn't matter but
1661 		 *	if you build a system where the sync irq isn't blocked
1662 		 *	by the kernel IRQ disable then you need only block the
1663 		 *	sync IRQ for the RT_LOCK area.
1664 		 *
1665 		 */
1666 		ct=c->count;
1667 
1668 		c->skb = c->skb2;
1669 		c->count = 0;
1670 		c->max = c->mtu;
1671 		if (c->skb) {
1672 			c->dptr = c->skb->data;
1673 			c->max = c->mtu;
1674 		} else {
1675 			c->count = 0;
1676 			c->max = 0;
1677 		}
1678 		RT_UNLOCK;
1679 
1680 		c->skb2 = dev_alloc_skb(c->mtu);
1681 		if (c->skb2 == NULL)
1682 			netdev_warn(c->netdevice, "memory squeeze\n");
1683 		else
1684 			skb_put(c->skb2, c->mtu);
1685 		c->netdevice->stats.rx_packets++;
1686 		c->netdevice->stats.rx_bytes += ct;
1687 	}
1688 	/*
1689 	 *	If we received a frame we must now process it.
1690 	 */
1691 	if (skb) {
1692 		skb_trim(skb, ct);
1693 		c->rx_function(c, skb);
1694 	} else {
1695 		c->netdevice->stats.rx_dropped++;
1696 		netdev_err(c->netdevice, "Lost a frame\n");
1697 	}
1698 }
1699 
1700 /**
1701  *	spans_boundary - Check a packet can be ISA DMA'd
1702  *	@skb: The buffer to check
1703  *
1704  *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1705  *	thing can only DMA within a 64K block not across the edges of it.
1706  */
1707 
spans_boundary(struct sk_buff * skb)1708 static inline int spans_boundary(struct sk_buff *skb)
1709 {
1710 	unsigned long a=(unsigned long)skb->data;
1711 	a^=(a+skb->len);
1712 	if(a&0x00010000)	/* If the 64K bit is different.. */
1713 		return 1;
1714 	return 0;
1715 }
1716 
1717 /**
1718  *	z8530_queue_xmit - Queue a packet
1719  *	@c: The channel to use
1720  *	@skb: The packet to kick down the channel
1721  *
1722  *	Queue a packet for transmission. Because we have rather
1723  *	hard to hit interrupt latencies for the Z85230 per packet
1724  *	even in DMA mode we do the flip to DMA buffer if needed here
1725  *	not in the IRQ.
1726  *
1727  *	Called from the network code. The lock is not held at this
1728  *	point.
1729  */
1730 
z8530_queue_xmit(struct z8530_channel * c,struct sk_buff * skb)1731 netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1732 {
1733 	unsigned long flags;
1734 
1735 	netif_stop_queue(c->netdevice);
1736 	if(c->tx_next_skb)
1737 		return NETDEV_TX_BUSY;
1738 
1739 
1740 	/* PC SPECIFIC - DMA limits */
1741 
1742 	/*
1743 	 *	If we will DMA the transmit and its gone over the ISA bus
1744 	 *	limit, then copy to the flip buffer
1745 	 */
1746 
1747 	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1748 	{
1749 		/*
1750 		 *	Send the flip buffer, and flip the flippy bit.
1751 		 *	We don't care which is used when just so long as
1752 		 *	we never use the same buffer twice in a row. Since
1753 		 *	only one buffer can be going out at a time the other
1754 		 *	has to be safe.
1755 		 */
1756 		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757 		c->tx_dma_used^=1;	/* Flip temp buffer */
1758 		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1759 	}
1760 	else
1761 		c->tx_next_ptr=skb->data;
1762 	RT_LOCK;
1763 	c->tx_next_skb=skb;
1764 	RT_UNLOCK;
1765 
1766 	spin_lock_irqsave(c->lock, flags);
1767 	z8530_tx_begin(c);
1768 	spin_unlock_irqrestore(c->lock, flags);
1769 
1770 	return NETDEV_TX_OK;
1771 }
1772 
1773 EXPORT_SYMBOL(z8530_queue_xmit);
1774 
1775 /*
1776  *	Module support
1777  */
1778 static const char banner[] __initdata =
1779 	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1780 
z85230_init_driver(void)1781 static int __init z85230_init_driver(void)
1782 {
1783 	printk(banner);
1784 	return 0;
1785 }
1786 module_init(z85230_init_driver);
1787 
z85230_cleanup_driver(void)1788 static void __exit z85230_cleanup_driver(void)
1789 {
1790 }
1791 module_exit(z85230_cleanup_driver);
1792 
1793 MODULE_AUTHOR("Red Hat Inc.");
1794 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1795 MODULE_LICENSE("GPL");
1796