1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13
14 #include "xsk.h"
15
16 struct xdp_ring {
17 u32 producer ____cacheline_aligned_in_smp;
18 /* Hinder the adjacent cache prefetcher to prefetch the consumer
19 * pointer if the producer pointer is touched and vice versa.
20 */
21 u32 pad1 ____cacheline_aligned_in_smp;
22 u32 consumer ____cacheline_aligned_in_smp;
23 u32 pad2 ____cacheline_aligned_in_smp;
24 u32 flags;
25 u32 pad3 ____cacheline_aligned_in_smp;
26 };
27
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 struct xdp_ring ptrs;
31 struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 struct xdp_ring ptrs;
37 u64 desc[] ____cacheline_aligned_in_smp;
38 };
39
40 struct xsk_queue {
41 u32 ring_mask;
42 u32 nentries;
43 u32 cached_prod;
44 u32 cached_cons;
45 struct xdp_ring *ring;
46 u64 invalid_descs;
47 u64 queue_empty_descs;
48 };
49
50 /* The structure of the shared state of the rings are a simple
51 * circular buffer, as outlined in
52 * Documentation/core-api/circular-buffers.rst. For the Rx and
53 * completion ring, the kernel is the producer and user space is the
54 * consumer. For the Tx and fill rings, the kernel is the consumer and
55 * user space is the producer.
56 *
57 * producer consumer
58 *
59 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C)
60 * STORE $data LOAD $data
61 * STORE.rel ->producer (B) STORE.rel ->consumer (D)
62 * }
63 *
64 * (A) pairs with (D), and (B) pairs with (C).
65 *
66 * Starting with (B), it protects the data from being written after
67 * the producer pointer. If this barrier was missing, the consumer
68 * could observe the producer pointer being set and thus load the data
69 * before the producer has written the new data. The consumer would in
70 * this case load the old data.
71 *
72 * (C) protects the consumer from speculatively loading the data before
73 * the producer pointer actually has been read. If we do not have this
74 * barrier, some architectures could load old data as speculative loads
75 * are not discarded as the CPU does not know there is a dependency
76 * between ->producer and data.
77 *
78 * (A) is a control dependency that separates the load of ->consumer
79 * from the stores of $data. In case ->consumer indicates there is no
80 * room in the buffer to store $data we do not. The dependency will
81 * order both of the stores after the loads. So no barrier is needed.
82 *
83 * (D) protects the load of the data to be observed to happen after the
84 * store of the consumer pointer. If we did not have this memory
85 * barrier, the producer could observe the consumer pointer being set
86 * and overwrite the data with a new value before the consumer got the
87 * chance to read the old value. The consumer would thus miss reading
88 * the old entry and very likely read the new entry twice, once right
89 * now and again after circling through the ring.
90 */
91
92 /* The operations on the rings are the following:
93 *
94 * producer consumer
95 *
96 * RESERVE entries PEEK in the ring for entries
97 * WRITE data into the ring READ data from the ring
98 * SUBMIT entries RELEASE entries
99 *
100 * The producer reserves one or more entries in the ring. It can then
101 * fill in these entries and finally submit them so that they can be
102 * seen and read by the consumer.
103 *
104 * The consumer peeks into the ring to see if the producer has written
105 * any new entries. If so, the consumer can then read these entries
106 * and when it is done reading them release them back to the producer
107 * so that the producer can use these slots to fill in new entries.
108 *
109 * The function names below reflect these operations.
110 */
111
112 /* Functions that read and validate content from consumer rings. */
113
__xskq_cons_read_addr_unchecked(struct xsk_queue * q,u32 cached_cons,u64 * addr)114 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
115 {
116 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
117 u32 idx = cached_cons & q->ring_mask;
118
119 *addr = ring->desc[idx];
120 }
121
xskq_cons_read_addr_unchecked(struct xsk_queue * q,u64 * addr)122 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
123 {
124 if (q->cached_cons != q->cached_prod) {
125 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
126 return true;
127 }
128
129 return false;
130 }
131
xp_aligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)132 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
133 struct xdp_desc *desc)
134 {
135 u64 chunk, chunk_end;
136
137 chunk = xp_aligned_extract_addr(pool, desc->addr);
138 if (likely(desc->len)) {
139 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
140 if (chunk != chunk_end)
141 return false;
142 }
143
144 if (chunk >= pool->addrs_cnt)
145 return false;
146
147 if (desc->options)
148 return false;
149 return true;
150 }
151
xp_unaligned_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)152 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
153 struct xdp_desc *desc)
154 {
155 u64 addr, base_addr;
156
157 base_addr = xp_unaligned_extract_addr(desc->addr);
158 addr = xp_unaligned_add_offset_to_addr(desc->addr);
159
160 if (desc->len > pool->chunk_size)
161 return false;
162
163 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
164 xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
165 return false;
166
167 if (desc->options)
168 return false;
169 return true;
170 }
171
xp_validate_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)172 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
173 struct xdp_desc *desc)
174 {
175 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
176 xp_aligned_validate_desc(pool, desc);
177 }
178
xskq_cons_is_valid_desc(struct xsk_queue * q,struct xdp_desc * d,struct xsk_buff_pool * pool)179 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
180 struct xdp_desc *d,
181 struct xsk_buff_pool *pool)
182 {
183 if (!xp_validate_desc(pool, d)) {
184 q->invalid_descs++;
185 return false;
186 }
187 return true;
188 }
189
xskq_cons_read_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)190 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
191 struct xdp_desc *desc,
192 struct xsk_buff_pool *pool)
193 {
194 while (q->cached_cons != q->cached_prod) {
195 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
196 u32 idx = q->cached_cons & q->ring_mask;
197
198 *desc = ring->desc[idx];
199 if (xskq_cons_is_valid_desc(q, desc, pool))
200 return true;
201
202 q->cached_cons++;
203 }
204
205 return false;
206 }
207
xskq_cons_read_desc_batch(struct xsk_queue * q,struct xsk_buff_pool * pool,u32 max)208 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
209 u32 max)
210 {
211 u32 cached_cons = q->cached_cons, nb_entries = 0;
212 struct xdp_desc *descs = pool->tx_descs;
213
214 while (cached_cons != q->cached_prod && nb_entries < max) {
215 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
216 u32 idx = cached_cons & q->ring_mask;
217
218 descs[nb_entries] = ring->desc[idx];
219 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
220 /* Skip the entry */
221 cached_cons++;
222 continue;
223 }
224
225 nb_entries++;
226 cached_cons++;
227 }
228
229 return nb_entries;
230 }
231
232 /* Functions for consumers */
233
__xskq_cons_release(struct xsk_queue * q)234 static inline void __xskq_cons_release(struct xsk_queue *q)
235 {
236 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
237 }
238
__xskq_cons_peek(struct xsk_queue * q)239 static inline void __xskq_cons_peek(struct xsk_queue *q)
240 {
241 /* Refresh the local pointer */
242 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */
243 }
244
xskq_cons_get_entries(struct xsk_queue * q)245 static inline void xskq_cons_get_entries(struct xsk_queue *q)
246 {
247 __xskq_cons_release(q);
248 __xskq_cons_peek(q);
249 }
250
xskq_cons_nb_entries(struct xsk_queue * q,u32 max)251 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
252 {
253 u32 entries = q->cached_prod - q->cached_cons;
254
255 if (entries >= max)
256 return max;
257
258 __xskq_cons_peek(q);
259 entries = q->cached_prod - q->cached_cons;
260
261 return entries >= max ? max : entries;
262 }
263
xskq_cons_has_entries(struct xsk_queue * q,u32 cnt)264 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
265 {
266 return xskq_cons_nb_entries(q, cnt) >= cnt;
267 }
268
xskq_cons_peek_addr_unchecked(struct xsk_queue * q,u64 * addr)269 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
270 {
271 if (q->cached_prod == q->cached_cons)
272 xskq_cons_get_entries(q);
273 return xskq_cons_read_addr_unchecked(q, addr);
274 }
275
xskq_cons_peek_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xsk_buff_pool * pool)276 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
277 struct xdp_desc *desc,
278 struct xsk_buff_pool *pool)
279 {
280 if (q->cached_prod == q->cached_cons)
281 xskq_cons_get_entries(q);
282 return xskq_cons_read_desc(q, desc, pool);
283 }
284
285 /* To improve performance in the xskq_cons_release functions, only update local state here.
286 * Reflect this to global state when we get new entries from the ring in
287 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
288 */
xskq_cons_release(struct xsk_queue * q)289 static inline void xskq_cons_release(struct xsk_queue *q)
290 {
291 q->cached_cons++;
292 }
293
xskq_cons_release_n(struct xsk_queue * q,u32 cnt)294 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
295 {
296 q->cached_cons += cnt;
297 }
298
xskq_cons_present_entries(struct xsk_queue * q)299 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
300 {
301 /* No barriers needed since data is not accessed */
302 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
303 }
304
305 /* Functions for producers */
306
xskq_prod_nb_free(struct xsk_queue * q,u32 max)307 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
308 {
309 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
310
311 if (free_entries >= max)
312 return max;
313
314 /* Refresh the local tail pointer */
315 q->cached_cons = READ_ONCE(q->ring->consumer);
316 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
317
318 return free_entries >= max ? max : free_entries;
319 }
320
xskq_prod_is_full(struct xsk_queue * q)321 static inline bool xskq_prod_is_full(struct xsk_queue *q)
322 {
323 return xskq_prod_nb_free(q, 1) ? false : true;
324 }
325
xskq_prod_cancel(struct xsk_queue * q)326 static inline void xskq_prod_cancel(struct xsk_queue *q)
327 {
328 q->cached_prod--;
329 }
330
xskq_prod_reserve(struct xsk_queue * q)331 static inline int xskq_prod_reserve(struct xsk_queue *q)
332 {
333 if (xskq_prod_is_full(q))
334 return -ENOSPC;
335
336 /* A, matches D */
337 q->cached_prod++;
338 return 0;
339 }
340
xskq_prod_reserve_addr(struct xsk_queue * q,u64 addr)341 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
342 {
343 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
344
345 if (xskq_prod_is_full(q))
346 return -ENOSPC;
347
348 /* A, matches D */
349 ring->desc[q->cached_prod++ & q->ring_mask] = addr;
350 return 0;
351 }
352
xskq_prod_reserve_addr_batch(struct xsk_queue * q,struct xdp_desc * descs,u32 max)353 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
354 u32 max)
355 {
356 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
357 u32 nb_entries, i, cached_prod;
358
359 nb_entries = xskq_prod_nb_free(q, max);
360
361 /* A, matches D */
362 cached_prod = q->cached_prod;
363 for (i = 0; i < nb_entries; i++)
364 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
365 q->cached_prod = cached_prod;
366
367 return nb_entries;
368 }
369
xskq_prod_reserve_desc(struct xsk_queue * q,u64 addr,u32 len)370 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
371 u64 addr, u32 len)
372 {
373 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
374 u32 idx;
375
376 if (xskq_prod_is_full(q))
377 return -ENOBUFS;
378
379 /* A, matches D */
380 idx = q->cached_prod++ & q->ring_mask;
381 ring->desc[idx].addr = addr;
382 ring->desc[idx].len = len;
383
384 return 0;
385 }
386
__xskq_prod_submit(struct xsk_queue * q,u32 idx)387 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
388 {
389 smp_store_release(&q->ring->producer, idx); /* B, matches C */
390 }
391
xskq_prod_submit(struct xsk_queue * q)392 static inline void xskq_prod_submit(struct xsk_queue *q)
393 {
394 __xskq_prod_submit(q, q->cached_prod);
395 }
396
xskq_prod_submit_addr(struct xsk_queue * q,u64 addr)397 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
398 {
399 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
400 u32 idx = q->ring->producer;
401
402 ring->desc[idx++ & q->ring_mask] = addr;
403
404 __xskq_prod_submit(q, idx);
405 }
406
xskq_prod_submit_n(struct xsk_queue * q,u32 nb_entries)407 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
408 {
409 __xskq_prod_submit(q, q->ring->producer + nb_entries);
410 }
411
xskq_prod_is_empty(struct xsk_queue * q)412 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
413 {
414 /* No barriers needed since data is not accessed */
415 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
416 }
417
418 /* For both producers and consumers */
419
xskq_nb_invalid_descs(struct xsk_queue * q)420 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
421 {
422 return q ? q->invalid_descs : 0;
423 }
424
xskq_nb_queue_empty_descs(struct xsk_queue * q)425 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
426 {
427 return q ? q->queue_empty_descs : 0;
428 }
429
430 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
431 void xskq_destroy(struct xsk_queue *q_ops);
432
433 #endif /* _LINUX_XSK_QUEUE_H */
434