1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
xhci_quiesce(struct xhci_hcd * xhci)87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
xhci_halt(struct xhci_hcd * xhci)111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114
115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
116 xhci_quiesce(xhci);
117
118 ret = xhci_handshake(&xhci->op_regs->status,
119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 if (ret) {
121 xhci_warn(xhci, "Host halt failed, %d\n", ret);
122 return ret;
123 }
124
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127
128 return ret;
129 }
130
131 /*
132 * Set the run bit and wait for the host to be running.
133 */
xhci_start(struct xhci_hcd * xhci)134 int xhci_start(struct xhci_hcd *xhci)
135 {
136 u32 temp;
137 int ret;
138
139 temp = readl(&xhci->op_regs->command);
140 temp |= (CMD_RUN);
141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 temp);
143 writel(temp, &xhci->op_regs->command);
144
145 /*
146 * Wait for the HCHalted Status bit to be 0 to indicate the host is
147 * running.
148 */
149 ret = xhci_handshake(&xhci->op_regs->status,
150 STS_HALT, 0, XHCI_MAX_HALT_USEC);
151 if (ret == -ETIMEDOUT)
152 xhci_err(xhci, "Host took too long to start, "
153 "waited %u microseconds.\n",
154 XHCI_MAX_HALT_USEC);
155 if (!ret) {
156 /* clear state flags. Including dying, halted or removing */
157 xhci->xhc_state = 0;
158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
159 }
160
161 return ret;
162 }
163
164 /*
165 * Reset a halted HC.
166 *
167 * This resets pipelines, timers, counters, state machines, etc.
168 * Transactions will be terminated immediately, and operational registers
169 * will be set to their defaults.
170 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
172 {
173 u32 command;
174 u32 state;
175 int ret;
176
177 state = readl(&xhci->op_regs->status);
178
179 if (state == ~(u32)0) {
180 xhci_warn(xhci, "Host not accessible, reset failed.\n");
181 return -ENODEV;
182 }
183
184 if ((state & STS_HALT) == 0) {
185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
186 return 0;
187 }
188
189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
190 command = readl(&xhci->op_regs->command);
191 command |= CMD_RESET;
192 writel(command, &xhci->op_regs->command);
193
194 /* Existing Intel xHCI controllers require a delay of 1 mS,
195 * after setting the CMD_RESET bit, and before accessing any
196 * HC registers. This allows the HC to complete the
197 * reset operation and be ready for HC register access.
198 * Without this delay, the subsequent HC register access,
199 * may result in a system hang very rarely.
200 */
201 if (xhci->quirks & XHCI_INTEL_HOST)
202 udelay(1000);
203
204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
205 if (ret)
206 return ret;
207
208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210
211 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
212 "Wait for controller to be ready for doorbell rings");
213 /*
214 * xHCI cannot write to any doorbells or operational registers other
215 * than status until the "Controller Not Ready" flag is cleared.
216 */
217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218
219 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb2_rhub.bus_state.suspended_ports = 0;
221 xhci->usb2_rhub.bus_state.resuming_ports = 0;
222 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
223 xhci->usb3_rhub.bus_state.suspended_ports = 0;
224 xhci->usb3_rhub.bus_state.resuming_ports = 0;
225
226 return ret;
227 }
228
xhci_zero_64b_regs(struct xhci_hcd * xhci)229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 {
231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
232 struct iommu_domain *domain;
233 int err, i;
234 u64 val;
235 u32 intrs;
236
237 /*
238 * Some Renesas controllers get into a weird state if they are
239 * reset while programmed with 64bit addresses (they will preserve
240 * the top half of the address in internal, non visible
241 * registers). You end up with half the address coming from the
242 * kernel, and the other half coming from the firmware. Also,
243 * changing the programming leads to extra accesses even if the
244 * controller is supposed to be halted. The controller ends up with
245 * a fatal fault, and is then ripe for being properly reset.
246 *
247 * Special care is taken to only apply this if the device is behind
248 * an iommu. Doing anything when there is no iommu is definitely
249 * unsafe...
250 */
251 domain = iommu_get_domain_for_dev(dev);
252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
253 domain->type == IOMMU_DOMAIN_IDENTITY)
254 return;
255
256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
257
258 /* Clear HSEIE so that faults do not get signaled */
259 val = readl(&xhci->op_regs->command);
260 val &= ~CMD_HSEIE;
261 writel(val, &xhci->op_regs->command);
262
263 /* Clear HSE (aka FATAL) */
264 val = readl(&xhci->op_regs->status);
265 val |= STS_FATAL;
266 writel(val, &xhci->op_regs->status);
267
268 /* Now zero the registers, and brace for impact */
269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
270 if (upper_32_bits(val))
271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
273 if (upper_32_bits(val))
274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
275
276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
277 ARRAY_SIZE(xhci->run_regs->ir_set));
278
279 for (i = 0; i < intrs; i++) {
280 struct xhci_intr_reg __iomem *ir;
281
282 ir = &xhci->run_regs->ir_set[i];
283 val = xhci_read_64(xhci, &ir->erst_base);
284 if (upper_32_bits(val))
285 xhci_write_64(xhci, 0, &ir->erst_base);
286 val= xhci_read_64(xhci, &ir->erst_dequeue);
287 if (upper_32_bits(val))
288 xhci_write_64(xhci, 0, &ir->erst_dequeue);
289 }
290
291 /* Wait for the fault to appear. It will be cleared on reset */
292 err = xhci_handshake(&xhci->op_regs->status,
293 STS_FATAL, STS_FATAL,
294 XHCI_MAX_HALT_USEC);
295 if (!err)
296 xhci_info(xhci, "Fault detected\n");
297 }
298
xhci_enable_interrupter(struct xhci_interrupter * ir)299 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
300 {
301 u32 iman;
302
303 if (!ir || !ir->ir_set)
304 return -EINVAL;
305
306 iman = readl(&ir->ir_set->irq_pending);
307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
308
309 return 0;
310 }
311
xhci_disable_interrupter(struct xhci_interrupter * ir)312 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
313 {
314 u32 iman;
315
316 if (!ir || !ir->ir_set)
317 return -EINVAL;
318
319 iman = readl(&ir->ir_set->irq_pending);
320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
321
322 return 0;
323 }
324
compliance_mode_recovery(struct timer_list * t)325 static void compliance_mode_recovery(struct timer_list *t)
326 {
327 struct xhci_hcd *xhci;
328 struct usb_hcd *hcd;
329 struct xhci_hub *rhub;
330 u32 temp;
331 int i;
332
333 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
334 rhub = &xhci->usb3_rhub;
335 hcd = rhub->hcd;
336
337 if (!hcd)
338 return;
339
340 for (i = 0; i < rhub->num_ports; i++) {
341 temp = readl(rhub->ports[i]->addr);
342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
343 /*
344 * Compliance Mode Detected. Letting USB Core
345 * handle the Warm Reset
346 */
347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
348 "Compliance mode detected->port %d",
349 i + 1);
350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
351 "Attempting compliance mode recovery");
352
353 if (hcd->state == HC_STATE_SUSPENDED)
354 usb_hcd_resume_root_hub(hcd);
355
356 usb_hcd_poll_rh_status(hcd);
357 }
358 }
359
360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
361 mod_timer(&xhci->comp_mode_recovery_timer,
362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
363 }
364
365 /*
366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
367 * that causes ports behind that hardware to enter compliance mode sometimes.
368 * The quirk creates a timer that polls every 2 seconds the link state of
369 * each host controller's port and recovers it by issuing a Warm reset
370 * if Compliance mode is detected, otherwise the port will become "dead" (no
371 * device connections or disconnections will be detected anymore). Becasue no
372 * status event is generated when entering compliance mode (per xhci spec),
373 * this quirk is needed on systems that have the failing hardware installed.
374 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
376 {
377 xhci->port_status_u0 = 0;
378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
379 0);
380 xhci->comp_mode_recovery_timer.expires = jiffies +
381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
382
383 add_timer(&xhci->comp_mode_recovery_timer);
384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
385 "Compliance mode recovery timer initialized");
386 }
387
388 /*
389 * This function identifies the systems that have installed the SN65LVPE502CP
390 * USB3.0 re-driver and that need the Compliance Mode Quirk.
391 * Systems:
392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
393 */
xhci_compliance_mode_recovery_timer_quirk_check(void)394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
395 {
396 const char *dmi_product_name, *dmi_sys_vendor;
397
398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
400 if (!dmi_product_name || !dmi_sys_vendor)
401 return false;
402
403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
404 return false;
405
406 if (strstr(dmi_product_name, "Z420") ||
407 strstr(dmi_product_name, "Z620") ||
408 strstr(dmi_product_name, "Z820") ||
409 strstr(dmi_product_name, "Z1 Workstation"))
410 return true;
411
412 return false;
413 }
414
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
416 {
417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
418 }
419
420
421 /*
422 * Initialize memory for HCD and xHC (one-time init).
423 *
424 * Program the PAGESIZE register, initialize the device context array, create
425 * device contexts (?), set up a command ring segment (or two?), create event
426 * ring (one for now).
427 */
xhci_init(struct usb_hcd * hcd)428 static int xhci_init(struct usb_hcd *hcd)
429 {
430 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
431 int retval;
432
433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
434 spin_lock_init(&xhci->lock);
435 if (xhci->hci_version == 0x95 && link_quirk) {
436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
437 "QUIRK: Not clearing Link TRB chain bits.");
438 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
439 } else {
440 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
441 "xHCI doesn't need link TRB QUIRK");
442 }
443 retval = xhci_mem_init(xhci, GFP_KERNEL);
444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
445
446 /* Initializing Compliance Mode Recovery Data If Needed */
447 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
448 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
449 compliance_mode_recovery_timer_init(xhci);
450 }
451
452 return retval;
453 }
454
455 /*-------------------------------------------------------------------------*/
456
xhci_run_finished(struct xhci_hcd * xhci)457 static int xhci_run_finished(struct xhci_hcd *xhci)
458 {
459 struct xhci_interrupter *ir = xhci->interrupter;
460 unsigned long flags;
461 u32 temp;
462
463 /*
464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
465 * Protect the short window before host is running with a lock
466 */
467 spin_lock_irqsave(&xhci->lock, flags);
468
469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
470 temp = readl(&xhci->op_regs->command);
471 temp |= (CMD_EIE);
472 writel(temp, &xhci->op_regs->command);
473
474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
475 xhci_enable_interrupter(ir);
476
477 if (xhci_start(xhci)) {
478 xhci_halt(xhci);
479 spin_unlock_irqrestore(&xhci->lock, flags);
480 return -ENODEV;
481 }
482
483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
484
485 if (xhci->quirks & XHCI_NEC_HOST)
486 xhci_ring_cmd_db(xhci);
487
488 spin_unlock_irqrestore(&xhci->lock, flags);
489
490 return 0;
491 }
492
493 /*
494 * Start the HC after it was halted.
495 *
496 * This function is called by the USB core when the HC driver is added.
497 * Its opposite is xhci_stop().
498 *
499 * xhci_init() must be called once before this function can be called.
500 * Reset the HC, enable device slot contexts, program DCBAAP, and
501 * set command ring pointer and event ring pointer.
502 *
503 * Setup MSI-X vectors and enable interrupts.
504 */
xhci_run(struct usb_hcd * hcd)505 int xhci_run(struct usb_hcd *hcd)
506 {
507 u32 temp;
508 u64 temp_64;
509 int ret;
510 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511 struct xhci_interrupter *ir = xhci->interrupter;
512 /* Start the xHCI host controller running only after the USB 2.0 roothub
513 * is setup.
514 */
515
516 hcd->uses_new_polling = 1;
517 if (!usb_hcd_is_primary_hcd(hcd))
518 return xhci_run_finished(xhci);
519
520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
521
522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
523 temp_64 &= ~ERST_PTR_MASK;
524 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
526
527 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
528 "// Set the interrupt modulation register");
529 temp = readl(&ir->ir_set->irq_control);
530 temp &= ~ER_IRQ_INTERVAL_MASK;
531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
532 writel(temp, &ir->ir_set->irq_control);
533
534 if (xhci->quirks & XHCI_NEC_HOST) {
535 struct xhci_command *command;
536
537 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
538 if (!command)
539 return -ENOMEM;
540
541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
542 TRB_TYPE(TRB_NEC_GET_FW));
543 if (ret)
544 xhci_free_command(xhci, command);
545 }
546 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547 "Finished %s for main hcd", __func__);
548
549 xhci_create_dbc_dev(xhci);
550
551 xhci_debugfs_init(xhci);
552
553 if (xhci_has_one_roothub(xhci))
554 return xhci_run_finished(xhci);
555
556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
557
558 return 0;
559 }
560 EXPORT_SYMBOL_GPL(xhci_run);
561
562 /*
563 * Stop xHCI driver.
564 *
565 * This function is called by the USB core when the HC driver is removed.
566 * Its opposite is xhci_run().
567 *
568 * Disable device contexts, disable IRQs, and quiesce the HC.
569 * Reset the HC, finish any completed transactions, and cleanup memory.
570 */
xhci_stop(struct usb_hcd * hcd)571 void xhci_stop(struct usb_hcd *hcd)
572 {
573 u32 temp;
574 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
575 struct xhci_interrupter *ir = xhci->interrupter;
576
577 mutex_lock(&xhci->mutex);
578
579 /* Only halt host and free memory after both hcds are removed */
580 if (!usb_hcd_is_primary_hcd(hcd)) {
581 mutex_unlock(&xhci->mutex);
582 return;
583 }
584
585 xhci_remove_dbc_dev(xhci);
586
587 spin_lock_irq(&xhci->lock);
588 xhci->xhc_state |= XHCI_STATE_HALTED;
589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
590 xhci_halt(xhci);
591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
592 spin_unlock_irq(&xhci->lock);
593
594 /* Deleting Compliance Mode Recovery Timer */
595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
596 (!(xhci_all_ports_seen_u0(xhci)))) {
597 del_timer_sync(&xhci->comp_mode_recovery_timer);
598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
599 "%s: compliance mode recovery timer deleted",
600 __func__);
601 }
602
603 if (xhci->quirks & XHCI_AMD_PLL_FIX)
604 usb_amd_dev_put();
605
606 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
607 "// Disabling event ring interrupts");
608 temp = readl(&xhci->op_regs->status);
609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
610 xhci_disable_interrupter(ir);
611
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
613 xhci_mem_cleanup(xhci);
614 xhci_debugfs_exit(xhci);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 "xhci_stop completed - status = %x",
617 readl(&xhci->op_regs->status));
618 mutex_unlock(&xhci->mutex);
619 }
620 EXPORT_SYMBOL_GPL(xhci_stop);
621
622 /*
623 * Shutdown HC (not bus-specific)
624 *
625 * This is called when the machine is rebooting or halting. We assume that the
626 * machine will be powered off, and the HC's internal state will be reset.
627 * Don't bother to free memory.
628 *
629 * This will only ever be called with the main usb_hcd (the USB3 roothub).
630 */
xhci_shutdown(struct usb_hcd * hcd)631 void xhci_shutdown(struct usb_hcd *hcd)
632 {
633 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
634
635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
637
638 /* Don't poll the roothubs after shutdown. */
639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
640 __func__, hcd->self.busnum);
641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
642 del_timer_sync(&hcd->rh_timer);
643
644 if (xhci->shared_hcd) {
645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
646 del_timer_sync(&xhci->shared_hcd->rh_timer);
647 }
648
649 spin_lock_irq(&xhci->lock);
650 xhci_halt(xhci);
651
652 /*
653 * Workaround for spurious wakeps at shutdown with HSW, and for boot
654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
655 */
656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
657 xhci->quirks & XHCI_RESET_TO_DEFAULT)
658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
659
660 spin_unlock_irq(&xhci->lock);
661
662 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663 "xhci_shutdown completed - status = %x",
664 readl(&xhci->op_regs->status));
665 }
666 EXPORT_SYMBOL_GPL(xhci_shutdown);
667
668 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)669 static void xhci_save_registers(struct xhci_hcd *xhci)
670 {
671 struct xhci_interrupter *ir = xhci->interrupter;
672
673 xhci->s3.command = readl(&xhci->op_regs->command);
674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
677
678 if (!ir)
679 return;
680
681 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
685 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
686 }
687
xhci_restore_registers(struct xhci_hcd * xhci)688 static void xhci_restore_registers(struct xhci_hcd *xhci)
689 {
690 struct xhci_interrupter *ir = xhci->interrupter;
691
692 writel(xhci->s3.command, &xhci->op_regs->command);
693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
696 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
700 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
701 }
702
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
704 {
705 u64 val_64;
706
707 /* step 2: initialize command ring buffer */
708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
711 xhci->cmd_ring->dequeue) &
712 (u64) ~CMD_RING_RSVD_BITS) |
713 xhci->cmd_ring->cycle_state;
714 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
715 "// Setting command ring address to 0x%llx",
716 (long unsigned long) val_64);
717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
718 }
719
720 /*
721 * The whole command ring must be cleared to zero when we suspend the host.
722 *
723 * The host doesn't save the command ring pointer in the suspend well, so we
724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
725 * aligned, because of the reserved bits in the command ring dequeue pointer
726 * register. Therefore, we can't just set the dequeue pointer back in the
727 * middle of the ring (TRBs are 16-byte aligned).
728 */
xhci_clear_command_ring(struct xhci_hcd * xhci)729 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
730 {
731 struct xhci_ring *ring;
732 struct xhci_segment *seg;
733
734 ring = xhci->cmd_ring;
735 seg = ring->deq_seg;
736 do {
737 memset(seg->trbs, 0,
738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
740 cpu_to_le32(~TRB_CYCLE);
741 seg = seg->next;
742 } while (seg != ring->deq_seg);
743
744 /* Reset the software enqueue and dequeue pointers */
745 ring->deq_seg = ring->first_seg;
746 ring->dequeue = ring->first_seg->trbs;
747 ring->enq_seg = ring->deq_seg;
748 ring->enqueue = ring->dequeue;
749
750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
751 /*
752 * Ring is now zeroed, so the HW should look for change of ownership
753 * when the cycle bit is set to 1.
754 */
755 ring->cycle_state = 1;
756
757 /*
758 * Reset the hardware dequeue pointer.
759 * Yes, this will need to be re-written after resume, but we're paranoid
760 * and want to make sure the hardware doesn't access bogus memory
761 * because, say, the BIOS or an SMI started the host without changing
762 * the command ring pointers.
763 */
764 xhci_set_cmd_ring_deq(xhci);
765 }
766
767 /*
768 * Disable port wake bits if do_wakeup is not set.
769 *
770 * Also clear a possible internal port wake state left hanging for ports that
771 * detected termination but never successfully enumerated (trained to 0U).
772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
773 * at enumeration clears this wake, force one here as well for unconnected ports
774 */
775
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
777 struct xhci_hub *rhub,
778 bool do_wakeup)
779 {
780 unsigned long flags;
781 u32 t1, t2, portsc;
782 int i;
783
784 spin_lock_irqsave(&xhci->lock, flags);
785
786 for (i = 0; i < rhub->num_ports; i++) {
787 portsc = readl(rhub->ports[i]->addr);
788 t1 = xhci_port_state_to_neutral(portsc);
789 t2 = t1;
790
791 /* clear wake bits if do_wake is not set */
792 if (!do_wakeup)
793 t2 &= ~PORT_WAKE_BITS;
794
795 /* Don't touch csc bit if connected or connect change is set */
796 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
797 t2 |= PORT_CSC;
798
799 if (t1 != t2) {
800 writel(t2, rhub->ports[i]->addr);
801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
802 rhub->hcd->self.busnum, i + 1, portsc, t2);
803 }
804 }
805 spin_unlock_irqrestore(&xhci->lock, flags);
806 }
807
xhci_pending_portevent(struct xhci_hcd * xhci)808 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
809 {
810 struct xhci_port **ports;
811 int port_index;
812 u32 status;
813 u32 portsc;
814
815 status = readl(&xhci->op_regs->status);
816 if (status & STS_EINT)
817 return true;
818 /*
819 * Checking STS_EINT is not enough as there is a lag between a change
820 * bit being set and the Port Status Change Event that it generated
821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
822 */
823
824 port_index = xhci->usb2_rhub.num_ports;
825 ports = xhci->usb2_rhub.ports;
826 while (port_index--) {
827 portsc = readl(ports[port_index]->addr);
828 if (portsc & PORT_CHANGE_MASK ||
829 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
830 return true;
831 }
832 port_index = xhci->usb3_rhub.num_ports;
833 ports = xhci->usb3_rhub.ports;
834 while (port_index--) {
835 portsc = readl(ports[port_index]->addr);
836 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
837 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
838 return true;
839 }
840 return false;
841 }
842
843 /*
844 * Stop HC (not bus-specific)
845 *
846 * This is called when the machine transition into S3/S4 mode.
847 *
848 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
850 {
851 int rc = 0;
852 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
853 struct usb_hcd *hcd = xhci_to_hcd(xhci);
854 u32 command;
855 u32 res;
856
857 if (!hcd->state)
858 return 0;
859
860 if (hcd->state != HC_STATE_SUSPENDED ||
861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
862 return -EINVAL;
863
864 /* Clear root port wake on bits if wakeup not allowed. */
865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
867
868 if (!HCD_HW_ACCESSIBLE(hcd))
869 return 0;
870
871 xhci_dbc_suspend(xhci);
872
873 /* Don't poll the roothubs on bus suspend. */
874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
875 __func__, hcd->self.busnum);
876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
877 del_timer_sync(&hcd->rh_timer);
878 if (xhci->shared_hcd) {
879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
880 del_timer_sync(&xhci->shared_hcd->rh_timer);
881 }
882
883 if (xhci->quirks & XHCI_SUSPEND_DELAY)
884 usleep_range(1000, 1500);
885
886 spin_lock_irq(&xhci->lock);
887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 if (xhci->shared_hcd)
889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
890 /* step 1: stop endpoint */
891 /* skipped assuming that port suspend has done */
892
893 /* step 2: clear Run/Stop bit */
894 command = readl(&xhci->op_regs->command);
895 command &= ~CMD_RUN;
896 writel(command, &xhci->op_regs->command);
897
898 /* Some chips from Fresco Logic need an extraordinary delay */
899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
900
901 if (xhci_handshake(&xhci->op_regs->status,
902 STS_HALT, STS_HALT, delay)) {
903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
904 spin_unlock_irq(&xhci->lock);
905 return -ETIMEDOUT;
906 }
907 xhci_clear_command_ring(xhci);
908
909 /* step 3: save registers */
910 xhci_save_registers(xhci);
911
912 /* step 4: set CSS flag */
913 command = readl(&xhci->op_regs->command);
914 command |= CMD_CSS;
915 writel(command, &xhci->op_regs->command);
916 xhci->broken_suspend = 0;
917 if (xhci_handshake(&xhci->op_regs->status,
918 STS_SAVE, 0, 20 * 1000)) {
919 /*
920 * AMD SNPS xHC 3.0 occasionally does not clear the
921 * SSS bit of USBSTS and when driver tries to poll
922 * to see if the xHC clears BIT(8) which never happens
923 * and driver assumes that controller is not responding
924 * and times out. To workaround this, its good to check
925 * if SRE and HCE bits are not set (as per xhci
926 * Section 5.4.2) and bypass the timeout.
927 */
928 res = readl(&xhci->op_regs->status);
929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
930 (((res & STS_SRE) == 0) &&
931 ((res & STS_HCE) == 0))) {
932 xhci->broken_suspend = 1;
933 } else {
934 xhci_warn(xhci, "WARN: xHC save state timeout\n");
935 spin_unlock_irq(&xhci->lock);
936 return -ETIMEDOUT;
937 }
938 }
939 spin_unlock_irq(&xhci->lock);
940
941 /*
942 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 * is about to be suspended.
944 */
945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 (!(xhci_all_ports_seen_u0(xhci)))) {
947 del_timer_sync(&xhci->comp_mode_recovery_timer);
948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
949 "%s: compliance mode recovery timer deleted",
950 __func__);
951 }
952
953 return rc;
954 }
955 EXPORT_SYMBOL_GPL(xhci_suspend);
956
957 /*
958 * start xHC (not bus-specific)
959 *
960 * This is called when the machine transition from S3/S4 mode.
961 *
962 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
964 {
965 bool hibernated = (msg.event == PM_EVENT_RESTORE);
966 u32 command, temp = 0;
967 struct usb_hcd *hcd = xhci_to_hcd(xhci);
968 int retval = 0;
969 bool comp_timer_running = false;
970 bool pending_portevent = false;
971 bool suspended_usb3_devs = false;
972 bool reinit_xhc = false;
973
974 if (!hcd->state)
975 return 0;
976
977 /* Wait a bit if either of the roothubs need to settle from the
978 * transition into bus suspend.
979 */
980
981 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
982 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
983 msleep(100);
984
985 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986 if (xhci->shared_hcd)
987 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
988
989 spin_lock_irq(&xhci->lock);
990
991 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
992 reinit_xhc = true;
993
994 if (!reinit_xhc) {
995 /*
996 * Some controllers might lose power during suspend, so wait
997 * for controller not ready bit to clear, just as in xHC init.
998 */
999 retval = xhci_handshake(&xhci->op_regs->status,
1000 STS_CNR, 0, 10 * 1000 * 1000);
1001 if (retval) {
1002 xhci_warn(xhci, "Controller not ready at resume %d\n",
1003 retval);
1004 spin_unlock_irq(&xhci->lock);
1005 return retval;
1006 }
1007 /* step 1: restore register */
1008 xhci_restore_registers(xhci);
1009 /* step 2: initialize command ring buffer */
1010 xhci_set_cmd_ring_deq(xhci);
1011 /* step 3: restore state and start state*/
1012 /* step 3: set CRS flag */
1013 command = readl(&xhci->op_regs->command);
1014 command |= CMD_CRS;
1015 writel(command, &xhci->op_regs->command);
1016 /*
1017 * Some controllers take up to 55+ ms to complete the controller
1018 * restore so setting the timeout to 100ms. Xhci specification
1019 * doesn't mention any timeout value.
1020 */
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_RESTORE, 0, 100 * 1000)) {
1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 }
1028
1029 temp = readl(&xhci->op_regs->status);
1030
1031 /* re-initialize the HC on Restore Error, or Host Controller Error */
1032 if ((temp & (STS_SRE | STS_HCE)) &&
1033 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1034 reinit_xhc = true;
1035 if (!xhci->broken_suspend)
1036 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1037 }
1038
1039 if (reinit_xhc) {
1040 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1041 !(xhci_all_ports_seen_u0(xhci))) {
1042 del_timer_sync(&xhci->comp_mode_recovery_timer);
1043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1044 "Compliance Mode Recovery Timer deleted!");
1045 }
1046
1047 /* Let the USB core know _both_ roothubs lost power. */
1048 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1049 if (xhci->shared_hcd)
1050 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1051
1052 xhci_dbg(xhci, "Stop HCD\n");
1053 xhci_halt(xhci);
1054 xhci_zero_64b_regs(xhci);
1055 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1056 spin_unlock_irq(&xhci->lock);
1057 if (retval)
1058 return retval;
1059
1060 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1061 temp = readl(&xhci->op_regs->status);
1062 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1063 xhci_disable_interrupter(xhci->interrupter);
1064
1065 xhci_dbg(xhci, "cleaning up memory\n");
1066 xhci_mem_cleanup(xhci);
1067 xhci_debugfs_exit(xhci);
1068 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1069 readl(&xhci->op_regs->status));
1070
1071 /* USB core calls the PCI reinit and start functions twice:
1072 * first with the primary HCD, and then with the secondary HCD.
1073 * If we don't do the same, the host will never be started.
1074 */
1075 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076 retval = xhci_init(hcd);
1077 if (retval)
1078 return retval;
1079 comp_timer_running = true;
1080
1081 xhci_dbg(xhci, "Start the primary HCD\n");
1082 retval = xhci_run(hcd);
1083 if (!retval && xhci->shared_hcd) {
1084 xhci_dbg(xhci, "Start the secondary HCD\n");
1085 retval = xhci_run(xhci->shared_hcd);
1086 }
1087
1088 hcd->state = HC_STATE_SUSPENDED;
1089 if (xhci->shared_hcd)
1090 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091 goto done;
1092 }
1093
1094 /* step 4: set Run/Stop bit */
1095 command = readl(&xhci->op_regs->command);
1096 command |= CMD_RUN;
1097 writel(command, &xhci->op_regs->command);
1098 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1099 0, 250 * 1000);
1100
1101 /* step 5: walk topology and initialize portsc,
1102 * portpmsc and portli
1103 */
1104 /* this is done in bus_resume */
1105
1106 /* step 6: restart each of the previously
1107 * Running endpoints by ringing their doorbells
1108 */
1109
1110 spin_unlock_irq(&xhci->lock);
1111
1112 xhci_dbc_resume(xhci);
1113
1114 done:
1115 if (retval == 0) {
1116 /*
1117 * Resume roothubs only if there are pending events.
1118 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1119 * the first wake signalling failed, give it that chance if
1120 * there are suspended USB 3 devices.
1121 */
1122 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1123 xhci->usb3_rhub.bus_state.bus_suspended)
1124 suspended_usb3_devs = true;
1125
1126 pending_portevent = xhci_pending_portevent(xhci);
1127
1128 if (suspended_usb3_devs && !pending_portevent &&
1129 msg.event == PM_EVENT_AUTO_RESUME) {
1130 msleep(120);
1131 pending_portevent = xhci_pending_portevent(xhci);
1132 }
1133
1134 if (pending_portevent) {
1135 if (xhci->shared_hcd)
1136 usb_hcd_resume_root_hub(xhci->shared_hcd);
1137 usb_hcd_resume_root_hub(hcd);
1138 }
1139 }
1140 /*
1141 * If system is subject to the Quirk, Compliance Mode Timer needs to
1142 * be re-initialized Always after a system resume. Ports are subject
1143 * to suffer the Compliance Mode issue again. It doesn't matter if
1144 * ports have entered previously to U0 before system's suspension.
1145 */
1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1147 compliance_mode_recovery_timer_init(xhci);
1148
1149 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1150 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1151
1152 /* Re-enable port polling. */
1153 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1154 __func__, hcd->self.busnum);
1155 if (xhci->shared_hcd) {
1156 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1157 usb_hcd_poll_rh_status(xhci->shared_hcd);
1158 }
1159 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1160 usb_hcd_poll_rh_status(hcd);
1161
1162 return retval;
1163 }
1164 EXPORT_SYMBOL_GPL(xhci_resume);
1165 #endif /* CONFIG_PM */
1166
1167 /*-------------------------------------------------------------------------*/
1168
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1169 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1170 {
1171 void *temp;
1172 int ret = 0;
1173 unsigned int buf_len;
1174 enum dma_data_direction dir;
1175
1176 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1177 buf_len = urb->transfer_buffer_length;
1178
1179 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1180 dev_to_node(hcd->self.sysdev));
1181
1182 if (usb_urb_dir_out(urb))
1183 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1184 temp, buf_len, 0);
1185
1186 urb->transfer_buffer = temp;
1187 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1188 urb->transfer_buffer,
1189 urb->transfer_buffer_length,
1190 dir);
1191
1192 if (dma_mapping_error(hcd->self.sysdev,
1193 urb->transfer_dma)) {
1194 ret = -EAGAIN;
1195 kfree(temp);
1196 } else {
1197 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1198 }
1199
1200 return ret;
1201 }
1202
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1203 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1204 struct urb *urb)
1205 {
1206 bool ret = false;
1207 unsigned int i;
1208 unsigned int len = 0;
1209 unsigned int trb_size;
1210 unsigned int max_pkt;
1211 struct scatterlist *sg;
1212 struct scatterlist *tail_sg;
1213
1214 tail_sg = urb->sg;
1215 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1216
1217 if (!urb->num_sgs)
1218 return ret;
1219
1220 if (urb->dev->speed >= USB_SPEED_SUPER)
1221 trb_size = TRB_CACHE_SIZE_SS;
1222 else
1223 trb_size = TRB_CACHE_SIZE_HS;
1224
1225 if (urb->transfer_buffer_length != 0 &&
1226 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1228 len = len + sg->length;
1229 if (i > trb_size - 2) {
1230 len = len - tail_sg->length;
1231 if (len < max_pkt) {
1232 ret = true;
1233 break;
1234 }
1235
1236 tail_sg = sg_next(tail_sg);
1237 }
1238 }
1239 }
1240 return ret;
1241 }
1242
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1243 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1244 {
1245 unsigned int len;
1246 unsigned int buf_len;
1247 enum dma_data_direction dir;
1248
1249 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1250
1251 buf_len = urb->transfer_buffer_length;
1252
1253 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1254 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1255 dma_unmap_single(hcd->self.sysdev,
1256 urb->transfer_dma,
1257 urb->transfer_buffer_length,
1258 dir);
1259
1260 if (usb_urb_dir_in(urb)) {
1261 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1262 urb->transfer_buffer,
1263 buf_len,
1264 0);
1265 if (len != buf_len) {
1266 xhci_dbg(hcd_to_xhci(hcd),
1267 "Copy from tmp buf to urb sg list failed\n");
1268 urb->actual_length = len;
1269 }
1270 }
1271 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1272 kfree(urb->transfer_buffer);
1273 urb->transfer_buffer = NULL;
1274 }
1275
1276 /*
1277 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1278 * we'll copy the actual data into the TRB address register. This is limited to
1279 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1280 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1281 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1282 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1283 gfp_t mem_flags)
1284 {
1285 struct xhci_hcd *xhci;
1286
1287 xhci = hcd_to_xhci(hcd);
1288
1289 if (xhci_urb_suitable_for_idt(urb))
1290 return 0;
1291
1292 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1293 if (xhci_urb_temp_buffer_required(hcd, urb))
1294 return xhci_map_temp_buffer(hcd, urb);
1295 }
1296 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1297 }
1298
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1299 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1300 {
1301 struct xhci_hcd *xhci;
1302 bool unmap_temp_buf = false;
1303
1304 xhci = hcd_to_xhci(hcd);
1305
1306 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1307 unmap_temp_buf = true;
1308
1309 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1310 xhci_unmap_temp_buf(hcd, urb);
1311 else
1312 usb_hcd_unmap_urb_for_dma(hcd, urb);
1313 }
1314
1315 /**
1316 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1317 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1318 * value to right shift 1 for the bitmask.
1319 *
1320 * Index = (epnum * 2) + direction - 1,
1321 * where direction = 0 for OUT, 1 for IN.
1322 * For control endpoints, the IN index is used (OUT index is unused), so
1323 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1324 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1325 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1326 {
1327 unsigned int index;
1328 if (usb_endpoint_xfer_control(desc))
1329 index = (unsigned int) (usb_endpoint_num(desc)*2);
1330 else
1331 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1332 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1333 return index;
1334 }
1335 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1336
1337 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1338 * address from the XHCI endpoint index.
1339 */
xhci_get_endpoint_address(unsigned int ep_index)1340 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1341 {
1342 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1343 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1344 return direction | number;
1345 }
1346
1347 /* Find the flag for this endpoint (for use in the control context). Use the
1348 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1349 * bit 1, etc.
1350 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1351 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1352 {
1353 return 1 << (xhci_get_endpoint_index(desc) + 1);
1354 }
1355
1356 /* Compute the last valid endpoint context index. Basically, this is the
1357 * endpoint index plus one. For slot contexts with more than valid endpoint,
1358 * we find the most significant bit set in the added contexts flags.
1359 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1360 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1361 */
xhci_last_valid_endpoint(u32 added_ctxs)1362 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1363 {
1364 return fls(added_ctxs) - 1;
1365 }
1366
1367 /* Returns 1 if the arguments are OK;
1368 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1369 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1370 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1371 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1372 const char *func) {
1373 struct xhci_hcd *xhci;
1374 struct xhci_virt_device *virt_dev;
1375
1376 if (!hcd || (check_ep && !ep) || !udev) {
1377 pr_debug("xHCI %s called with invalid args\n", func);
1378 return -EINVAL;
1379 }
1380 if (!udev->parent) {
1381 pr_debug("xHCI %s called for root hub\n", func);
1382 return 0;
1383 }
1384
1385 xhci = hcd_to_xhci(hcd);
1386 if (check_virt_dev) {
1387 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1388 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1389 func);
1390 return -EINVAL;
1391 }
1392
1393 virt_dev = xhci->devs[udev->slot_id];
1394 if (virt_dev->udev != udev) {
1395 xhci_dbg(xhci, "xHCI %s called with udev and "
1396 "virt_dev does not match\n", func);
1397 return -EINVAL;
1398 }
1399 }
1400
1401 if (xhci->xhc_state & XHCI_STATE_HALTED)
1402 return -ENODEV;
1403
1404 return 1;
1405 }
1406
1407 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1408 struct usb_device *udev, struct xhci_command *command,
1409 bool ctx_change, bool must_succeed);
1410
1411 /*
1412 * Full speed devices may have a max packet size greater than 8 bytes, but the
1413 * USB core doesn't know that until it reads the first 8 bytes of the
1414 * descriptor. If the usb_device's max packet size changes after that point,
1415 * we need to issue an evaluate context command and wait on it.
1416 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1417 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1418 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1419 {
1420 struct xhci_container_ctx *out_ctx;
1421 struct xhci_input_control_ctx *ctrl_ctx;
1422 struct xhci_ep_ctx *ep_ctx;
1423 struct xhci_command *command;
1424 int max_packet_size;
1425 int hw_max_packet_size;
1426 int ret = 0;
1427
1428 out_ctx = xhci->devs[slot_id]->out_ctx;
1429 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1430 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1431 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1432 if (hw_max_packet_size != max_packet_size) {
1433 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1434 "Max Packet Size for ep 0 changed.");
1435 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1436 "Max packet size in usb_device = %d",
1437 max_packet_size);
1438 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1439 "Max packet size in xHCI HW = %d",
1440 hw_max_packet_size);
1441 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1442 "Issuing evaluate context command.");
1443
1444 /* Set up the input context flags for the command */
1445 /* FIXME: This won't work if a non-default control endpoint
1446 * changes max packet sizes.
1447 */
1448
1449 command = xhci_alloc_command(xhci, true, mem_flags);
1450 if (!command)
1451 return -ENOMEM;
1452
1453 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1454 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1455 if (!ctrl_ctx) {
1456 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1457 __func__);
1458 ret = -ENOMEM;
1459 goto command_cleanup;
1460 }
1461 /* Set up the modified control endpoint 0 */
1462 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1463 xhci->devs[slot_id]->out_ctx, ep_index);
1464
1465 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1466 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1467 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1468 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1469
1470 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1471 ctrl_ctx->drop_flags = 0;
1472
1473 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1474 true, false);
1475
1476 /* Clean up the input context for later use by bandwidth
1477 * functions.
1478 */
1479 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1480 command_cleanup:
1481 kfree(command->completion);
1482 kfree(command);
1483 }
1484 return ret;
1485 }
1486
1487 /*
1488 * non-error returns are a promise to giveback() the urb later
1489 * we drop ownership so next owner (or urb unlink) can get it
1490 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1491 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1492 {
1493 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1494 unsigned long flags;
1495 int ret = 0;
1496 unsigned int slot_id, ep_index;
1497 unsigned int *ep_state;
1498 struct urb_priv *urb_priv;
1499 int num_tds;
1500
1501 if (!urb)
1502 return -EINVAL;
1503 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1504 true, true, __func__);
1505 if (ret <= 0)
1506 return ret ? ret : -EINVAL;
1507
1508 slot_id = urb->dev->slot_id;
1509 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1510 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1511
1512 if (!HCD_HW_ACCESSIBLE(hcd))
1513 return -ESHUTDOWN;
1514
1515 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1516 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1517 return -ENODEV;
1518 }
1519
1520 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1521 num_tds = urb->number_of_packets;
1522 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1523 urb->transfer_buffer_length > 0 &&
1524 urb->transfer_flags & URB_ZERO_PACKET &&
1525 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1526 num_tds = 2;
1527 else
1528 num_tds = 1;
1529
1530 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1531 if (!urb_priv)
1532 return -ENOMEM;
1533
1534 urb_priv->num_tds = num_tds;
1535 urb_priv->num_tds_done = 0;
1536 urb->hcpriv = urb_priv;
1537
1538 trace_xhci_urb_enqueue(urb);
1539
1540 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1541 /* Check to see if the max packet size for the default control
1542 * endpoint changed during FS device enumeration
1543 */
1544 if (urb->dev->speed == USB_SPEED_FULL) {
1545 ret = xhci_check_maxpacket(xhci, slot_id,
1546 ep_index, urb, mem_flags);
1547 if (ret < 0) {
1548 xhci_urb_free_priv(urb_priv);
1549 urb->hcpriv = NULL;
1550 return ret;
1551 }
1552 }
1553 }
1554
1555 spin_lock_irqsave(&xhci->lock, flags);
1556
1557 if (xhci->xhc_state & XHCI_STATE_DYING) {
1558 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1559 urb->ep->desc.bEndpointAddress, urb);
1560 ret = -ESHUTDOWN;
1561 goto free_priv;
1562 }
1563 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1564 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1565 *ep_state);
1566 ret = -EINVAL;
1567 goto free_priv;
1568 }
1569 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1570 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1571 ret = -EINVAL;
1572 goto free_priv;
1573 }
1574
1575 switch (usb_endpoint_type(&urb->ep->desc)) {
1576
1577 case USB_ENDPOINT_XFER_CONTROL:
1578 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1579 slot_id, ep_index);
1580 break;
1581 case USB_ENDPOINT_XFER_BULK:
1582 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1583 slot_id, ep_index);
1584 break;
1585 case USB_ENDPOINT_XFER_INT:
1586 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1587 slot_id, ep_index);
1588 break;
1589 case USB_ENDPOINT_XFER_ISOC:
1590 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1591 slot_id, ep_index);
1592 }
1593
1594 if (ret) {
1595 free_priv:
1596 xhci_urb_free_priv(urb_priv);
1597 urb->hcpriv = NULL;
1598 }
1599 spin_unlock_irqrestore(&xhci->lock, flags);
1600 return ret;
1601 }
1602
1603 /*
1604 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1605 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1606 * should pick up where it left off in the TD, unless a Set Transfer Ring
1607 * Dequeue Pointer is issued.
1608 *
1609 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1610 * the ring. Since the ring is a contiguous structure, they can't be physically
1611 * removed. Instead, there are two options:
1612 *
1613 * 1) If the HC is in the middle of processing the URB to be canceled, we
1614 * simply move the ring's dequeue pointer past those TRBs using the Set
1615 * Transfer Ring Dequeue Pointer command. This will be the common case,
1616 * when drivers timeout on the last submitted URB and attempt to cancel.
1617 *
1618 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1619 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1620 * HC will need to invalidate the any TRBs it has cached after the stop
1621 * endpoint command, as noted in the xHCI 0.95 errata.
1622 *
1623 * 3) The TD may have completed by the time the Stop Endpoint Command
1624 * completes, so software needs to handle that case too.
1625 *
1626 * This function should protect against the TD enqueueing code ringing the
1627 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1628 * It also needs to account for multiple cancellations on happening at the same
1629 * time for the same endpoint.
1630 *
1631 * Note that this function can be called in any context, or so says
1632 * usb_hcd_unlink_urb()
1633 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1634 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1635 {
1636 unsigned long flags;
1637 int ret, i;
1638 u32 temp;
1639 struct xhci_hcd *xhci;
1640 struct urb_priv *urb_priv;
1641 struct xhci_td *td;
1642 unsigned int ep_index;
1643 struct xhci_ring *ep_ring;
1644 struct xhci_virt_ep *ep;
1645 struct xhci_command *command;
1646 struct xhci_virt_device *vdev;
1647
1648 xhci = hcd_to_xhci(hcd);
1649 spin_lock_irqsave(&xhci->lock, flags);
1650
1651 trace_xhci_urb_dequeue(urb);
1652
1653 /* Make sure the URB hasn't completed or been unlinked already */
1654 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1655 if (ret)
1656 goto done;
1657
1658 /* give back URB now if we can't queue it for cancel */
1659 vdev = xhci->devs[urb->dev->slot_id];
1660 urb_priv = urb->hcpriv;
1661 if (!vdev || !urb_priv)
1662 goto err_giveback;
1663
1664 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1665 ep = &vdev->eps[ep_index];
1666 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1667 if (!ep || !ep_ring)
1668 goto err_giveback;
1669
1670 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1671 temp = readl(&xhci->op_regs->status);
1672 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1673 xhci_hc_died(xhci);
1674 goto done;
1675 }
1676
1677 /*
1678 * check ring is not re-allocated since URB was enqueued. If it is, then
1679 * make sure none of the ring related pointers in this URB private data
1680 * are touched, such as td_list, otherwise we overwrite freed data
1681 */
1682 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1683 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1684 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1685 td = &urb_priv->td[i];
1686 if (!list_empty(&td->cancelled_td_list))
1687 list_del_init(&td->cancelled_td_list);
1688 }
1689 goto err_giveback;
1690 }
1691
1692 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1693 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1694 "HC halted, freeing TD manually.");
1695 for (i = urb_priv->num_tds_done;
1696 i < urb_priv->num_tds;
1697 i++) {
1698 td = &urb_priv->td[i];
1699 if (!list_empty(&td->td_list))
1700 list_del_init(&td->td_list);
1701 if (!list_empty(&td->cancelled_td_list))
1702 list_del_init(&td->cancelled_td_list);
1703 }
1704 goto err_giveback;
1705 }
1706
1707 i = urb_priv->num_tds_done;
1708 if (i < urb_priv->num_tds)
1709 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1710 "Cancel URB %p, dev %s, ep 0x%x, "
1711 "starting at offset 0x%llx",
1712 urb, urb->dev->devpath,
1713 urb->ep->desc.bEndpointAddress,
1714 (unsigned long long) xhci_trb_virt_to_dma(
1715 urb_priv->td[i].start_seg,
1716 urb_priv->td[i].first_trb));
1717
1718 for (; i < urb_priv->num_tds; i++) {
1719 td = &urb_priv->td[i];
1720 /* TD can already be on cancelled list if ep halted on it */
1721 if (list_empty(&td->cancelled_td_list)) {
1722 td->cancel_status = TD_DIRTY;
1723 list_add_tail(&td->cancelled_td_list,
1724 &ep->cancelled_td_list);
1725 }
1726 }
1727
1728 /* Queue a stop endpoint command, but only if this is
1729 * the first cancellation to be handled.
1730 */
1731 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1732 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1733 if (!command) {
1734 ret = -ENOMEM;
1735 goto done;
1736 }
1737 ep->ep_state |= EP_STOP_CMD_PENDING;
1738 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1739 ep_index, 0);
1740 xhci_ring_cmd_db(xhci);
1741 }
1742 done:
1743 spin_unlock_irqrestore(&xhci->lock, flags);
1744 return ret;
1745
1746 err_giveback:
1747 if (urb_priv)
1748 xhci_urb_free_priv(urb_priv);
1749 usb_hcd_unlink_urb_from_ep(hcd, urb);
1750 spin_unlock_irqrestore(&xhci->lock, flags);
1751 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1752 return ret;
1753 }
1754
1755 /* Drop an endpoint from a new bandwidth configuration for this device.
1756 * Only one call to this function is allowed per endpoint before
1757 * check_bandwidth() or reset_bandwidth() must be called.
1758 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1759 * add the endpoint to the schedule with possibly new parameters denoted by a
1760 * different endpoint descriptor in usb_host_endpoint.
1761 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1762 * not allowed.
1763 *
1764 * The USB core will not allow URBs to be queued to an endpoint that is being
1765 * disabled, so there's no need for mutual exclusion to protect
1766 * the xhci->devs[slot_id] structure.
1767 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1768 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1769 struct usb_host_endpoint *ep)
1770 {
1771 struct xhci_hcd *xhci;
1772 struct xhci_container_ctx *in_ctx, *out_ctx;
1773 struct xhci_input_control_ctx *ctrl_ctx;
1774 unsigned int ep_index;
1775 struct xhci_ep_ctx *ep_ctx;
1776 u32 drop_flag;
1777 u32 new_add_flags, new_drop_flags;
1778 int ret;
1779
1780 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1781 if (ret <= 0)
1782 return ret;
1783 xhci = hcd_to_xhci(hcd);
1784 if (xhci->xhc_state & XHCI_STATE_DYING)
1785 return -ENODEV;
1786
1787 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1788 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1789 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1790 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1791 __func__, drop_flag);
1792 return 0;
1793 }
1794
1795 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1796 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1797 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1798 if (!ctrl_ctx) {
1799 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1800 __func__);
1801 return 0;
1802 }
1803
1804 ep_index = xhci_get_endpoint_index(&ep->desc);
1805 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1806 /* If the HC already knows the endpoint is disabled,
1807 * or the HCD has noted it is disabled, ignore this request
1808 */
1809 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1810 le32_to_cpu(ctrl_ctx->drop_flags) &
1811 xhci_get_endpoint_flag(&ep->desc)) {
1812 /* Do not warn when called after a usb_device_reset */
1813 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1814 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1815 __func__, ep);
1816 return 0;
1817 }
1818
1819 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1820 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1821
1822 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1823 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1824
1825 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1826
1827 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1828
1829 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830 (unsigned int) ep->desc.bEndpointAddress,
1831 udev->slot_id,
1832 (unsigned int) new_drop_flags,
1833 (unsigned int) new_add_flags);
1834 return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1837
1838 /* Add an endpoint to a new possible bandwidth configuration for this device.
1839 * Only one call to this function is allowed per endpoint before
1840 * check_bandwidth() or reset_bandwidth() must be called.
1841 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1842 * add the endpoint to the schedule with possibly new parameters denoted by a
1843 * different endpoint descriptor in usb_host_endpoint.
1844 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1845 * not allowed.
1846 *
1847 * The USB core will not allow URBs to be queued to an endpoint until the
1848 * configuration or alt setting is installed in the device, so there's no need
1849 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1850 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1851 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1852 struct usb_host_endpoint *ep)
1853 {
1854 struct xhci_hcd *xhci;
1855 struct xhci_container_ctx *in_ctx;
1856 unsigned int ep_index;
1857 struct xhci_input_control_ctx *ctrl_ctx;
1858 struct xhci_ep_ctx *ep_ctx;
1859 u32 added_ctxs;
1860 u32 new_add_flags, new_drop_flags;
1861 struct xhci_virt_device *virt_dev;
1862 int ret = 0;
1863
1864 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1865 if (ret <= 0) {
1866 /* So we won't queue a reset ep command for a root hub */
1867 ep->hcpriv = NULL;
1868 return ret;
1869 }
1870 xhci = hcd_to_xhci(hcd);
1871 if (xhci->xhc_state & XHCI_STATE_DYING)
1872 return -ENODEV;
1873
1874 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1875 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1876 /* FIXME when we have to issue an evaluate endpoint command to
1877 * deal with ep0 max packet size changing once we get the
1878 * descriptors
1879 */
1880 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1881 __func__, added_ctxs);
1882 return 0;
1883 }
1884
1885 virt_dev = xhci->devs[udev->slot_id];
1886 in_ctx = virt_dev->in_ctx;
1887 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1888 if (!ctrl_ctx) {
1889 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1890 __func__);
1891 return 0;
1892 }
1893
1894 ep_index = xhci_get_endpoint_index(&ep->desc);
1895 /* If this endpoint is already in use, and the upper layers are trying
1896 * to add it again without dropping it, reject the addition.
1897 */
1898 if (virt_dev->eps[ep_index].ring &&
1899 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1900 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1901 "without dropping it.\n",
1902 (unsigned int) ep->desc.bEndpointAddress);
1903 return -EINVAL;
1904 }
1905
1906 /* If the HCD has already noted the endpoint is enabled,
1907 * ignore this request.
1908 */
1909 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1910 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1911 __func__, ep);
1912 return 0;
1913 }
1914
1915 /*
1916 * Configuration and alternate setting changes must be done in
1917 * process context, not interrupt context (or so documenation
1918 * for usb_set_interface() and usb_set_configuration() claim).
1919 */
1920 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1921 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1922 __func__, ep->desc.bEndpointAddress);
1923 return -ENOMEM;
1924 }
1925
1926 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1927 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1928
1929 /* If xhci_endpoint_disable() was called for this endpoint, but the
1930 * xHC hasn't been notified yet through the check_bandwidth() call,
1931 * this re-adds a new state for the endpoint from the new endpoint
1932 * descriptors. We must drop and re-add this endpoint, so we leave the
1933 * drop flags alone.
1934 */
1935 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1936
1937 /* Store the usb_device pointer for later use */
1938 ep->hcpriv = udev;
1939
1940 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1941 trace_xhci_add_endpoint(ep_ctx);
1942
1943 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1944 (unsigned int) ep->desc.bEndpointAddress,
1945 udev->slot_id,
1946 (unsigned int) new_drop_flags,
1947 (unsigned int) new_add_flags);
1948 return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1951
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1952 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1953 {
1954 struct xhci_input_control_ctx *ctrl_ctx;
1955 struct xhci_ep_ctx *ep_ctx;
1956 struct xhci_slot_ctx *slot_ctx;
1957 int i;
1958
1959 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1960 if (!ctrl_ctx) {
1961 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1962 __func__);
1963 return;
1964 }
1965
1966 /* When a device's add flag and drop flag are zero, any subsequent
1967 * configure endpoint command will leave that endpoint's state
1968 * untouched. Make sure we don't leave any old state in the input
1969 * endpoint contexts.
1970 */
1971 ctrl_ctx->drop_flags = 0;
1972 ctrl_ctx->add_flags = 0;
1973 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1974 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1975 /* Endpoint 0 is always valid */
1976 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1977 for (i = 1; i < 31; i++) {
1978 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1979 ep_ctx->ep_info = 0;
1980 ep_ctx->ep_info2 = 0;
1981 ep_ctx->deq = 0;
1982 ep_ctx->tx_info = 0;
1983 }
1984 }
1985
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1986 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1987 struct usb_device *udev, u32 *cmd_status)
1988 {
1989 int ret;
1990
1991 switch (*cmd_status) {
1992 case COMP_COMMAND_ABORTED:
1993 case COMP_COMMAND_RING_STOPPED:
1994 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1995 ret = -ETIME;
1996 break;
1997 case COMP_RESOURCE_ERROR:
1998 dev_warn(&udev->dev,
1999 "Not enough host controller resources for new device state.\n");
2000 ret = -ENOMEM;
2001 /* FIXME: can we allocate more resources for the HC? */
2002 break;
2003 case COMP_BANDWIDTH_ERROR:
2004 case COMP_SECONDARY_BANDWIDTH_ERROR:
2005 dev_warn(&udev->dev,
2006 "Not enough bandwidth for new device state.\n");
2007 ret = -ENOSPC;
2008 /* FIXME: can we go back to the old state? */
2009 break;
2010 case COMP_TRB_ERROR:
2011 /* the HCD set up something wrong */
2012 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2013 "add flag = 1, "
2014 "and endpoint is not disabled.\n");
2015 ret = -EINVAL;
2016 break;
2017 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2018 dev_warn(&udev->dev,
2019 "ERROR: Incompatible device for endpoint configure command.\n");
2020 ret = -ENODEV;
2021 break;
2022 case COMP_SUCCESS:
2023 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2024 "Successful Endpoint Configure command");
2025 ret = 0;
2026 break;
2027 default:
2028 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2029 *cmd_status);
2030 ret = -EINVAL;
2031 break;
2032 }
2033 return ret;
2034 }
2035
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2036 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2037 struct usb_device *udev, u32 *cmd_status)
2038 {
2039 int ret;
2040
2041 switch (*cmd_status) {
2042 case COMP_COMMAND_ABORTED:
2043 case COMP_COMMAND_RING_STOPPED:
2044 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2045 ret = -ETIME;
2046 break;
2047 case COMP_PARAMETER_ERROR:
2048 dev_warn(&udev->dev,
2049 "WARN: xHCI driver setup invalid evaluate context command.\n");
2050 ret = -EINVAL;
2051 break;
2052 case COMP_SLOT_NOT_ENABLED_ERROR:
2053 dev_warn(&udev->dev,
2054 "WARN: slot not enabled for evaluate context command.\n");
2055 ret = -EINVAL;
2056 break;
2057 case COMP_CONTEXT_STATE_ERROR:
2058 dev_warn(&udev->dev,
2059 "WARN: invalid context state for evaluate context command.\n");
2060 ret = -EINVAL;
2061 break;
2062 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2063 dev_warn(&udev->dev,
2064 "ERROR: Incompatible device for evaluate context command.\n");
2065 ret = -ENODEV;
2066 break;
2067 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2068 /* Max Exit Latency too large error */
2069 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2070 ret = -EINVAL;
2071 break;
2072 case COMP_SUCCESS:
2073 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2074 "Successful evaluate context command");
2075 ret = 0;
2076 break;
2077 default:
2078 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2079 *cmd_status);
2080 ret = -EINVAL;
2081 break;
2082 }
2083 return ret;
2084 }
2085
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2086 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2087 struct xhci_input_control_ctx *ctrl_ctx)
2088 {
2089 u32 valid_add_flags;
2090 u32 valid_drop_flags;
2091
2092 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2093 * (bit 1). The default control endpoint is added during the Address
2094 * Device command and is never removed until the slot is disabled.
2095 */
2096 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2097 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2098
2099 /* Use hweight32 to count the number of ones in the add flags, or
2100 * number of endpoints added. Don't count endpoints that are changed
2101 * (both added and dropped).
2102 */
2103 return hweight32(valid_add_flags) -
2104 hweight32(valid_add_flags & valid_drop_flags);
2105 }
2106
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2107 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2108 struct xhci_input_control_ctx *ctrl_ctx)
2109 {
2110 u32 valid_add_flags;
2111 u32 valid_drop_flags;
2112
2113 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2114 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2115
2116 return hweight32(valid_drop_flags) -
2117 hweight32(valid_add_flags & valid_drop_flags);
2118 }
2119
2120 /*
2121 * We need to reserve the new number of endpoints before the configure endpoint
2122 * command completes. We can't subtract the dropped endpoints from the number
2123 * of active endpoints until the command completes because we can oversubscribe
2124 * the host in this case:
2125 *
2126 * - the first configure endpoint command drops more endpoints than it adds
2127 * - a second configure endpoint command that adds more endpoints is queued
2128 * - the first configure endpoint command fails, so the config is unchanged
2129 * - the second command may succeed, even though there isn't enough resources
2130 *
2131 * Must be called with xhci->lock held.
2132 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2133 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2134 struct xhci_input_control_ctx *ctrl_ctx)
2135 {
2136 u32 added_eps;
2137
2138 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2139 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2140 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2141 "Not enough ep ctxs: "
2142 "%u active, need to add %u, limit is %u.",
2143 xhci->num_active_eps, added_eps,
2144 xhci->limit_active_eps);
2145 return -ENOMEM;
2146 }
2147 xhci->num_active_eps += added_eps;
2148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 "Adding %u ep ctxs, %u now active.", added_eps,
2150 xhci->num_active_eps);
2151 return 0;
2152 }
2153
2154 /*
2155 * The configure endpoint was failed by the xHC for some other reason, so we
2156 * need to revert the resources that failed configuration would have used.
2157 *
2158 * Must be called with xhci->lock held.
2159 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2160 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2161 struct xhci_input_control_ctx *ctrl_ctx)
2162 {
2163 u32 num_failed_eps;
2164
2165 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2166 xhci->num_active_eps -= num_failed_eps;
2167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2168 "Removing %u failed ep ctxs, %u now active.",
2169 num_failed_eps,
2170 xhci->num_active_eps);
2171 }
2172
2173 /*
2174 * Now that the command has completed, clean up the active endpoint count by
2175 * subtracting out the endpoints that were dropped (but not changed).
2176 *
2177 * Must be called with xhci->lock held.
2178 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2179 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2180 struct xhci_input_control_ctx *ctrl_ctx)
2181 {
2182 u32 num_dropped_eps;
2183
2184 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2185 xhci->num_active_eps -= num_dropped_eps;
2186 if (num_dropped_eps)
2187 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188 "Removing %u dropped ep ctxs, %u now active.",
2189 num_dropped_eps,
2190 xhci->num_active_eps);
2191 }
2192
xhci_get_block_size(struct usb_device * udev)2193 static unsigned int xhci_get_block_size(struct usb_device *udev)
2194 {
2195 switch (udev->speed) {
2196 case USB_SPEED_LOW:
2197 case USB_SPEED_FULL:
2198 return FS_BLOCK;
2199 case USB_SPEED_HIGH:
2200 return HS_BLOCK;
2201 case USB_SPEED_SUPER:
2202 case USB_SPEED_SUPER_PLUS:
2203 return SS_BLOCK;
2204 case USB_SPEED_UNKNOWN:
2205 default:
2206 /* Should never happen */
2207 return 1;
2208 }
2209 }
2210
2211 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2212 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2213 {
2214 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2215 return LS_OVERHEAD;
2216 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2217 return FS_OVERHEAD;
2218 return HS_OVERHEAD;
2219 }
2220
2221 /* If we are changing a LS/FS device under a HS hub,
2222 * make sure (if we are activating a new TT) that the HS bus has enough
2223 * bandwidth for this new TT.
2224 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2225 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2226 struct xhci_virt_device *virt_dev,
2227 int old_active_eps)
2228 {
2229 struct xhci_interval_bw_table *bw_table;
2230 struct xhci_tt_bw_info *tt_info;
2231
2232 /* Find the bandwidth table for the root port this TT is attached to. */
2233 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2234 tt_info = virt_dev->tt_info;
2235 /* If this TT already had active endpoints, the bandwidth for this TT
2236 * has already been added. Removing all periodic endpoints (and thus
2237 * making the TT enactive) will only decrease the bandwidth used.
2238 */
2239 if (old_active_eps)
2240 return 0;
2241 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2242 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2243 return -ENOMEM;
2244 return 0;
2245 }
2246 /* Not sure why we would have no new active endpoints...
2247 *
2248 * Maybe because of an Evaluate Context change for a hub update or a
2249 * control endpoint 0 max packet size change?
2250 * FIXME: skip the bandwidth calculation in that case.
2251 */
2252 return 0;
2253 }
2254
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2255 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2256 struct xhci_virt_device *virt_dev)
2257 {
2258 unsigned int bw_reserved;
2259
2260 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2261 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2262 return -ENOMEM;
2263
2264 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2265 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2266 return -ENOMEM;
2267
2268 return 0;
2269 }
2270
2271 /*
2272 * This algorithm is a very conservative estimate of the worst-case scheduling
2273 * scenario for any one interval. The hardware dynamically schedules the
2274 * packets, so we can't tell which microframe could be the limiting factor in
2275 * the bandwidth scheduling. This only takes into account periodic endpoints.
2276 *
2277 * Obviously, we can't solve an NP complete problem to find the minimum worst
2278 * case scenario. Instead, we come up with an estimate that is no less than
2279 * the worst case bandwidth used for any one microframe, but may be an
2280 * over-estimate.
2281 *
2282 * We walk the requirements for each endpoint by interval, starting with the
2283 * smallest interval, and place packets in the schedule where there is only one
2284 * possible way to schedule packets for that interval. In order to simplify
2285 * this algorithm, we record the largest max packet size for each interval, and
2286 * assume all packets will be that size.
2287 *
2288 * For interval 0, we obviously must schedule all packets for each interval.
2289 * The bandwidth for interval 0 is just the amount of data to be transmitted
2290 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2291 * the number of packets).
2292 *
2293 * For interval 1, we have two possible microframes to schedule those packets
2294 * in. For this algorithm, if we can schedule the same number of packets for
2295 * each possible scheduling opportunity (each microframe), we will do so. The
2296 * remaining number of packets will be saved to be transmitted in the gaps in
2297 * the next interval's scheduling sequence.
2298 *
2299 * As we move those remaining packets to be scheduled with interval 2 packets,
2300 * we have to double the number of remaining packets to transmit. This is
2301 * because the intervals are actually powers of 2, and we would be transmitting
2302 * the previous interval's packets twice in this interval. We also have to be
2303 * sure that when we look at the largest max packet size for this interval, we
2304 * also look at the largest max packet size for the remaining packets and take
2305 * the greater of the two.
2306 *
2307 * The algorithm continues to evenly distribute packets in each scheduling
2308 * opportunity, and push the remaining packets out, until we get to the last
2309 * interval. Then those packets and their associated overhead are just added
2310 * to the bandwidth used.
2311 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2312 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2313 struct xhci_virt_device *virt_dev,
2314 int old_active_eps)
2315 {
2316 unsigned int bw_reserved;
2317 unsigned int max_bandwidth;
2318 unsigned int bw_used;
2319 unsigned int block_size;
2320 struct xhci_interval_bw_table *bw_table;
2321 unsigned int packet_size = 0;
2322 unsigned int overhead = 0;
2323 unsigned int packets_transmitted = 0;
2324 unsigned int packets_remaining = 0;
2325 unsigned int i;
2326
2327 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2328 return xhci_check_ss_bw(xhci, virt_dev);
2329
2330 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2331 max_bandwidth = HS_BW_LIMIT;
2332 /* Convert percent of bus BW reserved to blocks reserved */
2333 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2334 } else {
2335 max_bandwidth = FS_BW_LIMIT;
2336 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2337 }
2338
2339 bw_table = virt_dev->bw_table;
2340 /* We need to translate the max packet size and max ESIT payloads into
2341 * the units the hardware uses.
2342 */
2343 block_size = xhci_get_block_size(virt_dev->udev);
2344
2345 /* If we are manipulating a LS/FS device under a HS hub, double check
2346 * that the HS bus has enough bandwidth if we are activing a new TT.
2347 */
2348 if (virt_dev->tt_info) {
2349 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2350 "Recalculating BW for rootport %u",
2351 virt_dev->real_port);
2352 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2353 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2354 "newly activated TT.\n");
2355 return -ENOMEM;
2356 }
2357 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2358 "Recalculating BW for TT slot %u port %u",
2359 virt_dev->tt_info->slot_id,
2360 virt_dev->tt_info->ttport);
2361 } else {
2362 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2363 "Recalculating BW for rootport %u",
2364 virt_dev->real_port);
2365 }
2366
2367 /* Add in how much bandwidth will be used for interval zero, or the
2368 * rounded max ESIT payload + number of packets * largest overhead.
2369 */
2370 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2371 bw_table->interval_bw[0].num_packets *
2372 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2373
2374 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2375 unsigned int bw_added;
2376 unsigned int largest_mps;
2377 unsigned int interval_overhead;
2378
2379 /*
2380 * How many packets could we transmit in this interval?
2381 * If packets didn't fit in the previous interval, we will need
2382 * to transmit that many packets twice within this interval.
2383 */
2384 packets_remaining = 2 * packets_remaining +
2385 bw_table->interval_bw[i].num_packets;
2386
2387 /* Find the largest max packet size of this or the previous
2388 * interval.
2389 */
2390 if (list_empty(&bw_table->interval_bw[i].endpoints))
2391 largest_mps = 0;
2392 else {
2393 struct xhci_virt_ep *virt_ep;
2394 struct list_head *ep_entry;
2395
2396 ep_entry = bw_table->interval_bw[i].endpoints.next;
2397 virt_ep = list_entry(ep_entry,
2398 struct xhci_virt_ep, bw_endpoint_list);
2399 /* Convert to blocks, rounding up */
2400 largest_mps = DIV_ROUND_UP(
2401 virt_ep->bw_info.max_packet_size,
2402 block_size);
2403 }
2404 if (largest_mps > packet_size)
2405 packet_size = largest_mps;
2406
2407 /* Use the larger overhead of this or the previous interval. */
2408 interval_overhead = xhci_get_largest_overhead(
2409 &bw_table->interval_bw[i]);
2410 if (interval_overhead > overhead)
2411 overhead = interval_overhead;
2412
2413 /* How many packets can we evenly distribute across
2414 * (1 << (i + 1)) possible scheduling opportunities?
2415 */
2416 packets_transmitted = packets_remaining >> (i + 1);
2417
2418 /* Add in the bandwidth used for those scheduled packets */
2419 bw_added = packets_transmitted * (overhead + packet_size);
2420
2421 /* How many packets do we have remaining to transmit? */
2422 packets_remaining = packets_remaining % (1 << (i + 1));
2423
2424 /* What largest max packet size should those packets have? */
2425 /* If we've transmitted all packets, don't carry over the
2426 * largest packet size.
2427 */
2428 if (packets_remaining == 0) {
2429 packet_size = 0;
2430 overhead = 0;
2431 } else if (packets_transmitted > 0) {
2432 /* Otherwise if we do have remaining packets, and we've
2433 * scheduled some packets in this interval, take the
2434 * largest max packet size from endpoints with this
2435 * interval.
2436 */
2437 packet_size = largest_mps;
2438 overhead = interval_overhead;
2439 }
2440 /* Otherwise carry over packet_size and overhead from the last
2441 * time we had a remainder.
2442 */
2443 bw_used += bw_added;
2444 if (bw_used > max_bandwidth) {
2445 xhci_warn(xhci, "Not enough bandwidth. "
2446 "Proposed: %u, Max: %u\n",
2447 bw_used, max_bandwidth);
2448 return -ENOMEM;
2449 }
2450 }
2451 /*
2452 * Ok, we know we have some packets left over after even-handedly
2453 * scheduling interval 15. We don't know which microframes they will
2454 * fit into, so we over-schedule and say they will be scheduled every
2455 * microframe.
2456 */
2457 if (packets_remaining > 0)
2458 bw_used += overhead + packet_size;
2459
2460 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2461 unsigned int port_index = virt_dev->real_port - 1;
2462
2463 /* OK, we're manipulating a HS device attached to a
2464 * root port bandwidth domain. Include the number of active TTs
2465 * in the bandwidth used.
2466 */
2467 bw_used += TT_HS_OVERHEAD *
2468 xhci->rh_bw[port_index].num_active_tts;
2469 }
2470
2471 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2472 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2473 "Available: %u " "percent",
2474 bw_used, max_bandwidth, bw_reserved,
2475 (max_bandwidth - bw_used - bw_reserved) * 100 /
2476 max_bandwidth);
2477
2478 bw_used += bw_reserved;
2479 if (bw_used > max_bandwidth) {
2480 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2481 bw_used, max_bandwidth);
2482 return -ENOMEM;
2483 }
2484
2485 bw_table->bw_used = bw_used;
2486 return 0;
2487 }
2488
xhci_is_async_ep(unsigned int ep_type)2489 static bool xhci_is_async_ep(unsigned int ep_type)
2490 {
2491 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2492 ep_type != ISOC_IN_EP &&
2493 ep_type != INT_IN_EP);
2494 }
2495
xhci_is_sync_in_ep(unsigned int ep_type)2496 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2497 {
2498 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2499 }
2500
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2501 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2502 {
2503 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2504
2505 if (ep_bw->ep_interval == 0)
2506 return SS_OVERHEAD_BURST +
2507 (ep_bw->mult * ep_bw->num_packets *
2508 (SS_OVERHEAD + mps));
2509 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2510 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2511 1 << ep_bw->ep_interval);
2512
2513 }
2514
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2515 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2516 struct xhci_bw_info *ep_bw,
2517 struct xhci_interval_bw_table *bw_table,
2518 struct usb_device *udev,
2519 struct xhci_virt_ep *virt_ep,
2520 struct xhci_tt_bw_info *tt_info)
2521 {
2522 struct xhci_interval_bw *interval_bw;
2523 int normalized_interval;
2524
2525 if (xhci_is_async_ep(ep_bw->type))
2526 return;
2527
2528 if (udev->speed >= USB_SPEED_SUPER) {
2529 if (xhci_is_sync_in_ep(ep_bw->type))
2530 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2531 xhci_get_ss_bw_consumed(ep_bw);
2532 else
2533 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2534 xhci_get_ss_bw_consumed(ep_bw);
2535 return;
2536 }
2537
2538 /* SuperSpeed endpoints never get added to intervals in the table, so
2539 * this check is only valid for HS/FS/LS devices.
2540 */
2541 if (list_empty(&virt_ep->bw_endpoint_list))
2542 return;
2543 /* For LS/FS devices, we need to translate the interval expressed in
2544 * microframes to frames.
2545 */
2546 if (udev->speed == USB_SPEED_HIGH)
2547 normalized_interval = ep_bw->ep_interval;
2548 else
2549 normalized_interval = ep_bw->ep_interval - 3;
2550
2551 if (normalized_interval == 0)
2552 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2553 interval_bw = &bw_table->interval_bw[normalized_interval];
2554 interval_bw->num_packets -= ep_bw->num_packets;
2555 switch (udev->speed) {
2556 case USB_SPEED_LOW:
2557 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2558 break;
2559 case USB_SPEED_FULL:
2560 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2561 break;
2562 case USB_SPEED_HIGH:
2563 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2564 break;
2565 default:
2566 /* Should never happen because only LS/FS/HS endpoints will get
2567 * added to the endpoint list.
2568 */
2569 return;
2570 }
2571 if (tt_info)
2572 tt_info->active_eps -= 1;
2573 list_del_init(&virt_ep->bw_endpoint_list);
2574 }
2575
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2576 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2577 struct xhci_bw_info *ep_bw,
2578 struct xhci_interval_bw_table *bw_table,
2579 struct usb_device *udev,
2580 struct xhci_virt_ep *virt_ep,
2581 struct xhci_tt_bw_info *tt_info)
2582 {
2583 struct xhci_interval_bw *interval_bw;
2584 struct xhci_virt_ep *smaller_ep;
2585 int normalized_interval;
2586
2587 if (xhci_is_async_ep(ep_bw->type))
2588 return;
2589
2590 if (udev->speed == USB_SPEED_SUPER) {
2591 if (xhci_is_sync_in_ep(ep_bw->type))
2592 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2593 xhci_get_ss_bw_consumed(ep_bw);
2594 else
2595 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2596 xhci_get_ss_bw_consumed(ep_bw);
2597 return;
2598 }
2599
2600 /* For LS/FS devices, we need to translate the interval expressed in
2601 * microframes to frames.
2602 */
2603 if (udev->speed == USB_SPEED_HIGH)
2604 normalized_interval = ep_bw->ep_interval;
2605 else
2606 normalized_interval = ep_bw->ep_interval - 3;
2607
2608 if (normalized_interval == 0)
2609 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2610 interval_bw = &bw_table->interval_bw[normalized_interval];
2611 interval_bw->num_packets += ep_bw->num_packets;
2612 switch (udev->speed) {
2613 case USB_SPEED_LOW:
2614 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2615 break;
2616 case USB_SPEED_FULL:
2617 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2618 break;
2619 case USB_SPEED_HIGH:
2620 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2621 break;
2622 default:
2623 /* Should never happen because only LS/FS/HS endpoints will get
2624 * added to the endpoint list.
2625 */
2626 return;
2627 }
2628
2629 if (tt_info)
2630 tt_info->active_eps += 1;
2631 /* Insert the endpoint into the list, largest max packet size first. */
2632 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2633 bw_endpoint_list) {
2634 if (ep_bw->max_packet_size >=
2635 smaller_ep->bw_info.max_packet_size) {
2636 /* Add the new ep before the smaller endpoint */
2637 list_add_tail(&virt_ep->bw_endpoint_list,
2638 &smaller_ep->bw_endpoint_list);
2639 return;
2640 }
2641 }
2642 /* Add the new endpoint at the end of the list. */
2643 list_add_tail(&virt_ep->bw_endpoint_list,
2644 &interval_bw->endpoints);
2645 }
2646
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2647 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2648 struct xhci_virt_device *virt_dev,
2649 int old_active_eps)
2650 {
2651 struct xhci_root_port_bw_info *rh_bw_info;
2652 if (!virt_dev->tt_info)
2653 return;
2654
2655 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2656 if (old_active_eps == 0 &&
2657 virt_dev->tt_info->active_eps != 0) {
2658 rh_bw_info->num_active_tts += 1;
2659 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2660 } else if (old_active_eps != 0 &&
2661 virt_dev->tt_info->active_eps == 0) {
2662 rh_bw_info->num_active_tts -= 1;
2663 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2664 }
2665 }
2666
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2667 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2668 struct xhci_virt_device *virt_dev,
2669 struct xhci_container_ctx *in_ctx)
2670 {
2671 struct xhci_bw_info ep_bw_info[31];
2672 int i;
2673 struct xhci_input_control_ctx *ctrl_ctx;
2674 int old_active_eps = 0;
2675
2676 if (virt_dev->tt_info)
2677 old_active_eps = virt_dev->tt_info->active_eps;
2678
2679 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2680 if (!ctrl_ctx) {
2681 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2682 __func__);
2683 return -ENOMEM;
2684 }
2685
2686 for (i = 0; i < 31; i++) {
2687 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2688 continue;
2689
2690 /* Make a copy of the BW info in case we need to revert this */
2691 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2692 sizeof(ep_bw_info[i]));
2693 /* Drop the endpoint from the interval table if the endpoint is
2694 * being dropped or changed.
2695 */
2696 if (EP_IS_DROPPED(ctrl_ctx, i))
2697 xhci_drop_ep_from_interval_table(xhci,
2698 &virt_dev->eps[i].bw_info,
2699 virt_dev->bw_table,
2700 virt_dev->udev,
2701 &virt_dev->eps[i],
2702 virt_dev->tt_info);
2703 }
2704 /* Overwrite the information stored in the endpoints' bw_info */
2705 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2706 for (i = 0; i < 31; i++) {
2707 /* Add any changed or added endpoints to the interval table */
2708 if (EP_IS_ADDED(ctrl_ctx, i))
2709 xhci_add_ep_to_interval_table(xhci,
2710 &virt_dev->eps[i].bw_info,
2711 virt_dev->bw_table,
2712 virt_dev->udev,
2713 &virt_dev->eps[i],
2714 virt_dev->tt_info);
2715 }
2716
2717 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2718 /* Ok, this fits in the bandwidth we have.
2719 * Update the number of active TTs.
2720 */
2721 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2722 return 0;
2723 }
2724
2725 /* We don't have enough bandwidth for this, revert the stored info. */
2726 for (i = 0; i < 31; i++) {
2727 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2728 continue;
2729
2730 /* Drop the new copies of any added or changed endpoints from
2731 * the interval table.
2732 */
2733 if (EP_IS_ADDED(ctrl_ctx, i)) {
2734 xhci_drop_ep_from_interval_table(xhci,
2735 &virt_dev->eps[i].bw_info,
2736 virt_dev->bw_table,
2737 virt_dev->udev,
2738 &virt_dev->eps[i],
2739 virt_dev->tt_info);
2740 }
2741 /* Revert the endpoint back to its old information */
2742 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2743 sizeof(ep_bw_info[i]));
2744 /* Add any changed or dropped endpoints back into the table */
2745 if (EP_IS_DROPPED(ctrl_ctx, i))
2746 xhci_add_ep_to_interval_table(xhci,
2747 &virt_dev->eps[i].bw_info,
2748 virt_dev->bw_table,
2749 virt_dev->udev,
2750 &virt_dev->eps[i],
2751 virt_dev->tt_info);
2752 }
2753 return -ENOMEM;
2754 }
2755
2756
2757 /* Issue a configure endpoint command or evaluate context command
2758 * and wait for it to finish.
2759 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2760 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2761 struct usb_device *udev,
2762 struct xhci_command *command,
2763 bool ctx_change, bool must_succeed)
2764 {
2765 int ret;
2766 unsigned long flags;
2767 struct xhci_input_control_ctx *ctrl_ctx;
2768 struct xhci_virt_device *virt_dev;
2769 struct xhci_slot_ctx *slot_ctx;
2770
2771 if (!command)
2772 return -EINVAL;
2773
2774 spin_lock_irqsave(&xhci->lock, flags);
2775
2776 if (xhci->xhc_state & XHCI_STATE_DYING) {
2777 spin_unlock_irqrestore(&xhci->lock, flags);
2778 return -ESHUTDOWN;
2779 }
2780
2781 virt_dev = xhci->devs[udev->slot_id];
2782
2783 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2784 if (!ctrl_ctx) {
2785 spin_unlock_irqrestore(&xhci->lock, flags);
2786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2787 __func__);
2788 return -ENOMEM;
2789 }
2790
2791 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2792 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2793 spin_unlock_irqrestore(&xhci->lock, flags);
2794 xhci_warn(xhci, "Not enough host resources, "
2795 "active endpoint contexts = %u\n",
2796 xhci->num_active_eps);
2797 return -ENOMEM;
2798 }
2799 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2800 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2801 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2802 xhci_free_host_resources(xhci, ctrl_ctx);
2803 spin_unlock_irqrestore(&xhci->lock, flags);
2804 xhci_warn(xhci, "Not enough bandwidth\n");
2805 return -ENOMEM;
2806 }
2807
2808 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2809
2810 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2811 trace_xhci_configure_endpoint(slot_ctx);
2812
2813 if (!ctx_change)
2814 ret = xhci_queue_configure_endpoint(xhci, command,
2815 command->in_ctx->dma,
2816 udev->slot_id, must_succeed);
2817 else
2818 ret = xhci_queue_evaluate_context(xhci, command,
2819 command->in_ctx->dma,
2820 udev->slot_id, must_succeed);
2821 if (ret < 0) {
2822 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2823 xhci_free_host_resources(xhci, ctrl_ctx);
2824 spin_unlock_irqrestore(&xhci->lock, flags);
2825 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2826 "FIXME allocate a new ring segment");
2827 return -ENOMEM;
2828 }
2829 xhci_ring_cmd_db(xhci);
2830 spin_unlock_irqrestore(&xhci->lock, flags);
2831
2832 /* Wait for the configure endpoint command to complete */
2833 wait_for_completion(command->completion);
2834
2835 if (!ctx_change)
2836 ret = xhci_configure_endpoint_result(xhci, udev,
2837 &command->status);
2838 else
2839 ret = xhci_evaluate_context_result(xhci, udev,
2840 &command->status);
2841
2842 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2843 spin_lock_irqsave(&xhci->lock, flags);
2844 /* If the command failed, remove the reserved resources.
2845 * Otherwise, clean up the estimate to include dropped eps.
2846 */
2847 if (ret)
2848 xhci_free_host_resources(xhci, ctrl_ctx);
2849 else
2850 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2851 spin_unlock_irqrestore(&xhci->lock, flags);
2852 }
2853 return ret;
2854 }
2855
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2856 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2857 struct xhci_virt_device *vdev, int i)
2858 {
2859 struct xhci_virt_ep *ep = &vdev->eps[i];
2860
2861 if (ep->ep_state & EP_HAS_STREAMS) {
2862 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2863 xhci_get_endpoint_address(i));
2864 xhci_free_stream_info(xhci, ep->stream_info);
2865 ep->stream_info = NULL;
2866 ep->ep_state &= ~EP_HAS_STREAMS;
2867 }
2868 }
2869
2870 /* Called after one or more calls to xhci_add_endpoint() or
2871 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2872 * to call xhci_reset_bandwidth().
2873 *
2874 * Since we are in the middle of changing either configuration or
2875 * installing a new alt setting, the USB core won't allow URBs to be
2876 * enqueued for any endpoint on the old config or interface. Nothing
2877 * else should be touching the xhci->devs[slot_id] structure, so we
2878 * don't need to take the xhci->lock for manipulating that.
2879 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2880 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2881 {
2882 int i;
2883 int ret = 0;
2884 struct xhci_hcd *xhci;
2885 struct xhci_virt_device *virt_dev;
2886 struct xhci_input_control_ctx *ctrl_ctx;
2887 struct xhci_slot_ctx *slot_ctx;
2888 struct xhci_command *command;
2889
2890 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2891 if (ret <= 0)
2892 return ret;
2893 xhci = hcd_to_xhci(hcd);
2894 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2895 (xhci->xhc_state & XHCI_STATE_REMOVING))
2896 return -ENODEV;
2897
2898 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2899 virt_dev = xhci->devs[udev->slot_id];
2900
2901 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2902 if (!command)
2903 return -ENOMEM;
2904
2905 command->in_ctx = virt_dev->in_ctx;
2906
2907 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2908 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2909 if (!ctrl_ctx) {
2910 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2911 __func__);
2912 ret = -ENOMEM;
2913 goto command_cleanup;
2914 }
2915 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2916 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2917 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2918
2919 /* Don't issue the command if there's no endpoints to update. */
2920 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2921 ctrl_ctx->drop_flags == 0) {
2922 ret = 0;
2923 goto command_cleanup;
2924 }
2925 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2926 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2927 for (i = 31; i >= 1; i--) {
2928 __le32 le32 = cpu_to_le32(BIT(i));
2929
2930 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2931 || (ctrl_ctx->add_flags & le32) || i == 1) {
2932 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2933 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2934 break;
2935 }
2936 }
2937
2938 ret = xhci_configure_endpoint(xhci, udev, command,
2939 false, false);
2940 if (ret)
2941 /* Callee should call reset_bandwidth() */
2942 goto command_cleanup;
2943
2944 /* Free any rings that were dropped, but not changed. */
2945 for (i = 1; i < 31; i++) {
2946 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2947 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2948 xhci_free_endpoint_ring(xhci, virt_dev, i);
2949 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950 }
2951 }
2952 xhci_zero_in_ctx(xhci, virt_dev);
2953 /*
2954 * Install any rings for completely new endpoints or changed endpoints,
2955 * and free any old rings from changed endpoints.
2956 */
2957 for (i = 1; i < 31; i++) {
2958 if (!virt_dev->eps[i].new_ring)
2959 continue;
2960 /* Only free the old ring if it exists.
2961 * It may not if this is the first add of an endpoint.
2962 */
2963 if (virt_dev->eps[i].ring) {
2964 xhci_free_endpoint_ring(xhci, virt_dev, i);
2965 }
2966 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2967 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2968 virt_dev->eps[i].new_ring = NULL;
2969 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2970 }
2971 command_cleanup:
2972 kfree(command->completion);
2973 kfree(command);
2974
2975 return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2978
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2979 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2980 {
2981 struct xhci_hcd *xhci;
2982 struct xhci_virt_device *virt_dev;
2983 int i, ret;
2984
2985 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2986 if (ret <= 0)
2987 return;
2988 xhci = hcd_to_xhci(hcd);
2989
2990 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2991 virt_dev = xhci->devs[udev->slot_id];
2992 /* Free any rings allocated for added endpoints */
2993 for (i = 0; i < 31; i++) {
2994 if (virt_dev->eps[i].new_ring) {
2995 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2996 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2997 virt_dev->eps[i].new_ring = NULL;
2998 }
2999 }
3000 xhci_zero_in_ctx(xhci, virt_dev);
3001 }
3002 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3003
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3004 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3005 struct xhci_container_ctx *in_ctx,
3006 struct xhci_container_ctx *out_ctx,
3007 struct xhci_input_control_ctx *ctrl_ctx,
3008 u32 add_flags, u32 drop_flags)
3009 {
3010 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3011 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3012 xhci_slot_copy(xhci, in_ctx, out_ctx);
3013 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3014 }
3015
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3016 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3017 struct usb_host_endpoint *host_ep)
3018 {
3019 struct xhci_hcd *xhci;
3020 struct xhci_virt_device *vdev;
3021 struct xhci_virt_ep *ep;
3022 struct usb_device *udev;
3023 unsigned long flags;
3024 unsigned int ep_index;
3025
3026 xhci = hcd_to_xhci(hcd);
3027 rescan:
3028 spin_lock_irqsave(&xhci->lock, flags);
3029
3030 udev = (struct usb_device *)host_ep->hcpriv;
3031 if (!udev || !udev->slot_id)
3032 goto done;
3033
3034 vdev = xhci->devs[udev->slot_id];
3035 if (!vdev)
3036 goto done;
3037
3038 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3039 ep = &vdev->eps[ep_index];
3040
3041 /* wait for hub_tt_work to finish clearing hub TT */
3042 if (ep->ep_state & EP_CLEARING_TT) {
3043 spin_unlock_irqrestore(&xhci->lock, flags);
3044 schedule_timeout_uninterruptible(1);
3045 goto rescan;
3046 }
3047
3048 if (ep->ep_state)
3049 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3050 ep->ep_state);
3051 done:
3052 host_ep->hcpriv = NULL;
3053 spin_unlock_irqrestore(&xhci->lock, flags);
3054 }
3055
3056 /*
3057 * Called after usb core issues a clear halt control message.
3058 * The host side of the halt should already be cleared by a reset endpoint
3059 * command issued when the STALL event was received.
3060 *
3061 * The reset endpoint command may only be issued to endpoints in the halted
3062 * state. For software that wishes to reset the data toggle or sequence number
3063 * of an endpoint that isn't in the halted state this function will issue a
3064 * configure endpoint command with the Drop and Add bits set for the target
3065 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3066 */
3067
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3068 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3069 struct usb_host_endpoint *host_ep)
3070 {
3071 struct xhci_hcd *xhci;
3072 struct usb_device *udev;
3073 struct xhci_virt_device *vdev;
3074 struct xhci_virt_ep *ep;
3075 struct xhci_input_control_ctx *ctrl_ctx;
3076 struct xhci_command *stop_cmd, *cfg_cmd;
3077 unsigned int ep_index;
3078 unsigned long flags;
3079 u32 ep_flag;
3080 int err;
3081
3082 xhci = hcd_to_xhci(hcd);
3083 if (!host_ep->hcpriv)
3084 return;
3085 udev = (struct usb_device *) host_ep->hcpriv;
3086 vdev = xhci->devs[udev->slot_id];
3087
3088 /*
3089 * vdev may be lost due to xHC restore error and re-initialization
3090 * during S3/S4 resume. A new vdev will be allocated later by
3091 * xhci_discover_or_reset_device()
3092 */
3093 if (!udev->slot_id || !vdev)
3094 return;
3095 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3096 ep = &vdev->eps[ep_index];
3097
3098 /* Bail out if toggle is already being cleared by a endpoint reset */
3099 spin_lock_irqsave(&xhci->lock, flags);
3100 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3101 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3102 spin_unlock_irqrestore(&xhci->lock, flags);
3103 return;
3104 }
3105 spin_unlock_irqrestore(&xhci->lock, flags);
3106 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3107 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3108 usb_endpoint_xfer_isoc(&host_ep->desc))
3109 return;
3110
3111 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3112
3113 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3114 return;
3115
3116 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3117 if (!stop_cmd)
3118 return;
3119
3120 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3121 if (!cfg_cmd)
3122 goto cleanup;
3123
3124 spin_lock_irqsave(&xhci->lock, flags);
3125
3126 /* block queuing new trbs and ringing ep doorbell */
3127 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3128
3129 /*
3130 * Make sure endpoint ring is empty before resetting the toggle/seq.
3131 * Driver is required to synchronously cancel all transfer request.
3132 * Stop the endpoint to force xHC to update the output context
3133 */
3134
3135 if (!list_empty(&ep->ring->td_list)) {
3136 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3137 spin_unlock_irqrestore(&xhci->lock, flags);
3138 xhci_free_command(xhci, cfg_cmd);
3139 goto cleanup;
3140 }
3141
3142 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3143 ep_index, 0);
3144 if (err < 0) {
3145 spin_unlock_irqrestore(&xhci->lock, flags);
3146 xhci_free_command(xhci, cfg_cmd);
3147 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3148 __func__, err);
3149 goto cleanup;
3150 }
3151
3152 xhci_ring_cmd_db(xhci);
3153 spin_unlock_irqrestore(&xhci->lock, flags);
3154
3155 wait_for_completion(stop_cmd->completion);
3156
3157 spin_lock_irqsave(&xhci->lock, flags);
3158
3159 /* config ep command clears toggle if add and drop ep flags are set */
3160 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3161 if (!ctrl_ctx) {
3162 spin_unlock_irqrestore(&xhci->lock, flags);
3163 xhci_free_command(xhci, cfg_cmd);
3164 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3165 __func__);
3166 goto cleanup;
3167 }
3168
3169 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3170 ctrl_ctx, ep_flag, ep_flag);
3171 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3172
3173 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3174 udev->slot_id, false);
3175 if (err < 0) {
3176 spin_unlock_irqrestore(&xhci->lock, flags);
3177 xhci_free_command(xhci, cfg_cmd);
3178 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3179 __func__, err);
3180 goto cleanup;
3181 }
3182
3183 xhci_ring_cmd_db(xhci);
3184 spin_unlock_irqrestore(&xhci->lock, flags);
3185
3186 wait_for_completion(cfg_cmd->completion);
3187
3188 xhci_free_command(xhci, cfg_cmd);
3189 cleanup:
3190 xhci_free_command(xhci, stop_cmd);
3191 spin_lock_irqsave(&xhci->lock, flags);
3192 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3193 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3194 spin_unlock_irqrestore(&xhci->lock, flags);
3195 }
3196
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3197 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3198 struct usb_device *udev, struct usb_host_endpoint *ep,
3199 unsigned int slot_id)
3200 {
3201 int ret;
3202 unsigned int ep_index;
3203 unsigned int ep_state;
3204
3205 if (!ep)
3206 return -EINVAL;
3207 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3208 if (ret <= 0)
3209 return ret ? ret : -EINVAL;
3210 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3211 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3212 " descriptor for ep 0x%x does not support streams\n",
3213 ep->desc.bEndpointAddress);
3214 return -EINVAL;
3215 }
3216
3217 ep_index = xhci_get_endpoint_index(&ep->desc);
3218 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3219 if (ep_state & EP_HAS_STREAMS ||
3220 ep_state & EP_GETTING_STREAMS) {
3221 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3222 "already has streams set up.\n",
3223 ep->desc.bEndpointAddress);
3224 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3225 "dynamic stream context array reallocation.\n");
3226 return -EINVAL;
3227 }
3228 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3229 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3230 "endpoint 0x%x; URBs are pending.\n",
3231 ep->desc.bEndpointAddress);
3232 return -EINVAL;
3233 }
3234 return 0;
3235 }
3236
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3237 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3238 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3239 {
3240 unsigned int max_streams;
3241
3242 /* The stream context array size must be a power of two */
3243 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3244 /*
3245 * Find out how many primary stream array entries the host controller
3246 * supports. Later we may use secondary stream arrays (similar to 2nd
3247 * level page entries), but that's an optional feature for xHCI host
3248 * controllers. xHCs must support at least 4 stream IDs.
3249 */
3250 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3251 if (*num_stream_ctxs > max_streams) {
3252 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3253 max_streams);
3254 *num_stream_ctxs = max_streams;
3255 *num_streams = max_streams;
3256 }
3257 }
3258
3259 /* Returns an error code if one of the endpoint already has streams.
3260 * This does not change any data structures, it only checks and gathers
3261 * information.
3262 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3263 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3264 struct usb_device *udev,
3265 struct usb_host_endpoint **eps, unsigned int num_eps,
3266 unsigned int *num_streams, u32 *changed_ep_bitmask)
3267 {
3268 unsigned int max_streams;
3269 unsigned int endpoint_flag;
3270 int i;
3271 int ret;
3272
3273 for (i = 0; i < num_eps; i++) {
3274 ret = xhci_check_streams_endpoint(xhci, udev,
3275 eps[i], udev->slot_id);
3276 if (ret < 0)
3277 return ret;
3278
3279 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3280 if (max_streams < (*num_streams - 1)) {
3281 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3282 eps[i]->desc.bEndpointAddress,
3283 max_streams);
3284 *num_streams = max_streams+1;
3285 }
3286
3287 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3288 if (*changed_ep_bitmask & endpoint_flag)
3289 return -EINVAL;
3290 *changed_ep_bitmask |= endpoint_flag;
3291 }
3292 return 0;
3293 }
3294
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3295 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3296 struct usb_device *udev,
3297 struct usb_host_endpoint **eps, unsigned int num_eps)
3298 {
3299 u32 changed_ep_bitmask = 0;
3300 unsigned int slot_id;
3301 unsigned int ep_index;
3302 unsigned int ep_state;
3303 int i;
3304
3305 slot_id = udev->slot_id;
3306 if (!xhci->devs[slot_id])
3307 return 0;
3308
3309 for (i = 0; i < num_eps; i++) {
3310 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3312 /* Are streams already being freed for the endpoint? */
3313 if (ep_state & EP_GETTING_NO_STREAMS) {
3314 xhci_warn(xhci, "WARN Can't disable streams for "
3315 "endpoint 0x%x, "
3316 "streams are being disabled already\n",
3317 eps[i]->desc.bEndpointAddress);
3318 return 0;
3319 }
3320 /* Are there actually any streams to free? */
3321 if (!(ep_state & EP_HAS_STREAMS) &&
3322 !(ep_state & EP_GETTING_STREAMS)) {
3323 xhci_warn(xhci, "WARN Can't disable streams for "
3324 "endpoint 0x%x, "
3325 "streams are already disabled!\n",
3326 eps[i]->desc.bEndpointAddress);
3327 xhci_warn(xhci, "WARN xhci_free_streams() called "
3328 "with non-streams endpoint\n");
3329 return 0;
3330 }
3331 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3332 }
3333 return changed_ep_bitmask;
3334 }
3335
3336 /*
3337 * The USB device drivers use this function (through the HCD interface in USB
3338 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3339 * coordinate mass storage command queueing across multiple endpoints (basically
3340 * a stream ID == a task ID).
3341 *
3342 * Setting up streams involves allocating the same size stream context array
3343 * for each endpoint and issuing a configure endpoint command for all endpoints.
3344 *
3345 * Don't allow the call to succeed if one endpoint only supports one stream
3346 * (which means it doesn't support streams at all).
3347 *
3348 * Drivers may get less stream IDs than they asked for, if the host controller
3349 * hardware or endpoints claim they can't support the number of requested
3350 * stream IDs.
3351 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3352 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3353 struct usb_host_endpoint **eps, unsigned int num_eps,
3354 unsigned int num_streams, gfp_t mem_flags)
3355 {
3356 int i, ret;
3357 struct xhci_hcd *xhci;
3358 struct xhci_virt_device *vdev;
3359 struct xhci_command *config_cmd;
3360 struct xhci_input_control_ctx *ctrl_ctx;
3361 unsigned int ep_index;
3362 unsigned int num_stream_ctxs;
3363 unsigned int max_packet;
3364 unsigned long flags;
3365 u32 changed_ep_bitmask = 0;
3366
3367 if (!eps)
3368 return -EINVAL;
3369
3370 /* Add one to the number of streams requested to account for
3371 * stream 0 that is reserved for xHCI usage.
3372 */
3373 num_streams += 1;
3374 xhci = hcd_to_xhci(hcd);
3375 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3376 num_streams);
3377
3378 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3379 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3380 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3381 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3382 return -ENOSYS;
3383 }
3384
3385 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3386 if (!config_cmd)
3387 return -ENOMEM;
3388
3389 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3390 if (!ctrl_ctx) {
3391 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3392 __func__);
3393 xhci_free_command(xhci, config_cmd);
3394 return -ENOMEM;
3395 }
3396
3397 /* Check to make sure all endpoints are not already configured for
3398 * streams. While we're at it, find the maximum number of streams that
3399 * all the endpoints will support and check for duplicate endpoints.
3400 */
3401 spin_lock_irqsave(&xhci->lock, flags);
3402 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3403 num_eps, &num_streams, &changed_ep_bitmask);
3404 if (ret < 0) {
3405 xhci_free_command(xhci, config_cmd);
3406 spin_unlock_irqrestore(&xhci->lock, flags);
3407 return ret;
3408 }
3409 if (num_streams <= 1) {
3410 xhci_warn(xhci, "WARN: endpoints can't handle "
3411 "more than one stream.\n");
3412 xhci_free_command(xhci, config_cmd);
3413 spin_unlock_irqrestore(&xhci->lock, flags);
3414 return -EINVAL;
3415 }
3416 vdev = xhci->devs[udev->slot_id];
3417 /* Mark each endpoint as being in transition, so
3418 * xhci_urb_enqueue() will reject all URBs.
3419 */
3420 for (i = 0; i < num_eps; i++) {
3421 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3422 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3423 }
3424 spin_unlock_irqrestore(&xhci->lock, flags);
3425
3426 /* Setup internal data structures and allocate HW data structures for
3427 * streams (but don't install the HW structures in the input context
3428 * until we're sure all memory allocation succeeded).
3429 */
3430 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3431 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3432 num_stream_ctxs, num_streams);
3433
3434 for (i = 0; i < num_eps; i++) {
3435 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3436 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3437 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3438 num_stream_ctxs,
3439 num_streams,
3440 max_packet, mem_flags);
3441 if (!vdev->eps[ep_index].stream_info)
3442 goto cleanup;
3443 /* Set maxPstreams in endpoint context and update deq ptr to
3444 * point to stream context array. FIXME
3445 */
3446 }
3447
3448 /* Set up the input context for a configure endpoint command. */
3449 for (i = 0; i < num_eps; i++) {
3450 struct xhci_ep_ctx *ep_ctx;
3451
3452 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3453 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3454
3455 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3456 vdev->out_ctx, ep_index);
3457 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3458 vdev->eps[ep_index].stream_info);
3459 }
3460 /* Tell the HW to drop its old copy of the endpoint context info
3461 * and add the updated copy from the input context.
3462 */
3463 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3464 vdev->out_ctx, ctrl_ctx,
3465 changed_ep_bitmask, changed_ep_bitmask);
3466
3467 /* Issue and wait for the configure endpoint command */
3468 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3469 false, false);
3470
3471 /* xHC rejected the configure endpoint command for some reason, so we
3472 * leave the old ring intact and free our internal streams data
3473 * structure.
3474 */
3475 if (ret < 0)
3476 goto cleanup;
3477
3478 spin_lock_irqsave(&xhci->lock, flags);
3479 for (i = 0; i < num_eps; i++) {
3480 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3481 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3482 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3483 udev->slot_id, ep_index);
3484 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3485 }
3486 xhci_free_command(xhci, config_cmd);
3487 spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489 for (i = 0; i < num_eps; i++) {
3490 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3491 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3492 }
3493 /* Subtract 1 for stream 0, which drivers can't use */
3494 return num_streams - 1;
3495
3496 cleanup:
3497 /* If it didn't work, free the streams! */
3498 for (i = 0; i < num_eps; i++) {
3499 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3500 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3501 vdev->eps[ep_index].stream_info = NULL;
3502 /* FIXME Unset maxPstreams in endpoint context and
3503 * update deq ptr to point to normal string ring.
3504 */
3505 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3506 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3507 xhci_endpoint_zero(xhci, vdev, eps[i]);
3508 }
3509 xhci_free_command(xhci, config_cmd);
3510 return -ENOMEM;
3511 }
3512
3513 /* Transition the endpoint from using streams to being a "normal" endpoint
3514 * without streams.
3515 *
3516 * Modify the endpoint context state, submit a configure endpoint command,
3517 * and free all endpoint rings for streams if that completes successfully.
3518 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3519 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3520 struct usb_host_endpoint **eps, unsigned int num_eps,
3521 gfp_t mem_flags)
3522 {
3523 int i, ret;
3524 struct xhci_hcd *xhci;
3525 struct xhci_virt_device *vdev;
3526 struct xhci_command *command;
3527 struct xhci_input_control_ctx *ctrl_ctx;
3528 unsigned int ep_index;
3529 unsigned long flags;
3530 u32 changed_ep_bitmask;
3531
3532 xhci = hcd_to_xhci(hcd);
3533 vdev = xhci->devs[udev->slot_id];
3534
3535 /* Set up a configure endpoint command to remove the streams rings */
3536 spin_lock_irqsave(&xhci->lock, flags);
3537 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3538 udev, eps, num_eps);
3539 if (changed_ep_bitmask == 0) {
3540 spin_unlock_irqrestore(&xhci->lock, flags);
3541 return -EINVAL;
3542 }
3543
3544 /* Use the xhci_command structure from the first endpoint. We may have
3545 * allocated too many, but the driver may call xhci_free_streams() for
3546 * each endpoint it grouped into one call to xhci_alloc_streams().
3547 */
3548 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3549 command = vdev->eps[ep_index].stream_info->free_streams_command;
3550 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3551 if (!ctrl_ctx) {
3552 spin_unlock_irqrestore(&xhci->lock, flags);
3553 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3554 __func__);
3555 return -EINVAL;
3556 }
3557
3558 for (i = 0; i < num_eps; i++) {
3559 struct xhci_ep_ctx *ep_ctx;
3560
3561 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3563 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3564 EP_GETTING_NO_STREAMS;
3565
3566 xhci_endpoint_copy(xhci, command->in_ctx,
3567 vdev->out_ctx, ep_index);
3568 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3569 &vdev->eps[ep_index]);
3570 }
3571 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3572 vdev->out_ctx, ctrl_ctx,
3573 changed_ep_bitmask, changed_ep_bitmask);
3574 spin_unlock_irqrestore(&xhci->lock, flags);
3575
3576 /* Issue and wait for the configure endpoint command,
3577 * which must succeed.
3578 */
3579 ret = xhci_configure_endpoint(xhci, udev, command,
3580 false, true);
3581
3582 /* xHC rejected the configure endpoint command for some reason, so we
3583 * leave the streams rings intact.
3584 */
3585 if (ret < 0)
3586 return ret;
3587
3588 spin_lock_irqsave(&xhci->lock, flags);
3589 for (i = 0; i < num_eps; i++) {
3590 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3591 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3592 vdev->eps[ep_index].stream_info = NULL;
3593 /* FIXME Unset maxPstreams in endpoint context and
3594 * update deq ptr to point to normal string ring.
3595 */
3596 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3597 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3598 }
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600
3601 return 0;
3602 }
3603
3604 /*
3605 * Deletes endpoint resources for endpoints that were active before a Reset
3606 * Device command, or a Disable Slot command. The Reset Device command leaves
3607 * the control endpoint intact, whereas the Disable Slot command deletes it.
3608 *
3609 * Must be called with xhci->lock held.
3610 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3611 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3612 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3613 {
3614 int i;
3615 unsigned int num_dropped_eps = 0;
3616 unsigned int drop_flags = 0;
3617
3618 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3619 if (virt_dev->eps[i].ring) {
3620 drop_flags |= 1 << i;
3621 num_dropped_eps++;
3622 }
3623 }
3624 xhci->num_active_eps -= num_dropped_eps;
3625 if (num_dropped_eps)
3626 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627 "Dropped %u ep ctxs, flags = 0x%x, "
3628 "%u now active.",
3629 num_dropped_eps, drop_flags,
3630 xhci->num_active_eps);
3631 }
3632
3633 /*
3634 * This submits a Reset Device Command, which will set the device state to 0,
3635 * set the device address to 0, and disable all the endpoints except the default
3636 * control endpoint. The USB core should come back and call
3637 * xhci_address_device(), and then re-set up the configuration. If this is
3638 * called because of a usb_reset_and_verify_device(), then the old alternate
3639 * settings will be re-installed through the normal bandwidth allocation
3640 * functions.
3641 *
3642 * Wait for the Reset Device command to finish. Remove all structures
3643 * associated with the endpoints that were disabled. Clear the input device
3644 * structure? Reset the control endpoint 0 max packet size?
3645 *
3646 * If the virt_dev to be reset does not exist or does not match the udev,
3647 * it means the device is lost, possibly due to the xHC restore error and
3648 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3649 * re-allocate the device.
3650 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3651 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3652 struct usb_device *udev)
3653 {
3654 int ret, i;
3655 unsigned long flags;
3656 struct xhci_hcd *xhci;
3657 unsigned int slot_id;
3658 struct xhci_virt_device *virt_dev;
3659 struct xhci_command *reset_device_cmd;
3660 struct xhci_slot_ctx *slot_ctx;
3661 int old_active_eps = 0;
3662
3663 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3664 if (ret <= 0)
3665 return ret;
3666 xhci = hcd_to_xhci(hcd);
3667 slot_id = udev->slot_id;
3668 virt_dev = xhci->devs[slot_id];
3669 if (!virt_dev) {
3670 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3671 "not exist. Re-allocate the device\n", slot_id);
3672 ret = xhci_alloc_dev(hcd, udev);
3673 if (ret == 1)
3674 return 0;
3675 else
3676 return -EINVAL;
3677 }
3678
3679 if (virt_dev->tt_info)
3680 old_active_eps = virt_dev->tt_info->active_eps;
3681
3682 if (virt_dev->udev != udev) {
3683 /* If the virt_dev and the udev does not match, this virt_dev
3684 * may belong to another udev.
3685 * Re-allocate the device.
3686 */
3687 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3688 "not match the udev. Re-allocate the device\n",
3689 slot_id);
3690 ret = xhci_alloc_dev(hcd, udev);
3691 if (ret == 1)
3692 return 0;
3693 else
3694 return -EINVAL;
3695 }
3696
3697 /* If device is not setup, there is no point in resetting it */
3698 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3699 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3700 SLOT_STATE_DISABLED)
3701 return 0;
3702
3703 trace_xhci_discover_or_reset_device(slot_ctx);
3704
3705 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3706 /* Allocate the command structure that holds the struct completion.
3707 * Assume we're in process context, since the normal device reset
3708 * process has to wait for the device anyway. Storage devices are
3709 * reset as part of error handling, so use GFP_NOIO instead of
3710 * GFP_KERNEL.
3711 */
3712 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3713 if (!reset_device_cmd) {
3714 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3715 return -ENOMEM;
3716 }
3717
3718 /* Attempt to submit the Reset Device command to the command ring */
3719 spin_lock_irqsave(&xhci->lock, flags);
3720
3721 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3722 if (ret) {
3723 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3724 spin_unlock_irqrestore(&xhci->lock, flags);
3725 goto command_cleanup;
3726 }
3727 xhci_ring_cmd_db(xhci);
3728 spin_unlock_irqrestore(&xhci->lock, flags);
3729
3730 /* Wait for the Reset Device command to finish */
3731 wait_for_completion(reset_device_cmd->completion);
3732
3733 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3734 * unless we tried to reset a slot ID that wasn't enabled,
3735 * or the device wasn't in the addressed or configured state.
3736 */
3737 ret = reset_device_cmd->status;
3738 switch (ret) {
3739 case COMP_COMMAND_ABORTED:
3740 case COMP_COMMAND_RING_STOPPED:
3741 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3742 ret = -ETIME;
3743 goto command_cleanup;
3744 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3745 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3746 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3747 slot_id,
3748 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3749 xhci_dbg(xhci, "Not freeing device rings.\n");
3750 /* Don't treat this as an error. May change my mind later. */
3751 ret = 0;
3752 goto command_cleanup;
3753 case COMP_SUCCESS:
3754 xhci_dbg(xhci, "Successful reset device command.\n");
3755 break;
3756 default:
3757 if (xhci_is_vendor_info_code(xhci, ret))
3758 break;
3759 xhci_warn(xhci, "Unknown completion code %u for "
3760 "reset device command.\n", ret);
3761 ret = -EINVAL;
3762 goto command_cleanup;
3763 }
3764
3765 /* Free up host controller endpoint resources */
3766 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3767 spin_lock_irqsave(&xhci->lock, flags);
3768 /* Don't delete the default control endpoint resources */
3769 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3770 spin_unlock_irqrestore(&xhci->lock, flags);
3771 }
3772
3773 /* Everything but endpoint 0 is disabled, so free the rings. */
3774 for (i = 1; i < 31; i++) {
3775 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3776
3777 if (ep->ep_state & EP_HAS_STREAMS) {
3778 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3779 xhci_get_endpoint_address(i));
3780 xhci_free_stream_info(xhci, ep->stream_info);
3781 ep->stream_info = NULL;
3782 ep->ep_state &= ~EP_HAS_STREAMS;
3783 }
3784
3785 if (ep->ring) {
3786 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3787 xhci_free_endpoint_ring(xhci, virt_dev, i);
3788 }
3789 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3790 xhci_drop_ep_from_interval_table(xhci,
3791 &virt_dev->eps[i].bw_info,
3792 virt_dev->bw_table,
3793 udev,
3794 &virt_dev->eps[i],
3795 virt_dev->tt_info);
3796 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3797 }
3798 /* If necessary, update the number of active TTs on this root port */
3799 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3800 virt_dev->flags = 0;
3801 ret = 0;
3802
3803 command_cleanup:
3804 xhci_free_command(xhci, reset_device_cmd);
3805 return ret;
3806 }
3807
3808 /*
3809 * At this point, the struct usb_device is about to go away, the device has
3810 * disconnected, and all traffic has been stopped and the endpoints have been
3811 * disabled. Free any HC data structures associated with that device.
3812 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3813 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3814 {
3815 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816 struct xhci_virt_device *virt_dev;
3817 struct xhci_slot_ctx *slot_ctx;
3818 unsigned long flags;
3819 int i, ret;
3820
3821 /*
3822 * We called pm_runtime_get_noresume when the device was attached.
3823 * Decrement the counter here to allow controller to runtime suspend
3824 * if no devices remain.
3825 */
3826 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3827 pm_runtime_put_noidle(hcd->self.controller);
3828
3829 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3830 /* If the host is halted due to driver unload, we still need to free the
3831 * device.
3832 */
3833 if (ret <= 0 && ret != -ENODEV)
3834 return;
3835
3836 virt_dev = xhci->devs[udev->slot_id];
3837 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3838 trace_xhci_free_dev(slot_ctx);
3839
3840 /* Stop any wayward timer functions (which may grab the lock) */
3841 for (i = 0; i < 31; i++)
3842 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3843 virt_dev->udev = NULL;
3844 xhci_disable_slot(xhci, udev->slot_id);
3845
3846 spin_lock_irqsave(&xhci->lock, flags);
3847 xhci_free_virt_device(xhci, udev->slot_id);
3848 spin_unlock_irqrestore(&xhci->lock, flags);
3849
3850 }
3851
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3852 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3853 {
3854 struct xhci_command *command;
3855 unsigned long flags;
3856 u32 state;
3857 int ret;
3858
3859 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3860 if (!command)
3861 return -ENOMEM;
3862
3863 xhci_debugfs_remove_slot(xhci, slot_id);
3864
3865 spin_lock_irqsave(&xhci->lock, flags);
3866 /* Don't disable the slot if the host controller is dead. */
3867 state = readl(&xhci->op_regs->status);
3868 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3869 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3870 spin_unlock_irqrestore(&xhci->lock, flags);
3871 kfree(command);
3872 return -ENODEV;
3873 }
3874
3875 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3876 slot_id);
3877 if (ret) {
3878 spin_unlock_irqrestore(&xhci->lock, flags);
3879 kfree(command);
3880 return ret;
3881 }
3882 xhci_ring_cmd_db(xhci);
3883 spin_unlock_irqrestore(&xhci->lock, flags);
3884
3885 wait_for_completion(command->completion);
3886
3887 if (command->status != COMP_SUCCESS)
3888 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3889 slot_id, command->status);
3890
3891 xhci_free_command(xhci, command);
3892
3893 return 0;
3894 }
3895
3896 /*
3897 * Checks if we have enough host controller resources for the default control
3898 * endpoint.
3899 *
3900 * Must be called with xhci->lock held.
3901 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3902 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3903 {
3904 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3905 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3906 "Not enough ep ctxs: "
3907 "%u active, need to add 1, limit is %u.",
3908 xhci->num_active_eps, xhci->limit_active_eps);
3909 return -ENOMEM;
3910 }
3911 xhci->num_active_eps += 1;
3912 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3913 "Adding 1 ep ctx, %u now active.",
3914 xhci->num_active_eps);
3915 return 0;
3916 }
3917
3918
3919 /*
3920 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3921 * timed out, or allocating memory failed. Returns 1 on success.
3922 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3923 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3924 {
3925 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3926 struct xhci_virt_device *vdev;
3927 struct xhci_slot_ctx *slot_ctx;
3928 unsigned long flags;
3929 int ret, slot_id;
3930 struct xhci_command *command;
3931
3932 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3933 if (!command)
3934 return 0;
3935
3936 spin_lock_irqsave(&xhci->lock, flags);
3937 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3938 if (ret) {
3939 spin_unlock_irqrestore(&xhci->lock, flags);
3940 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3941 xhci_free_command(xhci, command);
3942 return 0;
3943 }
3944 xhci_ring_cmd_db(xhci);
3945 spin_unlock_irqrestore(&xhci->lock, flags);
3946
3947 wait_for_completion(command->completion);
3948 slot_id = command->slot_id;
3949
3950 if (!slot_id || command->status != COMP_SUCCESS) {
3951 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
3952 xhci_trb_comp_code_string(command->status));
3953 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3954 HCS_MAX_SLOTS(
3955 readl(&xhci->cap_regs->hcs_params1)));
3956 xhci_free_command(xhci, command);
3957 return 0;
3958 }
3959
3960 xhci_free_command(xhci, command);
3961
3962 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3963 spin_lock_irqsave(&xhci->lock, flags);
3964 ret = xhci_reserve_host_control_ep_resources(xhci);
3965 if (ret) {
3966 spin_unlock_irqrestore(&xhci->lock, flags);
3967 xhci_warn(xhci, "Not enough host resources, "
3968 "active endpoint contexts = %u\n",
3969 xhci->num_active_eps);
3970 goto disable_slot;
3971 }
3972 spin_unlock_irqrestore(&xhci->lock, flags);
3973 }
3974 /* Use GFP_NOIO, since this function can be called from
3975 * xhci_discover_or_reset_device(), which may be called as part of
3976 * mass storage driver error handling.
3977 */
3978 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3979 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3980 goto disable_slot;
3981 }
3982 vdev = xhci->devs[slot_id];
3983 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3984 trace_xhci_alloc_dev(slot_ctx);
3985
3986 udev->slot_id = slot_id;
3987
3988 xhci_debugfs_create_slot(xhci, slot_id);
3989
3990 /*
3991 * If resetting upon resume, we can't put the controller into runtime
3992 * suspend if there is a device attached.
3993 */
3994 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3995 pm_runtime_get_noresume(hcd->self.controller);
3996
3997 /* Is this a LS or FS device under a HS hub? */
3998 /* Hub or peripherial? */
3999 return 1;
4000
4001 disable_slot:
4002 xhci_disable_slot(xhci, udev->slot_id);
4003 xhci_free_virt_device(xhci, udev->slot_id);
4004
4005 return 0;
4006 }
4007
4008 /*
4009 * Issue an Address Device command and optionally send a corresponding
4010 * SetAddress request to the device.
4011 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4012 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4013 enum xhci_setup_dev setup)
4014 {
4015 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4016 unsigned long flags;
4017 struct xhci_virt_device *virt_dev;
4018 int ret = 0;
4019 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4020 struct xhci_slot_ctx *slot_ctx;
4021 struct xhci_input_control_ctx *ctrl_ctx;
4022 u64 temp_64;
4023 struct xhci_command *command = NULL;
4024
4025 mutex_lock(&xhci->mutex);
4026
4027 if (xhci->xhc_state) { /* dying, removing or halted */
4028 ret = -ESHUTDOWN;
4029 goto out;
4030 }
4031
4032 if (!udev->slot_id) {
4033 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4034 "Bad Slot ID %d", udev->slot_id);
4035 ret = -EINVAL;
4036 goto out;
4037 }
4038
4039 virt_dev = xhci->devs[udev->slot_id];
4040
4041 if (WARN_ON(!virt_dev)) {
4042 /*
4043 * In plug/unplug torture test with an NEC controller,
4044 * a zero-dereference was observed once due to virt_dev = 0.
4045 * Print useful debug rather than crash if it is observed again!
4046 */
4047 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4048 udev->slot_id);
4049 ret = -EINVAL;
4050 goto out;
4051 }
4052 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4053 trace_xhci_setup_device_slot(slot_ctx);
4054
4055 if (setup == SETUP_CONTEXT_ONLY) {
4056 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4057 SLOT_STATE_DEFAULT) {
4058 xhci_dbg(xhci, "Slot already in default state\n");
4059 goto out;
4060 }
4061 }
4062
4063 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4064 if (!command) {
4065 ret = -ENOMEM;
4066 goto out;
4067 }
4068
4069 command->in_ctx = virt_dev->in_ctx;
4070
4071 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4072 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4073 if (!ctrl_ctx) {
4074 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4075 __func__);
4076 ret = -EINVAL;
4077 goto out;
4078 }
4079 /*
4080 * If this is the first Set Address since device plug-in or
4081 * virt_device realloaction after a resume with an xHCI power loss,
4082 * then set up the slot context.
4083 */
4084 if (!slot_ctx->dev_info)
4085 xhci_setup_addressable_virt_dev(xhci, udev);
4086 /* Otherwise, update the control endpoint ring enqueue pointer. */
4087 else
4088 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4089 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4090 ctrl_ctx->drop_flags = 0;
4091
4092 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4093 le32_to_cpu(slot_ctx->dev_info) >> 27);
4094
4095 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4096 spin_lock_irqsave(&xhci->lock, flags);
4097 trace_xhci_setup_device(virt_dev);
4098 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4099 udev->slot_id, setup);
4100 if (ret) {
4101 spin_unlock_irqrestore(&xhci->lock, flags);
4102 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4103 "FIXME: allocate a command ring segment");
4104 goto out;
4105 }
4106 xhci_ring_cmd_db(xhci);
4107 spin_unlock_irqrestore(&xhci->lock, flags);
4108
4109 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4110 wait_for_completion(command->completion);
4111
4112 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4113 * the SetAddress() "recovery interval" required by USB and aborting the
4114 * command on a timeout.
4115 */
4116 switch (command->status) {
4117 case COMP_COMMAND_ABORTED:
4118 case COMP_COMMAND_RING_STOPPED:
4119 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4120 ret = -ETIME;
4121 break;
4122 case COMP_CONTEXT_STATE_ERROR:
4123 case COMP_SLOT_NOT_ENABLED_ERROR:
4124 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4125 act, udev->slot_id);
4126 ret = -EINVAL;
4127 break;
4128 case COMP_USB_TRANSACTION_ERROR:
4129 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4130
4131 mutex_unlock(&xhci->mutex);
4132 ret = xhci_disable_slot(xhci, udev->slot_id);
4133 xhci_free_virt_device(xhci, udev->slot_id);
4134 if (!ret)
4135 xhci_alloc_dev(hcd, udev);
4136 kfree(command->completion);
4137 kfree(command);
4138 return -EPROTO;
4139 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4140 dev_warn(&udev->dev,
4141 "ERROR: Incompatible device for setup %s command\n", act);
4142 ret = -ENODEV;
4143 break;
4144 case COMP_SUCCESS:
4145 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4146 "Successful setup %s command", act);
4147 break;
4148 default:
4149 xhci_err(xhci,
4150 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4151 act, command->status);
4152 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4153 ret = -EINVAL;
4154 break;
4155 }
4156 if (ret)
4157 goto out;
4158 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 "Op regs DCBAA ptr = %#016llx", temp_64);
4161 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162 "Slot ID %d dcbaa entry @%p = %#016llx",
4163 udev->slot_id,
4164 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4165 (unsigned long long)
4166 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4167 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4168 "Output Context DMA address = %#08llx",
4169 (unsigned long long)virt_dev->out_ctx->dma);
4170 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4171 le32_to_cpu(slot_ctx->dev_info) >> 27);
4172 /*
4173 * USB core uses address 1 for the roothubs, so we add one to the
4174 * address given back to us by the HC.
4175 */
4176 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4177 le32_to_cpu(slot_ctx->dev_info) >> 27);
4178 /* Zero the input context control for later use */
4179 ctrl_ctx->add_flags = 0;
4180 ctrl_ctx->drop_flags = 0;
4181 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4182 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4183
4184 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4185 "Internal device address = %d",
4186 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4187 out:
4188 mutex_unlock(&xhci->mutex);
4189 if (command) {
4190 kfree(command->completion);
4191 kfree(command);
4192 }
4193 return ret;
4194 }
4195
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4196 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4197 {
4198 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4199 }
4200
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4201 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4202 {
4203 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4204 }
4205
4206 /*
4207 * Transfer the port index into real index in the HW port status
4208 * registers. Caculate offset between the port's PORTSC register
4209 * and port status base. Divide the number of per port register
4210 * to get the real index. The raw port number bases 1.
4211 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4212 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4213 {
4214 struct xhci_hub *rhub;
4215
4216 rhub = xhci_get_rhub(hcd);
4217 return rhub->ports[port1 - 1]->hw_portnum + 1;
4218 }
4219
4220 /*
4221 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4222 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4223 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4224 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4225 struct usb_device *udev, u16 max_exit_latency)
4226 {
4227 struct xhci_virt_device *virt_dev;
4228 struct xhci_command *command;
4229 struct xhci_input_control_ctx *ctrl_ctx;
4230 struct xhci_slot_ctx *slot_ctx;
4231 unsigned long flags;
4232 int ret;
4233
4234 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4235 if (!command)
4236 return -ENOMEM;
4237
4238 spin_lock_irqsave(&xhci->lock, flags);
4239
4240 virt_dev = xhci->devs[udev->slot_id];
4241
4242 /*
4243 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4244 * xHC was re-initialized. Exit latency will be set later after
4245 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4246 */
4247
4248 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4249 spin_unlock_irqrestore(&xhci->lock, flags);
4250 xhci_free_command(xhci, command);
4251 return 0;
4252 }
4253
4254 /* Attempt to issue an Evaluate Context command to change the MEL. */
4255 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4256 if (!ctrl_ctx) {
4257 spin_unlock_irqrestore(&xhci->lock, flags);
4258 xhci_free_command(xhci, command);
4259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4260 __func__);
4261 return -ENOMEM;
4262 }
4263
4264 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4265 spin_unlock_irqrestore(&xhci->lock, flags);
4266
4267 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4268 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4269 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4270 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4271 slot_ctx->dev_state = 0;
4272
4273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4274 "Set up evaluate context for LPM MEL change.");
4275
4276 /* Issue and wait for the evaluate context command. */
4277 ret = xhci_configure_endpoint(xhci, udev, command,
4278 true, true);
4279
4280 if (!ret) {
4281 spin_lock_irqsave(&xhci->lock, flags);
4282 virt_dev->current_mel = max_exit_latency;
4283 spin_unlock_irqrestore(&xhci->lock, flags);
4284 }
4285
4286 xhci_free_command(xhci, command);
4287
4288 return ret;
4289 }
4290
4291 #ifdef CONFIG_PM
4292
4293 /* BESL to HIRD Encoding array for USB2 LPM */
4294 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4295 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4296
4297 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4298 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4299 struct usb_device *udev)
4300 {
4301 int u2del, besl, besl_host;
4302 int besl_device = 0;
4303 u32 field;
4304
4305 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4306 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4307
4308 if (field & USB_BESL_SUPPORT) {
4309 for (besl_host = 0; besl_host < 16; besl_host++) {
4310 if (xhci_besl_encoding[besl_host] >= u2del)
4311 break;
4312 }
4313 /* Use baseline BESL value as default */
4314 if (field & USB_BESL_BASELINE_VALID)
4315 besl_device = USB_GET_BESL_BASELINE(field);
4316 else if (field & USB_BESL_DEEP_VALID)
4317 besl_device = USB_GET_BESL_DEEP(field);
4318 } else {
4319 if (u2del <= 50)
4320 besl_host = 0;
4321 else
4322 besl_host = (u2del - 51) / 75 + 1;
4323 }
4324
4325 besl = besl_host + besl_device;
4326 if (besl > 15)
4327 besl = 15;
4328
4329 return besl;
4330 }
4331
4332 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4333 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4334 {
4335 u32 field;
4336 int l1;
4337 int besld = 0;
4338 int hirdm = 0;
4339
4340 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4341
4342 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4343 l1 = udev->l1_params.timeout / 256;
4344
4345 /* device has preferred BESLD */
4346 if (field & USB_BESL_DEEP_VALID) {
4347 besld = USB_GET_BESL_DEEP(field);
4348 hirdm = 1;
4349 }
4350
4351 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4352 }
4353
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4354 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4355 struct usb_device *udev, int enable)
4356 {
4357 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4358 struct xhci_port **ports;
4359 __le32 __iomem *pm_addr, *hlpm_addr;
4360 u32 pm_val, hlpm_val, field;
4361 unsigned int port_num;
4362 unsigned long flags;
4363 int hird, exit_latency;
4364 int ret;
4365
4366 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4367 return -EPERM;
4368
4369 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4370 !udev->lpm_capable)
4371 return -EPERM;
4372
4373 if (!udev->parent || udev->parent->parent ||
4374 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4375 return -EPERM;
4376
4377 if (udev->usb2_hw_lpm_capable != 1)
4378 return -EPERM;
4379
4380 spin_lock_irqsave(&xhci->lock, flags);
4381
4382 ports = xhci->usb2_rhub.ports;
4383 port_num = udev->portnum - 1;
4384 pm_addr = ports[port_num]->addr + PORTPMSC;
4385 pm_val = readl(pm_addr);
4386 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4387
4388 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4389 enable ? "enable" : "disable", port_num + 1);
4390
4391 if (enable) {
4392 /* Host supports BESL timeout instead of HIRD */
4393 if (udev->usb2_hw_lpm_besl_capable) {
4394 /* if device doesn't have a preferred BESL value use a
4395 * default one which works with mixed HIRD and BESL
4396 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4397 */
4398 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4399 if ((field & USB_BESL_SUPPORT) &&
4400 (field & USB_BESL_BASELINE_VALID))
4401 hird = USB_GET_BESL_BASELINE(field);
4402 else
4403 hird = udev->l1_params.besl;
4404
4405 exit_latency = xhci_besl_encoding[hird];
4406 spin_unlock_irqrestore(&xhci->lock, flags);
4407
4408 ret = xhci_change_max_exit_latency(xhci, udev,
4409 exit_latency);
4410 if (ret < 0)
4411 return ret;
4412 spin_lock_irqsave(&xhci->lock, flags);
4413
4414 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4415 writel(hlpm_val, hlpm_addr);
4416 /* flush write */
4417 readl(hlpm_addr);
4418 } else {
4419 hird = xhci_calculate_hird_besl(xhci, udev);
4420 }
4421
4422 pm_val &= ~PORT_HIRD_MASK;
4423 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4424 writel(pm_val, pm_addr);
4425 pm_val = readl(pm_addr);
4426 pm_val |= PORT_HLE;
4427 writel(pm_val, pm_addr);
4428 /* flush write */
4429 readl(pm_addr);
4430 } else {
4431 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4432 writel(pm_val, pm_addr);
4433 /* flush write */
4434 readl(pm_addr);
4435 if (udev->usb2_hw_lpm_besl_capable) {
4436 spin_unlock_irqrestore(&xhci->lock, flags);
4437 xhci_change_max_exit_latency(xhci, udev, 0);
4438 readl_poll_timeout(ports[port_num]->addr, pm_val,
4439 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4440 100, 10000);
4441 return 0;
4442 }
4443 }
4444
4445 spin_unlock_irqrestore(&xhci->lock, flags);
4446 return 0;
4447 }
4448
4449 /* check if a usb2 port supports a given extened capability protocol
4450 * only USB2 ports extended protocol capability values are cached.
4451 * Return 1 if capability is supported
4452 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4453 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4454 unsigned capability)
4455 {
4456 u32 port_offset, port_count;
4457 int i;
4458
4459 for (i = 0; i < xhci->num_ext_caps; i++) {
4460 if (xhci->ext_caps[i] & capability) {
4461 /* port offsets starts at 1 */
4462 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4463 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4464 if (port >= port_offset &&
4465 port < port_offset + port_count)
4466 return 1;
4467 }
4468 }
4469 return 0;
4470 }
4471
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4472 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4473 {
4474 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4475 int portnum = udev->portnum - 1;
4476
4477 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4478 return 0;
4479
4480 /* we only support lpm for non-hub device connected to root hub yet */
4481 if (!udev->parent || udev->parent->parent ||
4482 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4483 return 0;
4484
4485 if (xhci->hw_lpm_support == 1 &&
4486 xhci_check_usb2_port_capability(
4487 xhci, portnum, XHCI_HLC)) {
4488 udev->usb2_hw_lpm_capable = 1;
4489 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4490 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4491 if (xhci_check_usb2_port_capability(xhci, portnum,
4492 XHCI_BLC))
4493 udev->usb2_hw_lpm_besl_capable = 1;
4494 }
4495
4496 return 0;
4497 }
4498
4499 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4500
4501 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4502 static unsigned long long xhci_service_interval_to_ns(
4503 struct usb_endpoint_descriptor *desc)
4504 {
4505 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4506 }
4507
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4508 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4509 enum usb3_link_state state)
4510 {
4511 unsigned long long sel;
4512 unsigned long long pel;
4513 unsigned int max_sel_pel;
4514 char *state_name;
4515
4516 switch (state) {
4517 case USB3_LPM_U1:
4518 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4519 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4520 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4521 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4522 state_name = "U1";
4523 break;
4524 case USB3_LPM_U2:
4525 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4526 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4527 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4528 state_name = "U2";
4529 break;
4530 default:
4531 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4532 __func__);
4533 return USB3_LPM_DISABLED;
4534 }
4535
4536 if (sel <= max_sel_pel && pel <= max_sel_pel)
4537 return USB3_LPM_DEVICE_INITIATED;
4538
4539 if (sel > max_sel_pel)
4540 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4541 "due to long SEL %llu ms\n",
4542 state_name, sel);
4543 else
4544 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4545 "due to long PEL %llu ms\n",
4546 state_name, pel);
4547 return USB3_LPM_DISABLED;
4548 }
4549
4550 /* The U1 timeout should be the maximum of the following values:
4551 * - For control endpoints, U1 system exit latency (SEL) * 3
4552 * - For bulk endpoints, U1 SEL * 5
4553 * - For interrupt endpoints:
4554 * - Notification EPs, U1 SEL * 3
4555 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4556 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4557 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4558 static unsigned long long xhci_calculate_intel_u1_timeout(
4559 struct usb_device *udev,
4560 struct usb_endpoint_descriptor *desc)
4561 {
4562 unsigned long long timeout_ns;
4563 int ep_type;
4564 int intr_type;
4565
4566 ep_type = usb_endpoint_type(desc);
4567 switch (ep_type) {
4568 case USB_ENDPOINT_XFER_CONTROL:
4569 timeout_ns = udev->u1_params.sel * 3;
4570 break;
4571 case USB_ENDPOINT_XFER_BULK:
4572 timeout_ns = udev->u1_params.sel * 5;
4573 break;
4574 case USB_ENDPOINT_XFER_INT:
4575 intr_type = usb_endpoint_interrupt_type(desc);
4576 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4577 timeout_ns = udev->u1_params.sel * 3;
4578 break;
4579 }
4580 /* Otherwise the calculation is the same as isoc eps */
4581 fallthrough;
4582 case USB_ENDPOINT_XFER_ISOC:
4583 timeout_ns = xhci_service_interval_to_ns(desc);
4584 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4585 if (timeout_ns < udev->u1_params.sel * 2)
4586 timeout_ns = udev->u1_params.sel * 2;
4587 break;
4588 default:
4589 return 0;
4590 }
4591
4592 return timeout_ns;
4593 }
4594
4595 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4596 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4597 struct usb_device *udev,
4598 struct usb_endpoint_descriptor *desc)
4599 {
4600 unsigned long long timeout_ns;
4601
4602 /* Prevent U1 if service interval is shorter than U1 exit latency */
4603 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4604 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4605 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4606 return USB3_LPM_DISABLED;
4607 }
4608 }
4609
4610 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4611 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4612 else
4613 timeout_ns = udev->u1_params.sel;
4614
4615 /* The U1 timeout is encoded in 1us intervals.
4616 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4617 */
4618 if (timeout_ns == USB3_LPM_DISABLED)
4619 timeout_ns = 1;
4620 else
4621 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4622
4623 /* If the necessary timeout value is bigger than what we can set in the
4624 * USB 3.0 hub, we have to disable hub-initiated U1.
4625 */
4626 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4627 return timeout_ns;
4628 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4629 "due to long timeout %llu ms\n", timeout_ns);
4630 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4631 }
4632
4633 /* The U2 timeout should be the maximum of:
4634 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4635 * - largest bInterval of any active periodic endpoint (to avoid going
4636 * into lower power link states between intervals).
4637 * - the U2 Exit Latency of the device
4638 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4639 static unsigned long long xhci_calculate_intel_u2_timeout(
4640 struct usb_device *udev,
4641 struct usb_endpoint_descriptor *desc)
4642 {
4643 unsigned long long timeout_ns;
4644 unsigned long long u2_del_ns;
4645
4646 timeout_ns = 10 * 1000 * 1000;
4647
4648 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4649 (xhci_service_interval_to_ns(desc) > timeout_ns))
4650 timeout_ns = xhci_service_interval_to_ns(desc);
4651
4652 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4653 if (u2_del_ns > timeout_ns)
4654 timeout_ns = u2_del_ns;
4655
4656 return timeout_ns;
4657 }
4658
4659 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4660 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4661 struct usb_device *udev,
4662 struct usb_endpoint_descriptor *desc)
4663 {
4664 unsigned long long timeout_ns;
4665
4666 /* Prevent U2 if service interval is shorter than U2 exit latency */
4667 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4668 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4669 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4670 return USB3_LPM_DISABLED;
4671 }
4672 }
4673
4674 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4675 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4676 else
4677 timeout_ns = udev->u2_params.sel;
4678
4679 /* The U2 timeout is encoded in 256us intervals */
4680 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4681 /* If the necessary timeout value is bigger than what we can set in the
4682 * USB 3.0 hub, we have to disable hub-initiated U2.
4683 */
4684 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4685 return timeout_ns;
4686 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4687 "due to long timeout %llu ms\n", timeout_ns);
4688 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4689 }
4690
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4691 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4692 struct usb_device *udev,
4693 struct usb_endpoint_descriptor *desc,
4694 enum usb3_link_state state,
4695 u16 *timeout)
4696 {
4697 if (state == USB3_LPM_U1)
4698 return xhci_calculate_u1_timeout(xhci, udev, desc);
4699 else if (state == USB3_LPM_U2)
4700 return xhci_calculate_u2_timeout(xhci, udev, desc);
4701
4702 return USB3_LPM_DISABLED;
4703 }
4704
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4705 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4706 struct usb_device *udev,
4707 struct usb_endpoint_descriptor *desc,
4708 enum usb3_link_state state,
4709 u16 *timeout)
4710 {
4711 u16 alt_timeout;
4712
4713 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4714 desc, state, timeout);
4715
4716 /* If we found we can't enable hub-initiated LPM, and
4717 * the U1 or U2 exit latency was too high to allow
4718 * device-initiated LPM as well, then we will disable LPM
4719 * for this device, so stop searching any further.
4720 */
4721 if (alt_timeout == USB3_LPM_DISABLED) {
4722 *timeout = alt_timeout;
4723 return -E2BIG;
4724 }
4725 if (alt_timeout > *timeout)
4726 *timeout = alt_timeout;
4727 return 0;
4728 }
4729
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4730 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4731 struct usb_device *udev,
4732 struct usb_host_interface *alt,
4733 enum usb3_link_state state,
4734 u16 *timeout)
4735 {
4736 int j;
4737
4738 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4739 if (xhci_update_timeout_for_endpoint(xhci, udev,
4740 &alt->endpoint[j].desc, state, timeout))
4741 return -E2BIG;
4742 }
4743 return 0;
4744 }
4745
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4746 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4747 struct usb_device *udev,
4748 enum usb3_link_state state)
4749 {
4750 struct usb_device *parent = udev->parent;
4751 int tier = 1; /* roothub is tier1 */
4752
4753 while (parent) {
4754 parent = parent->parent;
4755 tier++;
4756 }
4757
4758 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4759 goto fail;
4760 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4761 goto fail;
4762
4763 return 0;
4764 fail:
4765 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4766 tier);
4767 return -E2BIG;
4768 }
4769
4770 /* Returns the U1 or U2 timeout that should be enabled.
4771 * If the tier check or timeout setting functions return with a non-zero exit
4772 * code, that means the timeout value has been finalized and we shouldn't look
4773 * at any more endpoints.
4774 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4775 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4776 struct usb_device *udev, enum usb3_link_state state)
4777 {
4778 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4779 struct usb_host_config *config;
4780 char *state_name;
4781 int i;
4782 u16 timeout = USB3_LPM_DISABLED;
4783
4784 if (state == USB3_LPM_U1)
4785 state_name = "U1";
4786 else if (state == USB3_LPM_U2)
4787 state_name = "U2";
4788 else {
4789 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4790 state);
4791 return timeout;
4792 }
4793
4794 /* Gather some information about the currently installed configuration
4795 * and alternate interface settings.
4796 */
4797 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4798 state, &timeout))
4799 return timeout;
4800
4801 config = udev->actconfig;
4802 if (!config)
4803 return timeout;
4804
4805 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4806 struct usb_driver *driver;
4807 struct usb_interface *intf = config->interface[i];
4808
4809 if (!intf)
4810 continue;
4811
4812 /* Check if any currently bound drivers want hub-initiated LPM
4813 * disabled.
4814 */
4815 if (intf->dev.driver) {
4816 driver = to_usb_driver(intf->dev.driver);
4817 if (driver && driver->disable_hub_initiated_lpm) {
4818 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4819 state_name, driver->name);
4820 timeout = xhci_get_timeout_no_hub_lpm(udev,
4821 state);
4822 if (timeout == USB3_LPM_DISABLED)
4823 return timeout;
4824 }
4825 }
4826
4827 /* Not sure how this could happen... */
4828 if (!intf->cur_altsetting)
4829 continue;
4830
4831 if (xhci_update_timeout_for_interface(xhci, udev,
4832 intf->cur_altsetting,
4833 state, &timeout))
4834 return timeout;
4835 }
4836 return timeout;
4837 }
4838
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4839 static int calculate_max_exit_latency(struct usb_device *udev,
4840 enum usb3_link_state state_changed,
4841 u16 hub_encoded_timeout)
4842 {
4843 unsigned long long u1_mel_us = 0;
4844 unsigned long long u2_mel_us = 0;
4845 unsigned long long mel_us = 0;
4846 bool disabling_u1;
4847 bool disabling_u2;
4848 bool enabling_u1;
4849 bool enabling_u2;
4850
4851 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4852 hub_encoded_timeout == USB3_LPM_DISABLED);
4853 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4854 hub_encoded_timeout == USB3_LPM_DISABLED);
4855
4856 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4857 hub_encoded_timeout != USB3_LPM_DISABLED);
4858 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4859 hub_encoded_timeout != USB3_LPM_DISABLED);
4860
4861 /* If U1 was already enabled and we're not disabling it,
4862 * or we're going to enable U1, account for the U1 max exit latency.
4863 */
4864 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4865 enabling_u1)
4866 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4867 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4868 enabling_u2)
4869 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4870
4871 mel_us = max(u1_mel_us, u2_mel_us);
4872
4873 /* xHCI host controller max exit latency field is only 16 bits wide. */
4874 if (mel_us > MAX_EXIT) {
4875 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4876 "is too big.\n", mel_us);
4877 return -E2BIG;
4878 }
4879 return mel_us;
4880 }
4881
4882 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4883 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4884 struct usb_device *udev, enum usb3_link_state state)
4885 {
4886 struct xhci_hcd *xhci;
4887 struct xhci_port *port;
4888 u16 hub_encoded_timeout;
4889 int mel;
4890 int ret;
4891
4892 xhci = hcd_to_xhci(hcd);
4893 /* The LPM timeout values are pretty host-controller specific, so don't
4894 * enable hub-initiated timeouts unless the vendor has provided
4895 * information about their timeout algorithm.
4896 */
4897 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4898 !xhci->devs[udev->slot_id])
4899 return USB3_LPM_DISABLED;
4900
4901 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4902 return USB3_LPM_DISABLED;
4903
4904 /* If connected to root port then check port can handle lpm */
4905 if (udev->parent && !udev->parent->parent) {
4906 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4907 if (port->lpm_incapable)
4908 return USB3_LPM_DISABLED;
4909 }
4910
4911 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4912 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4913 if (mel < 0) {
4914 /* Max Exit Latency is too big, disable LPM. */
4915 hub_encoded_timeout = USB3_LPM_DISABLED;
4916 mel = 0;
4917 }
4918
4919 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4920 if (ret)
4921 return ret;
4922 return hub_encoded_timeout;
4923 }
4924
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4925 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4926 struct usb_device *udev, enum usb3_link_state state)
4927 {
4928 struct xhci_hcd *xhci;
4929 u16 mel;
4930
4931 xhci = hcd_to_xhci(hcd);
4932 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4933 !xhci->devs[udev->slot_id])
4934 return 0;
4935
4936 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4937 return xhci_change_max_exit_latency(xhci, udev, mel);
4938 }
4939 #else /* CONFIG_PM */
4940
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4941 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4942 struct usb_device *udev, int enable)
4943 {
4944 return 0;
4945 }
4946
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4947 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4948 {
4949 return 0;
4950 }
4951
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4952 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4953 struct usb_device *udev, enum usb3_link_state state)
4954 {
4955 return USB3_LPM_DISABLED;
4956 }
4957
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4958 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4959 struct usb_device *udev, enum usb3_link_state state)
4960 {
4961 return 0;
4962 }
4963 #endif /* CONFIG_PM */
4964
4965 /*-------------------------------------------------------------------------*/
4966
4967 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4968 * internal data structures for the device.
4969 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4970 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4971 struct usb_tt *tt, gfp_t mem_flags)
4972 {
4973 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4974 struct xhci_virt_device *vdev;
4975 struct xhci_command *config_cmd;
4976 struct xhci_input_control_ctx *ctrl_ctx;
4977 struct xhci_slot_ctx *slot_ctx;
4978 unsigned long flags;
4979 unsigned think_time;
4980 int ret;
4981
4982 /* Ignore root hubs */
4983 if (!hdev->parent)
4984 return 0;
4985
4986 vdev = xhci->devs[hdev->slot_id];
4987 if (!vdev) {
4988 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4989 return -EINVAL;
4990 }
4991
4992 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4993 if (!config_cmd)
4994 return -ENOMEM;
4995
4996 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4997 if (!ctrl_ctx) {
4998 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4999 __func__);
5000 xhci_free_command(xhci, config_cmd);
5001 return -ENOMEM;
5002 }
5003
5004 spin_lock_irqsave(&xhci->lock, flags);
5005 if (hdev->speed == USB_SPEED_HIGH &&
5006 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5007 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5008 xhci_free_command(xhci, config_cmd);
5009 spin_unlock_irqrestore(&xhci->lock, flags);
5010 return -ENOMEM;
5011 }
5012
5013 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5014 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5015 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5016 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5017 /*
5018 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5019 * but it may be already set to 1 when setup an xHCI virtual
5020 * device, so clear it anyway.
5021 */
5022 if (tt->multi)
5023 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5024 else if (hdev->speed == USB_SPEED_FULL)
5025 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5026
5027 if (xhci->hci_version > 0x95) {
5028 xhci_dbg(xhci, "xHCI version %x needs hub "
5029 "TT think time and number of ports\n",
5030 (unsigned int) xhci->hci_version);
5031 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5032 /* Set TT think time - convert from ns to FS bit times.
5033 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5034 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5035 *
5036 * xHCI 1.0: this field shall be 0 if the device is not a
5037 * High-spped hub.
5038 */
5039 think_time = tt->think_time;
5040 if (think_time != 0)
5041 think_time = (think_time / 666) - 1;
5042 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5043 slot_ctx->tt_info |=
5044 cpu_to_le32(TT_THINK_TIME(think_time));
5045 } else {
5046 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5047 "TT think time or number of ports\n",
5048 (unsigned int) xhci->hci_version);
5049 }
5050 slot_ctx->dev_state = 0;
5051 spin_unlock_irqrestore(&xhci->lock, flags);
5052
5053 xhci_dbg(xhci, "Set up %s for hub device.\n",
5054 (xhci->hci_version > 0x95) ?
5055 "configure endpoint" : "evaluate context");
5056
5057 /* Issue and wait for the configure endpoint or
5058 * evaluate context command.
5059 */
5060 if (xhci->hci_version > 0x95)
5061 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5062 false, false);
5063 else
5064 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5065 true, false);
5066
5067 xhci_free_command(xhci, config_cmd);
5068 return ret;
5069 }
5070 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5071
xhci_get_frame(struct usb_hcd * hcd)5072 static int xhci_get_frame(struct usb_hcd *hcd)
5073 {
5074 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5075 /* EHCI mods by the periodic size. Why? */
5076 return readl(&xhci->run_regs->microframe_index) >> 3;
5077 }
5078
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5079 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5080 {
5081 xhci->usb2_rhub.hcd = hcd;
5082 hcd->speed = HCD_USB2;
5083 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5084 /*
5085 * USB 2.0 roothub under xHCI has an integrated TT,
5086 * (rate matching hub) as opposed to having an OHCI/UHCI
5087 * companion controller.
5088 */
5089 hcd->has_tt = 1;
5090 }
5091
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5092 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5093 {
5094 unsigned int minor_rev;
5095
5096 /*
5097 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5098 * should return 0x31 for sbrn, or that the minor revision
5099 * is a two digit BCD containig minor and sub-minor numbers.
5100 * This was later clarified in xHCI 1.2.
5101 *
5102 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5103 * minor revision set to 0x1 instead of 0x10.
5104 */
5105 if (xhci->usb3_rhub.min_rev == 0x1)
5106 minor_rev = 1;
5107 else
5108 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5109
5110 switch (minor_rev) {
5111 case 2:
5112 hcd->speed = HCD_USB32;
5113 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5114 hcd->self.root_hub->rx_lanes = 2;
5115 hcd->self.root_hub->tx_lanes = 2;
5116 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5117 break;
5118 case 1:
5119 hcd->speed = HCD_USB31;
5120 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5121 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5122 break;
5123 }
5124 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5125 minor_rev, minor_rev ? "Enhanced " : "");
5126
5127 xhci->usb3_rhub.hcd = hcd;
5128 }
5129
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5130 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5131 {
5132 struct xhci_hcd *xhci;
5133 /*
5134 * TODO: Check with DWC3 clients for sysdev according to
5135 * quirks
5136 */
5137 struct device *dev = hcd->self.sysdev;
5138 int retval;
5139
5140 /* Accept arbitrarily long scatter-gather lists */
5141 hcd->self.sg_tablesize = ~0;
5142
5143 /* support to build packet from discontinuous buffers */
5144 hcd->self.no_sg_constraint = 1;
5145
5146 /* XHCI controllers don't stop the ep queue on short packets :| */
5147 hcd->self.no_stop_on_short = 1;
5148
5149 xhci = hcd_to_xhci(hcd);
5150
5151 if (!usb_hcd_is_primary_hcd(hcd)) {
5152 xhci_hcd_init_usb3_data(xhci, hcd);
5153 return 0;
5154 }
5155
5156 mutex_init(&xhci->mutex);
5157 xhci->main_hcd = hcd;
5158 xhci->cap_regs = hcd->regs;
5159 xhci->op_regs = hcd->regs +
5160 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5161 xhci->run_regs = hcd->regs +
5162 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5163 /* Cache read-only capability registers */
5164 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5165 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5166 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5167 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5168 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5169 if (xhci->hci_version > 0x100)
5170 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5171
5172 /* xhci-plat or xhci-pci might have set max_interrupters already */
5173 if ((!xhci->max_interrupters) ||
5174 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5175 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5176
5177 xhci->quirks |= quirks;
5178
5179 if (get_quirks)
5180 get_quirks(dev, xhci);
5181
5182 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5183 * success event after a short transfer. This quirk will ignore such
5184 * spurious event.
5185 */
5186 if (xhci->hci_version > 0x96)
5187 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5188
5189 /* Make sure the HC is halted. */
5190 retval = xhci_halt(xhci);
5191 if (retval)
5192 return retval;
5193
5194 xhci_zero_64b_regs(xhci);
5195
5196 xhci_dbg(xhci, "Resetting HCD\n");
5197 /* Reset the internal HC memory state and registers. */
5198 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5199 if (retval)
5200 return retval;
5201 xhci_dbg(xhci, "Reset complete\n");
5202
5203 /*
5204 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5205 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5206 * address memory pointers actually. So, this driver clears the AC64
5207 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5208 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5209 */
5210 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5211 xhci->hcc_params &= ~BIT(0);
5212
5213 /* Set dma_mask and coherent_dma_mask to 64-bits,
5214 * if xHC supports 64-bit addressing */
5215 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5216 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5217 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5218 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5219 } else {
5220 /*
5221 * This is to avoid error in cases where a 32-bit USB
5222 * controller is used on a 64-bit capable system.
5223 */
5224 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5225 if (retval)
5226 return retval;
5227 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5228 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5229 }
5230
5231 xhci_dbg(xhci, "Calling HCD init\n");
5232 /* Initialize HCD and host controller data structures. */
5233 retval = xhci_init(hcd);
5234 if (retval)
5235 return retval;
5236 xhci_dbg(xhci, "Called HCD init\n");
5237
5238 if (xhci_hcd_is_usb3(hcd))
5239 xhci_hcd_init_usb3_data(xhci, hcd);
5240 else
5241 xhci_hcd_init_usb2_data(xhci, hcd);
5242
5243 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5244 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5245
5246 return 0;
5247 }
5248 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5249
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5250 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5251 struct usb_host_endpoint *ep)
5252 {
5253 struct xhci_hcd *xhci;
5254 struct usb_device *udev;
5255 unsigned int slot_id;
5256 unsigned int ep_index;
5257 unsigned long flags;
5258
5259 xhci = hcd_to_xhci(hcd);
5260
5261 spin_lock_irqsave(&xhci->lock, flags);
5262 udev = (struct usb_device *)ep->hcpriv;
5263 slot_id = udev->slot_id;
5264 ep_index = xhci_get_endpoint_index(&ep->desc);
5265
5266 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5267 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5268 spin_unlock_irqrestore(&xhci->lock, flags);
5269 }
5270
5271 static const struct hc_driver xhci_hc_driver = {
5272 .description = "xhci-hcd",
5273 .product_desc = "xHCI Host Controller",
5274 .hcd_priv_size = sizeof(struct xhci_hcd),
5275
5276 /*
5277 * generic hardware linkage
5278 */
5279 .irq = xhci_irq,
5280 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5281 HCD_BH,
5282
5283 /*
5284 * basic lifecycle operations
5285 */
5286 .reset = NULL, /* set in xhci_init_driver() */
5287 .start = xhci_run,
5288 .stop = xhci_stop,
5289 .shutdown = xhci_shutdown,
5290
5291 /*
5292 * managing i/o requests and associated device resources
5293 */
5294 .map_urb_for_dma = xhci_map_urb_for_dma,
5295 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5296 .urb_enqueue = xhci_urb_enqueue,
5297 .urb_dequeue = xhci_urb_dequeue,
5298 .alloc_dev = xhci_alloc_dev,
5299 .free_dev = xhci_free_dev,
5300 .alloc_streams = xhci_alloc_streams,
5301 .free_streams = xhci_free_streams,
5302 .add_endpoint = xhci_add_endpoint,
5303 .drop_endpoint = xhci_drop_endpoint,
5304 .endpoint_disable = xhci_endpoint_disable,
5305 .endpoint_reset = xhci_endpoint_reset,
5306 .check_bandwidth = xhci_check_bandwidth,
5307 .reset_bandwidth = xhci_reset_bandwidth,
5308 .address_device = xhci_address_device,
5309 .enable_device = xhci_enable_device,
5310 .update_hub_device = xhci_update_hub_device,
5311 .reset_device = xhci_discover_or_reset_device,
5312
5313 /*
5314 * scheduling support
5315 */
5316 .get_frame_number = xhci_get_frame,
5317
5318 /*
5319 * root hub support
5320 */
5321 .hub_control = xhci_hub_control,
5322 .hub_status_data = xhci_hub_status_data,
5323 .bus_suspend = xhci_bus_suspend,
5324 .bus_resume = xhci_bus_resume,
5325 .get_resuming_ports = xhci_get_resuming_ports,
5326
5327 /*
5328 * call back when device connected and addressed
5329 */
5330 .update_device = xhci_update_device,
5331 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5332 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5333 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5334 .find_raw_port_number = xhci_find_raw_port_number,
5335 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5336 };
5337
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5338 void xhci_init_driver(struct hc_driver *drv,
5339 const struct xhci_driver_overrides *over)
5340 {
5341 BUG_ON(!over);
5342
5343 /* Copy the generic table to drv then apply the overrides */
5344 *drv = xhci_hc_driver;
5345
5346 if (over) {
5347 drv->hcd_priv_size += over->extra_priv_size;
5348 if (over->reset)
5349 drv->reset = over->reset;
5350 if (over->start)
5351 drv->start = over->start;
5352 if (over->add_endpoint)
5353 drv->add_endpoint = over->add_endpoint;
5354 if (over->drop_endpoint)
5355 drv->drop_endpoint = over->drop_endpoint;
5356 if (over->check_bandwidth)
5357 drv->check_bandwidth = over->check_bandwidth;
5358 if (over->reset_bandwidth)
5359 drv->reset_bandwidth = over->reset_bandwidth;
5360 if (over->update_hub_device)
5361 drv->update_hub_device = over->update_hub_device;
5362 if (over->hub_control)
5363 drv->hub_control = over->hub_control;
5364 }
5365 }
5366 EXPORT_SYMBOL_GPL(xhci_init_driver);
5367
5368 MODULE_DESCRIPTION(DRIVER_DESC);
5369 MODULE_AUTHOR(DRIVER_AUTHOR);
5370 MODULE_LICENSE("GPL");
5371
xhci_hcd_init(void)5372 static int __init xhci_hcd_init(void)
5373 {
5374 /*
5375 * Check the compiler generated sizes of structures that must be laid
5376 * out in specific ways for hardware access.
5377 */
5378 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5379 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5380 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5381 /* xhci_device_control has eight fields, and also
5382 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5383 */
5384 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5385 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5386 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5387 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5388 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5389 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5390 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5391
5392 if (usb_disabled())
5393 return -ENODEV;
5394
5395 xhci_debugfs_create_root();
5396 xhci_dbc_init();
5397
5398 return 0;
5399 }
5400
5401 /*
5402 * If an init function is provided, an exit function must also be provided
5403 * to allow module unload.
5404 */
xhci_hcd_fini(void)5405 static void __exit xhci_hcd_fini(void)
5406 {
5407 xhci_debugfs_remove_root();
5408 xhci_dbc_exit();
5409 }
5410
5411 module_init(xhci_hcd_init);
5412 module_exit(xhci_hcd_fini);
5413