1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,gfp_t flags)37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 					unsigned int cycle_state, gfp_t flags)
39 {
40 	struct xhci_segment *seg;
41 	dma_addr_t	dma;
42 	int		i;
43 
44 	seg = kzalloc(sizeof *seg, flags);
45 	if (!seg)
46 		return NULL;
47 
48 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 	if (!seg->trbs) {
50 		kfree(seg);
51 		return NULL;
52 	}
53 
54 	memset(seg->trbs, 0, SEGMENT_SIZE);
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= TRB_CYCLE;
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg);
73 }
74 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 				struct xhci_segment *first)
77 {
78 	struct xhci_segment *seg;
79 
80 	seg = first->next;
81 	while (seg != first) {
82 		struct xhci_segment *next = seg->next;
83 		xhci_segment_free(xhci, seg);
84 		seg = next;
85 	}
86 	xhci_segment_free(xhci, first);
87 }
88 
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type)96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 		struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 	u32 val;
100 
101 	if (!prev || !next)
102 		return;
103 	prev->next = next;
104 	if (type != TYPE_EVENT) {
105 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 			cpu_to_le64(next->dma);
107 
108 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 		val &= ~TRB_TYPE_BITMASK;
111 		val |= TRB_TYPE(TRB_LINK);
112 		/* Always set the chain bit with 0.95 hardware */
113 		/* Set chain bit for isoc rings on AMD 0.96 host */
114 		if (xhci_link_trb_quirk(xhci) ||
115 				(type == TYPE_ISOC &&
116 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 			val |= TRB_CHAIN;
118 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 	}
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 		struct xhci_segment *first, struct xhci_segment *last,
128 		unsigned int num_segs)
129 {
130 	struct xhci_segment *next;
131 
132 	if (!ring || !first || !last)
133 		return;
134 
135 	next = ring->enq_seg->next;
136 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 	xhci_link_segments(xhci, last, next, ring->type);
138 	ring->num_segs += num_segs;
139 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140 
141 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 			&= ~cpu_to_le32(LINK_TOGGLE);
144 		last->trbs[TRBS_PER_SEGMENT-1].link.control
145 			|= cpu_to_le32(LINK_TOGGLE);
146 		ring->last_seg = last;
147 	}
148 }
149 
150 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 	if (!ring)
154 		return;
155 
156 	if (ring->first_seg)
157 		xhci_free_segments_for_ring(xhci, ring->first_seg);
158 
159 	kfree(ring);
160 }
161 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 					unsigned int cycle_state)
164 {
165 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
166 	ring->enqueue = ring->first_seg->trbs;
167 	ring->enq_seg = ring->first_seg;
168 	ring->dequeue = ring->enqueue;
169 	ring->deq_seg = ring->first_seg;
170 	/* The ring is initialized to 0. The producer must write 1 to the cycle
171 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 	 *
174 	 * New rings are initialized with cycle state equal to 1; if we are
175 	 * handling ring expansion, set the cycle state equal to the old ring.
176 	 */
177 	ring->cycle_state = cycle_state;
178 	/* Not necessary for new rings, but needed for re-initialized rings */
179 	ring->enq_updates = 0;
180 	ring->deq_updates = 0;
181 
182 	/*
183 	 * Each segment has a link TRB, and leave an extra TRB for SW
184 	 * accounting purpose
185 	 */
186 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188 
189 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 		struct xhci_segment **first, struct xhci_segment **last,
192 		unsigned int num_segs, unsigned int cycle_state,
193 		enum xhci_ring_type type, gfp_t flags)
194 {
195 	struct xhci_segment *prev;
196 
197 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 	if (!prev)
199 		return -ENOMEM;
200 	num_segs--;
201 
202 	*first = prev;
203 	while (num_segs > 0) {
204 		struct xhci_segment	*next;
205 
206 		next = xhci_segment_alloc(xhci, cycle_state, flags);
207 		if (!next) {
208 			prev = *first;
209 			while (prev) {
210 				next = prev->next;
211 				xhci_segment_free(xhci, prev);
212 				prev = next;
213 			}
214 			return -ENOMEM;
215 		}
216 		xhci_link_segments(xhci, prev, next, type);
217 
218 		prev = next;
219 		num_segs--;
220 	}
221 	xhci_link_segments(xhci, prev, *first, type);
222 	*last = prev;
223 
224 	return 0;
225 }
226 
227 /**
228  * Create a new ring with zero or more segments.
229  *
230  * Link each segment together into a ring.
231  * Set the end flag and the cycle toggle bit on the last segment.
232  * See section 4.9.1 and figures 15 and 16.
233  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 		unsigned int num_segs, unsigned int cycle_state,
236 		enum xhci_ring_type type, gfp_t flags)
237 {
238 	struct xhci_ring	*ring;
239 	int ret;
240 
241 	ring = kzalloc(sizeof *(ring), flags);
242 	if (!ring)
243 		return NULL;
244 
245 	ring->num_segs = num_segs;
246 	INIT_LIST_HEAD(&ring->td_list);
247 	ring->type = type;
248 	if (num_segs == 0)
249 		return ring;
250 
251 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 			&ring->last_seg, num_segs, cycle_state, type, flags);
253 	if (ret)
254 		goto fail;
255 
256 	/* Only event ring does not use link TRB */
257 	if (type != TYPE_EVENT) {
258 		/* See section 4.9.2.1 and 6.4.4.1 */
259 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 			cpu_to_le32(LINK_TOGGLE);
261 	}
262 	xhci_initialize_ring_info(ring, cycle_state);
263 	return ring;
264 
265 fail:
266 	kfree(ring);
267 	return NULL;
268 }
269 
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 		struct xhci_virt_device *virt_dev,
272 		unsigned int ep_index)
273 {
274 	int rings_cached;
275 
276 	rings_cached = virt_dev->num_rings_cached;
277 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 		virt_dev->ring_cache[rings_cached] =
279 			virt_dev->eps[ep_index].ring;
280 		virt_dev->num_rings_cached++;
281 		xhci_dbg(xhci, "Cached old ring, "
282 				"%d ring%s cached\n",
283 				virt_dev->num_rings_cached,
284 				(virt_dev->num_rings_cached > 1) ? "s" : "");
285 	} else {
286 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 		xhci_dbg(xhci, "Ring cache full (%d rings), "
288 				"freeing ring\n",
289 				virt_dev->num_rings_cached);
290 	}
291 	virt_dev->eps[ep_index].ring = NULL;
292 }
293 
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295  * pointers to the beginning of the ring.
296  */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int cycle_state,enum xhci_ring_type type)297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 			struct xhci_ring *ring, unsigned int cycle_state,
299 			enum xhci_ring_type type)
300 {
301 	struct xhci_segment	*seg = ring->first_seg;
302 	int i;
303 
304 	do {
305 		memset(seg->trbs, 0,
306 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 		if (cycle_state == 0) {
308 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 				seg->trbs[i].link.control |= TRB_CYCLE;
310 		}
311 		/* All endpoint rings have link TRBs */
312 		xhci_link_segments(xhci, seg, seg->next, type);
313 		seg = seg->next;
314 	} while (seg != ring->first_seg);
315 	ring->type = type;
316 	xhci_initialize_ring_info(ring, cycle_state);
317 	/* td list should be empty since all URBs have been cancelled,
318 	 * but just in case...
319 	 */
320 	INIT_LIST_HEAD(&ring->td_list);
321 }
322 
323 /*
324  * Expand an existing ring.
325  * Look for a cached ring or allocate a new ring which has same segment numbers
326  * and link the two rings.
327  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 				unsigned int num_trbs, gfp_t flags)
330 {
331 	struct xhci_segment	*first;
332 	struct xhci_segment	*last;
333 	unsigned int		num_segs;
334 	unsigned int		num_segs_needed;
335 	int			ret;
336 
337 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 				(TRBS_PER_SEGMENT - 1);
339 
340 	/* Allocate number of segments we needed, or double the ring size */
341 	num_segs = ring->num_segs > num_segs_needed ?
342 			ring->num_segs : num_segs_needed;
343 
344 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 			num_segs, ring->cycle_state, ring->type, flags);
346 	if (ret)
347 		return -ENOMEM;
348 
349 	xhci_link_rings(xhci, ring, first, last, num_segs);
350 	xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 			ring->num_segs);
352 
353 	return 0;
354 }
355 
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 						    int type, gfp_t flags)
360 {
361 	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
362 	if (!ctx)
363 		return NULL;
364 
365 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
366 	ctx->type = type;
367 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
368 	if (type == XHCI_CTX_TYPE_INPUT)
369 		ctx->size += CTX_SIZE(xhci->hcc_params);
370 
371 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
372 	if (!ctx->bytes) {
373 		kfree(ctx);
374 		return NULL;
375 	}
376 	memset(ctx->bytes, 0, ctx->size);
377 	return ctx;
378 }
379 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)380 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
381 			     struct xhci_container_ctx *ctx)
382 {
383 	if (!ctx)
384 		return;
385 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
386 	kfree(ctx);
387 }
388 
xhci_get_input_control_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)389 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
390 					      struct xhci_container_ctx *ctx)
391 {
392 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
393 	return (struct xhci_input_control_ctx *)ctx->bytes;
394 }
395 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)396 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
397 					struct xhci_container_ctx *ctx)
398 {
399 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
400 		return (struct xhci_slot_ctx *)ctx->bytes;
401 
402 	return (struct xhci_slot_ctx *)
403 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
404 }
405 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)406 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
407 				    struct xhci_container_ctx *ctx,
408 				    unsigned int ep_index)
409 {
410 	/* increment ep index by offset of start of ep ctx array */
411 	ep_index++;
412 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
413 		ep_index++;
414 
415 	return (struct xhci_ep_ctx *)
416 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
417 }
418 
419 
420 /***************** Streams structures manipulation *************************/
421 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)422 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
423 		unsigned int num_stream_ctxs,
424 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
425 {
426 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
427 
428 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
429 		dma_free_coherent(&pdev->dev,
430 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
431 				stream_ctx, dma);
432 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
433 		return dma_pool_free(xhci->small_streams_pool,
434 				stream_ctx, dma);
435 	else
436 		return dma_pool_free(xhci->medium_streams_pool,
437 				stream_ctx, dma);
438 }
439 
440 /*
441  * The stream context array for each endpoint with bulk streams enabled can
442  * vary in size, based on:
443  *  - how many streams the endpoint supports,
444  *  - the maximum primary stream array size the host controller supports,
445  *  - and how many streams the device driver asks for.
446  *
447  * The stream context array must be a power of 2, and can be as small as
448  * 64 bytes or as large as 1MB.
449  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)450 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
451 		unsigned int num_stream_ctxs, dma_addr_t *dma,
452 		gfp_t mem_flags)
453 {
454 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
455 
456 	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
457 		return dma_alloc_coherent(&pdev->dev,
458 				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
459 				dma, mem_flags);
460 	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
461 		return dma_pool_alloc(xhci->small_streams_pool,
462 				mem_flags, dma);
463 	else
464 		return dma_pool_alloc(xhci->medium_streams_pool,
465 				mem_flags, dma);
466 }
467 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)468 struct xhci_ring *xhci_dma_to_transfer_ring(
469 		struct xhci_virt_ep *ep,
470 		u64 address)
471 {
472 	if (ep->ep_state & EP_HAS_STREAMS)
473 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
474 				address >> SEGMENT_SHIFT);
475 	return ep->ring;
476 }
477 
478 /* Only use this when you know stream_info is valid */
479 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
dma_to_stream_ring(struct xhci_stream_info * stream_info,u64 address)480 static struct xhci_ring *dma_to_stream_ring(
481 		struct xhci_stream_info *stream_info,
482 		u64 address)
483 {
484 	return radix_tree_lookup(&stream_info->trb_address_map,
485 			address >> SEGMENT_SHIFT);
486 }
487 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
488 
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)489 struct xhci_ring *xhci_stream_id_to_ring(
490 		struct xhci_virt_device *dev,
491 		unsigned int ep_index,
492 		unsigned int stream_id)
493 {
494 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
495 
496 	if (stream_id == 0)
497 		return ep->ring;
498 	if (!ep->stream_info)
499 		return NULL;
500 
501 	if (stream_id > ep->stream_info->num_streams)
502 		return NULL;
503 	return ep->stream_info->stream_rings[stream_id];
504 }
505 
506 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_test_radix_tree(struct xhci_hcd * xhci,unsigned int num_streams,struct xhci_stream_info * stream_info)507 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
508 		unsigned int num_streams,
509 		struct xhci_stream_info *stream_info)
510 {
511 	u32 cur_stream;
512 	struct xhci_ring *cur_ring;
513 	u64 addr;
514 
515 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
516 		struct xhci_ring *mapped_ring;
517 		int trb_size = sizeof(union xhci_trb);
518 
519 		cur_ring = stream_info->stream_rings[cur_stream];
520 		for (addr = cur_ring->first_seg->dma;
521 				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
522 				addr += trb_size) {
523 			mapped_ring = dma_to_stream_ring(stream_info, addr);
524 			if (cur_ring != mapped_ring) {
525 				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
526 						"didn't map to stream ID %u; "
527 						"mapped to ring %p\n",
528 						(unsigned long long) addr,
529 						cur_stream,
530 						mapped_ring);
531 				return -EINVAL;
532 			}
533 		}
534 		/* One TRB after the end of the ring segment shouldn't return a
535 		 * pointer to the current ring (although it may be a part of a
536 		 * different ring).
537 		 */
538 		mapped_ring = dma_to_stream_ring(stream_info, addr);
539 		if (mapped_ring != cur_ring) {
540 			/* One TRB before should also fail */
541 			addr = cur_ring->first_seg->dma - trb_size;
542 			mapped_ring = dma_to_stream_ring(stream_info, addr);
543 		}
544 		if (mapped_ring == cur_ring) {
545 			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
546 					"mapped to valid stream ID %u; "
547 					"mapped ring = %p\n",
548 					(unsigned long long) addr,
549 					cur_stream,
550 					mapped_ring);
551 			return -EINVAL;
552 		}
553 	}
554 	return 0;
555 }
556 #endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
557 
558 /*
559  * Change an endpoint's internal structure so it supports stream IDs.  The
560  * number of requested streams includes stream 0, which cannot be used by device
561  * drivers.
562  *
563  * The number of stream contexts in the stream context array may be bigger than
564  * the number of streams the driver wants to use.  This is because the number of
565  * stream context array entries must be a power of two.
566  *
567  * We need a radix tree for mapping physical addresses of TRBs to which stream
568  * ID they belong to.  We need to do this because the host controller won't tell
569  * us which stream ring the TRB came from.  We could store the stream ID in an
570  * event data TRB, but that doesn't help us for the cancellation case, since the
571  * endpoint may stop before it reaches that event data TRB.
572  *
573  * The radix tree maps the upper portion of the TRB DMA address to a ring
574  * segment that has the same upper portion of DMA addresses.  For example, say I
575  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
576  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
577  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
578  * pass the radix tree a key to get the right stream ID:
579  *
580  * 	0x10c90fff >> 10 = 0x43243
581  * 	0x10c912c0 >> 10 = 0x43244
582  * 	0x10c91400 >> 10 = 0x43245
583  *
584  * Obviously, only those TRBs with DMA addresses that are within the segment
585  * will make the radix tree return the stream ID for that ring.
586  *
587  * Caveats for the radix tree:
588  *
589  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
590  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
591  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
592  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
593  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
594  * extended systems (where the DMA address can be bigger than 32-bits),
595  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
596  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)597 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
598 		unsigned int num_stream_ctxs,
599 		unsigned int num_streams, gfp_t mem_flags)
600 {
601 	struct xhci_stream_info *stream_info;
602 	u32 cur_stream;
603 	struct xhci_ring *cur_ring;
604 	unsigned long key;
605 	u64 addr;
606 	int ret;
607 
608 	xhci_dbg(xhci, "Allocating %u streams and %u "
609 			"stream context array entries.\n",
610 			num_streams, num_stream_ctxs);
611 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
612 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
613 		return NULL;
614 	}
615 	xhci->cmd_ring_reserved_trbs++;
616 
617 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
618 	if (!stream_info)
619 		goto cleanup_trbs;
620 
621 	stream_info->num_streams = num_streams;
622 	stream_info->num_stream_ctxs = num_stream_ctxs;
623 
624 	/* Initialize the array of virtual pointers to stream rings. */
625 	stream_info->stream_rings = kzalloc(
626 			sizeof(struct xhci_ring *)*num_streams,
627 			mem_flags);
628 	if (!stream_info->stream_rings)
629 		goto cleanup_info;
630 
631 	/* Initialize the array of DMA addresses for stream rings for the HW. */
632 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
633 			num_stream_ctxs, &stream_info->ctx_array_dma,
634 			mem_flags);
635 	if (!stream_info->stream_ctx_array)
636 		goto cleanup_ctx;
637 	memset(stream_info->stream_ctx_array, 0,
638 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
639 
640 	/* Allocate everything needed to free the stream rings later */
641 	stream_info->free_streams_command =
642 		xhci_alloc_command(xhci, true, true, mem_flags);
643 	if (!stream_info->free_streams_command)
644 		goto cleanup_ctx;
645 
646 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
647 
648 	/* Allocate rings for all the streams that the driver will use,
649 	 * and add their segment DMA addresses to the radix tree.
650 	 * Stream 0 is reserved.
651 	 */
652 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
653 		stream_info->stream_rings[cur_stream] =
654 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
655 		cur_ring = stream_info->stream_rings[cur_stream];
656 		if (!cur_ring)
657 			goto cleanup_rings;
658 		cur_ring->stream_id = cur_stream;
659 		/* Set deq ptr, cycle bit, and stream context type */
660 		addr = cur_ring->first_seg->dma |
661 			SCT_FOR_CTX(SCT_PRI_TR) |
662 			cur_ring->cycle_state;
663 		stream_info->stream_ctx_array[cur_stream].stream_ring =
664 			cpu_to_le64(addr);
665 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
666 				cur_stream, (unsigned long long) addr);
667 
668 		key = (unsigned long)
669 			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
670 		ret = radix_tree_insert(&stream_info->trb_address_map,
671 				key, cur_ring);
672 		if (ret) {
673 			xhci_ring_free(xhci, cur_ring);
674 			stream_info->stream_rings[cur_stream] = NULL;
675 			goto cleanup_rings;
676 		}
677 	}
678 	/* Leave the other unused stream ring pointers in the stream context
679 	 * array initialized to zero.  This will cause the xHC to give us an
680 	 * error if the device asks for a stream ID we don't have setup (if it
681 	 * was any other way, the host controller would assume the ring is
682 	 * "empty" and wait forever for data to be queued to that stream ID).
683 	 */
684 #if XHCI_DEBUG
685 	/* Do a little test on the radix tree to make sure it returns the
686 	 * correct values.
687 	 */
688 	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
689 		goto cleanup_rings;
690 #endif
691 
692 	return stream_info;
693 
694 cleanup_rings:
695 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
696 		cur_ring = stream_info->stream_rings[cur_stream];
697 		if (cur_ring) {
698 			addr = cur_ring->first_seg->dma;
699 			radix_tree_delete(&stream_info->trb_address_map,
700 					addr >> SEGMENT_SHIFT);
701 			xhci_ring_free(xhci, cur_ring);
702 			stream_info->stream_rings[cur_stream] = NULL;
703 		}
704 	}
705 	xhci_free_command(xhci, stream_info->free_streams_command);
706 cleanup_ctx:
707 	kfree(stream_info->stream_rings);
708 cleanup_info:
709 	kfree(stream_info);
710 cleanup_trbs:
711 	xhci->cmd_ring_reserved_trbs--;
712 	return NULL;
713 }
714 /*
715  * Sets the MaxPStreams field and the Linear Stream Array field.
716  * Sets the dequeue pointer to the stream context array.
717  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)718 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
719 		struct xhci_ep_ctx *ep_ctx,
720 		struct xhci_stream_info *stream_info)
721 {
722 	u32 max_primary_streams;
723 	/* MaxPStreams is the number of stream context array entries, not the
724 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
725 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
726 	 */
727 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
728 	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
729 			1 << (max_primary_streams + 1));
730 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
731 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
732 				       | EP_HAS_LSA);
733 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
734 }
735 
736 /*
737  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
738  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
739  * not at the beginning of the ring).
740  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)741 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
742 		struct xhci_ep_ctx *ep_ctx,
743 		struct xhci_virt_ep *ep)
744 {
745 	dma_addr_t addr;
746 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
747 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
748 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
749 }
750 
751 /* Frees all stream contexts associated with the endpoint,
752  *
753  * Caller should fix the endpoint context streams fields.
754  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)755 void xhci_free_stream_info(struct xhci_hcd *xhci,
756 		struct xhci_stream_info *stream_info)
757 {
758 	int cur_stream;
759 	struct xhci_ring *cur_ring;
760 	dma_addr_t addr;
761 
762 	if (!stream_info)
763 		return;
764 
765 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 			cur_stream++) {
767 		cur_ring = stream_info->stream_rings[cur_stream];
768 		if (cur_ring) {
769 			addr = cur_ring->first_seg->dma;
770 			radix_tree_delete(&stream_info->trb_address_map,
771 					addr >> SEGMENT_SHIFT);
772 			xhci_ring_free(xhci, cur_ring);
773 			stream_info->stream_rings[cur_stream] = NULL;
774 		}
775 	}
776 	xhci_free_command(xhci, stream_info->free_streams_command);
777 	xhci->cmd_ring_reserved_trbs--;
778 	if (stream_info->stream_ctx_array)
779 		xhci_free_stream_ctx(xhci,
780 				stream_info->num_stream_ctxs,
781 				stream_info->stream_ctx_array,
782 				stream_info->ctx_array_dma);
783 
784 	if (stream_info)
785 		kfree(stream_info->stream_rings);
786 	kfree(stream_info);
787 }
788 
789 
790 /***************** Device context manipulation *************************/
791 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)792 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
793 		struct xhci_virt_ep *ep)
794 {
795 	init_timer(&ep->stop_cmd_timer);
796 	ep->stop_cmd_timer.data = (unsigned long) ep;
797 	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
798 	ep->xhci = xhci;
799 }
800 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)801 static void xhci_free_tt_info(struct xhci_hcd *xhci,
802 		struct xhci_virt_device *virt_dev,
803 		int slot_id)
804 {
805 	struct list_head *tt_list_head;
806 	struct xhci_tt_bw_info *tt_info, *next;
807 	bool slot_found = false;
808 
809 	/* If the device never made it past the Set Address stage,
810 	 * it may not have the real_port set correctly.
811 	 */
812 	if (virt_dev->real_port == 0 ||
813 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
814 		xhci_dbg(xhci, "Bad real port.\n");
815 		return;
816 	}
817 
818 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
819 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
820 		/* Multi-TT hubs will have more than one entry */
821 		if (tt_info->slot_id == slot_id) {
822 			slot_found = true;
823 			list_del(&tt_info->tt_list);
824 			kfree(tt_info);
825 		} else if (slot_found) {
826 			break;
827 		}
828 	}
829 }
830 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)831 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
832 		struct xhci_virt_device *virt_dev,
833 		struct usb_device *hdev,
834 		struct usb_tt *tt, gfp_t mem_flags)
835 {
836 	struct xhci_tt_bw_info		*tt_info;
837 	unsigned int			num_ports;
838 	int				i, j;
839 
840 	if (!tt->multi)
841 		num_ports = 1;
842 	else
843 		num_ports = hdev->maxchild;
844 
845 	for (i = 0; i < num_ports; i++, tt_info++) {
846 		struct xhci_interval_bw_table *bw_table;
847 
848 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
849 		if (!tt_info)
850 			goto free_tts;
851 		INIT_LIST_HEAD(&tt_info->tt_list);
852 		list_add(&tt_info->tt_list,
853 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
854 		tt_info->slot_id = virt_dev->udev->slot_id;
855 		if (tt->multi)
856 			tt_info->ttport = i+1;
857 		bw_table = &tt_info->bw_table;
858 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
859 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
860 	}
861 	return 0;
862 
863 free_tts:
864 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
865 	return -ENOMEM;
866 }
867 
868 
869 /* All the xhci_tds in the ring's TD list should be freed at this point.
870  * Should be called with xhci->lock held if there is any chance the TT lists
871  * will be manipulated by the configure endpoint, allocate device, or update
872  * hub functions while this function is removing the TT entries from the list.
873  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)874 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
875 {
876 	struct xhci_virt_device *dev;
877 	int i;
878 	int old_active_eps = 0;
879 
880 	/* Slot ID 0 is reserved */
881 	if (slot_id == 0 || !xhci->devs[slot_id])
882 		return;
883 
884 	dev = xhci->devs[slot_id];
885 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
886 	if (!dev)
887 		return;
888 
889 	if (dev->tt_info)
890 		old_active_eps = dev->tt_info->active_eps;
891 
892 	for (i = 0; i < 31; ++i) {
893 		if (dev->eps[i].ring)
894 			xhci_ring_free(xhci, dev->eps[i].ring);
895 		if (dev->eps[i].stream_info)
896 			xhci_free_stream_info(xhci,
897 					dev->eps[i].stream_info);
898 		/* Endpoints on the TT/root port lists should have been removed
899 		 * when usb_disable_device() was called for the device.
900 		 * We can't drop them anyway, because the udev might have gone
901 		 * away by this point, and we can't tell what speed it was.
902 		 */
903 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
904 			xhci_warn(xhci, "Slot %u endpoint %u "
905 					"not removed from BW list!\n",
906 					slot_id, i);
907 	}
908 	/* If this is a hub, free the TT(s) from the TT list */
909 	xhci_free_tt_info(xhci, dev, slot_id);
910 	/* If necessary, update the number of active TTs on this root port */
911 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912 
913 	if (dev->ring_cache) {
914 		for (i = 0; i < dev->num_rings_cached; i++)
915 			xhci_ring_free(xhci, dev->ring_cache[i]);
916 		kfree(dev->ring_cache);
917 	}
918 
919 	if (dev->in_ctx)
920 		xhci_free_container_ctx(xhci, dev->in_ctx);
921 	if (dev->out_ctx)
922 		xhci_free_container_ctx(xhci, dev->out_ctx);
923 
924 	kfree(xhci->devs[slot_id]);
925 	xhci->devs[slot_id] = NULL;
926 }
927 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)928 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
929 		struct usb_device *udev, gfp_t flags)
930 {
931 	struct xhci_virt_device *dev;
932 	int i;
933 
934 	/* Slot ID 0 is reserved */
935 	if (slot_id == 0 || xhci->devs[slot_id]) {
936 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
937 		return 0;
938 	}
939 
940 	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
941 	if (!xhci->devs[slot_id])
942 		return 0;
943 	dev = xhci->devs[slot_id];
944 
945 	/* Allocate the (output) device context that will be used in the HC. */
946 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
947 	if (!dev->out_ctx)
948 		goto fail;
949 
950 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
951 			(unsigned long long)dev->out_ctx->dma);
952 
953 	/* Allocate the (input) device context for address device command */
954 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
955 	if (!dev->in_ctx)
956 		goto fail;
957 
958 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
959 			(unsigned long long)dev->in_ctx->dma);
960 
961 	/* Initialize the cancellation list and watchdog timers for each ep */
962 	for (i = 0; i < 31; i++) {
963 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
964 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
965 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
966 	}
967 
968 	/* Allocate endpoint 0 ring */
969 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
970 	if (!dev->eps[0].ring)
971 		goto fail;
972 
973 	/* Allocate pointers to the ring cache */
974 	dev->ring_cache = kzalloc(
975 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
976 			flags);
977 	if (!dev->ring_cache)
978 		goto fail;
979 	dev->num_rings_cached = 0;
980 
981 	init_completion(&dev->cmd_completion);
982 	INIT_LIST_HEAD(&dev->cmd_list);
983 	dev->udev = udev;
984 
985 	/* Point to output device context in dcbaa. */
986 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
987 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
988 		 slot_id,
989 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
990 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
991 
992 	return 1;
993 fail:
994 	xhci_free_virt_device(xhci, slot_id);
995 	return 0;
996 }
997 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)998 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
999 		struct usb_device *udev)
1000 {
1001 	struct xhci_virt_device *virt_dev;
1002 	struct xhci_ep_ctx	*ep0_ctx;
1003 	struct xhci_ring	*ep_ring;
1004 
1005 	virt_dev = xhci->devs[udev->slot_id];
1006 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1007 	ep_ring = virt_dev->eps[0].ring;
1008 	/*
1009 	 * FIXME we don't keep track of the dequeue pointer very well after a
1010 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1011 	 * host to our enqueue pointer.  This should only be called after a
1012 	 * configured device has reset, so all control transfers should have
1013 	 * been completed or cancelled before the reset.
1014 	 */
1015 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1016 							ep_ring->enqueue)
1017 				   | ep_ring->cycle_state);
1018 }
1019 
1020 /*
1021  * The xHCI roothub may have ports of differing speeds in any order in the port
1022  * status registers.  xhci->port_array provides an array of the port speed for
1023  * each offset into the port status registers.
1024  *
1025  * The xHCI hardware wants to know the roothub port number that the USB device
1026  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1027  * know is the index of that port under either the USB 2.0 or the USB 3.0
1028  * roothub, but that doesn't give us the real index into the HW port status
1029  * registers.  Scan through the xHCI roothub port array, looking for the Nth
1030  * entry of the correct port speed.  Return the port number of that entry.
1031  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1032 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1033 		struct usb_device *udev)
1034 {
1035 	struct usb_device *top_dev;
1036 	unsigned int num_similar_speed_ports;
1037 	unsigned int faked_port_num;
1038 	int i;
1039 
1040 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1041 			top_dev = top_dev->parent)
1042 		/* Found device below root hub */;
1043 	faked_port_num = top_dev->portnum;
1044 	for (i = 0, num_similar_speed_ports = 0;
1045 			i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1046 		u8 port_speed = xhci->port_array[i];
1047 
1048 		/*
1049 		 * Skip ports that don't have known speeds, or have duplicate
1050 		 * Extended Capabilities port speed entries.
1051 		 */
1052 		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1053 			continue;
1054 
1055 		/*
1056 		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1057 		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1058 		 * matches the device speed, it's a similar speed port.
1059 		 */
1060 		if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1061 			num_similar_speed_ports++;
1062 		if (num_similar_speed_ports == faked_port_num)
1063 			/* Roothub ports are numbered from 1 to N */
1064 			return i+1;
1065 	}
1066 	return 0;
1067 }
1068 
1069 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1070 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1071 {
1072 	struct xhci_virt_device *dev;
1073 	struct xhci_ep_ctx	*ep0_ctx;
1074 	struct xhci_slot_ctx    *slot_ctx;
1075 	u32			port_num;
1076 	struct usb_device *top_dev;
1077 
1078 	dev = xhci->devs[udev->slot_id];
1079 	/* Slot ID 0 is reserved */
1080 	if (udev->slot_id == 0 || !dev) {
1081 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1082 				udev->slot_id);
1083 		return -EINVAL;
1084 	}
1085 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1086 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1087 
1088 	/* 3) Only the control endpoint is valid - one endpoint context */
1089 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1090 	switch (udev->speed) {
1091 	case USB_SPEED_SUPER:
1092 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1093 		break;
1094 	case USB_SPEED_HIGH:
1095 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1096 		break;
1097 	case USB_SPEED_FULL:
1098 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1099 		break;
1100 	case USB_SPEED_LOW:
1101 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1102 		break;
1103 	case USB_SPEED_WIRELESS:
1104 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1105 		return -EINVAL;
1106 		break;
1107 	default:
1108 		/* Speed was set earlier, this shouldn't happen. */
1109 		BUG();
1110 	}
1111 	/* Find the root hub port this device is under */
1112 	port_num = xhci_find_real_port_number(xhci, udev);
1113 	if (!port_num)
1114 		return -EINVAL;
1115 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1116 	/* Set the port number in the virtual_device to the faked port number */
1117 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1118 			top_dev = top_dev->parent)
1119 		/* Found device below root hub */;
1120 	dev->fake_port = top_dev->portnum;
1121 	dev->real_port = port_num;
1122 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1123 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1124 
1125 	/* Find the right bandwidth table that this device will be a part of.
1126 	 * If this is a full speed device attached directly to a root port (or a
1127 	 * decendent of one), it counts as a primary bandwidth domain, not a
1128 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1129 	 * will never be created for the HS root hub.
1130 	 */
1131 	if (!udev->tt || !udev->tt->hub->parent) {
1132 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1133 	} else {
1134 		struct xhci_root_port_bw_info *rh_bw;
1135 		struct xhci_tt_bw_info *tt_bw;
1136 
1137 		rh_bw = &xhci->rh_bw[port_num - 1];
1138 		/* Find the right TT. */
1139 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1140 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1141 				continue;
1142 
1143 			if (!dev->udev->tt->multi ||
1144 					(udev->tt->multi &&
1145 					 tt_bw->ttport == dev->udev->ttport)) {
1146 				dev->bw_table = &tt_bw->bw_table;
1147 				dev->tt_info = tt_bw;
1148 				break;
1149 			}
1150 		}
1151 		if (!dev->tt_info)
1152 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1153 	}
1154 
1155 	/* Is this a LS/FS device under an external HS hub? */
1156 	if (udev->tt && udev->tt->hub->parent) {
1157 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1158 						(udev->ttport << 8));
1159 		if (udev->tt->multi)
1160 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1161 	}
1162 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1163 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1164 
1165 	/* Step 4 - ring already allocated */
1166 	/* Step 5 */
1167 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1168 	/*
1169 	 * XXX: Not sure about wireless USB devices.
1170 	 */
1171 	switch (udev->speed) {
1172 	case USB_SPEED_SUPER:
1173 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1174 		break;
1175 	case USB_SPEED_HIGH:
1176 	/* USB core guesses at a 64-byte max packet first for FS devices */
1177 	case USB_SPEED_FULL:
1178 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1179 		break;
1180 	case USB_SPEED_LOW:
1181 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1182 		break;
1183 	case USB_SPEED_WIRELESS:
1184 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1185 		return -EINVAL;
1186 		break;
1187 	default:
1188 		/* New speed? */
1189 		BUG();
1190 	}
1191 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1193 
1194 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1195 				   dev->eps[0].ring->cycle_state);
1196 
1197 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Convert interval expressed as 2^(bInterval - 1) == interval into
1204  * straight exponent value 2^n == interval.
1205  *
1206  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1207 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1208 		struct usb_host_endpoint *ep)
1209 {
1210 	unsigned int interval;
1211 
1212 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1213 	if (interval != ep->desc.bInterval - 1)
1214 		dev_warn(&udev->dev,
1215 			 "ep %#x - rounding interval to %d %sframes\n",
1216 			 ep->desc.bEndpointAddress,
1217 			 1 << interval,
1218 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1219 
1220 	if (udev->speed == USB_SPEED_FULL) {
1221 		/*
1222 		 * Full speed isoc endpoints specify interval in frames,
1223 		 * not microframes. We are using microframes everywhere,
1224 		 * so adjust accordingly.
1225 		 */
1226 		interval += 3;	/* 1 frame = 2^3 uframes */
1227 	}
1228 
1229 	return interval;
1230 }
1231 
1232 /*
1233  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1234  * microframes, rounded down to nearest power of 2.
1235  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1236 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1237 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1238 		unsigned int min_exponent, unsigned int max_exponent)
1239 {
1240 	unsigned int interval;
1241 
1242 	interval = fls(desc_interval) - 1;
1243 	interval = clamp_val(interval, min_exponent, max_exponent);
1244 	if ((1 << interval) != desc_interval)
1245 		dev_warn(&udev->dev,
1246 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1247 			 ep->desc.bEndpointAddress,
1248 			 1 << interval,
1249 			 desc_interval);
1250 
1251 	return interval;
1252 }
1253 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1254 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1255 		struct usb_host_endpoint *ep)
1256 {
1257 	if (ep->desc.bInterval == 0)
1258 		return 0;
1259 	return xhci_microframes_to_exponent(udev, ep,
1260 			ep->desc.bInterval, 0, 15);
1261 }
1262 
1263 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1264 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1265 		struct usb_host_endpoint *ep)
1266 {
1267 	return xhci_microframes_to_exponent(udev, ep,
1268 			ep->desc.bInterval * 8, 3, 10);
1269 }
1270 
1271 /* Return the polling or NAK interval.
1272  *
1273  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1274  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1275  *
1276  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1277  * is set to 0.
1278  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1279 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1280 		struct usb_host_endpoint *ep)
1281 {
1282 	unsigned int interval = 0;
1283 
1284 	switch (udev->speed) {
1285 	case USB_SPEED_HIGH:
1286 		/* Max NAK rate */
1287 		if (usb_endpoint_xfer_control(&ep->desc) ||
1288 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1289 			interval = xhci_parse_microframe_interval(udev, ep);
1290 			break;
1291 		}
1292 		/* Fall through - SS and HS isoc/int have same decoding */
1293 
1294 	case USB_SPEED_SUPER:
1295 		if (usb_endpoint_xfer_int(&ep->desc) ||
1296 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1297 			interval = xhci_parse_exponent_interval(udev, ep);
1298 		}
1299 		break;
1300 
1301 	case USB_SPEED_FULL:
1302 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1303 			interval = xhci_parse_exponent_interval(udev, ep);
1304 			break;
1305 		}
1306 		/*
1307 		 * Fall through for interrupt endpoint interval decoding
1308 		 * since it uses the same rules as low speed interrupt
1309 		 * endpoints.
1310 		 */
1311 
1312 	case USB_SPEED_LOW:
1313 		if (usb_endpoint_xfer_int(&ep->desc) ||
1314 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1315 
1316 			interval = xhci_parse_frame_interval(udev, ep);
1317 		}
1318 		break;
1319 
1320 	default:
1321 		BUG();
1322 	}
1323 	return EP_INTERVAL(interval);
1324 }
1325 
1326 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1327  * High speed endpoint descriptors can define "the number of additional
1328  * transaction opportunities per microframe", but that goes in the Max Burst
1329  * endpoint context field.
1330  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1331 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1332 		struct usb_host_endpoint *ep)
1333 {
1334 	if (udev->speed != USB_SPEED_SUPER ||
1335 			!usb_endpoint_xfer_isoc(&ep->desc))
1336 		return 0;
1337 	return ep->ss_ep_comp.bmAttributes;
1338 }
1339 
xhci_get_endpoint_type(struct usb_device * udev,struct usb_host_endpoint * ep)1340 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1341 		struct usb_host_endpoint *ep)
1342 {
1343 	int in;
1344 	u32 type;
1345 
1346 	in = usb_endpoint_dir_in(&ep->desc);
1347 	if (usb_endpoint_xfer_control(&ep->desc)) {
1348 		type = EP_TYPE(CTRL_EP);
1349 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1350 		if (in)
1351 			type = EP_TYPE(BULK_IN_EP);
1352 		else
1353 			type = EP_TYPE(BULK_OUT_EP);
1354 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1355 		if (in)
1356 			type = EP_TYPE(ISOC_IN_EP);
1357 		else
1358 			type = EP_TYPE(ISOC_OUT_EP);
1359 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1360 		if (in)
1361 			type = EP_TYPE(INT_IN_EP);
1362 		else
1363 			type = EP_TYPE(INT_OUT_EP);
1364 	} else {
1365 		BUG();
1366 	}
1367 	return type;
1368 }
1369 
1370 /* Return the maximum endpoint service interval time (ESIT) payload.
1371  * Basically, this is the maxpacket size, multiplied by the burst size
1372  * and mult size.
1373  */
xhci_get_max_esit_payload(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1374 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1375 		struct usb_device *udev,
1376 		struct usb_host_endpoint *ep)
1377 {
1378 	int max_burst;
1379 	int max_packet;
1380 
1381 	/* Only applies for interrupt or isochronous endpoints */
1382 	if (usb_endpoint_xfer_control(&ep->desc) ||
1383 			usb_endpoint_xfer_bulk(&ep->desc))
1384 		return 0;
1385 
1386 	if (udev->speed == USB_SPEED_SUPER)
1387 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1388 
1389 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1390 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1391 	/* A 0 in max burst means 1 transfer per ESIT */
1392 	return max_packet * (max_burst + 1);
1393 }
1394 
1395 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1396  * Drivers will have to call usb_alloc_streams() to do that.
1397  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1398 int xhci_endpoint_init(struct xhci_hcd *xhci,
1399 		struct xhci_virt_device *virt_dev,
1400 		struct usb_device *udev,
1401 		struct usb_host_endpoint *ep,
1402 		gfp_t mem_flags)
1403 {
1404 	unsigned int ep_index;
1405 	struct xhci_ep_ctx *ep_ctx;
1406 	struct xhci_ring *ep_ring;
1407 	unsigned int max_packet;
1408 	unsigned int max_burst;
1409 	enum xhci_ring_type type;
1410 	u32 max_esit_payload;
1411 
1412 	ep_index = xhci_get_endpoint_index(&ep->desc);
1413 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1414 
1415 	type = usb_endpoint_type(&ep->desc);
1416 	/* Set up the endpoint ring */
1417 	virt_dev->eps[ep_index].new_ring =
1418 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1419 	if (!virt_dev->eps[ep_index].new_ring) {
1420 		/* Attempt to use the ring cache */
1421 		if (virt_dev->num_rings_cached == 0)
1422 			return -ENOMEM;
1423 		virt_dev->eps[ep_index].new_ring =
1424 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1425 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1426 		virt_dev->num_rings_cached--;
1427 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1428 					1, type);
1429 	}
1430 	virt_dev->eps[ep_index].skip = false;
1431 	ep_ring = virt_dev->eps[ep_index].new_ring;
1432 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1433 
1434 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1435 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1436 
1437 	/* FIXME dig Mult and streams info out of ep companion desc */
1438 
1439 	/* Allow 3 retries for everything but isoc;
1440 	 * CErr shall be set to 0 for Isoch endpoints.
1441 	 */
1442 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1443 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1444 	else
1445 		ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1446 
1447 	ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1448 
1449 	/* Set the max packet size and max burst */
1450 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1451 	max_burst = 0;
1452 	switch (udev->speed) {
1453 	case USB_SPEED_SUPER:
1454 		/* dig out max burst from ep companion desc */
1455 		max_burst = ep->ss_ep_comp.bMaxBurst;
1456 		break;
1457 	case USB_SPEED_HIGH:
1458 		/* Some devices get this wrong */
1459 		if (usb_endpoint_xfer_bulk(&ep->desc))
1460 			max_packet = 512;
1461 		/* bits 11:12 specify the number of additional transaction
1462 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1463 		 */
1464 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1465 				usb_endpoint_xfer_int(&ep->desc)) {
1466 			max_burst = (usb_endpoint_maxp(&ep->desc)
1467 				     & 0x1800) >> 11;
1468 		}
1469 		break;
1470 	case USB_SPEED_FULL:
1471 	case USB_SPEED_LOW:
1472 		break;
1473 	default:
1474 		BUG();
1475 	}
1476 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1477 			MAX_BURST(max_burst));
1478 	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1479 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1480 
1481 	/*
1482 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1483 	 * endpoints, as the driver gives us no clue how big each scatter gather
1484 	 * list entry (or buffer) is going to be.
1485 	 *
1486 	 * For isochronous and interrupt endpoints, we set it to the max
1487 	 * available, until we have new API in the USB core to allow drivers to
1488 	 * declare how much bandwidth they actually need.
1489 	 *
1490 	 * Normally, it would be calculated by taking the total of the buffer
1491 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1492 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1493 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1494 	 * transfers, we're basically dividing by 1.
1495 	 *
1496 	 * xHCI 1.0 specification indicates that the Average TRB Length should
1497 	 * be set to 8 for control endpoints.
1498 	 */
1499 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1500 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1501 	else
1502 		ep_ctx->tx_info |=
1503 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1504 
1505 	/* FIXME Debug endpoint context */
1506 	return 0;
1507 }
1508 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1509 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1510 		struct xhci_virt_device *virt_dev,
1511 		struct usb_host_endpoint *ep)
1512 {
1513 	unsigned int ep_index;
1514 	struct xhci_ep_ctx *ep_ctx;
1515 
1516 	ep_index = xhci_get_endpoint_index(&ep->desc);
1517 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1518 
1519 	ep_ctx->ep_info = 0;
1520 	ep_ctx->ep_info2 = 0;
1521 	ep_ctx->deq = 0;
1522 	ep_ctx->tx_info = 0;
1523 	/* Don't free the endpoint ring until the set interface or configuration
1524 	 * request succeeds.
1525 	 */
1526 }
1527 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1528 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1529 {
1530 	bw_info->ep_interval = 0;
1531 	bw_info->mult = 0;
1532 	bw_info->num_packets = 0;
1533 	bw_info->max_packet_size = 0;
1534 	bw_info->type = 0;
1535 	bw_info->max_esit_payload = 0;
1536 }
1537 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1538 void xhci_update_bw_info(struct xhci_hcd *xhci,
1539 		struct xhci_container_ctx *in_ctx,
1540 		struct xhci_input_control_ctx *ctrl_ctx,
1541 		struct xhci_virt_device *virt_dev)
1542 {
1543 	struct xhci_bw_info *bw_info;
1544 	struct xhci_ep_ctx *ep_ctx;
1545 	unsigned int ep_type;
1546 	int i;
1547 
1548 	for (i = 1; i < 31; ++i) {
1549 		bw_info = &virt_dev->eps[i].bw_info;
1550 
1551 		/* We can't tell what endpoint type is being dropped, but
1552 		 * unconditionally clearing the bandwidth info for non-periodic
1553 		 * endpoints should be harmless because the info will never be
1554 		 * set in the first place.
1555 		 */
1556 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1557 			/* Dropped endpoint */
1558 			xhci_clear_endpoint_bw_info(bw_info);
1559 			continue;
1560 		}
1561 
1562 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1563 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1564 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1565 
1566 			/* Ignore non-periodic endpoints */
1567 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1568 					ep_type != ISOC_IN_EP &&
1569 					ep_type != INT_IN_EP)
1570 				continue;
1571 
1572 			/* Added or changed endpoint */
1573 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1574 					le32_to_cpu(ep_ctx->ep_info));
1575 			/* Number of packets and mult are zero-based in the
1576 			 * input context, but we want one-based for the
1577 			 * interval table.
1578 			 */
1579 			bw_info->mult = CTX_TO_EP_MULT(
1580 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1581 			bw_info->num_packets = CTX_TO_MAX_BURST(
1582 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1583 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1584 					le32_to_cpu(ep_ctx->ep_info2));
1585 			bw_info->type = ep_type;
1586 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1587 					le32_to_cpu(ep_ctx->tx_info));
1588 		}
1589 	}
1590 }
1591 
1592 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1593  * Useful when you want to change one particular aspect of the endpoint and then
1594  * issue a configure endpoint command.
1595  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1596 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1597 		struct xhci_container_ctx *in_ctx,
1598 		struct xhci_container_ctx *out_ctx,
1599 		unsigned int ep_index)
1600 {
1601 	struct xhci_ep_ctx *out_ep_ctx;
1602 	struct xhci_ep_ctx *in_ep_ctx;
1603 
1604 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1605 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1606 
1607 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1608 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1609 	in_ep_ctx->deq = out_ep_ctx->deq;
1610 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1611 }
1612 
1613 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1614  * Useful when you want to change one particular aspect of the endpoint and then
1615  * issue a configure endpoint command.  Only the context entries field matters,
1616  * but we'll copy the whole thing anyway.
1617  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1618 void xhci_slot_copy(struct xhci_hcd *xhci,
1619 		struct xhci_container_ctx *in_ctx,
1620 		struct xhci_container_ctx *out_ctx)
1621 {
1622 	struct xhci_slot_ctx *in_slot_ctx;
1623 	struct xhci_slot_ctx *out_slot_ctx;
1624 
1625 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1626 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1627 
1628 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1629 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1630 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1631 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1632 }
1633 
1634 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1635 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1636 {
1637 	int i;
1638 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1639 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1640 
1641 	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1642 
1643 	if (!num_sp)
1644 		return 0;
1645 
1646 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1647 	if (!xhci->scratchpad)
1648 		goto fail_sp;
1649 
1650 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1651 				     num_sp * sizeof(u64),
1652 				     &xhci->scratchpad->sp_dma, flags);
1653 	if (!xhci->scratchpad->sp_array)
1654 		goto fail_sp2;
1655 
1656 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1657 	if (!xhci->scratchpad->sp_buffers)
1658 		goto fail_sp3;
1659 
1660 	xhci->scratchpad->sp_dma_buffers =
1661 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1662 
1663 	if (!xhci->scratchpad->sp_dma_buffers)
1664 		goto fail_sp4;
1665 
1666 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1667 	for (i = 0; i < num_sp; i++) {
1668 		dma_addr_t dma;
1669 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1670 				flags);
1671 		if (!buf)
1672 			goto fail_sp5;
1673 
1674 		xhci->scratchpad->sp_array[i] = dma;
1675 		xhci->scratchpad->sp_buffers[i] = buf;
1676 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1677 	}
1678 
1679 	return 0;
1680 
1681  fail_sp5:
1682 	for (i = i - 1; i >= 0; i--) {
1683 		dma_free_coherent(dev, xhci->page_size,
1684 				    xhci->scratchpad->sp_buffers[i],
1685 				    xhci->scratchpad->sp_dma_buffers[i]);
1686 	}
1687 	kfree(xhci->scratchpad->sp_dma_buffers);
1688 
1689  fail_sp4:
1690 	kfree(xhci->scratchpad->sp_buffers);
1691 
1692  fail_sp3:
1693 	dma_free_coherent(dev, num_sp * sizeof(u64),
1694 			    xhci->scratchpad->sp_array,
1695 			    xhci->scratchpad->sp_dma);
1696 
1697  fail_sp2:
1698 	kfree(xhci->scratchpad);
1699 	xhci->scratchpad = NULL;
1700 
1701  fail_sp:
1702 	return -ENOMEM;
1703 }
1704 
scratchpad_free(struct xhci_hcd * xhci)1705 static void scratchpad_free(struct xhci_hcd *xhci)
1706 {
1707 	int num_sp;
1708 	int i;
1709 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1710 
1711 	if (!xhci->scratchpad)
1712 		return;
1713 
1714 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1715 
1716 	for (i = 0; i < num_sp; i++) {
1717 		dma_free_coherent(&pdev->dev, xhci->page_size,
1718 				    xhci->scratchpad->sp_buffers[i],
1719 				    xhci->scratchpad->sp_dma_buffers[i]);
1720 	}
1721 	kfree(xhci->scratchpad->sp_dma_buffers);
1722 	kfree(xhci->scratchpad->sp_buffers);
1723 	dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1724 			    xhci->scratchpad->sp_array,
1725 			    xhci->scratchpad->sp_dma);
1726 	kfree(xhci->scratchpad);
1727 	xhci->scratchpad = NULL;
1728 }
1729 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1730 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1731 		bool allocate_in_ctx, bool allocate_completion,
1732 		gfp_t mem_flags)
1733 {
1734 	struct xhci_command *command;
1735 
1736 	command = kzalloc(sizeof(*command), mem_flags);
1737 	if (!command)
1738 		return NULL;
1739 
1740 	if (allocate_in_ctx) {
1741 		command->in_ctx =
1742 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1743 					mem_flags);
1744 		if (!command->in_ctx) {
1745 			kfree(command);
1746 			return NULL;
1747 		}
1748 	}
1749 
1750 	if (allocate_completion) {
1751 		command->completion =
1752 			kzalloc(sizeof(struct completion), mem_flags);
1753 		if (!command->completion) {
1754 			xhci_free_container_ctx(xhci, command->in_ctx);
1755 			kfree(command);
1756 			return NULL;
1757 		}
1758 		init_completion(command->completion);
1759 	}
1760 
1761 	command->status = 0;
1762 	INIT_LIST_HEAD(&command->cmd_list);
1763 	return command;
1764 }
1765 
xhci_urb_free_priv(struct xhci_hcd * xhci,struct urb_priv * urb_priv)1766 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1767 {
1768 	if (urb_priv) {
1769 		kfree(urb_priv->td[0]);
1770 		kfree(urb_priv);
1771 	}
1772 }
1773 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1774 void xhci_free_command(struct xhci_hcd *xhci,
1775 		struct xhci_command *command)
1776 {
1777 	xhci_free_container_ctx(xhci,
1778 			command->in_ctx);
1779 	kfree(command->completion);
1780 	kfree(command);
1781 }
1782 
xhci_mem_cleanup(struct xhci_hcd * xhci)1783 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1784 {
1785 	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1786 	struct dev_info	*dev_info, *next;
1787 	struct xhci_cd  *cur_cd, *next_cd;
1788 	unsigned long	flags;
1789 	int size;
1790 	int i, j, num_ports;
1791 
1792 	/* Free the Event Ring Segment Table and the actual Event Ring */
1793 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1794 	if (xhci->erst.entries)
1795 		dma_free_coherent(&pdev->dev, size,
1796 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1797 	xhci->erst.entries = NULL;
1798 	xhci_dbg(xhci, "Freed ERST\n");
1799 	if (xhci->event_ring)
1800 		xhci_ring_free(xhci, xhci->event_ring);
1801 	xhci->event_ring = NULL;
1802 	xhci_dbg(xhci, "Freed event ring\n");
1803 
1804 	xhci->cmd_ring_reserved_trbs = 0;
1805 	if (xhci->cmd_ring)
1806 		xhci_ring_free(xhci, xhci->cmd_ring);
1807 	xhci->cmd_ring = NULL;
1808 	xhci_dbg(xhci, "Freed command ring\n");
1809 	list_for_each_entry_safe(cur_cd, next_cd,
1810 			&xhci->cancel_cmd_list, cancel_cmd_list) {
1811 		list_del(&cur_cd->cancel_cmd_list);
1812 		kfree(cur_cd);
1813 	}
1814 
1815 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1816 	for (i = 0; i < num_ports; i++) {
1817 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1818 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1819 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1820 			while (!list_empty(ep))
1821 				list_del_init(ep->next);
1822 		}
1823 	}
1824 
1825 	for (i = 1; i < MAX_HC_SLOTS; ++i)
1826 		xhci_free_virt_device(xhci, i);
1827 
1828 	if (xhci->segment_pool)
1829 		dma_pool_destroy(xhci->segment_pool);
1830 	xhci->segment_pool = NULL;
1831 	xhci_dbg(xhci, "Freed segment pool\n");
1832 
1833 	if (xhci->device_pool)
1834 		dma_pool_destroy(xhci->device_pool);
1835 	xhci->device_pool = NULL;
1836 	xhci_dbg(xhci, "Freed device context pool\n");
1837 
1838 	if (xhci->small_streams_pool)
1839 		dma_pool_destroy(xhci->small_streams_pool);
1840 	xhci->small_streams_pool = NULL;
1841 	xhci_dbg(xhci, "Freed small stream array pool\n");
1842 
1843 	if (xhci->medium_streams_pool)
1844 		dma_pool_destroy(xhci->medium_streams_pool);
1845 	xhci->medium_streams_pool = NULL;
1846 	xhci_dbg(xhci, "Freed medium stream array pool\n");
1847 
1848 	if (xhci->dcbaa)
1849 		dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1850 				xhci->dcbaa, xhci->dcbaa->dma);
1851 	xhci->dcbaa = NULL;
1852 
1853 	scratchpad_free(xhci);
1854 
1855 	spin_lock_irqsave(&xhci->lock, flags);
1856 	list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1857 		list_del(&dev_info->list);
1858 		kfree(dev_info);
1859 	}
1860 	spin_unlock_irqrestore(&xhci->lock, flags);
1861 
1862 	if (!xhci->rh_bw)
1863 		goto no_bw;
1864 
1865 	for (i = 0; i < num_ports; i++) {
1866 		struct xhci_tt_bw_info *tt, *n;
1867 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1868 			list_del(&tt->tt_list);
1869 			kfree(tt);
1870 		}
1871 	}
1872 
1873 no_bw:
1874 	xhci->num_usb2_ports = 0;
1875 	xhci->num_usb3_ports = 0;
1876 	xhci->num_active_eps = 0;
1877 	kfree(xhci->usb2_ports);
1878 	kfree(xhci->usb3_ports);
1879 	kfree(xhci->port_array);
1880 	kfree(xhci->rh_bw);
1881 
1882 	xhci->page_size = 0;
1883 	xhci->page_shift = 0;
1884 	xhci->bus_state[0].bus_suspended = 0;
1885 	xhci->bus_state[1].bus_suspended = 0;
1886 }
1887 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1888 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1889 		struct xhci_segment *input_seg,
1890 		union xhci_trb *start_trb,
1891 		union xhci_trb *end_trb,
1892 		dma_addr_t input_dma,
1893 		struct xhci_segment *result_seg,
1894 		char *test_name, int test_number)
1895 {
1896 	unsigned long long start_dma;
1897 	unsigned long long end_dma;
1898 	struct xhci_segment *seg;
1899 
1900 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1901 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1902 
1903 	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1904 	if (seg != result_seg) {
1905 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1906 				test_name, test_number);
1907 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1908 				"input DMA 0x%llx\n",
1909 				input_seg,
1910 				(unsigned long long) input_dma);
1911 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1912 				"ending TRB %p (0x%llx DMA)\n",
1913 				start_trb, start_dma,
1914 				end_trb, end_dma);
1915 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1916 				result_seg, seg);
1917 		return -1;
1918 	}
1919 	return 0;
1920 }
1921 
1922 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci,gfp_t mem_flags)1923 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1924 {
1925 	struct {
1926 		dma_addr_t		input_dma;
1927 		struct xhci_segment	*result_seg;
1928 	} simple_test_vector [] = {
1929 		/* A zeroed DMA field should fail */
1930 		{ 0, NULL },
1931 		/* One TRB before the ring start should fail */
1932 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1933 		/* One byte before the ring start should fail */
1934 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1935 		/* Starting TRB should succeed */
1936 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1937 		/* Ending TRB should succeed */
1938 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1939 			xhci->event_ring->first_seg },
1940 		/* One byte after the ring end should fail */
1941 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1942 		/* One TRB after the ring end should fail */
1943 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1944 		/* An address of all ones should fail */
1945 		{ (dma_addr_t) (~0), NULL },
1946 	};
1947 	struct {
1948 		struct xhci_segment	*input_seg;
1949 		union xhci_trb		*start_trb;
1950 		union xhci_trb		*end_trb;
1951 		dma_addr_t		input_dma;
1952 		struct xhci_segment	*result_seg;
1953 	} complex_test_vector [] = {
1954 		/* Test feeding a valid DMA address from a different ring */
1955 		{	.input_seg = xhci->event_ring->first_seg,
1956 			.start_trb = xhci->event_ring->first_seg->trbs,
1957 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958 			.input_dma = xhci->cmd_ring->first_seg->dma,
1959 			.result_seg = NULL,
1960 		},
1961 		/* Test feeding a valid end TRB from a different ring */
1962 		{	.input_seg = xhci->event_ring->first_seg,
1963 			.start_trb = xhci->event_ring->first_seg->trbs,
1964 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965 			.input_dma = xhci->cmd_ring->first_seg->dma,
1966 			.result_seg = NULL,
1967 		},
1968 		/* Test feeding a valid start and end TRB from a different ring */
1969 		{	.input_seg = xhci->event_ring->first_seg,
1970 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1971 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972 			.input_dma = xhci->cmd_ring->first_seg->dma,
1973 			.result_seg = NULL,
1974 		},
1975 		/* TRB in this ring, but after this TD */
1976 		{	.input_seg = xhci->event_ring->first_seg,
1977 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1978 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1979 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1980 			.result_seg = NULL,
1981 		},
1982 		/* TRB in this ring, but before this TD */
1983 		{	.input_seg = xhci->event_ring->first_seg,
1984 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1985 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1986 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1987 			.result_seg = NULL,
1988 		},
1989 		/* TRB in this ring, but after this wrapped TD */
1990 		{	.input_seg = xhci->event_ring->first_seg,
1991 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1993 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994 			.result_seg = NULL,
1995 		},
1996 		/* TRB in this ring, but before this wrapped TD */
1997 		{	.input_seg = xhci->event_ring->first_seg,
1998 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2000 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2001 			.result_seg = NULL,
2002 		},
2003 		/* TRB not in this ring, and we have a wrapped TD */
2004 		{	.input_seg = xhci->event_ring->first_seg,
2005 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2007 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2008 			.result_seg = NULL,
2009 		},
2010 	};
2011 
2012 	unsigned int num_tests;
2013 	int i, ret;
2014 
2015 	num_tests = ARRAY_SIZE(simple_test_vector);
2016 	for (i = 0; i < num_tests; i++) {
2017 		ret = xhci_test_trb_in_td(xhci,
2018 				xhci->event_ring->first_seg,
2019 				xhci->event_ring->first_seg->trbs,
2020 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021 				simple_test_vector[i].input_dma,
2022 				simple_test_vector[i].result_seg,
2023 				"Simple", i);
2024 		if (ret < 0)
2025 			return ret;
2026 	}
2027 
2028 	num_tests = ARRAY_SIZE(complex_test_vector);
2029 	for (i = 0; i < num_tests; i++) {
2030 		ret = xhci_test_trb_in_td(xhci,
2031 				complex_test_vector[i].input_seg,
2032 				complex_test_vector[i].start_trb,
2033 				complex_test_vector[i].end_trb,
2034 				complex_test_vector[i].input_dma,
2035 				complex_test_vector[i].result_seg,
2036 				"Complex", i);
2037 		if (ret < 0)
2038 			return ret;
2039 	}
2040 	xhci_dbg(xhci, "TRB math tests passed.\n");
2041 	return 0;
2042 }
2043 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2044 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2045 {
2046 	u64 temp;
2047 	dma_addr_t deq;
2048 
2049 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2050 			xhci->event_ring->dequeue);
2051 	if (deq == 0 && !in_interrupt())
2052 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2053 				"dequeue ptr.\n");
2054 	/* Update HC event ring dequeue pointer */
2055 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2056 	temp &= ERST_PTR_MASK;
2057 	/* Don't clear the EHB bit (which is RW1C) because
2058 	 * there might be more events to service.
2059 	 */
2060 	temp &= ~ERST_EHB;
2061 	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2062 			"preserving EHB bit\n");
2063 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2064 			&xhci->ir_set->erst_dequeue);
2065 }
2066 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,u8 major_revision)2067 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2068 		__le32 __iomem *addr, u8 major_revision)
2069 {
2070 	u32 temp, port_offset, port_count;
2071 	int i;
2072 
2073 	if (major_revision > 0x03) {
2074 		xhci_warn(xhci, "Ignoring unknown port speed, "
2075 				"Ext Cap %p, revision = 0x%x\n",
2076 				addr, major_revision);
2077 		/* Ignoring port protocol we can't understand. FIXME */
2078 		return;
2079 	}
2080 
2081 	/* Port offset and count in the third dword, see section 7.2 */
2082 	temp = xhci_readl(xhci, addr + 2);
2083 	port_offset = XHCI_EXT_PORT_OFF(temp);
2084 	port_count = XHCI_EXT_PORT_COUNT(temp);
2085 	xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2086 			"count = %u, revision = 0x%x\n",
2087 			addr, port_offset, port_count, major_revision);
2088 	/* Port count includes the current port offset */
2089 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2090 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2091 		return;
2092 
2093 	/* Check the host's USB2 LPM capability */
2094 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2095 			(temp & XHCI_L1C)) {
2096 		xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2097 		xhci->sw_lpm_support = 1;
2098 	}
2099 
2100 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2101 		xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2102 		xhci->sw_lpm_support = 1;
2103 		if (temp & XHCI_HLC) {
2104 			xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2105 			xhci->hw_lpm_support = 1;
2106 		}
2107 	}
2108 
2109 	port_offset--;
2110 	for (i = port_offset; i < (port_offset + port_count); i++) {
2111 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2112 		if (xhci->port_array[i] != 0) {
2113 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2114 					" port %u\n", addr, i);
2115 			xhci_warn(xhci, "Port was marked as USB %u, "
2116 					"duplicated as USB %u\n",
2117 					xhci->port_array[i], major_revision);
2118 			/* Only adjust the roothub port counts if we haven't
2119 			 * found a similar duplicate.
2120 			 */
2121 			if (xhci->port_array[i] != major_revision &&
2122 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2123 				if (xhci->port_array[i] == 0x03)
2124 					xhci->num_usb3_ports--;
2125 				else
2126 					xhci->num_usb2_ports--;
2127 				xhci->port_array[i] = DUPLICATE_ENTRY;
2128 			}
2129 			/* FIXME: Should we disable the port? */
2130 			continue;
2131 		}
2132 		xhci->port_array[i] = major_revision;
2133 		if (major_revision == 0x03)
2134 			xhci->num_usb3_ports++;
2135 		else
2136 			xhci->num_usb2_ports++;
2137 	}
2138 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2139 }
2140 
2141 /*
2142  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2143  * specify what speeds each port is supposed to be.  We can't count on the port
2144  * speed bits in the PORTSC register being correct until a device is connected,
2145  * but we need to set up the two fake roothubs with the correct number of USB
2146  * 3.0 and USB 2.0 ports at host controller initialization time.
2147  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2148 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2149 {
2150 	__le32 __iomem *addr;
2151 	u32 offset;
2152 	unsigned int num_ports;
2153 	int i, j, port_index;
2154 
2155 	addr = &xhci->cap_regs->hcc_params;
2156 	offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2157 	if (offset == 0) {
2158 		xhci_err(xhci, "No Extended Capability registers, "
2159 				"unable to set up roothub.\n");
2160 		return -ENODEV;
2161 	}
2162 
2163 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2164 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2165 	if (!xhci->port_array)
2166 		return -ENOMEM;
2167 
2168 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2169 	if (!xhci->rh_bw)
2170 		return -ENOMEM;
2171 	for (i = 0; i < num_ports; i++) {
2172 		struct xhci_interval_bw_table *bw_table;
2173 
2174 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2175 		bw_table = &xhci->rh_bw[i].bw_table;
2176 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2177 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2178 	}
2179 
2180 	/*
2181 	 * For whatever reason, the first capability offset is from the
2182 	 * capability register base, not from the HCCPARAMS register.
2183 	 * See section 5.3.6 for offset calculation.
2184 	 */
2185 	addr = &xhci->cap_regs->hc_capbase + offset;
2186 	while (1) {
2187 		u32 cap_id;
2188 
2189 		cap_id = xhci_readl(xhci, addr);
2190 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2191 			xhci_add_in_port(xhci, num_ports, addr,
2192 					(u8) XHCI_EXT_PORT_MAJOR(cap_id));
2193 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2194 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2195 				== num_ports)
2196 			break;
2197 		/*
2198 		 * Once you're into the Extended Capabilities, the offset is
2199 		 * always relative to the register holding the offset.
2200 		 */
2201 		addr += offset;
2202 	}
2203 
2204 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2205 		xhci_warn(xhci, "No ports on the roothubs?\n");
2206 		return -ENODEV;
2207 	}
2208 	xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2209 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2210 
2211 	/* Place limits on the number of roothub ports so that the hub
2212 	 * descriptors aren't longer than the USB core will allocate.
2213 	 */
2214 	if (xhci->num_usb3_ports > 15) {
2215 		xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2216 		xhci->num_usb3_ports = 15;
2217 	}
2218 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2219 		xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2220 				USB_MAXCHILDREN);
2221 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2222 	}
2223 
2224 	/*
2225 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2226 	 * Not sure how the USB core will handle a hub with no ports...
2227 	 */
2228 	if (xhci->num_usb2_ports) {
2229 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2230 				xhci->num_usb2_ports, flags);
2231 		if (!xhci->usb2_ports)
2232 			return -ENOMEM;
2233 
2234 		port_index = 0;
2235 		for (i = 0; i < num_ports; i++) {
2236 			if (xhci->port_array[i] == 0x03 ||
2237 					xhci->port_array[i] == 0 ||
2238 					xhci->port_array[i] == DUPLICATE_ENTRY)
2239 				continue;
2240 
2241 			xhci->usb2_ports[port_index] =
2242 				&xhci->op_regs->port_status_base +
2243 				NUM_PORT_REGS*i;
2244 			xhci_dbg(xhci, "USB 2.0 port at index %u, "
2245 					"addr = %p\n", i,
2246 					xhci->usb2_ports[port_index]);
2247 			port_index++;
2248 			if (port_index == xhci->num_usb2_ports)
2249 				break;
2250 		}
2251 	}
2252 	if (xhci->num_usb3_ports) {
2253 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2254 				xhci->num_usb3_ports, flags);
2255 		if (!xhci->usb3_ports)
2256 			return -ENOMEM;
2257 
2258 		port_index = 0;
2259 		for (i = 0; i < num_ports; i++)
2260 			if (xhci->port_array[i] == 0x03) {
2261 				xhci->usb3_ports[port_index] =
2262 					&xhci->op_regs->port_status_base +
2263 					NUM_PORT_REGS*i;
2264 				xhci_dbg(xhci, "USB 3.0 port at index %u, "
2265 						"addr = %p\n", i,
2266 						xhci->usb3_ports[port_index]);
2267 				port_index++;
2268 				if (port_index == xhci->num_usb3_ports)
2269 					break;
2270 			}
2271 	}
2272 	return 0;
2273 }
2274 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2275 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2276 {
2277 	dma_addr_t	dma;
2278 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2279 	unsigned int	val, val2;
2280 	u64		val_64;
2281 	struct xhci_segment	*seg;
2282 	u32 page_size, temp;
2283 	int i;
2284 
2285 	INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2286 	INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2287 
2288 	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2289 	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2290 	for (i = 0; i < 16; i++) {
2291 		if ((0x1 & page_size) != 0)
2292 			break;
2293 		page_size = page_size >> 1;
2294 	}
2295 	if (i < 16)
2296 		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2297 	else
2298 		xhci_warn(xhci, "WARN: no supported page size\n");
2299 	/* Use 4K pages, since that's common and the minimum the HC supports */
2300 	xhci->page_shift = 12;
2301 	xhci->page_size = 1 << xhci->page_shift;
2302 	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2303 
2304 	/*
2305 	 * Program the Number of Device Slots Enabled field in the CONFIG
2306 	 * register with the max value of slots the HC can handle.
2307 	 */
2308 	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2309 	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2310 			(unsigned int) val);
2311 	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2312 	val |= (val2 & ~HCS_SLOTS_MASK);
2313 	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2314 			(unsigned int) val);
2315 	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2316 
2317 	/*
2318 	 * Section 5.4.8 - doorbell array must be
2319 	 * "physically contiguous and 64-byte (cache line) aligned".
2320 	 */
2321 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2322 			GFP_KERNEL);
2323 	if (!xhci->dcbaa)
2324 		goto fail;
2325 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2326 	xhci->dcbaa->dma = dma;
2327 	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2328 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2329 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2330 
2331 	/*
2332 	 * Initialize the ring segment pool.  The ring must be a contiguous
2333 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2334 	 * however, the command ring segment needs 64-byte aligned segments,
2335 	 * so we pick the greater alignment need.
2336 	 */
2337 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2338 			SEGMENT_SIZE, 64, xhci->page_size);
2339 
2340 	/* See Table 46 and Note on Figure 55 */
2341 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2342 			2112, 64, xhci->page_size);
2343 	if (!xhci->segment_pool || !xhci->device_pool)
2344 		goto fail;
2345 
2346 	/* Linear stream context arrays don't have any boundary restrictions,
2347 	 * and only need to be 16-byte aligned.
2348 	 */
2349 	xhci->small_streams_pool =
2350 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2351 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2352 	xhci->medium_streams_pool =
2353 		dma_pool_create("xHCI 1KB stream ctx arrays",
2354 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2355 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2356 	 * will be allocated with dma_alloc_coherent()
2357 	 */
2358 
2359 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2360 		goto fail;
2361 
2362 	/* Set up the command ring to have one segments for now. */
2363 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2364 	if (!xhci->cmd_ring)
2365 		goto fail;
2366 	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2367 	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2368 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2369 
2370 	/* Set the address in the Command Ring Control register */
2371 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2372 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2373 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2374 		xhci->cmd_ring->cycle_state;
2375 	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2376 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2377 	xhci_dbg_cmd_ptrs(xhci);
2378 
2379 	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2380 	val &= DBOFF_MASK;
2381 	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2382 			" from cap regs base addr\n", val);
2383 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2384 	xhci_dbg_regs(xhci);
2385 	xhci_print_run_regs(xhci);
2386 	/* Set ir_set to interrupt register set 0 */
2387 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2388 
2389 	/*
2390 	 * Event ring setup: Allocate a normal ring, but also setup
2391 	 * the event ring segment table (ERST).  Section 4.9.3.
2392 	 */
2393 	xhci_dbg(xhci, "// Allocating event ring\n");
2394 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2395 						flags);
2396 	if (!xhci->event_ring)
2397 		goto fail;
2398 	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2399 		goto fail;
2400 
2401 	xhci->erst.entries = dma_alloc_coherent(dev,
2402 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2403 			GFP_KERNEL);
2404 	if (!xhci->erst.entries)
2405 		goto fail;
2406 	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2407 			(unsigned long long)dma);
2408 
2409 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2410 	xhci->erst.num_entries = ERST_NUM_SEGS;
2411 	xhci->erst.erst_dma_addr = dma;
2412 	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2413 			xhci->erst.num_entries,
2414 			xhci->erst.entries,
2415 			(unsigned long long)xhci->erst.erst_dma_addr);
2416 
2417 	/* set ring base address and size for each segment table entry */
2418 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2419 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2420 		entry->seg_addr = cpu_to_le64(seg->dma);
2421 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2422 		entry->rsvd = 0;
2423 		seg = seg->next;
2424 	}
2425 
2426 	/* set ERST count with the number of entries in the segment table */
2427 	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2428 	val &= ERST_SIZE_MASK;
2429 	val |= ERST_NUM_SEGS;
2430 	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2431 			val);
2432 	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2433 
2434 	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2435 	/* set the segment table base address */
2436 	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2437 			(unsigned long long)xhci->erst.erst_dma_addr);
2438 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2439 	val_64 &= ERST_PTR_MASK;
2440 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2441 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2442 
2443 	/* Set the event ring dequeue address */
2444 	xhci_set_hc_event_deq(xhci);
2445 	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2446 	xhci_print_ir_set(xhci, 0);
2447 
2448 	/*
2449 	 * XXX: Might need to set the Interrupter Moderation Register to
2450 	 * something other than the default (~1ms minimum between interrupts).
2451 	 * See section 5.5.1.2.
2452 	 */
2453 	init_completion(&xhci->addr_dev);
2454 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2455 		xhci->devs[i] = NULL;
2456 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2457 		xhci->bus_state[0].resume_done[i] = 0;
2458 		xhci->bus_state[1].resume_done[i] = 0;
2459 	}
2460 
2461 	if (scratchpad_alloc(xhci, flags))
2462 		goto fail;
2463 	if (xhci_setup_port_arrays(xhci, flags))
2464 		goto fail;
2465 
2466 	/* Enable USB 3.0 device notifications for function remote wake, which
2467 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2468 	 * U3 (device suspend).
2469 	 */
2470 	temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2471 	temp &= ~DEV_NOTE_MASK;
2472 	temp |= DEV_NOTE_FWAKE;
2473 	xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2474 
2475 	return 0;
2476 
2477 fail:
2478 	xhci_warn(xhci, "Couldn't initialize memory\n");
2479 	xhci_halt(xhci);
2480 	xhci_reset(xhci);
2481 	xhci_mem_cleanup(xhci);
2482 	return -ENOMEM;
2483 }
2484