1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53 }
54
55 /*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, timeout_us);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81 }
82
83 /*
84 * Disable interrupts and begin the xHCI halting process.
85 */
xhci_quiesce(struct xhci_hcd * xhci)86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
xhci_halt(struct xhci_hcd * xhci)110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 int ret;
113
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123
124 xhci->xhc_state |= XHCI_STATE_HALTED;
125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127 return ret;
128 }
129
130 /*
131 * Set the run bit and wait for the host to be running.
132 */
xhci_start(struct xhci_hcd * xhci)133 int xhci_start(struct xhci_hcd *xhci)
134 {
135 u32 temp;
136 int ret;
137
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
143
144 /*
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
147 */
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret) {
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 }
159
160 return ret;
161 }
162
163 /*
164 * Reset a halted HC.
165 *
166 * This resets pipelines, timers, counters, state machines, etc.
167 * Transactions will be terminated immediately, and operational registers
168 * will be set to their defaults.
169 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172 u32 command;
173 u32 state;
174 int ret;
175
176 state = readl(&xhci->op_regs->status);
177
178 if (state == ~(u32)0) {
179 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 return -ENODEV;
181 }
182
183 if ((state & STS_HALT) == 0) {
184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 return 0;
186 }
187
188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 command = readl(&xhci->op_regs->command);
190 command |= CMD_RESET;
191 writel(command, &xhci->op_regs->command);
192
193 /* Existing Intel xHCI controllers require a delay of 1 mS,
194 * after setting the CMD_RESET bit, and before accessing any
195 * HC registers. This allows the HC to complete the
196 * reset operation and be ready for HC register access.
197 * Without this delay, the subsequent HC register access,
198 * may result in a system hang very rarely.
199 */
200 if (xhci->quirks & XHCI_INTEL_HOST)
201 udelay(1000);
202
203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 if (ret)
205 return ret;
206
207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 "Wait for controller to be ready for doorbell rings");
212 /*
213 * xHCI cannot write to any doorbells or operational registers other
214 * than status until the "Controller Not Ready" flag is cleared.
215 */
216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225 return ret;
226 }
227
xhci_zero_64b_regs(struct xhci_hcd * xhci)228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 int err, i;
232 u64 val;
233 u32 intrs;
234
235 /*
236 * Some Renesas controllers get into a weird state if they are
237 * reset while programmed with 64bit addresses (they will preserve
238 * the top half of the address in internal, non visible
239 * registers). You end up with half the address coming from the
240 * kernel, and the other half coming from the firmware. Also,
241 * changing the programming leads to extra accesses even if the
242 * controller is supposed to be halted. The controller ends up with
243 * a fatal fault, and is then ripe for being properly reset.
244 *
245 * Special care is taken to only apply this if the device is behind
246 * an iommu. Doing anything when there is no iommu is definitely
247 * unsafe...
248 */
249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250 return;
251
252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253
254 /* Clear HSEIE so that faults do not get signaled */
255 val = readl(&xhci->op_regs->command);
256 val &= ~CMD_HSEIE;
257 writel(val, &xhci->op_regs->command);
258
259 /* Clear HSE (aka FATAL) */
260 val = readl(&xhci->op_regs->status);
261 val |= STS_FATAL;
262 writel(val, &xhci->op_regs->status);
263
264 /* Now zero the registers, and brace for impact */
265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 if (upper_32_bits(val))
270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271
272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 ARRAY_SIZE(xhci->run_regs->ir_set));
274
275 for (i = 0; i < intrs; i++) {
276 struct xhci_intr_reg __iomem *ir;
277
278 ir = &xhci->run_regs->ir_set[i];
279 val = xhci_read_64(xhci, &ir->erst_base);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_base);
282 val= xhci_read_64(xhci, &ir->erst_dequeue);
283 if (upper_32_bits(val))
284 xhci_write_64(xhci, 0, &ir->erst_dequeue);
285 }
286
287 /* Wait for the fault to appear. It will be cleared on reset */
288 err = xhci_handshake(&xhci->op_regs->status,
289 STS_FATAL, STS_FATAL,
290 XHCI_MAX_HALT_USEC);
291 if (!err)
292 xhci_info(xhci, "Fault detected\n");
293 }
294
295 #ifdef CONFIG_USB_PCI
296 /*
297 * Set up MSI
298 */
xhci_setup_msi(struct xhci_hcd * xhci)299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301 int ret;
302 /*
303 * TODO:Check with MSI Soc for sysdev
304 */
305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306
307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308 if (ret < 0) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "failed to allocate MSI entry");
311 return ret;
312 }
313
314 ret = request_irq(pdev->irq, xhci_msi_irq,
315 0, "xhci_hcd", xhci_to_hcd(xhci));
316 if (ret) {
317 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 "disable MSI interrupt");
319 pci_free_irq_vectors(pdev);
320 }
321
322 return ret;
323 }
324
325 /*
326 * Set up MSI-X
327 */
xhci_setup_msix(struct xhci_hcd * xhci)328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330 int i, ret;
331 struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333
334 /*
335 * calculate number of msi-x vectors supported.
336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 * with max number of interrupters based on the xhci HCSPARAMS1.
338 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 * Add additional 1 vector to ensure always available interrupt.
340 */
341 xhci->msix_count = min(num_online_cpus() + 1,
342 HCS_MAX_INTRS(xhci->hcs_params1));
343
344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345 PCI_IRQ_MSIX);
346 if (ret < 0) {
347 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 "Failed to enable MSI-X");
349 return ret;
350 }
351
352 for (i = 0; i < xhci->msix_count; i++) {
353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 "xhci_hcd", xhci_to_hcd(xhci));
355 if (ret)
356 goto disable_msix;
357 }
358
359 hcd->msix_enabled = 1;
360 return ret;
361
362 disable_msix:
363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364 while (--i >= 0)
365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 pci_free_irq_vectors(pdev);
367 return ret;
368 }
369
370 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373 struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375
376 if (xhci->quirks & XHCI_PLAT)
377 return;
378
379 /* return if using legacy interrupt */
380 if (hcd->irq > 0)
381 return;
382
383 if (hcd->msix_enabled) {
384 int i;
385
386 for (i = 0; i < xhci->msix_count; i++)
387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388 } else {
389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390 }
391
392 pci_free_irq_vectors(pdev);
393 hcd->msix_enabled = 0;
394 }
395
xhci_msix_sync_irqs(struct xhci_hcd * xhci)396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398 struct usb_hcd *hcd = xhci_to_hcd(xhci);
399
400 if (hcd->msix_enabled) {
401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402 int i;
403
404 for (i = 0; i < xhci->msix_count; i++)
405 synchronize_irq(pci_irq_vector(pdev, i));
406 }
407 }
408
xhci_try_enable_msi(struct usb_hcd * hcd)409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 struct pci_dev *pdev;
413 int ret;
414
415 /* The xhci platform device has set up IRQs through usb_add_hcd. */
416 if (xhci->quirks & XHCI_PLAT)
417 return 0;
418
419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 /*
421 * Some Fresco Logic host controllers advertise MSI, but fail to
422 * generate interrupts. Don't even try to enable MSI.
423 */
424 if (xhci->quirks & XHCI_BROKEN_MSI)
425 goto legacy_irq;
426
427 /* unregister the legacy interrupt */
428 if (hcd->irq)
429 free_irq(hcd->irq, hcd);
430 hcd->irq = 0;
431
432 ret = xhci_setup_msix(xhci);
433 if (ret)
434 /* fall back to msi*/
435 ret = xhci_setup_msi(xhci);
436
437 if (!ret) {
438 hcd->msi_enabled = 1;
439 return 0;
440 }
441
442 if (!pdev->irq) {
443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444 return -EINVAL;
445 }
446
447 legacy_irq:
448 if (!strlen(hcd->irq_descr))
449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 hcd->driver->description, hcd->self.busnum);
451
452 /* fall back to legacy interrupt*/
453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 hcd->irq_descr, hcd);
455 if (ret) {
456 xhci_err(xhci, "request interrupt %d failed\n",
457 pdev->irq);
458 return ret;
459 }
460 hcd->irq = pdev->irq;
461 return 0;
462 }
463
464 #else
465
xhci_try_enable_msi(struct usb_hcd * hcd)466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468 return 0;
469 }
470
xhci_cleanup_msix(struct xhci_hcd * xhci)471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474
xhci_msix_sync_irqs(struct xhci_hcd * xhci)475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478
479 #endif
480
compliance_mode_recovery(struct timer_list * t)481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483 struct xhci_hcd *xhci;
484 struct usb_hcd *hcd;
485 struct xhci_hub *rhub;
486 u32 temp;
487 int i;
488
489 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 rhub = &xhci->usb3_rhub;
491 hcd = rhub->hcd;
492
493 if (!hcd)
494 return;
495
496 for (i = 0; i < rhub->num_ports; i++) {
497 temp = readl(rhub->ports[i]->addr);
498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499 /*
500 * Compliance Mode Detected. Letting USB Core
501 * handle the Warm Reset
502 */
503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 "Compliance mode detected->port %d",
505 i + 1);
506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 "Attempting compliance mode recovery");
508
509 if (hcd->state == HC_STATE_SUSPENDED)
510 usb_hcd_resume_root_hub(hcd);
511
512 usb_hcd_poll_rh_status(hcd);
513 }
514 }
515
516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 mod_timer(&xhci->comp_mode_recovery_timer,
518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520
521 /*
522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523 * that causes ports behind that hardware to enter compliance mode sometimes.
524 * The quirk creates a timer that polls every 2 seconds the link state of
525 * each host controller's port and recovers it by issuing a Warm reset
526 * if Compliance mode is detected, otherwise the port will become "dead" (no
527 * device connections or disconnections will be detected anymore). Becasue no
528 * status event is generated when entering compliance mode (per xhci spec),
529 * this quirk is needed on systems that have the failing hardware installed.
530 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533 xhci->port_status_u0 = 0;
534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 0);
536 xhci->comp_mode_recovery_timer.expires = jiffies +
537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539 add_timer(&xhci->comp_mode_recovery_timer);
540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 "Compliance mode recovery timer initialized");
542 }
543
544 /*
545 * This function identifies the systems that have installed the SN65LVPE502CP
546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
547 * Systems:
548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549 */
xhci_compliance_mode_recovery_timer_quirk_check(void)550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552 const char *dmi_product_name, *dmi_sys_vendor;
553
554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 if (!dmi_product_name || !dmi_sys_vendor)
557 return false;
558
559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 return false;
561
562 if (strstr(dmi_product_name, "Z420") ||
563 strstr(dmi_product_name, "Z620") ||
564 strstr(dmi_product_name, "Z820") ||
565 strstr(dmi_product_name, "Z1 Workstation"))
566 return true;
567
568 return false;
569 }
570
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575
576
577 /*
578 * Initialize memory for HCD and xHC (one-time init).
579 *
580 * Program the PAGESIZE register, initialize the device context array, create
581 * device contexts (?), set up a command ring segment (or two?), create event
582 * ring (one for now).
583 */
xhci_init(struct usb_hcd * hcd)584 static int xhci_init(struct usb_hcd *hcd)
585 {
586 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 int retval;
588
589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 spin_lock_init(&xhci->lock);
591 if (xhci->hci_version == 0x95 && link_quirk) {
592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 "QUIRK: Not clearing Link TRB chain bits.");
594 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 } else {
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "xHCI doesn't need link TRB QUIRK");
598 }
599 retval = xhci_mem_init(xhci, GFP_KERNEL);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601
602 /* Initializing Compliance Mode Recovery Data If Needed */
603 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 compliance_mode_recovery_timer_init(xhci);
606 }
607
608 return retval;
609 }
610
611 /*-------------------------------------------------------------------------*/
612
613
xhci_run_finished(struct xhci_hcd * xhci)614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616 unsigned long flags;
617 u32 temp;
618
619 /*
620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 * Protect the short window before host is running with a lock
622 */
623 spin_lock_irqsave(&xhci->lock, flags);
624
625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 temp = readl(&xhci->op_regs->command);
627 temp |= (CMD_EIE);
628 writel(temp, &xhci->op_regs->command);
629
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 temp = readl(&xhci->ir_set->irq_pending);
632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633
634 if (xhci_start(xhci)) {
635 xhci_halt(xhci);
636 spin_unlock_irqrestore(&xhci->lock, flags);
637 return -ENODEV;
638 }
639
640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641
642 if (xhci->quirks & XHCI_NEC_HOST)
643 xhci_ring_cmd_db(xhci);
644
645 spin_unlock_irqrestore(&xhci->lock, flags);
646
647 return 0;
648 }
649
650 /*
651 * Start the HC after it was halted.
652 *
653 * This function is called by the USB core when the HC driver is added.
654 * Its opposite is xhci_stop().
655 *
656 * xhci_init() must be called once before this function can be called.
657 * Reset the HC, enable device slot contexts, program DCBAAP, and
658 * set command ring pointer and event ring pointer.
659 *
660 * Setup MSI-X vectors and enable interrupts.
661 */
xhci_run(struct usb_hcd * hcd)662 int xhci_run(struct usb_hcd *hcd)
663 {
664 u32 temp;
665 u64 temp_64;
666 int ret;
667 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668
669 /* Start the xHCI host controller running only after the USB 2.0 roothub
670 * is setup.
671 */
672
673 hcd->uses_new_polling = 1;
674 if (!usb_hcd_is_primary_hcd(hcd))
675 return xhci_run_finished(xhci);
676
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678
679 ret = xhci_try_enable_msi(hcd);
680 if (ret)
681 return ret;
682
683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 temp_64 &= ~ERST_PTR_MASK;
685 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687
688 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 "// Set the interrupt modulation register");
690 temp = readl(&xhci->ir_set->irq_control);
691 temp &= ~ER_IRQ_INTERVAL_MASK;
692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 writel(temp, &xhci->ir_set->irq_control);
694
695 if (xhci->quirks & XHCI_NEC_HOST) {
696 struct xhci_command *command;
697
698 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699 if (!command)
700 return -ENOMEM;
701
702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 TRB_TYPE(TRB_NEC_GET_FW));
704 if (ret)
705 xhci_free_command(xhci, command);
706 }
707 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 "Finished %s for main hcd", __func__);
709
710 xhci_create_dbc_dev(xhci);
711
712 xhci_debugfs_init(xhci);
713
714 if (xhci_has_one_roothub(xhci))
715 return xhci_run_finished(xhci);
716
717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718
719 return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722
723 /*
724 * Stop xHCI driver.
725 *
726 * This function is called by the USB core when the HC driver is removed.
727 * Its opposite is xhci_run().
728 *
729 * Disable device contexts, disable IRQs, and quiesce the HC.
730 * Reset the HC, finish any completed transactions, and cleanup memory.
731 */
xhci_stop(struct usb_hcd * hcd)732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734 u32 temp;
735 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737 mutex_lock(&xhci->mutex);
738
739 /* Only halt host and free memory after both hcds are removed */
740 if (!usb_hcd_is_primary_hcd(hcd)) {
741 mutex_unlock(&xhci->mutex);
742 return;
743 }
744
745 xhci_remove_dbc_dev(xhci);
746
747 spin_lock_irq(&xhci->lock);
748 xhci->xhc_state |= XHCI_STATE_HALTED;
749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750 xhci_halt(xhci);
751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 spin_unlock_irq(&xhci->lock);
753
754 xhci_cleanup_msix(xhci);
755
756 /* Deleting Compliance Mode Recovery Timer */
757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 (!(xhci_all_ports_seen_u0(xhci)))) {
759 del_timer_sync(&xhci->comp_mode_recovery_timer);
760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 "%s: compliance mode recovery timer deleted",
762 __func__);
763 }
764
765 if (xhci->quirks & XHCI_AMD_PLL_FIX)
766 usb_amd_dev_put();
767
768 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 "// Disabling event ring interrupts");
770 temp = readl(&xhci->op_regs->status);
771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 temp = readl(&xhci->ir_set->irq_pending);
773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774
775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 xhci_mem_cleanup(xhci);
777 xhci_debugfs_exit(xhci);
778 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 "xhci_stop completed - status = %x",
780 readl(&xhci->op_regs->status));
781 mutex_unlock(&xhci->mutex);
782 }
783
784 /*
785 * Shutdown HC (not bus-specific)
786 *
787 * This is called when the machine is rebooting or halting. We assume that the
788 * machine will be powered off, and the HC's internal state will be reset.
789 * Don't bother to free memory.
790 *
791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
792 */
xhci_shutdown(struct usb_hcd * hcd)793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796
797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800 /* Don't poll the roothubs after shutdown. */
801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 __func__, hcd->self.busnum);
803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 del_timer_sync(&hcd->rh_timer);
805
806 if (xhci->shared_hcd) {
807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 del_timer_sync(&xhci->shared_hcd->rh_timer);
809 }
810
811 spin_lock_irq(&xhci->lock);
812 xhci_halt(xhci);
813 /* Workaround for spurious wakeups at shutdown with HSW */
814 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816 spin_unlock_irq(&xhci->lock);
817
818 xhci_cleanup_msix(xhci);
819
820 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821 "xhci_shutdown completed - status = %x",
822 readl(&xhci->op_regs->status));
823 }
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
825
826 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)827 static void xhci_save_registers(struct xhci_hcd *xhci)
828 {
829 xhci->s3.command = readl(&xhci->op_regs->command);
830 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
838 }
839
xhci_restore_registers(struct xhci_hcd * xhci)840 static void xhci_restore_registers(struct xhci_hcd *xhci)
841 {
842 writel(xhci->s3.command, &xhci->op_regs->command);
843 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
851 }
852
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
854 {
855 u64 val_64;
856
857 /* step 2: initialize command ring buffer */
858 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861 xhci->cmd_ring->dequeue) &
862 (u64) ~CMD_RING_RSVD_BITS) |
863 xhci->cmd_ring->cycle_state;
864 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865 "// Setting command ring address to 0x%llx",
866 (long unsigned long) val_64);
867 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
868 }
869
870 /*
871 * The whole command ring must be cleared to zero when we suspend the host.
872 *
873 * The host doesn't save the command ring pointer in the suspend well, so we
874 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
875 * aligned, because of the reserved bits in the command ring dequeue pointer
876 * register. Therefore, we can't just set the dequeue pointer back in the
877 * middle of the ring (TRBs are 16-byte aligned).
878 */
xhci_clear_command_ring(struct xhci_hcd * xhci)879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
880 {
881 struct xhci_ring *ring;
882 struct xhci_segment *seg;
883
884 ring = xhci->cmd_ring;
885 seg = ring->deq_seg;
886 do {
887 memset(seg->trbs, 0,
888 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890 cpu_to_le32(~TRB_CYCLE);
891 seg = seg->next;
892 } while (seg != ring->deq_seg);
893
894 /* Reset the software enqueue and dequeue pointers */
895 ring->deq_seg = ring->first_seg;
896 ring->dequeue = ring->first_seg->trbs;
897 ring->enq_seg = ring->deq_seg;
898 ring->enqueue = ring->dequeue;
899
900 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
901 /*
902 * Ring is now zeroed, so the HW should look for change of ownership
903 * when the cycle bit is set to 1.
904 */
905 ring->cycle_state = 1;
906
907 /*
908 * Reset the hardware dequeue pointer.
909 * Yes, this will need to be re-written after resume, but we're paranoid
910 * and want to make sure the hardware doesn't access bogus memory
911 * because, say, the BIOS or an SMI started the host without changing
912 * the command ring pointers.
913 */
914 xhci_set_cmd_ring_deq(xhci);
915 }
916
917 /*
918 * Disable port wake bits if do_wakeup is not set.
919 *
920 * Also clear a possible internal port wake state left hanging for ports that
921 * detected termination but never successfully enumerated (trained to 0U).
922 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923 * at enumeration clears this wake, force one here as well for unconnected ports
924 */
925
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927 struct xhci_hub *rhub,
928 bool do_wakeup)
929 {
930 unsigned long flags;
931 u32 t1, t2, portsc;
932 int i;
933
934 spin_lock_irqsave(&xhci->lock, flags);
935
936 for (i = 0; i < rhub->num_ports; i++) {
937 portsc = readl(rhub->ports[i]->addr);
938 t1 = xhci_port_state_to_neutral(portsc);
939 t2 = t1;
940
941 /* clear wake bits if do_wake is not set */
942 if (!do_wakeup)
943 t2 &= ~PORT_WAKE_BITS;
944
945 /* Don't touch csc bit if connected or connect change is set */
946 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
947 t2 |= PORT_CSC;
948
949 if (t1 != t2) {
950 writel(t2, rhub->ports[i]->addr);
951 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952 rhub->hcd->self.busnum, i + 1, portsc, t2);
953 }
954 }
955 spin_unlock_irqrestore(&xhci->lock, flags);
956 }
957
xhci_pending_portevent(struct xhci_hcd * xhci)958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
959 {
960 struct xhci_port **ports;
961 int port_index;
962 u32 status;
963 u32 portsc;
964
965 status = readl(&xhci->op_regs->status);
966 if (status & STS_EINT)
967 return true;
968 /*
969 * Checking STS_EINT is not enough as there is a lag between a change
970 * bit being set and the Port Status Change Event that it generated
971 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
972 */
973
974 port_index = xhci->usb2_rhub.num_ports;
975 ports = xhci->usb2_rhub.ports;
976 while (port_index--) {
977 portsc = readl(ports[port_index]->addr);
978 if (portsc & PORT_CHANGE_MASK ||
979 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980 return true;
981 }
982 port_index = xhci->usb3_rhub.num_ports;
983 ports = xhci->usb3_rhub.ports;
984 while (port_index--) {
985 portsc = readl(ports[port_index]->addr);
986 if (portsc & PORT_CHANGE_MASK ||
987 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
988 return true;
989 }
990 return false;
991 }
992
993 /*
994 * Stop HC (not bus-specific)
995 *
996 * This is called when the machine transition into S3/S4 mode.
997 *
998 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001 int rc = 0;
1002 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
1003 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1004 u32 command;
1005 u32 res;
1006
1007 if (!hcd->state)
1008 return 0;
1009
1010 if (hcd->state != HC_STATE_SUSPENDED ||
1011 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012 return -EINVAL;
1013
1014 /* Clear root port wake on bits if wakeup not allowed. */
1015 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017
1018 if (!HCD_HW_ACCESSIBLE(hcd))
1019 return 0;
1020
1021 xhci_dbc_suspend(xhci);
1022
1023 /* Don't poll the roothubs on bus suspend. */
1024 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025 __func__, hcd->self.busnum);
1026 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027 del_timer_sync(&hcd->rh_timer);
1028 if (xhci->shared_hcd) {
1029 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030 del_timer_sync(&xhci->shared_hcd->rh_timer);
1031 }
1032
1033 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034 usleep_range(1000, 1500);
1035
1036 spin_lock_irq(&xhci->lock);
1037 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038 if (xhci->shared_hcd)
1039 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040 /* step 1: stop endpoint */
1041 /* skipped assuming that port suspend has done */
1042
1043 /* step 2: clear Run/Stop bit */
1044 command = readl(&xhci->op_regs->command);
1045 command &= ~CMD_RUN;
1046 writel(command, &xhci->op_regs->command);
1047
1048 /* Some chips from Fresco Logic need an extraordinary delay */
1049 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050
1051 if (xhci_handshake(&xhci->op_regs->status,
1052 STS_HALT, STS_HALT, delay)) {
1053 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054 spin_unlock_irq(&xhci->lock);
1055 return -ETIMEDOUT;
1056 }
1057 xhci_clear_command_ring(xhci);
1058
1059 /* step 3: save registers */
1060 xhci_save_registers(xhci);
1061
1062 /* step 4: set CSS flag */
1063 command = readl(&xhci->op_regs->command);
1064 command |= CMD_CSS;
1065 writel(command, &xhci->op_regs->command);
1066 xhci->broken_suspend = 0;
1067 if (xhci_handshake(&xhci->op_regs->status,
1068 STS_SAVE, 0, 20 * 1000)) {
1069 /*
1070 * AMD SNPS xHC 3.0 occasionally does not clear the
1071 * SSS bit of USBSTS and when driver tries to poll
1072 * to see if the xHC clears BIT(8) which never happens
1073 * and driver assumes that controller is not responding
1074 * and times out. To workaround this, its good to check
1075 * if SRE and HCE bits are not set (as per xhci
1076 * Section 5.4.2) and bypass the timeout.
1077 */
1078 res = readl(&xhci->op_regs->status);
1079 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080 (((res & STS_SRE) == 0) &&
1081 ((res & STS_HCE) == 0))) {
1082 xhci->broken_suspend = 1;
1083 } else {
1084 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085 spin_unlock_irq(&xhci->lock);
1086 return -ETIMEDOUT;
1087 }
1088 }
1089 spin_unlock_irq(&xhci->lock);
1090
1091 /*
1092 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093 * is about to be suspended.
1094 */
1095 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096 (!(xhci_all_ports_seen_u0(xhci)))) {
1097 del_timer_sync(&xhci->comp_mode_recovery_timer);
1098 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099 "%s: compliance mode recovery timer deleted",
1100 __func__);
1101 }
1102
1103 /* step 5: remove core well power */
1104 /* synchronize irq when using MSI-X */
1105 xhci_msix_sync_irqs(xhci);
1106
1107 return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110
1111 /*
1112 * start xHC (not bus-specific)
1113 *
1114 * This is called when the machine transition from S3/S4 mode.
1115 *
1116 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119 u32 command, temp = 0;
1120 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1121 int retval = 0;
1122 bool comp_timer_running = false;
1123 bool pending_portevent = false;
1124 bool reinit_xhc = false;
1125
1126 if (!hcd->state)
1127 return 0;
1128
1129 /* Wait a bit if either of the roothubs need to settle from the
1130 * transition into bus suspend.
1131 */
1132
1133 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135 msleep(100);
1136
1137 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138 if (xhci->shared_hcd)
1139 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140
1141 spin_lock_irq(&xhci->lock);
1142
1143 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144 reinit_xhc = true;
1145
1146 if (!reinit_xhc) {
1147 /*
1148 * Some controllers might lose power during suspend, so wait
1149 * for controller not ready bit to clear, just as in xHC init.
1150 */
1151 retval = xhci_handshake(&xhci->op_regs->status,
1152 STS_CNR, 0, 10 * 1000 * 1000);
1153 if (retval) {
1154 xhci_warn(xhci, "Controller not ready at resume %d\n",
1155 retval);
1156 spin_unlock_irq(&xhci->lock);
1157 return retval;
1158 }
1159 /* step 1: restore register */
1160 xhci_restore_registers(xhci);
1161 /* step 2: initialize command ring buffer */
1162 xhci_set_cmd_ring_deq(xhci);
1163 /* step 3: restore state and start state*/
1164 /* step 3: set CRS flag */
1165 command = readl(&xhci->op_regs->command);
1166 command |= CMD_CRS;
1167 writel(command, &xhci->op_regs->command);
1168 /*
1169 * Some controllers take up to 55+ ms to complete the controller
1170 * restore so setting the timeout to 100ms. Xhci specification
1171 * doesn't mention any timeout value.
1172 */
1173 if (xhci_handshake(&xhci->op_regs->status,
1174 STS_RESTORE, 0, 100 * 1000)) {
1175 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176 spin_unlock_irq(&xhci->lock);
1177 return -ETIMEDOUT;
1178 }
1179 }
1180
1181 temp = readl(&xhci->op_regs->status);
1182
1183 /* re-initialize the HC on Restore Error, or Host Controller Error */
1184 if (temp & (STS_SRE | STS_HCE)) {
1185 reinit_xhc = true;
1186 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1187 }
1188
1189 if (reinit_xhc) {
1190 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1191 !(xhci_all_ports_seen_u0(xhci))) {
1192 del_timer_sync(&xhci->comp_mode_recovery_timer);
1193 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1194 "Compliance Mode Recovery Timer deleted!");
1195 }
1196
1197 /* Let the USB core know _both_ roothubs lost power. */
1198 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1199 if (xhci->shared_hcd)
1200 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1201
1202 xhci_dbg(xhci, "Stop HCD\n");
1203 xhci_halt(xhci);
1204 xhci_zero_64b_regs(xhci);
1205 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1206 spin_unlock_irq(&xhci->lock);
1207 if (retval)
1208 return retval;
1209 xhci_cleanup_msix(xhci);
1210
1211 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1212 temp = readl(&xhci->op_regs->status);
1213 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1214 temp = readl(&xhci->ir_set->irq_pending);
1215 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1216
1217 xhci_dbg(xhci, "cleaning up memory\n");
1218 xhci_mem_cleanup(xhci);
1219 xhci_debugfs_exit(xhci);
1220 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1221 readl(&xhci->op_regs->status));
1222
1223 /* USB core calls the PCI reinit and start functions twice:
1224 * first with the primary HCD, and then with the secondary HCD.
1225 * If we don't do the same, the host will never be started.
1226 */
1227 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1228 retval = xhci_init(hcd);
1229 if (retval)
1230 return retval;
1231 comp_timer_running = true;
1232
1233 xhci_dbg(xhci, "Start the primary HCD\n");
1234 retval = xhci_run(hcd);
1235 if (!retval && xhci->shared_hcd) {
1236 xhci_dbg(xhci, "Start the secondary HCD\n");
1237 retval = xhci_run(xhci->shared_hcd);
1238 }
1239
1240 hcd->state = HC_STATE_SUSPENDED;
1241 if (xhci->shared_hcd)
1242 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1243 goto done;
1244 }
1245
1246 /* step 4: set Run/Stop bit */
1247 command = readl(&xhci->op_regs->command);
1248 command |= CMD_RUN;
1249 writel(command, &xhci->op_regs->command);
1250 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1251 0, 250 * 1000);
1252
1253 /* step 5: walk topology and initialize portsc,
1254 * portpmsc and portli
1255 */
1256 /* this is done in bus_resume */
1257
1258 /* step 6: restart each of the previously
1259 * Running endpoints by ringing their doorbells
1260 */
1261
1262 spin_unlock_irq(&xhci->lock);
1263
1264 xhci_dbc_resume(xhci);
1265
1266 done:
1267 if (retval == 0) {
1268 /*
1269 * Resume roothubs only if there are pending events.
1270 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1271 * the first wake signalling failed, give it that chance.
1272 */
1273 pending_portevent = xhci_pending_portevent(xhci);
1274 if (!pending_portevent) {
1275 msleep(120);
1276 pending_portevent = xhci_pending_portevent(xhci);
1277 }
1278
1279 if (pending_portevent) {
1280 if (xhci->shared_hcd)
1281 usb_hcd_resume_root_hub(xhci->shared_hcd);
1282 usb_hcd_resume_root_hub(hcd);
1283 }
1284 }
1285 /*
1286 * If system is subject to the Quirk, Compliance Mode Timer needs to
1287 * be re-initialized Always after a system resume. Ports are subject
1288 * to suffer the Compliance Mode issue again. It doesn't matter if
1289 * ports have entered previously to U0 before system's suspension.
1290 */
1291 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1292 compliance_mode_recovery_timer_init(xhci);
1293
1294 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1295 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1296
1297 /* Re-enable port polling. */
1298 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1299 __func__, hcd->self.busnum);
1300 if (xhci->shared_hcd) {
1301 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1302 usb_hcd_poll_rh_status(xhci->shared_hcd);
1303 }
1304 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1305 usb_hcd_poll_rh_status(hcd);
1306
1307 return retval;
1308 }
1309 EXPORT_SYMBOL_GPL(xhci_resume);
1310 #endif /* CONFIG_PM */
1311
1312 /*-------------------------------------------------------------------------*/
1313
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1314 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316 void *temp;
1317 int ret = 0;
1318 unsigned int buf_len;
1319 enum dma_data_direction dir;
1320
1321 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1322 buf_len = urb->transfer_buffer_length;
1323
1324 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1325 dev_to_node(hcd->self.sysdev));
1326
1327 if (usb_urb_dir_out(urb))
1328 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1329 temp, buf_len, 0);
1330
1331 urb->transfer_buffer = temp;
1332 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1333 urb->transfer_buffer,
1334 urb->transfer_buffer_length,
1335 dir);
1336
1337 if (dma_mapping_error(hcd->self.sysdev,
1338 urb->transfer_dma)) {
1339 ret = -EAGAIN;
1340 kfree(temp);
1341 } else {
1342 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1343 }
1344
1345 return ret;
1346 }
1347
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1348 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1349 struct urb *urb)
1350 {
1351 bool ret = false;
1352 unsigned int i;
1353 unsigned int len = 0;
1354 unsigned int trb_size;
1355 unsigned int max_pkt;
1356 struct scatterlist *sg;
1357 struct scatterlist *tail_sg;
1358
1359 tail_sg = urb->sg;
1360 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1361
1362 if (!urb->num_sgs)
1363 return ret;
1364
1365 if (urb->dev->speed >= USB_SPEED_SUPER)
1366 trb_size = TRB_CACHE_SIZE_SS;
1367 else
1368 trb_size = TRB_CACHE_SIZE_HS;
1369
1370 if (urb->transfer_buffer_length != 0 &&
1371 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1372 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1373 len = len + sg->length;
1374 if (i > trb_size - 2) {
1375 len = len - tail_sg->length;
1376 if (len < max_pkt) {
1377 ret = true;
1378 break;
1379 }
1380
1381 tail_sg = sg_next(tail_sg);
1382 }
1383 }
1384 }
1385 return ret;
1386 }
1387
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1388 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1389 {
1390 unsigned int len;
1391 unsigned int buf_len;
1392 enum dma_data_direction dir;
1393
1394 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1395
1396 buf_len = urb->transfer_buffer_length;
1397
1398 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1399 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1400 dma_unmap_single(hcd->self.sysdev,
1401 urb->transfer_dma,
1402 urb->transfer_buffer_length,
1403 dir);
1404
1405 if (usb_urb_dir_in(urb)) {
1406 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1407 urb->transfer_buffer,
1408 buf_len,
1409 0);
1410 if (len != buf_len) {
1411 xhci_dbg(hcd_to_xhci(hcd),
1412 "Copy from tmp buf to urb sg list failed\n");
1413 urb->actual_length = len;
1414 }
1415 }
1416 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1417 kfree(urb->transfer_buffer);
1418 urb->transfer_buffer = NULL;
1419 }
1420
1421 /*
1422 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1423 * we'll copy the actual data into the TRB address register. This is limited to
1424 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1425 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1426 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1427 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1428 gfp_t mem_flags)
1429 {
1430 struct xhci_hcd *xhci;
1431
1432 xhci = hcd_to_xhci(hcd);
1433
1434 if (xhci_urb_suitable_for_idt(urb))
1435 return 0;
1436
1437 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1438 if (xhci_urb_temp_buffer_required(hcd, urb))
1439 return xhci_map_temp_buffer(hcd, urb);
1440 }
1441 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1442 }
1443
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1444 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446 struct xhci_hcd *xhci;
1447 bool unmap_temp_buf = false;
1448
1449 xhci = hcd_to_xhci(hcd);
1450
1451 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1452 unmap_temp_buf = true;
1453
1454 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1455 xhci_unmap_temp_buf(hcd, urb);
1456 else
1457 usb_hcd_unmap_urb_for_dma(hcd, urb);
1458 }
1459
1460 /**
1461 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1462 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1463 * value to right shift 1 for the bitmask.
1464 *
1465 * Index = (epnum * 2) + direction - 1,
1466 * where direction = 0 for OUT, 1 for IN.
1467 * For control endpoints, the IN index is used (OUT index is unused), so
1468 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1469 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1470 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1471 {
1472 unsigned int index;
1473 if (usb_endpoint_xfer_control(desc))
1474 index = (unsigned int) (usb_endpoint_num(desc)*2);
1475 else
1476 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1477 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1478 return index;
1479 }
1480 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1481
1482 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1483 * address from the XHCI endpoint index.
1484 */
xhci_get_endpoint_address(unsigned int ep_index)1485 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1486 {
1487 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1488 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1489 return direction | number;
1490 }
1491
1492 /* Find the flag for this endpoint (for use in the control context). Use the
1493 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1494 * bit 1, etc.
1495 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1496 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1497 {
1498 return 1 << (xhci_get_endpoint_index(desc) + 1);
1499 }
1500
1501 /* Compute the last valid endpoint context index. Basically, this is the
1502 * endpoint index plus one. For slot contexts with more than valid endpoint,
1503 * we find the most significant bit set in the added contexts flags.
1504 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1505 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1506 */
xhci_last_valid_endpoint(u32 added_ctxs)1507 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1508 {
1509 return fls(added_ctxs) - 1;
1510 }
1511
1512 /* Returns 1 if the arguments are OK;
1513 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1514 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1515 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1516 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1517 const char *func) {
1518 struct xhci_hcd *xhci;
1519 struct xhci_virt_device *virt_dev;
1520
1521 if (!hcd || (check_ep && !ep) || !udev) {
1522 pr_debug("xHCI %s called with invalid args\n", func);
1523 return -EINVAL;
1524 }
1525 if (!udev->parent) {
1526 pr_debug("xHCI %s called for root hub\n", func);
1527 return 0;
1528 }
1529
1530 xhci = hcd_to_xhci(hcd);
1531 if (check_virt_dev) {
1532 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1533 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1534 func);
1535 return -EINVAL;
1536 }
1537
1538 virt_dev = xhci->devs[udev->slot_id];
1539 if (virt_dev->udev != udev) {
1540 xhci_dbg(xhci, "xHCI %s called with udev and "
1541 "virt_dev does not match\n", func);
1542 return -EINVAL;
1543 }
1544 }
1545
1546 if (xhci->xhc_state & XHCI_STATE_HALTED)
1547 return -ENODEV;
1548
1549 return 1;
1550 }
1551
1552 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1553 struct usb_device *udev, struct xhci_command *command,
1554 bool ctx_change, bool must_succeed);
1555
1556 /*
1557 * Full speed devices may have a max packet size greater than 8 bytes, but the
1558 * USB core doesn't know that until it reads the first 8 bytes of the
1559 * descriptor. If the usb_device's max packet size changes after that point,
1560 * we need to issue an evaluate context command and wait on it.
1561 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1562 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1563 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1564 {
1565 struct xhci_container_ctx *out_ctx;
1566 struct xhci_input_control_ctx *ctrl_ctx;
1567 struct xhci_ep_ctx *ep_ctx;
1568 struct xhci_command *command;
1569 int max_packet_size;
1570 int hw_max_packet_size;
1571 int ret = 0;
1572
1573 out_ctx = xhci->devs[slot_id]->out_ctx;
1574 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1575 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1576 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1577 if (hw_max_packet_size != max_packet_size) {
1578 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1579 "Max Packet Size for ep 0 changed.");
1580 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1581 "Max packet size in usb_device = %d",
1582 max_packet_size);
1583 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1584 "Max packet size in xHCI HW = %d",
1585 hw_max_packet_size);
1586 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1587 "Issuing evaluate context command.");
1588
1589 /* Set up the input context flags for the command */
1590 /* FIXME: This won't work if a non-default control endpoint
1591 * changes max packet sizes.
1592 */
1593
1594 command = xhci_alloc_command(xhci, true, mem_flags);
1595 if (!command)
1596 return -ENOMEM;
1597
1598 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1599 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1600 if (!ctrl_ctx) {
1601 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1602 __func__);
1603 ret = -ENOMEM;
1604 goto command_cleanup;
1605 }
1606 /* Set up the modified control endpoint 0 */
1607 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1608 xhci->devs[slot_id]->out_ctx, ep_index);
1609
1610 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1611 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1612 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1613 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1614
1615 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1616 ctrl_ctx->drop_flags = 0;
1617
1618 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1619 true, false);
1620
1621 /* Clean up the input context for later use by bandwidth
1622 * functions.
1623 */
1624 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1625 command_cleanup:
1626 kfree(command->completion);
1627 kfree(command);
1628 }
1629 return ret;
1630 }
1631
1632 /*
1633 * non-error returns are a promise to giveback() the urb later
1634 * we drop ownership so next owner (or urb unlink) can get it
1635 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1636 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1637 {
1638 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1639 unsigned long flags;
1640 int ret = 0;
1641 unsigned int slot_id, ep_index;
1642 unsigned int *ep_state;
1643 struct urb_priv *urb_priv;
1644 int num_tds;
1645
1646 if (!urb)
1647 return -EINVAL;
1648 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1649 true, true, __func__);
1650 if (ret <= 0)
1651 return ret ? ret : -EINVAL;
1652
1653 slot_id = urb->dev->slot_id;
1654 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1655 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1656
1657 if (!HCD_HW_ACCESSIBLE(hcd))
1658 return -ESHUTDOWN;
1659
1660 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1661 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1662 return -ENODEV;
1663 }
1664
1665 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1666 num_tds = urb->number_of_packets;
1667 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1668 urb->transfer_buffer_length > 0 &&
1669 urb->transfer_flags & URB_ZERO_PACKET &&
1670 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1671 num_tds = 2;
1672 else
1673 num_tds = 1;
1674
1675 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1676 if (!urb_priv)
1677 return -ENOMEM;
1678
1679 urb_priv->num_tds = num_tds;
1680 urb_priv->num_tds_done = 0;
1681 urb->hcpriv = urb_priv;
1682
1683 trace_xhci_urb_enqueue(urb);
1684
1685 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1686 /* Check to see if the max packet size for the default control
1687 * endpoint changed during FS device enumeration
1688 */
1689 if (urb->dev->speed == USB_SPEED_FULL) {
1690 ret = xhci_check_maxpacket(xhci, slot_id,
1691 ep_index, urb, mem_flags);
1692 if (ret < 0) {
1693 xhci_urb_free_priv(urb_priv);
1694 urb->hcpriv = NULL;
1695 return ret;
1696 }
1697 }
1698 }
1699
1700 spin_lock_irqsave(&xhci->lock, flags);
1701
1702 if (xhci->xhc_state & XHCI_STATE_DYING) {
1703 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1704 urb->ep->desc.bEndpointAddress, urb);
1705 ret = -ESHUTDOWN;
1706 goto free_priv;
1707 }
1708 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1709 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1710 *ep_state);
1711 ret = -EINVAL;
1712 goto free_priv;
1713 }
1714 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1715 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1716 ret = -EINVAL;
1717 goto free_priv;
1718 }
1719
1720 switch (usb_endpoint_type(&urb->ep->desc)) {
1721
1722 case USB_ENDPOINT_XFER_CONTROL:
1723 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1724 slot_id, ep_index);
1725 break;
1726 case USB_ENDPOINT_XFER_BULK:
1727 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1728 slot_id, ep_index);
1729 break;
1730 case USB_ENDPOINT_XFER_INT:
1731 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1732 slot_id, ep_index);
1733 break;
1734 case USB_ENDPOINT_XFER_ISOC:
1735 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1736 slot_id, ep_index);
1737 }
1738
1739 if (ret) {
1740 free_priv:
1741 xhci_urb_free_priv(urb_priv);
1742 urb->hcpriv = NULL;
1743 }
1744 spin_unlock_irqrestore(&xhci->lock, flags);
1745 return ret;
1746 }
1747
1748 /*
1749 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1750 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1751 * should pick up where it left off in the TD, unless a Set Transfer Ring
1752 * Dequeue Pointer is issued.
1753 *
1754 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1755 * the ring. Since the ring is a contiguous structure, they can't be physically
1756 * removed. Instead, there are two options:
1757 *
1758 * 1) If the HC is in the middle of processing the URB to be canceled, we
1759 * simply move the ring's dequeue pointer past those TRBs using the Set
1760 * Transfer Ring Dequeue Pointer command. This will be the common case,
1761 * when drivers timeout on the last submitted URB and attempt to cancel.
1762 *
1763 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1764 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1765 * HC will need to invalidate the any TRBs it has cached after the stop
1766 * endpoint command, as noted in the xHCI 0.95 errata.
1767 *
1768 * 3) The TD may have completed by the time the Stop Endpoint Command
1769 * completes, so software needs to handle that case too.
1770 *
1771 * This function should protect against the TD enqueueing code ringing the
1772 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1773 * It also needs to account for multiple cancellations on happening at the same
1774 * time for the same endpoint.
1775 *
1776 * Note that this function can be called in any context, or so says
1777 * usb_hcd_unlink_urb()
1778 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1779 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1780 {
1781 unsigned long flags;
1782 int ret, i;
1783 u32 temp;
1784 struct xhci_hcd *xhci;
1785 struct urb_priv *urb_priv;
1786 struct xhci_td *td;
1787 unsigned int ep_index;
1788 struct xhci_ring *ep_ring;
1789 struct xhci_virt_ep *ep;
1790 struct xhci_command *command;
1791 struct xhci_virt_device *vdev;
1792
1793 xhci = hcd_to_xhci(hcd);
1794 spin_lock_irqsave(&xhci->lock, flags);
1795
1796 trace_xhci_urb_dequeue(urb);
1797
1798 /* Make sure the URB hasn't completed or been unlinked already */
1799 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1800 if (ret)
1801 goto done;
1802
1803 /* give back URB now if we can't queue it for cancel */
1804 vdev = xhci->devs[urb->dev->slot_id];
1805 urb_priv = urb->hcpriv;
1806 if (!vdev || !urb_priv)
1807 goto err_giveback;
1808
1809 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1810 ep = &vdev->eps[ep_index];
1811 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1812 if (!ep || !ep_ring)
1813 goto err_giveback;
1814
1815 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1816 temp = readl(&xhci->op_regs->status);
1817 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1818 xhci_hc_died(xhci);
1819 goto done;
1820 }
1821
1822 /*
1823 * check ring is not re-allocated since URB was enqueued. If it is, then
1824 * make sure none of the ring related pointers in this URB private data
1825 * are touched, such as td_list, otherwise we overwrite freed data
1826 */
1827 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1828 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1829 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1830 td = &urb_priv->td[i];
1831 if (!list_empty(&td->cancelled_td_list))
1832 list_del_init(&td->cancelled_td_list);
1833 }
1834 goto err_giveback;
1835 }
1836
1837 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1838 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1839 "HC halted, freeing TD manually.");
1840 for (i = urb_priv->num_tds_done;
1841 i < urb_priv->num_tds;
1842 i++) {
1843 td = &urb_priv->td[i];
1844 if (!list_empty(&td->td_list))
1845 list_del_init(&td->td_list);
1846 if (!list_empty(&td->cancelled_td_list))
1847 list_del_init(&td->cancelled_td_list);
1848 }
1849 goto err_giveback;
1850 }
1851
1852 i = urb_priv->num_tds_done;
1853 if (i < urb_priv->num_tds)
1854 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1855 "Cancel URB %p, dev %s, ep 0x%x, "
1856 "starting at offset 0x%llx",
1857 urb, urb->dev->devpath,
1858 urb->ep->desc.bEndpointAddress,
1859 (unsigned long long) xhci_trb_virt_to_dma(
1860 urb_priv->td[i].start_seg,
1861 urb_priv->td[i].first_trb));
1862
1863 for (; i < urb_priv->num_tds; i++) {
1864 td = &urb_priv->td[i];
1865 /* TD can already be on cancelled list if ep halted on it */
1866 if (list_empty(&td->cancelled_td_list)) {
1867 td->cancel_status = TD_DIRTY;
1868 list_add_tail(&td->cancelled_td_list,
1869 &ep->cancelled_td_list);
1870 }
1871 }
1872
1873 /* Queue a stop endpoint command, but only if this is
1874 * the first cancellation to be handled.
1875 */
1876 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1877 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1878 if (!command) {
1879 ret = -ENOMEM;
1880 goto done;
1881 }
1882 ep->ep_state |= EP_STOP_CMD_PENDING;
1883 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1884 ep_index, 0);
1885 xhci_ring_cmd_db(xhci);
1886 }
1887 done:
1888 spin_unlock_irqrestore(&xhci->lock, flags);
1889 return ret;
1890
1891 err_giveback:
1892 if (urb_priv)
1893 xhci_urb_free_priv(urb_priv);
1894 usb_hcd_unlink_urb_from_ep(hcd, urb);
1895 spin_unlock_irqrestore(&xhci->lock, flags);
1896 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1897 return ret;
1898 }
1899
1900 /* Drop an endpoint from a new bandwidth configuration for this device.
1901 * Only one call to this function is allowed per endpoint before
1902 * check_bandwidth() or reset_bandwidth() must be called.
1903 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1904 * add the endpoint to the schedule with possibly new parameters denoted by a
1905 * different endpoint descriptor in usb_host_endpoint.
1906 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1907 * not allowed.
1908 *
1909 * The USB core will not allow URBs to be queued to an endpoint that is being
1910 * disabled, so there's no need for mutual exclusion to protect
1911 * the xhci->devs[slot_id] structure.
1912 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1913 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1914 struct usb_host_endpoint *ep)
1915 {
1916 struct xhci_hcd *xhci;
1917 struct xhci_container_ctx *in_ctx, *out_ctx;
1918 struct xhci_input_control_ctx *ctrl_ctx;
1919 unsigned int ep_index;
1920 struct xhci_ep_ctx *ep_ctx;
1921 u32 drop_flag;
1922 u32 new_add_flags, new_drop_flags;
1923 int ret;
1924
1925 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1926 if (ret <= 0)
1927 return ret;
1928 xhci = hcd_to_xhci(hcd);
1929 if (xhci->xhc_state & XHCI_STATE_DYING)
1930 return -ENODEV;
1931
1932 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1933 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1934 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1935 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1936 __func__, drop_flag);
1937 return 0;
1938 }
1939
1940 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1941 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1942 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1943 if (!ctrl_ctx) {
1944 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1945 __func__);
1946 return 0;
1947 }
1948
1949 ep_index = xhci_get_endpoint_index(&ep->desc);
1950 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1951 /* If the HC already knows the endpoint is disabled,
1952 * or the HCD has noted it is disabled, ignore this request
1953 */
1954 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1955 le32_to_cpu(ctrl_ctx->drop_flags) &
1956 xhci_get_endpoint_flag(&ep->desc)) {
1957 /* Do not warn when called after a usb_device_reset */
1958 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1959 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1960 __func__, ep);
1961 return 0;
1962 }
1963
1964 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1965 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1966
1967 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1968 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1969
1970 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1971
1972 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1973
1974 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1975 (unsigned int) ep->desc.bEndpointAddress,
1976 udev->slot_id,
1977 (unsigned int) new_drop_flags,
1978 (unsigned int) new_add_flags);
1979 return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1982
1983 /* Add an endpoint to a new possible bandwidth configuration for this device.
1984 * Only one call to this function is allowed per endpoint before
1985 * check_bandwidth() or reset_bandwidth() must be called.
1986 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1987 * add the endpoint to the schedule with possibly new parameters denoted by a
1988 * different endpoint descriptor in usb_host_endpoint.
1989 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1990 * not allowed.
1991 *
1992 * The USB core will not allow URBs to be queued to an endpoint until the
1993 * configuration or alt setting is installed in the device, so there's no need
1994 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1995 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1996 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1997 struct usb_host_endpoint *ep)
1998 {
1999 struct xhci_hcd *xhci;
2000 struct xhci_container_ctx *in_ctx;
2001 unsigned int ep_index;
2002 struct xhci_input_control_ctx *ctrl_ctx;
2003 struct xhci_ep_ctx *ep_ctx;
2004 u32 added_ctxs;
2005 u32 new_add_flags, new_drop_flags;
2006 struct xhci_virt_device *virt_dev;
2007 int ret = 0;
2008
2009 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2010 if (ret <= 0) {
2011 /* So we won't queue a reset ep command for a root hub */
2012 ep->hcpriv = NULL;
2013 return ret;
2014 }
2015 xhci = hcd_to_xhci(hcd);
2016 if (xhci->xhc_state & XHCI_STATE_DYING)
2017 return -ENODEV;
2018
2019 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2020 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2021 /* FIXME when we have to issue an evaluate endpoint command to
2022 * deal with ep0 max packet size changing once we get the
2023 * descriptors
2024 */
2025 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2026 __func__, added_ctxs);
2027 return 0;
2028 }
2029
2030 virt_dev = xhci->devs[udev->slot_id];
2031 in_ctx = virt_dev->in_ctx;
2032 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2033 if (!ctrl_ctx) {
2034 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2035 __func__);
2036 return 0;
2037 }
2038
2039 ep_index = xhci_get_endpoint_index(&ep->desc);
2040 /* If this endpoint is already in use, and the upper layers are trying
2041 * to add it again without dropping it, reject the addition.
2042 */
2043 if (virt_dev->eps[ep_index].ring &&
2044 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2045 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2046 "without dropping it.\n",
2047 (unsigned int) ep->desc.bEndpointAddress);
2048 return -EINVAL;
2049 }
2050
2051 /* If the HCD has already noted the endpoint is enabled,
2052 * ignore this request.
2053 */
2054 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2055 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2056 __func__, ep);
2057 return 0;
2058 }
2059
2060 /*
2061 * Configuration and alternate setting changes must be done in
2062 * process context, not interrupt context (or so documenation
2063 * for usb_set_interface() and usb_set_configuration() claim).
2064 */
2065 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2066 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2067 __func__, ep->desc.bEndpointAddress);
2068 return -ENOMEM;
2069 }
2070
2071 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2072 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2073
2074 /* If xhci_endpoint_disable() was called for this endpoint, but the
2075 * xHC hasn't been notified yet through the check_bandwidth() call,
2076 * this re-adds a new state for the endpoint from the new endpoint
2077 * descriptors. We must drop and re-add this endpoint, so we leave the
2078 * drop flags alone.
2079 */
2080 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2081
2082 /* Store the usb_device pointer for later use */
2083 ep->hcpriv = udev;
2084
2085 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2086 trace_xhci_add_endpoint(ep_ctx);
2087
2088 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2089 (unsigned int) ep->desc.bEndpointAddress,
2090 udev->slot_id,
2091 (unsigned int) new_drop_flags,
2092 (unsigned int) new_add_flags);
2093 return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2096
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2097 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2098 {
2099 struct xhci_input_control_ctx *ctrl_ctx;
2100 struct xhci_ep_ctx *ep_ctx;
2101 struct xhci_slot_ctx *slot_ctx;
2102 int i;
2103
2104 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2105 if (!ctrl_ctx) {
2106 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2107 __func__);
2108 return;
2109 }
2110
2111 /* When a device's add flag and drop flag are zero, any subsequent
2112 * configure endpoint command will leave that endpoint's state
2113 * untouched. Make sure we don't leave any old state in the input
2114 * endpoint contexts.
2115 */
2116 ctrl_ctx->drop_flags = 0;
2117 ctrl_ctx->add_flags = 0;
2118 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2119 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2120 /* Endpoint 0 is always valid */
2121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2122 for (i = 1; i < 31; i++) {
2123 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2124 ep_ctx->ep_info = 0;
2125 ep_ctx->ep_info2 = 0;
2126 ep_ctx->deq = 0;
2127 ep_ctx->tx_info = 0;
2128 }
2129 }
2130
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2131 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2132 struct usb_device *udev, u32 *cmd_status)
2133 {
2134 int ret;
2135
2136 switch (*cmd_status) {
2137 case COMP_COMMAND_ABORTED:
2138 case COMP_COMMAND_RING_STOPPED:
2139 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2140 ret = -ETIME;
2141 break;
2142 case COMP_RESOURCE_ERROR:
2143 dev_warn(&udev->dev,
2144 "Not enough host controller resources for new device state.\n");
2145 ret = -ENOMEM;
2146 /* FIXME: can we allocate more resources for the HC? */
2147 break;
2148 case COMP_BANDWIDTH_ERROR:
2149 case COMP_SECONDARY_BANDWIDTH_ERROR:
2150 dev_warn(&udev->dev,
2151 "Not enough bandwidth for new device state.\n");
2152 ret = -ENOSPC;
2153 /* FIXME: can we go back to the old state? */
2154 break;
2155 case COMP_TRB_ERROR:
2156 /* the HCD set up something wrong */
2157 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2158 "add flag = 1, "
2159 "and endpoint is not disabled.\n");
2160 ret = -EINVAL;
2161 break;
2162 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2163 dev_warn(&udev->dev,
2164 "ERROR: Incompatible device for endpoint configure command.\n");
2165 ret = -ENODEV;
2166 break;
2167 case COMP_SUCCESS:
2168 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2169 "Successful Endpoint Configure command");
2170 ret = 0;
2171 break;
2172 default:
2173 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2174 *cmd_status);
2175 ret = -EINVAL;
2176 break;
2177 }
2178 return ret;
2179 }
2180
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2181 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2182 struct usb_device *udev, u32 *cmd_status)
2183 {
2184 int ret;
2185
2186 switch (*cmd_status) {
2187 case COMP_COMMAND_ABORTED:
2188 case COMP_COMMAND_RING_STOPPED:
2189 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2190 ret = -ETIME;
2191 break;
2192 case COMP_PARAMETER_ERROR:
2193 dev_warn(&udev->dev,
2194 "WARN: xHCI driver setup invalid evaluate context command.\n");
2195 ret = -EINVAL;
2196 break;
2197 case COMP_SLOT_NOT_ENABLED_ERROR:
2198 dev_warn(&udev->dev,
2199 "WARN: slot not enabled for evaluate context command.\n");
2200 ret = -EINVAL;
2201 break;
2202 case COMP_CONTEXT_STATE_ERROR:
2203 dev_warn(&udev->dev,
2204 "WARN: invalid context state for evaluate context command.\n");
2205 ret = -EINVAL;
2206 break;
2207 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2208 dev_warn(&udev->dev,
2209 "ERROR: Incompatible device for evaluate context command.\n");
2210 ret = -ENODEV;
2211 break;
2212 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2213 /* Max Exit Latency too large error */
2214 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2215 ret = -EINVAL;
2216 break;
2217 case COMP_SUCCESS:
2218 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2219 "Successful evaluate context command");
2220 ret = 0;
2221 break;
2222 default:
2223 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2224 *cmd_status);
2225 ret = -EINVAL;
2226 break;
2227 }
2228 return ret;
2229 }
2230
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2231 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2232 struct xhci_input_control_ctx *ctrl_ctx)
2233 {
2234 u32 valid_add_flags;
2235 u32 valid_drop_flags;
2236
2237 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2238 * (bit 1). The default control endpoint is added during the Address
2239 * Device command and is never removed until the slot is disabled.
2240 */
2241 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2242 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2243
2244 /* Use hweight32 to count the number of ones in the add flags, or
2245 * number of endpoints added. Don't count endpoints that are changed
2246 * (both added and dropped).
2247 */
2248 return hweight32(valid_add_flags) -
2249 hweight32(valid_add_flags & valid_drop_flags);
2250 }
2251
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2252 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2253 struct xhci_input_control_ctx *ctrl_ctx)
2254 {
2255 u32 valid_add_flags;
2256 u32 valid_drop_flags;
2257
2258 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2259 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2260
2261 return hweight32(valid_drop_flags) -
2262 hweight32(valid_add_flags & valid_drop_flags);
2263 }
2264
2265 /*
2266 * We need to reserve the new number of endpoints before the configure endpoint
2267 * command completes. We can't subtract the dropped endpoints from the number
2268 * of active endpoints until the command completes because we can oversubscribe
2269 * the host in this case:
2270 *
2271 * - the first configure endpoint command drops more endpoints than it adds
2272 * - a second configure endpoint command that adds more endpoints is queued
2273 * - the first configure endpoint command fails, so the config is unchanged
2274 * - the second command may succeed, even though there isn't enough resources
2275 *
2276 * Must be called with xhci->lock held.
2277 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2278 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2279 struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281 u32 added_eps;
2282
2283 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2284 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2285 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2286 "Not enough ep ctxs: "
2287 "%u active, need to add %u, limit is %u.",
2288 xhci->num_active_eps, added_eps,
2289 xhci->limit_active_eps);
2290 return -ENOMEM;
2291 }
2292 xhci->num_active_eps += added_eps;
2293 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294 "Adding %u ep ctxs, %u now active.", added_eps,
2295 xhci->num_active_eps);
2296 return 0;
2297 }
2298
2299 /*
2300 * The configure endpoint was failed by the xHC for some other reason, so we
2301 * need to revert the resources that failed configuration would have used.
2302 *
2303 * Must be called with xhci->lock held.
2304 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2305 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2306 struct xhci_input_control_ctx *ctrl_ctx)
2307 {
2308 u32 num_failed_eps;
2309
2310 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2311 xhci->num_active_eps -= num_failed_eps;
2312 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313 "Removing %u failed ep ctxs, %u now active.",
2314 num_failed_eps,
2315 xhci->num_active_eps);
2316 }
2317
2318 /*
2319 * Now that the command has completed, clean up the active endpoint count by
2320 * subtracting out the endpoints that were dropped (but not changed).
2321 *
2322 * Must be called with xhci->lock held.
2323 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2324 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2325 struct xhci_input_control_ctx *ctrl_ctx)
2326 {
2327 u32 num_dropped_eps;
2328
2329 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2330 xhci->num_active_eps -= num_dropped_eps;
2331 if (num_dropped_eps)
2332 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2333 "Removing %u dropped ep ctxs, %u now active.",
2334 num_dropped_eps,
2335 xhci->num_active_eps);
2336 }
2337
xhci_get_block_size(struct usb_device * udev)2338 static unsigned int xhci_get_block_size(struct usb_device *udev)
2339 {
2340 switch (udev->speed) {
2341 case USB_SPEED_LOW:
2342 case USB_SPEED_FULL:
2343 return FS_BLOCK;
2344 case USB_SPEED_HIGH:
2345 return HS_BLOCK;
2346 case USB_SPEED_SUPER:
2347 case USB_SPEED_SUPER_PLUS:
2348 return SS_BLOCK;
2349 case USB_SPEED_UNKNOWN:
2350 case USB_SPEED_WIRELESS:
2351 default:
2352 /* Should never happen */
2353 return 1;
2354 }
2355 }
2356
2357 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2358 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2359 {
2360 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2361 return LS_OVERHEAD;
2362 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2363 return FS_OVERHEAD;
2364 return HS_OVERHEAD;
2365 }
2366
2367 /* If we are changing a LS/FS device under a HS hub,
2368 * make sure (if we are activating a new TT) that the HS bus has enough
2369 * bandwidth for this new TT.
2370 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2371 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2372 struct xhci_virt_device *virt_dev,
2373 int old_active_eps)
2374 {
2375 struct xhci_interval_bw_table *bw_table;
2376 struct xhci_tt_bw_info *tt_info;
2377
2378 /* Find the bandwidth table for the root port this TT is attached to. */
2379 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2380 tt_info = virt_dev->tt_info;
2381 /* If this TT already had active endpoints, the bandwidth for this TT
2382 * has already been added. Removing all periodic endpoints (and thus
2383 * making the TT enactive) will only decrease the bandwidth used.
2384 */
2385 if (old_active_eps)
2386 return 0;
2387 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2388 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2389 return -ENOMEM;
2390 return 0;
2391 }
2392 /* Not sure why we would have no new active endpoints...
2393 *
2394 * Maybe because of an Evaluate Context change for a hub update or a
2395 * control endpoint 0 max packet size change?
2396 * FIXME: skip the bandwidth calculation in that case.
2397 */
2398 return 0;
2399 }
2400
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2401 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2402 struct xhci_virt_device *virt_dev)
2403 {
2404 unsigned int bw_reserved;
2405
2406 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2407 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2408 return -ENOMEM;
2409
2410 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2411 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2412 return -ENOMEM;
2413
2414 return 0;
2415 }
2416
2417 /*
2418 * This algorithm is a very conservative estimate of the worst-case scheduling
2419 * scenario for any one interval. The hardware dynamically schedules the
2420 * packets, so we can't tell which microframe could be the limiting factor in
2421 * the bandwidth scheduling. This only takes into account periodic endpoints.
2422 *
2423 * Obviously, we can't solve an NP complete problem to find the minimum worst
2424 * case scenario. Instead, we come up with an estimate that is no less than
2425 * the worst case bandwidth used for any one microframe, but may be an
2426 * over-estimate.
2427 *
2428 * We walk the requirements for each endpoint by interval, starting with the
2429 * smallest interval, and place packets in the schedule where there is only one
2430 * possible way to schedule packets for that interval. In order to simplify
2431 * this algorithm, we record the largest max packet size for each interval, and
2432 * assume all packets will be that size.
2433 *
2434 * For interval 0, we obviously must schedule all packets for each interval.
2435 * The bandwidth for interval 0 is just the amount of data to be transmitted
2436 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2437 * the number of packets).
2438 *
2439 * For interval 1, we have two possible microframes to schedule those packets
2440 * in. For this algorithm, if we can schedule the same number of packets for
2441 * each possible scheduling opportunity (each microframe), we will do so. The
2442 * remaining number of packets will be saved to be transmitted in the gaps in
2443 * the next interval's scheduling sequence.
2444 *
2445 * As we move those remaining packets to be scheduled with interval 2 packets,
2446 * we have to double the number of remaining packets to transmit. This is
2447 * because the intervals are actually powers of 2, and we would be transmitting
2448 * the previous interval's packets twice in this interval. We also have to be
2449 * sure that when we look at the largest max packet size for this interval, we
2450 * also look at the largest max packet size for the remaining packets and take
2451 * the greater of the two.
2452 *
2453 * The algorithm continues to evenly distribute packets in each scheduling
2454 * opportunity, and push the remaining packets out, until we get to the last
2455 * interval. Then those packets and their associated overhead are just added
2456 * to the bandwidth used.
2457 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2458 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 int old_active_eps)
2461 {
2462 unsigned int bw_reserved;
2463 unsigned int max_bandwidth;
2464 unsigned int bw_used;
2465 unsigned int block_size;
2466 struct xhci_interval_bw_table *bw_table;
2467 unsigned int packet_size = 0;
2468 unsigned int overhead = 0;
2469 unsigned int packets_transmitted = 0;
2470 unsigned int packets_remaining = 0;
2471 unsigned int i;
2472
2473 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2474 return xhci_check_ss_bw(xhci, virt_dev);
2475
2476 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2477 max_bandwidth = HS_BW_LIMIT;
2478 /* Convert percent of bus BW reserved to blocks reserved */
2479 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2480 } else {
2481 max_bandwidth = FS_BW_LIMIT;
2482 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2483 }
2484
2485 bw_table = virt_dev->bw_table;
2486 /* We need to translate the max packet size and max ESIT payloads into
2487 * the units the hardware uses.
2488 */
2489 block_size = xhci_get_block_size(virt_dev->udev);
2490
2491 /* If we are manipulating a LS/FS device under a HS hub, double check
2492 * that the HS bus has enough bandwidth if we are activing a new TT.
2493 */
2494 if (virt_dev->tt_info) {
2495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2496 "Recalculating BW for rootport %u",
2497 virt_dev->real_port);
2498 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2499 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2500 "newly activated TT.\n");
2501 return -ENOMEM;
2502 }
2503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2504 "Recalculating BW for TT slot %u port %u",
2505 virt_dev->tt_info->slot_id,
2506 virt_dev->tt_info->ttport);
2507 } else {
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2509 "Recalculating BW for rootport %u",
2510 virt_dev->real_port);
2511 }
2512
2513 /* Add in how much bandwidth will be used for interval zero, or the
2514 * rounded max ESIT payload + number of packets * largest overhead.
2515 */
2516 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2517 bw_table->interval_bw[0].num_packets *
2518 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2519
2520 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2521 unsigned int bw_added;
2522 unsigned int largest_mps;
2523 unsigned int interval_overhead;
2524
2525 /*
2526 * How many packets could we transmit in this interval?
2527 * If packets didn't fit in the previous interval, we will need
2528 * to transmit that many packets twice within this interval.
2529 */
2530 packets_remaining = 2 * packets_remaining +
2531 bw_table->interval_bw[i].num_packets;
2532
2533 /* Find the largest max packet size of this or the previous
2534 * interval.
2535 */
2536 if (list_empty(&bw_table->interval_bw[i].endpoints))
2537 largest_mps = 0;
2538 else {
2539 struct xhci_virt_ep *virt_ep;
2540 struct list_head *ep_entry;
2541
2542 ep_entry = bw_table->interval_bw[i].endpoints.next;
2543 virt_ep = list_entry(ep_entry,
2544 struct xhci_virt_ep, bw_endpoint_list);
2545 /* Convert to blocks, rounding up */
2546 largest_mps = DIV_ROUND_UP(
2547 virt_ep->bw_info.max_packet_size,
2548 block_size);
2549 }
2550 if (largest_mps > packet_size)
2551 packet_size = largest_mps;
2552
2553 /* Use the larger overhead of this or the previous interval. */
2554 interval_overhead = xhci_get_largest_overhead(
2555 &bw_table->interval_bw[i]);
2556 if (interval_overhead > overhead)
2557 overhead = interval_overhead;
2558
2559 /* How many packets can we evenly distribute across
2560 * (1 << (i + 1)) possible scheduling opportunities?
2561 */
2562 packets_transmitted = packets_remaining >> (i + 1);
2563
2564 /* Add in the bandwidth used for those scheduled packets */
2565 bw_added = packets_transmitted * (overhead + packet_size);
2566
2567 /* How many packets do we have remaining to transmit? */
2568 packets_remaining = packets_remaining % (1 << (i + 1));
2569
2570 /* What largest max packet size should those packets have? */
2571 /* If we've transmitted all packets, don't carry over the
2572 * largest packet size.
2573 */
2574 if (packets_remaining == 0) {
2575 packet_size = 0;
2576 overhead = 0;
2577 } else if (packets_transmitted > 0) {
2578 /* Otherwise if we do have remaining packets, and we've
2579 * scheduled some packets in this interval, take the
2580 * largest max packet size from endpoints with this
2581 * interval.
2582 */
2583 packet_size = largest_mps;
2584 overhead = interval_overhead;
2585 }
2586 /* Otherwise carry over packet_size and overhead from the last
2587 * time we had a remainder.
2588 */
2589 bw_used += bw_added;
2590 if (bw_used > max_bandwidth) {
2591 xhci_warn(xhci, "Not enough bandwidth. "
2592 "Proposed: %u, Max: %u\n",
2593 bw_used, max_bandwidth);
2594 return -ENOMEM;
2595 }
2596 }
2597 /*
2598 * Ok, we know we have some packets left over after even-handedly
2599 * scheduling interval 15. We don't know which microframes they will
2600 * fit into, so we over-schedule and say they will be scheduled every
2601 * microframe.
2602 */
2603 if (packets_remaining > 0)
2604 bw_used += overhead + packet_size;
2605
2606 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2607 unsigned int port_index = virt_dev->real_port - 1;
2608
2609 /* OK, we're manipulating a HS device attached to a
2610 * root port bandwidth domain. Include the number of active TTs
2611 * in the bandwidth used.
2612 */
2613 bw_used += TT_HS_OVERHEAD *
2614 xhci->rh_bw[port_index].num_active_tts;
2615 }
2616
2617 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2618 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2619 "Available: %u " "percent",
2620 bw_used, max_bandwidth, bw_reserved,
2621 (max_bandwidth - bw_used - bw_reserved) * 100 /
2622 max_bandwidth);
2623
2624 bw_used += bw_reserved;
2625 if (bw_used > max_bandwidth) {
2626 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2627 bw_used, max_bandwidth);
2628 return -ENOMEM;
2629 }
2630
2631 bw_table->bw_used = bw_used;
2632 return 0;
2633 }
2634
xhci_is_async_ep(unsigned int ep_type)2635 static bool xhci_is_async_ep(unsigned int ep_type)
2636 {
2637 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2638 ep_type != ISOC_IN_EP &&
2639 ep_type != INT_IN_EP);
2640 }
2641
xhci_is_sync_in_ep(unsigned int ep_type)2642 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2643 {
2644 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2645 }
2646
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2647 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2648 {
2649 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2650
2651 if (ep_bw->ep_interval == 0)
2652 return SS_OVERHEAD_BURST +
2653 (ep_bw->mult * ep_bw->num_packets *
2654 (SS_OVERHEAD + mps));
2655 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2656 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2657 1 << ep_bw->ep_interval);
2658
2659 }
2660
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2661 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2662 struct xhci_bw_info *ep_bw,
2663 struct xhci_interval_bw_table *bw_table,
2664 struct usb_device *udev,
2665 struct xhci_virt_ep *virt_ep,
2666 struct xhci_tt_bw_info *tt_info)
2667 {
2668 struct xhci_interval_bw *interval_bw;
2669 int normalized_interval;
2670
2671 if (xhci_is_async_ep(ep_bw->type))
2672 return;
2673
2674 if (udev->speed >= USB_SPEED_SUPER) {
2675 if (xhci_is_sync_in_ep(ep_bw->type))
2676 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2677 xhci_get_ss_bw_consumed(ep_bw);
2678 else
2679 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2680 xhci_get_ss_bw_consumed(ep_bw);
2681 return;
2682 }
2683
2684 /* SuperSpeed endpoints never get added to intervals in the table, so
2685 * this check is only valid for HS/FS/LS devices.
2686 */
2687 if (list_empty(&virt_ep->bw_endpoint_list))
2688 return;
2689 /* For LS/FS devices, we need to translate the interval expressed in
2690 * microframes to frames.
2691 */
2692 if (udev->speed == USB_SPEED_HIGH)
2693 normalized_interval = ep_bw->ep_interval;
2694 else
2695 normalized_interval = ep_bw->ep_interval - 3;
2696
2697 if (normalized_interval == 0)
2698 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2699 interval_bw = &bw_table->interval_bw[normalized_interval];
2700 interval_bw->num_packets -= ep_bw->num_packets;
2701 switch (udev->speed) {
2702 case USB_SPEED_LOW:
2703 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2704 break;
2705 case USB_SPEED_FULL:
2706 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2707 break;
2708 case USB_SPEED_HIGH:
2709 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2710 break;
2711 case USB_SPEED_SUPER:
2712 case USB_SPEED_SUPER_PLUS:
2713 case USB_SPEED_UNKNOWN:
2714 case USB_SPEED_WIRELESS:
2715 /* Should never happen because only LS/FS/HS endpoints will get
2716 * added to the endpoint list.
2717 */
2718 return;
2719 }
2720 if (tt_info)
2721 tt_info->active_eps -= 1;
2722 list_del_init(&virt_ep->bw_endpoint_list);
2723 }
2724
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2725 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2726 struct xhci_bw_info *ep_bw,
2727 struct xhci_interval_bw_table *bw_table,
2728 struct usb_device *udev,
2729 struct xhci_virt_ep *virt_ep,
2730 struct xhci_tt_bw_info *tt_info)
2731 {
2732 struct xhci_interval_bw *interval_bw;
2733 struct xhci_virt_ep *smaller_ep;
2734 int normalized_interval;
2735
2736 if (xhci_is_async_ep(ep_bw->type))
2737 return;
2738
2739 if (udev->speed == USB_SPEED_SUPER) {
2740 if (xhci_is_sync_in_ep(ep_bw->type))
2741 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2742 xhci_get_ss_bw_consumed(ep_bw);
2743 else
2744 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2745 xhci_get_ss_bw_consumed(ep_bw);
2746 return;
2747 }
2748
2749 /* For LS/FS devices, we need to translate the interval expressed in
2750 * microframes to frames.
2751 */
2752 if (udev->speed == USB_SPEED_HIGH)
2753 normalized_interval = ep_bw->ep_interval;
2754 else
2755 normalized_interval = ep_bw->ep_interval - 3;
2756
2757 if (normalized_interval == 0)
2758 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2759 interval_bw = &bw_table->interval_bw[normalized_interval];
2760 interval_bw->num_packets += ep_bw->num_packets;
2761 switch (udev->speed) {
2762 case USB_SPEED_LOW:
2763 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2764 break;
2765 case USB_SPEED_FULL:
2766 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2767 break;
2768 case USB_SPEED_HIGH:
2769 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2770 break;
2771 case USB_SPEED_SUPER:
2772 case USB_SPEED_SUPER_PLUS:
2773 case USB_SPEED_UNKNOWN:
2774 case USB_SPEED_WIRELESS:
2775 /* Should never happen because only LS/FS/HS endpoints will get
2776 * added to the endpoint list.
2777 */
2778 return;
2779 }
2780
2781 if (tt_info)
2782 tt_info->active_eps += 1;
2783 /* Insert the endpoint into the list, largest max packet size first. */
2784 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2785 bw_endpoint_list) {
2786 if (ep_bw->max_packet_size >=
2787 smaller_ep->bw_info.max_packet_size) {
2788 /* Add the new ep before the smaller endpoint */
2789 list_add_tail(&virt_ep->bw_endpoint_list,
2790 &smaller_ep->bw_endpoint_list);
2791 return;
2792 }
2793 }
2794 /* Add the new endpoint at the end of the list. */
2795 list_add_tail(&virt_ep->bw_endpoint_list,
2796 &interval_bw->endpoints);
2797 }
2798
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2799 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2800 struct xhci_virt_device *virt_dev,
2801 int old_active_eps)
2802 {
2803 struct xhci_root_port_bw_info *rh_bw_info;
2804 if (!virt_dev->tt_info)
2805 return;
2806
2807 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2808 if (old_active_eps == 0 &&
2809 virt_dev->tt_info->active_eps != 0) {
2810 rh_bw_info->num_active_tts += 1;
2811 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2812 } else if (old_active_eps != 0 &&
2813 virt_dev->tt_info->active_eps == 0) {
2814 rh_bw_info->num_active_tts -= 1;
2815 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2816 }
2817 }
2818
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2819 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2820 struct xhci_virt_device *virt_dev,
2821 struct xhci_container_ctx *in_ctx)
2822 {
2823 struct xhci_bw_info ep_bw_info[31];
2824 int i;
2825 struct xhci_input_control_ctx *ctrl_ctx;
2826 int old_active_eps = 0;
2827
2828 if (virt_dev->tt_info)
2829 old_active_eps = virt_dev->tt_info->active_eps;
2830
2831 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2832 if (!ctrl_ctx) {
2833 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834 __func__);
2835 return -ENOMEM;
2836 }
2837
2838 for (i = 0; i < 31; i++) {
2839 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840 continue;
2841
2842 /* Make a copy of the BW info in case we need to revert this */
2843 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2844 sizeof(ep_bw_info[i]));
2845 /* Drop the endpoint from the interval table if the endpoint is
2846 * being dropped or changed.
2847 */
2848 if (EP_IS_DROPPED(ctrl_ctx, i))
2849 xhci_drop_ep_from_interval_table(xhci,
2850 &virt_dev->eps[i].bw_info,
2851 virt_dev->bw_table,
2852 virt_dev->udev,
2853 &virt_dev->eps[i],
2854 virt_dev->tt_info);
2855 }
2856 /* Overwrite the information stored in the endpoints' bw_info */
2857 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2858 for (i = 0; i < 31; i++) {
2859 /* Add any changed or added endpoints to the interval table */
2860 if (EP_IS_ADDED(ctrl_ctx, i))
2861 xhci_add_ep_to_interval_table(xhci,
2862 &virt_dev->eps[i].bw_info,
2863 virt_dev->bw_table,
2864 virt_dev->udev,
2865 &virt_dev->eps[i],
2866 virt_dev->tt_info);
2867 }
2868
2869 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2870 /* Ok, this fits in the bandwidth we have.
2871 * Update the number of active TTs.
2872 */
2873 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2874 return 0;
2875 }
2876
2877 /* We don't have enough bandwidth for this, revert the stored info. */
2878 for (i = 0; i < 31; i++) {
2879 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2880 continue;
2881
2882 /* Drop the new copies of any added or changed endpoints from
2883 * the interval table.
2884 */
2885 if (EP_IS_ADDED(ctrl_ctx, i)) {
2886 xhci_drop_ep_from_interval_table(xhci,
2887 &virt_dev->eps[i].bw_info,
2888 virt_dev->bw_table,
2889 virt_dev->udev,
2890 &virt_dev->eps[i],
2891 virt_dev->tt_info);
2892 }
2893 /* Revert the endpoint back to its old information */
2894 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2895 sizeof(ep_bw_info[i]));
2896 /* Add any changed or dropped endpoints back into the table */
2897 if (EP_IS_DROPPED(ctrl_ctx, i))
2898 xhci_add_ep_to_interval_table(xhci,
2899 &virt_dev->eps[i].bw_info,
2900 virt_dev->bw_table,
2901 virt_dev->udev,
2902 &virt_dev->eps[i],
2903 virt_dev->tt_info);
2904 }
2905 return -ENOMEM;
2906 }
2907
2908
2909 /* Issue a configure endpoint command or evaluate context command
2910 * and wait for it to finish.
2911 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2912 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2913 struct usb_device *udev,
2914 struct xhci_command *command,
2915 bool ctx_change, bool must_succeed)
2916 {
2917 int ret;
2918 unsigned long flags;
2919 struct xhci_input_control_ctx *ctrl_ctx;
2920 struct xhci_virt_device *virt_dev;
2921 struct xhci_slot_ctx *slot_ctx;
2922
2923 if (!command)
2924 return -EINVAL;
2925
2926 spin_lock_irqsave(&xhci->lock, flags);
2927
2928 if (xhci->xhc_state & XHCI_STATE_DYING) {
2929 spin_unlock_irqrestore(&xhci->lock, flags);
2930 return -ESHUTDOWN;
2931 }
2932
2933 virt_dev = xhci->devs[udev->slot_id];
2934
2935 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2936 if (!ctrl_ctx) {
2937 spin_unlock_irqrestore(&xhci->lock, flags);
2938 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2939 __func__);
2940 return -ENOMEM;
2941 }
2942
2943 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2944 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2945 spin_unlock_irqrestore(&xhci->lock, flags);
2946 xhci_warn(xhci, "Not enough host resources, "
2947 "active endpoint contexts = %u\n",
2948 xhci->num_active_eps);
2949 return -ENOMEM;
2950 }
2951 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2952 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2953 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2954 xhci_free_host_resources(xhci, ctrl_ctx);
2955 spin_unlock_irqrestore(&xhci->lock, flags);
2956 xhci_warn(xhci, "Not enough bandwidth\n");
2957 return -ENOMEM;
2958 }
2959
2960 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2961
2962 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2963 trace_xhci_configure_endpoint(slot_ctx);
2964
2965 if (!ctx_change)
2966 ret = xhci_queue_configure_endpoint(xhci, command,
2967 command->in_ctx->dma,
2968 udev->slot_id, must_succeed);
2969 else
2970 ret = xhci_queue_evaluate_context(xhci, command,
2971 command->in_ctx->dma,
2972 udev->slot_id, must_succeed);
2973 if (ret < 0) {
2974 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2975 xhci_free_host_resources(xhci, ctrl_ctx);
2976 spin_unlock_irqrestore(&xhci->lock, flags);
2977 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2978 "FIXME allocate a new ring segment");
2979 return -ENOMEM;
2980 }
2981 xhci_ring_cmd_db(xhci);
2982 spin_unlock_irqrestore(&xhci->lock, flags);
2983
2984 /* Wait for the configure endpoint command to complete */
2985 wait_for_completion(command->completion);
2986
2987 if (!ctx_change)
2988 ret = xhci_configure_endpoint_result(xhci, udev,
2989 &command->status);
2990 else
2991 ret = xhci_evaluate_context_result(xhci, udev,
2992 &command->status);
2993
2994 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2995 spin_lock_irqsave(&xhci->lock, flags);
2996 /* If the command failed, remove the reserved resources.
2997 * Otherwise, clean up the estimate to include dropped eps.
2998 */
2999 if (ret)
3000 xhci_free_host_resources(xhci, ctrl_ctx);
3001 else
3002 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3003 spin_unlock_irqrestore(&xhci->lock, flags);
3004 }
3005 return ret;
3006 }
3007
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)3008 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3009 struct xhci_virt_device *vdev, int i)
3010 {
3011 struct xhci_virt_ep *ep = &vdev->eps[i];
3012
3013 if (ep->ep_state & EP_HAS_STREAMS) {
3014 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3015 xhci_get_endpoint_address(i));
3016 xhci_free_stream_info(xhci, ep->stream_info);
3017 ep->stream_info = NULL;
3018 ep->ep_state &= ~EP_HAS_STREAMS;
3019 }
3020 }
3021
3022 /* Called after one or more calls to xhci_add_endpoint() or
3023 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3024 * to call xhci_reset_bandwidth().
3025 *
3026 * Since we are in the middle of changing either configuration or
3027 * installing a new alt setting, the USB core won't allow URBs to be
3028 * enqueued for any endpoint on the old config or interface. Nothing
3029 * else should be touching the xhci->devs[slot_id] structure, so we
3030 * don't need to take the xhci->lock for manipulating that.
3031 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3032 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3033 {
3034 int i;
3035 int ret = 0;
3036 struct xhci_hcd *xhci;
3037 struct xhci_virt_device *virt_dev;
3038 struct xhci_input_control_ctx *ctrl_ctx;
3039 struct xhci_slot_ctx *slot_ctx;
3040 struct xhci_command *command;
3041
3042 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3043 if (ret <= 0)
3044 return ret;
3045 xhci = hcd_to_xhci(hcd);
3046 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3047 (xhci->xhc_state & XHCI_STATE_REMOVING))
3048 return -ENODEV;
3049
3050 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3051 virt_dev = xhci->devs[udev->slot_id];
3052
3053 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3054 if (!command)
3055 return -ENOMEM;
3056
3057 command->in_ctx = virt_dev->in_ctx;
3058
3059 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3060 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3061 if (!ctrl_ctx) {
3062 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3063 __func__);
3064 ret = -ENOMEM;
3065 goto command_cleanup;
3066 }
3067 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3068 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3069 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3070
3071 /* Don't issue the command if there's no endpoints to update. */
3072 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3073 ctrl_ctx->drop_flags == 0) {
3074 ret = 0;
3075 goto command_cleanup;
3076 }
3077 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3078 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3079 for (i = 31; i >= 1; i--) {
3080 __le32 le32 = cpu_to_le32(BIT(i));
3081
3082 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3083 || (ctrl_ctx->add_flags & le32) || i == 1) {
3084 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3085 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3086 break;
3087 }
3088 }
3089
3090 ret = xhci_configure_endpoint(xhci, udev, command,
3091 false, false);
3092 if (ret)
3093 /* Callee should call reset_bandwidth() */
3094 goto command_cleanup;
3095
3096 /* Free any rings that were dropped, but not changed. */
3097 for (i = 1; i < 31; i++) {
3098 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3099 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3100 xhci_free_endpoint_ring(xhci, virt_dev, i);
3101 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3102 }
3103 }
3104 xhci_zero_in_ctx(xhci, virt_dev);
3105 /*
3106 * Install any rings for completely new endpoints or changed endpoints,
3107 * and free any old rings from changed endpoints.
3108 */
3109 for (i = 1; i < 31; i++) {
3110 if (!virt_dev->eps[i].new_ring)
3111 continue;
3112 /* Only free the old ring if it exists.
3113 * It may not if this is the first add of an endpoint.
3114 */
3115 if (virt_dev->eps[i].ring) {
3116 xhci_free_endpoint_ring(xhci, virt_dev, i);
3117 }
3118 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3119 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3120 virt_dev->eps[i].new_ring = NULL;
3121 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3122 }
3123 command_cleanup:
3124 kfree(command->completion);
3125 kfree(command);
3126
3127 return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3130
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3131 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3132 {
3133 struct xhci_hcd *xhci;
3134 struct xhci_virt_device *virt_dev;
3135 int i, ret;
3136
3137 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3138 if (ret <= 0)
3139 return;
3140 xhci = hcd_to_xhci(hcd);
3141
3142 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3143 virt_dev = xhci->devs[udev->slot_id];
3144 /* Free any rings allocated for added endpoints */
3145 for (i = 0; i < 31; i++) {
3146 if (virt_dev->eps[i].new_ring) {
3147 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3148 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3149 virt_dev->eps[i].new_ring = NULL;
3150 }
3151 }
3152 xhci_zero_in_ctx(xhci, virt_dev);
3153 }
3154 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3155
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3156 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3157 struct xhci_container_ctx *in_ctx,
3158 struct xhci_container_ctx *out_ctx,
3159 struct xhci_input_control_ctx *ctrl_ctx,
3160 u32 add_flags, u32 drop_flags)
3161 {
3162 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3163 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3164 xhci_slot_copy(xhci, in_ctx, out_ctx);
3165 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3166 }
3167
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3168 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3169 struct usb_host_endpoint *host_ep)
3170 {
3171 struct xhci_hcd *xhci;
3172 struct xhci_virt_device *vdev;
3173 struct xhci_virt_ep *ep;
3174 struct usb_device *udev;
3175 unsigned long flags;
3176 unsigned int ep_index;
3177
3178 xhci = hcd_to_xhci(hcd);
3179 rescan:
3180 spin_lock_irqsave(&xhci->lock, flags);
3181
3182 udev = (struct usb_device *)host_ep->hcpriv;
3183 if (!udev || !udev->slot_id)
3184 goto done;
3185
3186 vdev = xhci->devs[udev->slot_id];
3187 if (!vdev)
3188 goto done;
3189
3190 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3191 ep = &vdev->eps[ep_index];
3192
3193 /* wait for hub_tt_work to finish clearing hub TT */
3194 if (ep->ep_state & EP_CLEARING_TT) {
3195 spin_unlock_irqrestore(&xhci->lock, flags);
3196 schedule_timeout_uninterruptible(1);
3197 goto rescan;
3198 }
3199
3200 if (ep->ep_state)
3201 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3202 ep->ep_state);
3203 done:
3204 host_ep->hcpriv = NULL;
3205 spin_unlock_irqrestore(&xhci->lock, flags);
3206 }
3207
3208 /*
3209 * Called after usb core issues a clear halt control message.
3210 * The host side of the halt should already be cleared by a reset endpoint
3211 * command issued when the STALL event was received.
3212 *
3213 * The reset endpoint command may only be issued to endpoints in the halted
3214 * state. For software that wishes to reset the data toggle or sequence number
3215 * of an endpoint that isn't in the halted state this function will issue a
3216 * configure endpoint command with the Drop and Add bits set for the target
3217 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3218 */
3219
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3220 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3221 struct usb_host_endpoint *host_ep)
3222 {
3223 struct xhci_hcd *xhci;
3224 struct usb_device *udev;
3225 struct xhci_virt_device *vdev;
3226 struct xhci_virt_ep *ep;
3227 struct xhci_input_control_ctx *ctrl_ctx;
3228 struct xhci_command *stop_cmd, *cfg_cmd;
3229 unsigned int ep_index;
3230 unsigned long flags;
3231 u32 ep_flag;
3232 int err;
3233
3234 xhci = hcd_to_xhci(hcd);
3235 if (!host_ep->hcpriv)
3236 return;
3237 udev = (struct usb_device *) host_ep->hcpriv;
3238 vdev = xhci->devs[udev->slot_id];
3239
3240 /*
3241 * vdev may be lost due to xHC restore error and re-initialization
3242 * during S3/S4 resume. A new vdev will be allocated later by
3243 * xhci_discover_or_reset_device()
3244 */
3245 if (!udev->slot_id || !vdev)
3246 return;
3247 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3248 ep = &vdev->eps[ep_index];
3249
3250 /* Bail out if toggle is already being cleared by a endpoint reset */
3251 spin_lock_irqsave(&xhci->lock, flags);
3252 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3253 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255 return;
3256 }
3257 spin_unlock_irqrestore(&xhci->lock, flags);
3258 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3259 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3260 usb_endpoint_xfer_isoc(&host_ep->desc))
3261 return;
3262
3263 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3264
3265 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3266 return;
3267
3268 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3269 if (!stop_cmd)
3270 return;
3271
3272 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3273 if (!cfg_cmd)
3274 goto cleanup;
3275
3276 spin_lock_irqsave(&xhci->lock, flags);
3277
3278 /* block queuing new trbs and ringing ep doorbell */
3279 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3280
3281 /*
3282 * Make sure endpoint ring is empty before resetting the toggle/seq.
3283 * Driver is required to synchronously cancel all transfer request.
3284 * Stop the endpoint to force xHC to update the output context
3285 */
3286
3287 if (!list_empty(&ep->ring->td_list)) {
3288 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3289 spin_unlock_irqrestore(&xhci->lock, flags);
3290 xhci_free_command(xhci, cfg_cmd);
3291 goto cleanup;
3292 }
3293
3294 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3295 ep_index, 0);
3296 if (err < 0) {
3297 spin_unlock_irqrestore(&xhci->lock, flags);
3298 xhci_free_command(xhci, cfg_cmd);
3299 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3300 __func__, err);
3301 goto cleanup;
3302 }
3303
3304 xhci_ring_cmd_db(xhci);
3305 spin_unlock_irqrestore(&xhci->lock, flags);
3306
3307 wait_for_completion(stop_cmd->completion);
3308
3309 spin_lock_irqsave(&xhci->lock, flags);
3310
3311 /* config ep command clears toggle if add and drop ep flags are set */
3312 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3313 if (!ctrl_ctx) {
3314 spin_unlock_irqrestore(&xhci->lock, flags);
3315 xhci_free_command(xhci, cfg_cmd);
3316 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3317 __func__);
3318 goto cleanup;
3319 }
3320
3321 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3322 ctrl_ctx, ep_flag, ep_flag);
3323 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3324
3325 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3326 udev->slot_id, false);
3327 if (err < 0) {
3328 spin_unlock_irqrestore(&xhci->lock, flags);
3329 xhci_free_command(xhci, cfg_cmd);
3330 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3331 __func__, err);
3332 goto cleanup;
3333 }
3334
3335 xhci_ring_cmd_db(xhci);
3336 spin_unlock_irqrestore(&xhci->lock, flags);
3337
3338 wait_for_completion(cfg_cmd->completion);
3339
3340 xhci_free_command(xhci, cfg_cmd);
3341 cleanup:
3342 xhci_free_command(xhci, stop_cmd);
3343 spin_lock_irqsave(&xhci->lock, flags);
3344 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3345 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3346 spin_unlock_irqrestore(&xhci->lock, flags);
3347 }
3348
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3349 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3350 struct usb_device *udev, struct usb_host_endpoint *ep,
3351 unsigned int slot_id)
3352 {
3353 int ret;
3354 unsigned int ep_index;
3355 unsigned int ep_state;
3356
3357 if (!ep)
3358 return -EINVAL;
3359 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3360 if (ret <= 0)
3361 return ret ? ret : -EINVAL;
3362 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3363 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3364 " descriptor for ep 0x%x does not support streams\n",
3365 ep->desc.bEndpointAddress);
3366 return -EINVAL;
3367 }
3368
3369 ep_index = xhci_get_endpoint_index(&ep->desc);
3370 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3371 if (ep_state & EP_HAS_STREAMS ||
3372 ep_state & EP_GETTING_STREAMS) {
3373 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3374 "already has streams set up.\n",
3375 ep->desc.bEndpointAddress);
3376 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3377 "dynamic stream context array reallocation.\n");
3378 return -EINVAL;
3379 }
3380 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3381 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3382 "endpoint 0x%x; URBs are pending.\n",
3383 ep->desc.bEndpointAddress);
3384 return -EINVAL;
3385 }
3386 return 0;
3387 }
3388
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3389 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3390 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3391 {
3392 unsigned int max_streams;
3393
3394 /* The stream context array size must be a power of two */
3395 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3396 /*
3397 * Find out how many primary stream array entries the host controller
3398 * supports. Later we may use secondary stream arrays (similar to 2nd
3399 * level page entries), but that's an optional feature for xHCI host
3400 * controllers. xHCs must support at least 4 stream IDs.
3401 */
3402 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3403 if (*num_stream_ctxs > max_streams) {
3404 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3405 max_streams);
3406 *num_stream_ctxs = max_streams;
3407 *num_streams = max_streams;
3408 }
3409 }
3410
3411 /* Returns an error code if one of the endpoint already has streams.
3412 * This does not change any data structures, it only checks and gathers
3413 * information.
3414 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3415 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3416 struct usb_device *udev,
3417 struct usb_host_endpoint **eps, unsigned int num_eps,
3418 unsigned int *num_streams, u32 *changed_ep_bitmask)
3419 {
3420 unsigned int max_streams;
3421 unsigned int endpoint_flag;
3422 int i;
3423 int ret;
3424
3425 for (i = 0; i < num_eps; i++) {
3426 ret = xhci_check_streams_endpoint(xhci, udev,
3427 eps[i], udev->slot_id);
3428 if (ret < 0)
3429 return ret;
3430
3431 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3432 if (max_streams < (*num_streams - 1)) {
3433 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3434 eps[i]->desc.bEndpointAddress,
3435 max_streams);
3436 *num_streams = max_streams+1;
3437 }
3438
3439 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3440 if (*changed_ep_bitmask & endpoint_flag)
3441 return -EINVAL;
3442 *changed_ep_bitmask |= endpoint_flag;
3443 }
3444 return 0;
3445 }
3446
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3447 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3448 struct usb_device *udev,
3449 struct usb_host_endpoint **eps, unsigned int num_eps)
3450 {
3451 u32 changed_ep_bitmask = 0;
3452 unsigned int slot_id;
3453 unsigned int ep_index;
3454 unsigned int ep_state;
3455 int i;
3456
3457 slot_id = udev->slot_id;
3458 if (!xhci->devs[slot_id])
3459 return 0;
3460
3461 for (i = 0; i < num_eps; i++) {
3462 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3463 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3464 /* Are streams already being freed for the endpoint? */
3465 if (ep_state & EP_GETTING_NO_STREAMS) {
3466 xhci_warn(xhci, "WARN Can't disable streams for "
3467 "endpoint 0x%x, "
3468 "streams are being disabled already\n",
3469 eps[i]->desc.bEndpointAddress);
3470 return 0;
3471 }
3472 /* Are there actually any streams to free? */
3473 if (!(ep_state & EP_HAS_STREAMS) &&
3474 !(ep_state & EP_GETTING_STREAMS)) {
3475 xhci_warn(xhci, "WARN Can't disable streams for "
3476 "endpoint 0x%x, "
3477 "streams are already disabled!\n",
3478 eps[i]->desc.bEndpointAddress);
3479 xhci_warn(xhci, "WARN xhci_free_streams() called "
3480 "with non-streams endpoint\n");
3481 return 0;
3482 }
3483 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3484 }
3485 return changed_ep_bitmask;
3486 }
3487
3488 /*
3489 * The USB device drivers use this function (through the HCD interface in USB
3490 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3491 * coordinate mass storage command queueing across multiple endpoints (basically
3492 * a stream ID == a task ID).
3493 *
3494 * Setting up streams involves allocating the same size stream context array
3495 * for each endpoint and issuing a configure endpoint command for all endpoints.
3496 *
3497 * Don't allow the call to succeed if one endpoint only supports one stream
3498 * (which means it doesn't support streams at all).
3499 *
3500 * Drivers may get less stream IDs than they asked for, if the host controller
3501 * hardware or endpoints claim they can't support the number of requested
3502 * stream IDs.
3503 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3504 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3505 struct usb_host_endpoint **eps, unsigned int num_eps,
3506 unsigned int num_streams, gfp_t mem_flags)
3507 {
3508 int i, ret;
3509 struct xhci_hcd *xhci;
3510 struct xhci_virt_device *vdev;
3511 struct xhci_command *config_cmd;
3512 struct xhci_input_control_ctx *ctrl_ctx;
3513 unsigned int ep_index;
3514 unsigned int num_stream_ctxs;
3515 unsigned int max_packet;
3516 unsigned long flags;
3517 u32 changed_ep_bitmask = 0;
3518
3519 if (!eps)
3520 return -EINVAL;
3521
3522 /* Add one to the number of streams requested to account for
3523 * stream 0 that is reserved for xHCI usage.
3524 */
3525 num_streams += 1;
3526 xhci = hcd_to_xhci(hcd);
3527 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3528 num_streams);
3529
3530 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3531 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3532 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3533 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3534 return -ENOSYS;
3535 }
3536
3537 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3538 if (!config_cmd)
3539 return -ENOMEM;
3540
3541 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3542 if (!ctrl_ctx) {
3543 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3544 __func__);
3545 xhci_free_command(xhci, config_cmd);
3546 return -ENOMEM;
3547 }
3548
3549 /* Check to make sure all endpoints are not already configured for
3550 * streams. While we're at it, find the maximum number of streams that
3551 * all the endpoints will support and check for duplicate endpoints.
3552 */
3553 spin_lock_irqsave(&xhci->lock, flags);
3554 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3555 num_eps, &num_streams, &changed_ep_bitmask);
3556 if (ret < 0) {
3557 xhci_free_command(xhci, config_cmd);
3558 spin_unlock_irqrestore(&xhci->lock, flags);
3559 return ret;
3560 }
3561 if (num_streams <= 1) {
3562 xhci_warn(xhci, "WARN: endpoints can't handle "
3563 "more than one stream.\n");
3564 xhci_free_command(xhci, config_cmd);
3565 spin_unlock_irqrestore(&xhci->lock, flags);
3566 return -EINVAL;
3567 }
3568 vdev = xhci->devs[udev->slot_id];
3569 /* Mark each endpoint as being in transition, so
3570 * xhci_urb_enqueue() will reject all URBs.
3571 */
3572 for (i = 0; i < num_eps; i++) {
3573 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3575 }
3576 spin_unlock_irqrestore(&xhci->lock, flags);
3577
3578 /* Setup internal data structures and allocate HW data structures for
3579 * streams (but don't install the HW structures in the input context
3580 * until we're sure all memory allocation succeeded).
3581 */
3582 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3583 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3584 num_stream_ctxs, num_streams);
3585
3586 for (i = 0; i < num_eps; i++) {
3587 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3588 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3589 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3590 num_stream_ctxs,
3591 num_streams,
3592 max_packet, mem_flags);
3593 if (!vdev->eps[ep_index].stream_info)
3594 goto cleanup;
3595 /* Set maxPstreams in endpoint context and update deq ptr to
3596 * point to stream context array. FIXME
3597 */
3598 }
3599
3600 /* Set up the input context for a configure endpoint command. */
3601 for (i = 0; i < num_eps; i++) {
3602 struct xhci_ep_ctx *ep_ctx;
3603
3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3606
3607 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3608 vdev->out_ctx, ep_index);
3609 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3610 vdev->eps[ep_index].stream_info);
3611 }
3612 /* Tell the HW to drop its old copy of the endpoint context info
3613 * and add the updated copy from the input context.
3614 */
3615 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3616 vdev->out_ctx, ctrl_ctx,
3617 changed_ep_bitmask, changed_ep_bitmask);
3618
3619 /* Issue and wait for the configure endpoint command */
3620 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3621 false, false);
3622
3623 /* xHC rejected the configure endpoint command for some reason, so we
3624 * leave the old ring intact and free our internal streams data
3625 * structure.
3626 */
3627 if (ret < 0)
3628 goto cleanup;
3629
3630 spin_lock_irqsave(&xhci->lock, flags);
3631 for (i = 0; i < num_eps; i++) {
3632 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3633 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3634 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3635 udev->slot_id, ep_index);
3636 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3637 }
3638 xhci_free_command(xhci, config_cmd);
3639 spin_unlock_irqrestore(&xhci->lock, flags);
3640
3641 for (i = 0; i < num_eps; i++) {
3642 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3644 }
3645 /* Subtract 1 for stream 0, which drivers can't use */
3646 return num_streams - 1;
3647
3648 cleanup:
3649 /* If it didn't work, free the streams! */
3650 for (i = 0; i < num_eps; i++) {
3651 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3652 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3653 vdev->eps[ep_index].stream_info = NULL;
3654 /* FIXME Unset maxPstreams in endpoint context and
3655 * update deq ptr to point to normal string ring.
3656 */
3657 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3658 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3659 xhci_endpoint_zero(xhci, vdev, eps[i]);
3660 }
3661 xhci_free_command(xhci, config_cmd);
3662 return -ENOMEM;
3663 }
3664
3665 /* Transition the endpoint from using streams to being a "normal" endpoint
3666 * without streams.
3667 *
3668 * Modify the endpoint context state, submit a configure endpoint command,
3669 * and free all endpoint rings for streams if that completes successfully.
3670 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3671 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3672 struct usb_host_endpoint **eps, unsigned int num_eps,
3673 gfp_t mem_flags)
3674 {
3675 int i, ret;
3676 struct xhci_hcd *xhci;
3677 struct xhci_virt_device *vdev;
3678 struct xhci_command *command;
3679 struct xhci_input_control_ctx *ctrl_ctx;
3680 unsigned int ep_index;
3681 unsigned long flags;
3682 u32 changed_ep_bitmask;
3683
3684 xhci = hcd_to_xhci(hcd);
3685 vdev = xhci->devs[udev->slot_id];
3686
3687 /* Set up a configure endpoint command to remove the streams rings */
3688 spin_lock_irqsave(&xhci->lock, flags);
3689 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3690 udev, eps, num_eps);
3691 if (changed_ep_bitmask == 0) {
3692 spin_unlock_irqrestore(&xhci->lock, flags);
3693 return -EINVAL;
3694 }
3695
3696 /* Use the xhci_command structure from the first endpoint. We may have
3697 * allocated too many, but the driver may call xhci_free_streams() for
3698 * each endpoint it grouped into one call to xhci_alloc_streams().
3699 */
3700 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3701 command = vdev->eps[ep_index].stream_info->free_streams_command;
3702 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3703 if (!ctrl_ctx) {
3704 spin_unlock_irqrestore(&xhci->lock, flags);
3705 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3706 __func__);
3707 return -EINVAL;
3708 }
3709
3710 for (i = 0; i < num_eps; i++) {
3711 struct xhci_ep_ctx *ep_ctx;
3712
3713 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3714 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3715 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3716 EP_GETTING_NO_STREAMS;
3717
3718 xhci_endpoint_copy(xhci, command->in_ctx,
3719 vdev->out_ctx, ep_index);
3720 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3721 &vdev->eps[ep_index]);
3722 }
3723 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3724 vdev->out_ctx, ctrl_ctx,
3725 changed_ep_bitmask, changed_ep_bitmask);
3726 spin_unlock_irqrestore(&xhci->lock, flags);
3727
3728 /* Issue and wait for the configure endpoint command,
3729 * which must succeed.
3730 */
3731 ret = xhci_configure_endpoint(xhci, udev, command,
3732 false, true);
3733
3734 /* xHC rejected the configure endpoint command for some reason, so we
3735 * leave the streams rings intact.
3736 */
3737 if (ret < 0)
3738 return ret;
3739
3740 spin_lock_irqsave(&xhci->lock, flags);
3741 for (i = 0; i < num_eps; i++) {
3742 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3743 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3744 vdev->eps[ep_index].stream_info = NULL;
3745 /* FIXME Unset maxPstreams in endpoint context and
3746 * update deq ptr to point to normal string ring.
3747 */
3748 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3749 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3750 }
3751 spin_unlock_irqrestore(&xhci->lock, flags);
3752
3753 return 0;
3754 }
3755
3756 /*
3757 * Deletes endpoint resources for endpoints that were active before a Reset
3758 * Device command, or a Disable Slot command. The Reset Device command leaves
3759 * the control endpoint intact, whereas the Disable Slot command deletes it.
3760 *
3761 * Must be called with xhci->lock held.
3762 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3763 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3764 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3765 {
3766 int i;
3767 unsigned int num_dropped_eps = 0;
3768 unsigned int drop_flags = 0;
3769
3770 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3771 if (virt_dev->eps[i].ring) {
3772 drop_flags |= 1 << i;
3773 num_dropped_eps++;
3774 }
3775 }
3776 xhci->num_active_eps -= num_dropped_eps;
3777 if (num_dropped_eps)
3778 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3779 "Dropped %u ep ctxs, flags = 0x%x, "
3780 "%u now active.",
3781 num_dropped_eps, drop_flags,
3782 xhci->num_active_eps);
3783 }
3784
3785 /*
3786 * This submits a Reset Device Command, which will set the device state to 0,
3787 * set the device address to 0, and disable all the endpoints except the default
3788 * control endpoint. The USB core should come back and call
3789 * xhci_address_device(), and then re-set up the configuration. If this is
3790 * called because of a usb_reset_and_verify_device(), then the old alternate
3791 * settings will be re-installed through the normal bandwidth allocation
3792 * functions.
3793 *
3794 * Wait for the Reset Device command to finish. Remove all structures
3795 * associated with the endpoints that were disabled. Clear the input device
3796 * structure? Reset the control endpoint 0 max packet size?
3797 *
3798 * If the virt_dev to be reset does not exist or does not match the udev,
3799 * it means the device is lost, possibly due to the xHC restore error and
3800 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3801 * re-allocate the device.
3802 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3803 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3804 struct usb_device *udev)
3805 {
3806 int ret, i;
3807 unsigned long flags;
3808 struct xhci_hcd *xhci;
3809 unsigned int slot_id;
3810 struct xhci_virt_device *virt_dev;
3811 struct xhci_command *reset_device_cmd;
3812 struct xhci_slot_ctx *slot_ctx;
3813 int old_active_eps = 0;
3814
3815 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3816 if (ret <= 0)
3817 return ret;
3818 xhci = hcd_to_xhci(hcd);
3819 slot_id = udev->slot_id;
3820 virt_dev = xhci->devs[slot_id];
3821 if (!virt_dev) {
3822 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3823 "not exist. Re-allocate the device\n", slot_id);
3824 ret = xhci_alloc_dev(hcd, udev);
3825 if (ret == 1)
3826 return 0;
3827 else
3828 return -EINVAL;
3829 }
3830
3831 if (virt_dev->tt_info)
3832 old_active_eps = virt_dev->tt_info->active_eps;
3833
3834 if (virt_dev->udev != udev) {
3835 /* If the virt_dev and the udev does not match, this virt_dev
3836 * may belong to another udev.
3837 * Re-allocate the device.
3838 */
3839 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3840 "not match the udev. Re-allocate the device\n",
3841 slot_id);
3842 ret = xhci_alloc_dev(hcd, udev);
3843 if (ret == 1)
3844 return 0;
3845 else
3846 return -EINVAL;
3847 }
3848
3849 /* If device is not setup, there is no point in resetting it */
3850 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852 SLOT_STATE_DISABLED)
3853 return 0;
3854
3855 trace_xhci_discover_or_reset_device(slot_ctx);
3856
3857 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3858 /* Allocate the command structure that holds the struct completion.
3859 * Assume we're in process context, since the normal device reset
3860 * process has to wait for the device anyway. Storage devices are
3861 * reset as part of error handling, so use GFP_NOIO instead of
3862 * GFP_KERNEL.
3863 */
3864 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3865 if (!reset_device_cmd) {
3866 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3867 return -ENOMEM;
3868 }
3869
3870 /* Attempt to submit the Reset Device command to the command ring */
3871 spin_lock_irqsave(&xhci->lock, flags);
3872
3873 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3874 if (ret) {
3875 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3876 spin_unlock_irqrestore(&xhci->lock, flags);
3877 goto command_cleanup;
3878 }
3879 xhci_ring_cmd_db(xhci);
3880 spin_unlock_irqrestore(&xhci->lock, flags);
3881
3882 /* Wait for the Reset Device command to finish */
3883 wait_for_completion(reset_device_cmd->completion);
3884
3885 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3886 * unless we tried to reset a slot ID that wasn't enabled,
3887 * or the device wasn't in the addressed or configured state.
3888 */
3889 ret = reset_device_cmd->status;
3890 switch (ret) {
3891 case COMP_COMMAND_ABORTED:
3892 case COMP_COMMAND_RING_STOPPED:
3893 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3894 ret = -ETIME;
3895 goto command_cleanup;
3896 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3897 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3898 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3899 slot_id,
3900 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3901 xhci_dbg(xhci, "Not freeing device rings.\n");
3902 /* Don't treat this as an error. May change my mind later. */
3903 ret = 0;
3904 goto command_cleanup;
3905 case COMP_SUCCESS:
3906 xhci_dbg(xhci, "Successful reset device command.\n");
3907 break;
3908 default:
3909 if (xhci_is_vendor_info_code(xhci, ret))
3910 break;
3911 xhci_warn(xhci, "Unknown completion code %u for "
3912 "reset device command.\n", ret);
3913 ret = -EINVAL;
3914 goto command_cleanup;
3915 }
3916
3917 /* Free up host controller endpoint resources */
3918 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3919 spin_lock_irqsave(&xhci->lock, flags);
3920 /* Don't delete the default control endpoint resources */
3921 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3922 spin_unlock_irqrestore(&xhci->lock, flags);
3923 }
3924
3925 /* Everything but endpoint 0 is disabled, so free the rings. */
3926 for (i = 1; i < 31; i++) {
3927 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3928
3929 if (ep->ep_state & EP_HAS_STREAMS) {
3930 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3931 xhci_get_endpoint_address(i));
3932 xhci_free_stream_info(xhci, ep->stream_info);
3933 ep->stream_info = NULL;
3934 ep->ep_state &= ~EP_HAS_STREAMS;
3935 }
3936
3937 if (ep->ring) {
3938 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3939 xhci_free_endpoint_ring(xhci, virt_dev, i);
3940 }
3941 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3942 xhci_drop_ep_from_interval_table(xhci,
3943 &virt_dev->eps[i].bw_info,
3944 virt_dev->bw_table,
3945 udev,
3946 &virt_dev->eps[i],
3947 virt_dev->tt_info);
3948 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3949 }
3950 /* If necessary, update the number of active TTs on this root port */
3951 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3952 virt_dev->flags = 0;
3953 ret = 0;
3954
3955 command_cleanup:
3956 xhci_free_command(xhci, reset_device_cmd);
3957 return ret;
3958 }
3959
3960 /*
3961 * At this point, the struct usb_device is about to go away, the device has
3962 * disconnected, and all traffic has been stopped and the endpoints have been
3963 * disabled. Free any HC data structures associated with that device.
3964 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3965 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3966 {
3967 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968 struct xhci_virt_device *virt_dev;
3969 struct xhci_slot_ctx *slot_ctx;
3970 int i, ret;
3971
3972 /*
3973 * We called pm_runtime_get_noresume when the device was attached.
3974 * Decrement the counter here to allow controller to runtime suspend
3975 * if no devices remain.
3976 */
3977 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3978 pm_runtime_put_noidle(hcd->self.controller);
3979
3980 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3981 /* If the host is halted due to driver unload, we still need to free the
3982 * device.
3983 */
3984 if (ret <= 0 && ret != -ENODEV)
3985 return;
3986
3987 virt_dev = xhci->devs[udev->slot_id];
3988 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3989 trace_xhci_free_dev(slot_ctx);
3990
3991 /* Stop any wayward timer functions (which may grab the lock) */
3992 for (i = 0; i < 31; i++)
3993 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3994 virt_dev->udev = NULL;
3995 xhci_disable_slot(xhci, udev->slot_id);
3996 xhci_free_virt_device(xhci, udev->slot_id);
3997 }
3998
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3999 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4000 {
4001 struct xhci_command *command;
4002 unsigned long flags;
4003 u32 state;
4004 int ret;
4005
4006 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4007 if (!command)
4008 return -ENOMEM;
4009
4010 xhci_debugfs_remove_slot(xhci, slot_id);
4011
4012 spin_lock_irqsave(&xhci->lock, flags);
4013 /* Don't disable the slot if the host controller is dead. */
4014 state = readl(&xhci->op_regs->status);
4015 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4016 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4017 spin_unlock_irqrestore(&xhci->lock, flags);
4018 kfree(command);
4019 return -ENODEV;
4020 }
4021
4022 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4023 slot_id);
4024 if (ret) {
4025 spin_unlock_irqrestore(&xhci->lock, flags);
4026 kfree(command);
4027 return ret;
4028 }
4029 xhci_ring_cmd_db(xhci);
4030 spin_unlock_irqrestore(&xhci->lock, flags);
4031
4032 wait_for_completion(command->completion);
4033
4034 if (command->status != COMP_SUCCESS)
4035 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4036 slot_id, command->status);
4037
4038 xhci_free_command(xhci, command);
4039
4040 return 0;
4041 }
4042
4043 /*
4044 * Checks if we have enough host controller resources for the default control
4045 * endpoint.
4046 *
4047 * Must be called with xhci->lock held.
4048 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4049 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4050 {
4051 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4052 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4053 "Not enough ep ctxs: "
4054 "%u active, need to add 1, limit is %u.",
4055 xhci->num_active_eps, xhci->limit_active_eps);
4056 return -ENOMEM;
4057 }
4058 xhci->num_active_eps += 1;
4059 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4060 "Adding 1 ep ctx, %u now active.",
4061 xhci->num_active_eps);
4062 return 0;
4063 }
4064
4065
4066 /*
4067 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4068 * timed out, or allocating memory failed. Returns 1 on success.
4069 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4070 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4071 {
4072 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4073 struct xhci_virt_device *vdev;
4074 struct xhci_slot_ctx *slot_ctx;
4075 unsigned long flags;
4076 int ret, slot_id;
4077 struct xhci_command *command;
4078
4079 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4080 if (!command)
4081 return 0;
4082
4083 spin_lock_irqsave(&xhci->lock, flags);
4084 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4085 if (ret) {
4086 spin_unlock_irqrestore(&xhci->lock, flags);
4087 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4088 xhci_free_command(xhci, command);
4089 return 0;
4090 }
4091 xhci_ring_cmd_db(xhci);
4092 spin_unlock_irqrestore(&xhci->lock, flags);
4093
4094 wait_for_completion(command->completion);
4095 slot_id = command->slot_id;
4096
4097 if (!slot_id || command->status != COMP_SUCCESS) {
4098 xhci_err(xhci, "Error while assigning device slot ID\n");
4099 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4100 HCS_MAX_SLOTS(
4101 readl(&xhci->cap_regs->hcs_params1)));
4102 xhci_free_command(xhci, command);
4103 return 0;
4104 }
4105
4106 xhci_free_command(xhci, command);
4107
4108 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4109 spin_lock_irqsave(&xhci->lock, flags);
4110 ret = xhci_reserve_host_control_ep_resources(xhci);
4111 if (ret) {
4112 spin_unlock_irqrestore(&xhci->lock, flags);
4113 xhci_warn(xhci, "Not enough host resources, "
4114 "active endpoint contexts = %u\n",
4115 xhci->num_active_eps);
4116 goto disable_slot;
4117 }
4118 spin_unlock_irqrestore(&xhci->lock, flags);
4119 }
4120 /* Use GFP_NOIO, since this function can be called from
4121 * xhci_discover_or_reset_device(), which may be called as part of
4122 * mass storage driver error handling.
4123 */
4124 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4125 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4126 goto disable_slot;
4127 }
4128 vdev = xhci->devs[slot_id];
4129 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4130 trace_xhci_alloc_dev(slot_ctx);
4131
4132 udev->slot_id = slot_id;
4133
4134 xhci_debugfs_create_slot(xhci, slot_id);
4135
4136 /*
4137 * If resetting upon resume, we can't put the controller into runtime
4138 * suspend if there is a device attached.
4139 */
4140 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4141 pm_runtime_get_noresume(hcd->self.controller);
4142
4143 /* Is this a LS or FS device under a HS hub? */
4144 /* Hub or peripherial? */
4145 return 1;
4146
4147 disable_slot:
4148 xhci_disable_slot(xhci, udev->slot_id);
4149 xhci_free_virt_device(xhci, udev->slot_id);
4150
4151 return 0;
4152 }
4153
4154 /*
4155 * Issue an Address Device command and optionally send a corresponding
4156 * SetAddress request to the device.
4157 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4158 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4159 enum xhci_setup_dev setup)
4160 {
4161 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4162 unsigned long flags;
4163 struct xhci_virt_device *virt_dev;
4164 int ret = 0;
4165 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166 struct xhci_slot_ctx *slot_ctx;
4167 struct xhci_input_control_ctx *ctrl_ctx;
4168 u64 temp_64;
4169 struct xhci_command *command = NULL;
4170
4171 mutex_lock(&xhci->mutex);
4172
4173 if (xhci->xhc_state) { /* dying, removing or halted */
4174 ret = -ESHUTDOWN;
4175 goto out;
4176 }
4177
4178 if (!udev->slot_id) {
4179 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4180 "Bad Slot ID %d", udev->slot_id);
4181 ret = -EINVAL;
4182 goto out;
4183 }
4184
4185 virt_dev = xhci->devs[udev->slot_id];
4186
4187 if (WARN_ON(!virt_dev)) {
4188 /*
4189 * In plug/unplug torture test with an NEC controller,
4190 * a zero-dereference was observed once due to virt_dev = 0.
4191 * Print useful debug rather than crash if it is observed again!
4192 */
4193 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4194 udev->slot_id);
4195 ret = -EINVAL;
4196 goto out;
4197 }
4198 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4199 trace_xhci_setup_device_slot(slot_ctx);
4200
4201 if (setup == SETUP_CONTEXT_ONLY) {
4202 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4203 SLOT_STATE_DEFAULT) {
4204 xhci_dbg(xhci, "Slot already in default state\n");
4205 goto out;
4206 }
4207 }
4208
4209 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4210 if (!command) {
4211 ret = -ENOMEM;
4212 goto out;
4213 }
4214
4215 command->in_ctx = virt_dev->in_ctx;
4216
4217 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4218 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4219 if (!ctrl_ctx) {
4220 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4221 __func__);
4222 ret = -EINVAL;
4223 goto out;
4224 }
4225 /*
4226 * If this is the first Set Address since device plug-in or
4227 * virt_device realloaction after a resume with an xHCI power loss,
4228 * then set up the slot context.
4229 */
4230 if (!slot_ctx->dev_info)
4231 xhci_setup_addressable_virt_dev(xhci, udev);
4232 /* Otherwise, update the control endpoint ring enqueue pointer. */
4233 else
4234 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4235 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4236 ctrl_ctx->drop_flags = 0;
4237
4238 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4239 le32_to_cpu(slot_ctx->dev_info) >> 27);
4240
4241 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4242 spin_lock_irqsave(&xhci->lock, flags);
4243 trace_xhci_setup_device(virt_dev);
4244 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4245 udev->slot_id, setup);
4246 if (ret) {
4247 spin_unlock_irqrestore(&xhci->lock, flags);
4248 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4249 "FIXME: allocate a command ring segment");
4250 goto out;
4251 }
4252 xhci_ring_cmd_db(xhci);
4253 spin_unlock_irqrestore(&xhci->lock, flags);
4254
4255 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4256 wait_for_completion(command->completion);
4257
4258 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4259 * the SetAddress() "recovery interval" required by USB and aborting the
4260 * command on a timeout.
4261 */
4262 switch (command->status) {
4263 case COMP_COMMAND_ABORTED:
4264 case COMP_COMMAND_RING_STOPPED:
4265 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4266 ret = -ETIME;
4267 break;
4268 case COMP_CONTEXT_STATE_ERROR:
4269 case COMP_SLOT_NOT_ENABLED_ERROR:
4270 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4271 act, udev->slot_id);
4272 ret = -EINVAL;
4273 break;
4274 case COMP_USB_TRANSACTION_ERROR:
4275 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4276
4277 mutex_unlock(&xhci->mutex);
4278 ret = xhci_disable_slot(xhci, udev->slot_id);
4279 xhci_free_virt_device(xhci, udev->slot_id);
4280 if (!ret)
4281 xhci_alloc_dev(hcd, udev);
4282 kfree(command->completion);
4283 kfree(command);
4284 return -EPROTO;
4285 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4286 dev_warn(&udev->dev,
4287 "ERROR: Incompatible device for setup %s command\n", act);
4288 ret = -ENODEV;
4289 break;
4290 case COMP_SUCCESS:
4291 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4292 "Successful setup %s command", act);
4293 break;
4294 default:
4295 xhci_err(xhci,
4296 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4297 act, command->status);
4298 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4299 ret = -EINVAL;
4300 break;
4301 }
4302 if (ret)
4303 goto out;
4304 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4305 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4306 "Op regs DCBAA ptr = %#016llx", temp_64);
4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 "Slot ID %d dcbaa entry @%p = %#016llx",
4309 udev->slot_id,
4310 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4311 (unsigned long long)
4312 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4313 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4314 "Output Context DMA address = %#08llx",
4315 (unsigned long long)virt_dev->out_ctx->dma);
4316 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4317 le32_to_cpu(slot_ctx->dev_info) >> 27);
4318 /*
4319 * USB core uses address 1 for the roothubs, so we add one to the
4320 * address given back to us by the HC.
4321 */
4322 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4323 le32_to_cpu(slot_ctx->dev_info) >> 27);
4324 /* Zero the input context control for later use */
4325 ctrl_ctx->add_flags = 0;
4326 ctrl_ctx->drop_flags = 0;
4327 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4328 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4329
4330 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4331 "Internal device address = %d",
4332 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4333 out:
4334 mutex_unlock(&xhci->mutex);
4335 if (command) {
4336 kfree(command->completion);
4337 kfree(command);
4338 }
4339 return ret;
4340 }
4341
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4342 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4345 }
4346
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4347 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4348 {
4349 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4350 }
4351
4352 /*
4353 * Transfer the port index into real index in the HW port status
4354 * registers. Caculate offset between the port's PORTSC register
4355 * and port status base. Divide the number of per port register
4356 * to get the real index. The raw port number bases 1.
4357 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4358 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4359 {
4360 struct xhci_hub *rhub;
4361
4362 rhub = xhci_get_rhub(hcd);
4363 return rhub->ports[port1 - 1]->hw_portnum + 1;
4364 }
4365
4366 /*
4367 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4368 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4369 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4370 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4371 struct usb_device *udev, u16 max_exit_latency)
4372 {
4373 struct xhci_virt_device *virt_dev;
4374 struct xhci_command *command;
4375 struct xhci_input_control_ctx *ctrl_ctx;
4376 struct xhci_slot_ctx *slot_ctx;
4377 unsigned long flags;
4378 int ret;
4379
4380 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4381 if (!command)
4382 return -ENOMEM;
4383
4384 spin_lock_irqsave(&xhci->lock, flags);
4385
4386 virt_dev = xhci->devs[udev->slot_id];
4387
4388 /*
4389 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4390 * xHC was re-initialized. Exit latency will be set later after
4391 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4392 */
4393
4394 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4395 spin_unlock_irqrestore(&xhci->lock, flags);
4396 return 0;
4397 }
4398
4399 /* Attempt to issue an Evaluate Context command to change the MEL. */
4400 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4401 if (!ctrl_ctx) {
4402 spin_unlock_irqrestore(&xhci->lock, flags);
4403 xhci_free_command(xhci, command);
4404 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4405 __func__);
4406 return -ENOMEM;
4407 }
4408
4409 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4410 spin_unlock_irqrestore(&xhci->lock, flags);
4411
4412 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4413 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4414 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4415 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4416 slot_ctx->dev_state = 0;
4417
4418 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4419 "Set up evaluate context for LPM MEL change.");
4420
4421 /* Issue and wait for the evaluate context command. */
4422 ret = xhci_configure_endpoint(xhci, udev, command,
4423 true, true);
4424
4425 if (!ret) {
4426 spin_lock_irqsave(&xhci->lock, flags);
4427 virt_dev->current_mel = max_exit_latency;
4428 spin_unlock_irqrestore(&xhci->lock, flags);
4429 }
4430
4431 xhci_free_command(xhci, command);
4432
4433 return ret;
4434 }
4435
4436 #ifdef CONFIG_PM
4437
4438 /* BESL to HIRD Encoding array for USB2 LPM */
4439 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4440 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4441
4442 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4443 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4444 struct usb_device *udev)
4445 {
4446 int u2del, besl, besl_host;
4447 int besl_device = 0;
4448 u32 field;
4449
4450 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4451 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4452
4453 if (field & USB_BESL_SUPPORT) {
4454 for (besl_host = 0; besl_host < 16; besl_host++) {
4455 if (xhci_besl_encoding[besl_host] >= u2del)
4456 break;
4457 }
4458 /* Use baseline BESL value as default */
4459 if (field & USB_BESL_BASELINE_VALID)
4460 besl_device = USB_GET_BESL_BASELINE(field);
4461 else if (field & USB_BESL_DEEP_VALID)
4462 besl_device = USB_GET_BESL_DEEP(field);
4463 } else {
4464 if (u2del <= 50)
4465 besl_host = 0;
4466 else
4467 besl_host = (u2del - 51) / 75 + 1;
4468 }
4469
4470 besl = besl_host + besl_device;
4471 if (besl > 15)
4472 besl = 15;
4473
4474 return besl;
4475 }
4476
4477 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4478 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4479 {
4480 u32 field;
4481 int l1;
4482 int besld = 0;
4483 int hirdm = 0;
4484
4485 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4486
4487 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4488 l1 = udev->l1_params.timeout / 256;
4489
4490 /* device has preferred BESLD */
4491 if (field & USB_BESL_DEEP_VALID) {
4492 besld = USB_GET_BESL_DEEP(field);
4493 hirdm = 1;
4494 }
4495
4496 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4497 }
4498
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4499 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4500 struct usb_device *udev, int enable)
4501 {
4502 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4503 struct xhci_port **ports;
4504 __le32 __iomem *pm_addr, *hlpm_addr;
4505 u32 pm_val, hlpm_val, field;
4506 unsigned int port_num;
4507 unsigned long flags;
4508 int hird, exit_latency;
4509 int ret;
4510
4511 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4512 return -EPERM;
4513
4514 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4515 !udev->lpm_capable)
4516 return -EPERM;
4517
4518 if (!udev->parent || udev->parent->parent ||
4519 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4520 return -EPERM;
4521
4522 if (udev->usb2_hw_lpm_capable != 1)
4523 return -EPERM;
4524
4525 spin_lock_irqsave(&xhci->lock, flags);
4526
4527 ports = xhci->usb2_rhub.ports;
4528 port_num = udev->portnum - 1;
4529 pm_addr = ports[port_num]->addr + PORTPMSC;
4530 pm_val = readl(pm_addr);
4531 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4532
4533 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4534 enable ? "enable" : "disable", port_num + 1);
4535
4536 if (enable) {
4537 /* Host supports BESL timeout instead of HIRD */
4538 if (udev->usb2_hw_lpm_besl_capable) {
4539 /* if device doesn't have a preferred BESL value use a
4540 * default one which works with mixed HIRD and BESL
4541 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4542 */
4543 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4544 if ((field & USB_BESL_SUPPORT) &&
4545 (field & USB_BESL_BASELINE_VALID))
4546 hird = USB_GET_BESL_BASELINE(field);
4547 else
4548 hird = udev->l1_params.besl;
4549
4550 exit_latency = xhci_besl_encoding[hird];
4551 spin_unlock_irqrestore(&xhci->lock, flags);
4552
4553 ret = xhci_change_max_exit_latency(xhci, udev,
4554 exit_latency);
4555 if (ret < 0)
4556 return ret;
4557 spin_lock_irqsave(&xhci->lock, flags);
4558
4559 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4560 writel(hlpm_val, hlpm_addr);
4561 /* flush write */
4562 readl(hlpm_addr);
4563 } else {
4564 hird = xhci_calculate_hird_besl(xhci, udev);
4565 }
4566
4567 pm_val &= ~PORT_HIRD_MASK;
4568 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4569 writel(pm_val, pm_addr);
4570 pm_val = readl(pm_addr);
4571 pm_val |= PORT_HLE;
4572 writel(pm_val, pm_addr);
4573 /* flush write */
4574 readl(pm_addr);
4575 } else {
4576 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4577 writel(pm_val, pm_addr);
4578 /* flush write */
4579 readl(pm_addr);
4580 if (udev->usb2_hw_lpm_besl_capable) {
4581 spin_unlock_irqrestore(&xhci->lock, flags);
4582 xhci_change_max_exit_latency(xhci, udev, 0);
4583 readl_poll_timeout(ports[port_num]->addr, pm_val,
4584 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4585 100, 10000);
4586 return 0;
4587 }
4588 }
4589
4590 spin_unlock_irqrestore(&xhci->lock, flags);
4591 return 0;
4592 }
4593
4594 /* check if a usb2 port supports a given extened capability protocol
4595 * only USB2 ports extended protocol capability values are cached.
4596 * Return 1 if capability is supported
4597 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4598 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4599 unsigned capability)
4600 {
4601 u32 port_offset, port_count;
4602 int i;
4603
4604 for (i = 0; i < xhci->num_ext_caps; i++) {
4605 if (xhci->ext_caps[i] & capability) {
4606 /* port offsets starts at 1 */
4607 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4608 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4609 if (port >= port_offset &&
4610 port < port_offset + port_count)
4611 return 1;
4612 }
4613 }
4614 return 0;
4615 }
4616
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4617 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4618 {
4619 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4620 int portnum = udev->portnum - 1;
4621
4622 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4623 return 0;
4624
4625 /* we only support lpm for non-hub device connected to root hub yet */
4626 if (!udev->parent || udev->parent->parent ||
4627 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4628 return 0;
4629
4630 if (xhci->hw_lpm_support == 1 &&
4631 xhci_check_usb2_port_capability(
4632 xhci, portnum, XHCI_HLC)) {
4633 udev->usb2_hw_lpm_capable = 1;
4634 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4635 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4636 if (xhci_check_usb2_port_capability(xhci, portnum,
4637 XHCI_BLC))
4638 udev->usb2_hw_lpm_besl_capable = 1;
4639 }
4640
4641 return 0;
4642 }
4643
4644 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4645
4646 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4647 static unsigned long long xhci_service_interval_to_ns(
4648 struct usb_endpoint_descriptor *desc)
4649 {
4650 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4651 }
4652
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4653 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4654 enum usb3_link_state state)
4655 {
4656 unsigned long long sel;
4657 unsigned long long pel;
4658 unsigned int max_sel_pel;
4659 char *state_name;
4660
4661 switch (state) {
4662 case USB3_LPM_U1:
4663 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4664 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4665 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4666 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4667 state_name = "U1";
4668 break;
4669 case USB3_LPM_U2:
4670 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4671 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4672 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4673 state_name = "U2";
4674 break;
4675 default:
4676 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4677 __func__);
4678 return USB3_LPM_DISABLED;
4679 }
4680
4681 if (sel <= max_sel_pel && pel <= max_sel_pel)
4682 return USB3_LPM_DEVICE_INITIATED;
4683
4684 if (sel > max_sel_pel)
4685 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4686 "due to long SEL %llu ms\n",
4687 state_name, sel);
4688 else
4689 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4690 "due to long PEL %llu ms\n",
4691 state_name, pel);
4692 return USB3_LPM_DISABLED;
4693 }
4694
4695 /* The U1 timeout should be the maximum of the following values:
4696 * - For control endpoints, U1 system exit latency (SEL) * 3
4697 * - For bulk endpoints, U1 SEL * 5
4698 * - For interrupt endpoints:
4699 * - Notification EPs, U1 SEL * 3
4700 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4701 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4702 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4703 static unsigned long long xhci_calculate_intel_u1_timeout(
4704 struct usb_device *udev,
4705 struct usb_endpoint_descriptor *desc)
4706 {
4707 unsigned long long timeout_ns;
4708 int ep_type;
4709 int intr_type;
4710
4711 ep_type = usb_endpoint_type(desc);
4712 switch (ep_type) {
4713 case USB_ENDPOINT_XFER_CONTROL:
4714 timeout_ns = udev->u1_params.sel * 3;
4715 break;
4716 case USB_ENDPOINT_XFER_BULK:
4717 timeout_ns = udev->u1_params.sel * 5;
4718 break;
4719 case USB_ENDPOINT_XFER_INT:
4720 intr_type = usb_endpoint_interrupt_type(desc);
4721 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4722 timeout_ns = udev->u1_params.sel * 3;
4723 break;
4724 }
4725 /* Otherwise the calculation is the same as isoc eps */
4726 fallthrough;
4727 case USB_ENDPOINT_XFER_ISOC:
4728 timeout_ns = xhci_service_interval_to_ns(desc);
4729 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4730 if (timeout_ns < udev->u1_params.sel * 2)
4731 timeout_ns = udev->u1_params.sel * 2;
4732 break;
4733 default:
4734 return 0;
4735 }
4736
4737 return timeout_ns;
4738 }
4739
4740 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4741 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4742 struct usb_device *udev,
4743 struct usb_endpoint_descriptor *desc)
4744 {
4745 unsigned long long timeout_ns;
4746
4747 /* Prevent U1 if service interval is shorter than U1 exit latency */
4748 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4749 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4750 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4751 return USB3_LPM_DISABLED;
4752 }
4753 }
4754
4755 if (xhci->quirks & XHCI_INTEL_HOST)
4756 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4757 else
4758 timeout_ns = udev->u1_params.sel;
4759
4760 /* The U1 timeout is encoded in 1us intervals.
4761 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4762 */
4763 if (timeout_ns == USB3_LPM_DISABLED)
4764 timeout_ns = 1;
4765 else
4766 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4767
4768 /* If the necessary timeout value is bigger than what we can set in the
4769 * USB 3.0 hub, we have to disable hub-initiated U1.
4770 */
4771 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4772 return timeout_ns;
4773 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4774 "due to long timeout %llu ms\n", timeout_ns);
4775 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4776 }
4777
4778 /* The U2 timeout should be the maximum of:
4779 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4780 * - largest bInterval of any active periodic endpoint (to avoid going
4781 * into lower power link states between intervals).
4782 * - the U2 Exit Latency of the device
4783 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4784 static unsigned long long xhci_calculate_intel_u2_timeout(
4785 struct usb_device *udev,
4786 struct usb_endpoint_descriptor *desc)
4787 {
4788 unsigned long long timeout_ns;
4789 unsigned long long u2_del_ns;
4790
4791 timeout_ns = 10 * 1000 * 1000;
4792
4793 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4794 (xhci_service_interval_to_ns(desc) > timeout_ns))
4795 timeout_ns = xhci_service_interval_to_ns(desc);
4796
4797 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4798 if (u2_del_ns > timeout_ns)
4799 timeout_ns = u2_del_ns;
4800
4801 return timeout_ns;
4802 }
4803
4804 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4805 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4806 struct usb_device *udev,
4807 struct usb_endpoint_descriptor *desc)
4808 {
4809 unsigned long long timeout_ns;
4810
4811 /* Prevent U2 if service interval is shorter than U2 exit latency */
4812 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4813 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4814 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4815 return USB3_LPM_DISABLED;
4816 }
4817 }
4818
4819 if (xhci->quirks & XHCI_INTEL_HOST)
4820 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4821 else
4822 timeout_ns = udev->u2_params.sel;
4823
4824 /* The U2 timeout is encoded in 256us intervals */
4825 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4826 /* If the necessary timeout value is bigger than what we can set in the
4827 * USB 3.0 hub, we have to disable hub-initiated U2.
4828 */
4829 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4830 return timeout_ns;
4831 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4832 "due to long timeout %llu ms\n", timeout_ns);
4833 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4834 }
4835
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4836 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4837 struct usb_device *udev,
4838 struct usb_endpoint_descriptor *desc,
4839 enum usb3_link_state state,
4840 u16 *timeout)
4841 {
4842 if (state == USB3_LPM_U1)
4843 return xhci_calculate_u1_timeout(xhci, udev, desc);
4844 else if (state == USB3_LPM_U2)
4845 return xhci_calculate_u2_timeout(xhci, udev, desc);
4846
4847 return USB3_LPM_DISABLED;
4848 }
4849
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4850 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4851 struct usb_device *udev,
4852 struct usb_endpoint_descriptor *desc,
4853 enum usb3_link_state state,
4854 u16 *timeout)
4855 {
4856 u16 alt_timeout;
4857
4858 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4859 desc, state, timeout);
4860
4861 /* If we found we can't enable hub-initiated LPM, and
4862 * the U1 or U2 exit latency was too high to allow
4863 * device-initiated LPM as well, then we will disable LPM
4864 * for this device, so stop searching any further.
4865 */
4866 if (alt_timeout == USB3_LPM_DISABLED) {
4867 *timeout = alt_timeout;
4868 return -E2BIG;
4869 }
4870 if (alt_timeout > *timeout)
4871 *timeout = alt_timeout;
4872 return 0;
4873 }
4874
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4875 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4876 struct usb_device *udev,
4877 struct usb_host_interface *alt,
4878 enum usb3_link_state state,
4879 u16 *timeout)
4880 {
4881 int j;
4882
4883 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4884 if (xhci_update_timeout_for_endpoint(xhci, udev,
4885 &alt->endpoint[j].desc, state, timeout))
4886 return -E2BIG;
4887 }
4888 return 0;
4889 }
4890
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4891 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4892 enum usb3_link_state state)
4893 {
4894 struct usb_device *parent;
4895 unsigned int num_hubs;
4896
4897 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4898 for (parent = udev->parent, num_hubs = 0; parent->parent;
4899 parent = parent->parent)
4900 num_hubs++;
4901
4902 if (num_hubs < 2)
4903 return 0;
4904
4905 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4906 " below second-tier hub.\n");
4907 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4908 "to decrease power consumption.\n");
4909 return -E2BIG;
4910 }
4911
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4912 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4913 struct usb_device *udev,
4914 enum usb3_link_state state)
4915 {
4916 if (xhci->quirks & XHCI_INTEL_HOST)
4917 return xhci_check_intel_tier_policy(udev, state);
4918 else
4919 return 0;
4920 }
4921
4922 /* Returns the U1 or U2 timeout that should be enabled.
4923 * If the tier check or timeout setting functions return with a non-zero exit
4924 * code, that means the timeout value has been finalized and we shouldn't look
4925 * at any more endpoints.
4926 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4927 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4928 struct usb_device *udev, enum usb3_link_state state)
4929 {
4930 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4931 struct usb_host_config *config;
4932 char *state_name;
4933 int i;
4934 u16 timeout = USB3_LPM_DISABLED;
4935
4936 if (state == USB3_LPM_U1)
4937 state_name = "U1";
4938 else if (state == USB3_LPM_U2)
4939 state_name = "U2";
4940 else {
4941 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4942 state);
4943 return timeout;
4944 }
4945
4946 /* Gather some information about the currently installed configuration
4947 * and alternate interface settings.
4948 */
4949 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4950 state, &timeout))
4951 return timeout;
4952
4953 config = udev->actconfig;
4954 if (!config)
4955 return timeout;
4956
4957 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4958 struct usb_driver *driver;
4959 struct usb_interface *intf = config->interface[i];
4960
4961 if (!intf)
4962 continue;
4963
4964 /* Check if any currently bound drivers want hub-initiated LPM
4965 * disabled.
4966 */
4967 if (intf->dev.driver) {
4968 driver = to_usb_driver(intf->dev.driver);
4969 if (driver && driver->disable_hub_initiated_lpm) {
4970 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4971 state_name, driver->name);
4972 timeout = xhci_get_timeout_no_hub_lpm(udev,
4973 state);
4974 if (timeout == USB3_LPM_DISABLED)
4975 return timeout;
4976 }
4977 }
4978
4979 /* Not sure how this could happen... */
4980 if (!intf->cur_altsetting)
4981 continue;
4982
4983 if (xhci_update_timeout_for_interface(xhci, udev,
4984 intf->cur_altsetting,
4985 state, &timeout))
4986 return timeout;
4987 }
4988 return timeout;
4989 }
4990
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4991 static int calculate_max_exit_latency(struct usb_device *udev,
4992 enum usb3_link_state state_changed,
4993 u16 hub_encoded_timeout)
4994 {
4995 unsigned long long u1_mel_us = 0;
4996 unsigned long long u2_mel_us = 0;
4997 unsigned long long mel_us = 0;
4998 bool disabling_u1;
4999 bool disabling_u2;
5000 bool enabling_u1;
5001 bool enabling_u2;
5002
5003 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5004 hub_encoded_timeout == USB3_LPM_DISABLED);
5005 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5006 hub_encoded_timeout == USB3_LPM_DISABLED);
5007
5008 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5009 hub_encoded_timeout != USB3_LPM_DISABLED);
5010 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5011 hub_encoded_timeout != USB3_LPM_DISABLED);
5012
5013 /* If U1 was already enabled and we're not disabling it,
5014 * or we're going to enable U1, account for the U1 max exit latency.
5015 */
5016 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5017 enabling_u1)
5018 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5019 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5020 enabling_u2)
5021 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5022
5023 mel_us = max(u1_mel_us, u2_mel_us);
5024
5025 /* xHCI host controller max exit latency field is only 16 bits wide. */
5026 if (mel_us > MAX_EXIT) {
5027 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5028 "is too big.\n", mel_us);
5029 return -E2BIG;
5030 }
5031 return mel_us;
5032 }
5033
5034 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5035 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5036 struct usb_device *udev, enum usb3_link_state state)
5037 {
5038 struct xhci_hcd *xhci;
5039 u16 hub_encoded_timeout;
5040 int mel;
5041 int ret;
5042
5043 xhci = hcd_to_xhci(hcd);
5044 /* The LPM timeout values are pretty host-controller specific, so don't
5045 * enable hub-initiated timeouts unless the vendor has provided
5046 * information about their timeout algorithm.
5047 */
5048 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049 !xhci->devs[udev->slot_id])
5050 return USB3_LPM_DISABLED;
5051
5052 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5053 return USB3_LPM_DISABLED;
5054
5055 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5056 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5057 if (mel < 0) {
5058 /* Max Exit Latency is too big, disable LPM. */
5059 hub_encoded_timeout = USB3_LPM_DISABLED;
5060 mel = 0;
5061 }
5062
5063 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5064 if (ret)
5065 return ret;
5066 return hub_encoded_timeout;
5067 }
5068
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5069 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5070 struct usb_device *udev, enum usb3_link_state state)
5071 {
5072 struct xhci_hcd *xhci;
5073 u16 mel;
5074
5075 xhci = hcd_to_xhci(hcd);
5076 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5077 !xhci->devs[udev->slot_id])
5078 return 0;
5079
5080 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5081 return xhci_change_max_exit_latency(xhci, udev, mel);
5082 }
5083 #else /* CONFIG_PM */
5084
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5085 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5086 struct usb_device *udev, int enable)
5087 {
5088 return 0;
5089 }
5090
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5091 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5092 {
5093 return 0;
5094 }
5095
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5096 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5097 struct usb_device *udev, enum usb3_link_state state)
5098 {
5099 return USB3_LPM_DISABLED;
5100 }
5101
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5102 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5103 struct usb_device *udev, enum usb3_link_state state)
5104 {
5105 return 0;
5106 }
5107 #endif /* CONFIG_PM */
5108
5109 /*-------------------------------------------------------------------------*/
5110
5111 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5112 * internal data structures for the device.
5113 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5114 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5115 struct usb_tt *tt, gfp_t mem_flags)
5116 {
5117 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5118 struct xhci_virt_device *vdev;
5119 struct xhci_command *config_cmd;
5120 struct xhci_input_control_ctx *ctrl_ctx;
5121 struct xhci_slot_ctx *slot_ctx;
5122 unsigned long flags;
5123 unsigned think_time;
5124 int ret;
5125
5126 /* Ignore root hubs */
5127 if (!hdev->parent)
5128 return 0;
5129
5130 vdev = xhci->devs[hdev->slot_id];
5131 if (!vdev) {
5132 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5133 return -EINVAL;
5134 }
5135
5136 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5137 if (!config_cmd)
5138 return -ENOMEM;
5139
5140 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5141 if (!ctrl_ctx) {
5142 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5143 __func__);
5144 xhci_free_command(xhci, config_cmd);
5145 return -ENOMEM;
5146 }
5147
5148 spin_lock_irqsave(&xhci->lock, flags);
5149 if (hdev->speed == USB_SPEED_HIGH &&
5150 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5151 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5152 xhci_free_command(xhci, config_cmd);
5153 spin_unlock_irqrestore(&xhci->lock, flags);
5154 return -ENOMEM;
5155 }
5156
5157 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5158 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5159 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5160 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5161 /*
5162 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5163 * but it may be already set to 1 when setup an xHCI virtual
5164 * device, so clear it anyway.
5165 */
5166 if (tt->multi)
5167 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5168 else if (hdev->speed == USB_SPEED_FULL)
5169 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5170
5171 if (xhci->hci_version > 0x95) {
5172 xhci_dbg(xhci, "xHCI version %x needs hub "
5173 "TT think time and number of ports\n",
5174 (unsigned int) xhci->hci_version);
5175 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5176 /* Set TT think time - convert from ns to FS bit times.
5177 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5178 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5179 *
5180 * xHCI 1.0: this field shall be 0 if the device is not a
5181 * High-spped hub.
5182 */
5183 think_time = tt->think_time;
5184 if (think_time != 0)
5185 think_time = (think_time / 666) - 1;
5186 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5187 slot_ctx->tt_info |=
5188 cpu_to_le32(TT_THINK_TIME(think_time));
5189 } else {
5190 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5191 "TT think time or number of ports\n",
5192 (unsigned int) xhci->hci_version);
5193 }
5194 slot_ctx->dev_state = 0;
5195 spin_unlock_irqrestore(&xhci->lock, flags);
5196
5197 xhci_dbg(xhci, "Set up %s for hub device.\n",
5198 (xhci->hci_version > 0x95) ?
5199 "configure endpoint" : "evaluate context");
5200
5201 /* Issue and wait for the configure endpoint or
5202 * evaluate context command.
5203 */
5204 if (xhci->hci_version > 0x95)
5205 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5206 false, false);
5207 else
5208 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5209 true, false);
5210
5211 xhci_free_command(xhci, config_cmd);
5212 return ret;
5213 }
5214
xhci_get_frame(struct usb_hcd * hcd)5215 static int xhci_get_frame(struct usb_hcd *hcd)
5216 {
5217 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5218 /* EHCI mods by the periodic size. Why? */
5219 return readl(&xhci->run_regs->microframe_index) >> 3;
5220 }
5221
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5222 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5223 {
5224 xhci->usb2_rhub.hcd = hcd;
5225 hcd->speed = HCD_USB2;
5226 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5227 /*
5228 * USB 2.0 roothub under xHCI has an integrated TT,
5229 * (rate matching hub) as opposed to having an OHCI/UHCI
5230 * companion controller.
5231 */
5232 hcd->has_tt = 1;
5233 }
5234
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5235 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5236 {
5237 unsigned int minor_rev;
5238
5239 /*
5240 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5241 * should return 0x31 for sbrn, or that the minor revision
5242 * is a two digit BCD containig minor and sub-minor numbers.
5243 * This was later clarified in xHCI 1.2.
5244 *
5245 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5246 * minor revision set to 0x1 instead of 0x10.
5247 */
5248 if (xhci->usb3_rhub.min_rev == 0x1)
5249 minor_rev = 1;
5250 else
5251 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5252
5253 switch (minor_rev) {
5254 case 2:
5255 hcd->speed = HCD_USB32;
5256 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257 hcd->self.root_hub->rx_lanes = 2;
5258 hcd->self.root_hub->tx_lanes = 2;
5259 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5260 break;
5261 case 1:
5262 hcd->speed = HCD_USB31;
5263 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5264 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5265 break;
5266 }
5267 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5268 minor_rev, minor_rev ? "Enhanced " : "");
5269
5270 xhci->usb3_rhub.hcd = hcd;
5271 }
5272
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5273 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5274 {
5275 struct xhci_hcd *xhci;
5276 /*
5277 * TODO: Check with DWC3 clients for sysdev according to
5278 * quirks
5279 */
5280 struct device *dev = hcd->self.sysdev;
5281 int retval;
5282
5283 /* Accept arbitrarily long scatter-gather lists */
5284 hcd->self.sg_tablesize = ~0;
5285
5286 /* support to build packet from discontinuous buffers */
5287 hcd->self.no_sg_constraint = 1;
5288
5289 /* XHCI controllers don't stop the ep queue on short packets :| */
5290 hcd->self.no_stop_on_short = 1;
5291
5292 xhci = hcd_to_xhci(hcd);
5293
5294 if (!usb_hcd_is_primary_hcd(hcd)) {
5295 xhci_hcd_init_usb3_data(xhci, hcd);
5296 return 0;
5297 }
5298
5299 mutex_init(&xhci->mutex);
5300 xhci->main_hcd = hcd;
5301 xhci->cap_regs = hcd->regs;
5302 xhci->op_regs = hcd->regs +
5303 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5304 xhci->run_regs = hcd->regs +
5305 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5306 /* Cache read-only capability registers */
5307 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5308 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5309 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5310 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5311 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5312 if (xhci->hci_version > 0x100)
5313 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5314
5315 xhci->quirks |= quirks;
5316
5317 get_quirks(dev, xhci);
5318
5319 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5320 * success event after a short transfer. This quirk will ignore such
5321 * spurious event.
5322 */
5323 if (xhci->hci_version > 0x96)
5324 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5325
5326 /* Make sure the HC is halted. */
5327 retval = xhci_halt(xhci);
5328 if (retval)
5329 return retval;
5330
5331 xhci_zero_64b_regs(xhci);
5332
5333 xhci_dbg(xhci, "Resetting HCD\n");
5334 /* Reset the internal HC memory state and registers. */
5335 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5336 if (retval)
5337 return retval;
5338 xhci_dbg(xhci, "Reset complete\n");
5339
5340 /*
5341 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5342 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5343 * address memory pointers actually. So, this driver clears the AC64
5344 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5345 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5346 */
5347 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5348 xhci->hcc_params &= ~BIT(0);
5349
5350 /* Set dma_mask and coherent_dma_mask to 64-bits,
5351 * if xHC supports 64-bit addressing */
5352 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5353 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5354 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5355 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5356 } else {
5357 /*
5358 * This is to avoid error in cases where a 32-bit USB
5359 * controller is used on a 64-bit capable system.
5360 */
5361 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5362 if (retval)
5363 return retval;
5364 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5365 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5366 }
5367
5368 xhci_dbg(xhci, "Calling HCD init\n");
5369 /* Initialize HCD and host controller data structures. */
5370 retval = xhci_init(hcd);
5371 if (retval)
5372 return retval;
5373 xhci_dbg(xhci, "Called HCD init\n");
5374
5375 if (xhci_hcd_is_usb3(hcd))
5376 xhci_hcd_init_usb3_data(xhci, hcd);
5377 else
5378 xhci_hcd_init_usb2_data(xhci, hcd);
5379
5380 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5381 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5382
5383 return 0;
5384 }
5385 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5386
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5387 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5388 struct usb_host_endpoint *ep)
5389 {
5390 struct xhci_hcd *xhci;
5391 struct usb_device *udev;
5392 unsigned int slot_id;
5393 unsigned int ep_index;
5394 unsigned long flags;
5395
5396 xhci = hcd_to_xhci(hcd);
5397
5398 spin_lock_irqsave(&xhci->lock, flags);
5399 udev = (struct usb_device *)ep->hcpriv;
5400 slot_id = udev->slot_id;
5401 ep_index = xhci_get_endpoint_index(&ep->desc);
5402
5403 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5404 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5405 spin_unlock_irqrestore(&xhci->lock, flags);
5406 }
5407
5408 static const struct hc_driver xhci_hc_driver = {
5409 .description = "xhci-hcd",
5410 .product_desc = "xHCI Host Controller",
5411 .hcd_priv_size = sizeof(struct xhci_hcd),
5412
5413 /*
5414 * generic hardware linkage
5415 */
5416 .irq = xhci_irq,
5417 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5418 HCD_BH,
5419
5420 /*
5421 * basic lifecycle operations
5422 */
5423 .reset = NULL, /* set in xhci_init_driver() */
5424 .start = xhci_run,
5425 .stop = xhci_stop,
5426 .shutdown = xhci_shutdown,
5427
5428 /*
5429 * managing i/o requests and associated device resources
5430 */
5431 .map_urb_for_dma = xhci_map_urb_for_dma,
5432 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5433 .urb_enqueue = xhci_urb_enqueue,
5434 .urb_dequeue = xhci_urb_dequeue,
5435 .alloc_dev = xhci_alloc_dev,
5436 .free_dev = xhci_free_dev,
5437 .alloc_streams = xhci_alloc_streams,
5438 .free_streams = xhci_free_streams,
5439 .add_endpoint = xhci_add_endpoint,
5440 .drop_endpoint = xhci_drop_endpoint,
5441 .endpoint_disable = xhci_endpoint_disable,
5442 .endpoint_reset = xhci_endpoint_reset,
5443 .check_bandwidth = xhci_check_bandwidth,
5444 .reset_bandwidth = xhci_reset_bandwidth,
5445 .address_device = xhci_address_device,
5446 .enable_device = xhci_enable_device,
5447 .update_hub_device = xhci_update_hub_device,
5448 .reset_device = xhci_discover_or_reset_device,
5449
5450 /*
5451 * scheduling support
5452 */
5453 .get_frame_number = xhci_get_frame,
5454
5455 /*
5456 * root hub support
5457 */
5458 .hub_control = xhci_hub_control,
5459 .hub_status_data = xhci_hub_status_data,
5460 .bus_suspend = xhci_bus_suspend,
5461 .bus_resume = xhci_bus_resume,
5462 .get_resuming_ports = xhci_get_resuming_ports,
5463
5464 /*
5465 * call back when device connected and addressed
5466 */
5467 .update_device = xhci_update_device,
5468 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5469 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5470 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5471 .find_raw_port_number = xhci_find_raw_port_number,
5472 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5473 };
5474
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5475 void xhci_init_driver(struct hc_driver *drv,
5476 const struct xhci_driver_overrides *over)
5477 {
5478 BUG_ON(!over);
5479
5480 /* Copy the generic table to drv then apply the overrides */
5481 *drv = xhci_hc_driver;
5482
5483 if (over) {
5484 drv->hcd_priv_size += over->extra_priv_size;
5485 if (over->reset)
5486 drv->reset = over->reset;
5487 if (over->start)
5488 drv->start = over->start;
5489 if (over->add_endpoint)
5490 drv->add_endpoint = over->add_endpoint;
5491 if (over->drop_endpoint)
5492 drv->drop_endpoint = over->drop_endpoint;
5493 if (over->check_bandwidth)
5494 drv->check_bandwidth = over->check_bandwidth;
5495 if (over->reset_bandwidth)
5496 drv->reset_bandwidth = over->reset_bandwidth;
5497 }
5498 }
5499 EXPORT_SYMBOL_GPL(xhci_init_driver);
5500
5501 MODULE_DESCRIPTION(DRIVER_DESC);
5502 MODULE_AUTHOR(DRIVER_AUTHOR);
5503 MODULE_LICENSE("GPL");
5504
xhci_hcd_init(void)5505 static int __init xhci_hcd_init(void)
5506 {
5507 /*
5508 * Check the compiler generated sizes of structures that must be laid
5509 * out in specific ways for hardware access.
5510 */
5511 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5512 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5513 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5514 /* xhci_device_control has eight fields, and also
5515 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5516 */
5517 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5518 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5519 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5520 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5521 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5522 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5523 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5524
5525 if (usb_disabled())
5526 return -ENODEV;
5527
5528 xhci_debugfs_create_root();
5529 xhci_dbc_init();
5530
5531 return 0;
5532 }
5533
5534 /*
5535 * If an init function is provided, an exit function must also be provided
5536 * to allow module unload.
5537 */
xhci_hcd_fini(void)5538 static void __exit xhci_hcd_fini(void)
5539 {
5540 xhci_debugfs_remove_root();
5541 xhci_dbc_exit();
5542 }
5543
5544 module_init(xhci_hcd_init);
5545 module_exit(xhci_hcd_fini);
5546