1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
handshake(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec)54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
56 {
57 u32 result;
58
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
70 }
71
72 /*
73 * Disable interrupts and begin the xHCI halting process.
74 */
xhci_quiesce(struct xhci_hcd * xhci)75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 u32 halted;
78 u32 cmd;
79 u32 mask;
80
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
85
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 */
xhci_halt(struct xhci_hcd * xhci)99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
104
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
110 }
111
112 /*
113 * Set the run bit and wait for the host to be running.
114 */
xhci_start(struct xhci_hcd * xhci)115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 u32 temp;
118 int ret;
119
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126 /*
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
129 */
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
139 }
140
141 /*
142 * Reset a halted HC.
143 *
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
147 */
xhci_reset(struct xhci_hcd * xhci)148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 u32 command;
151 u32 state;
152 int ret;
153
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
158 }
159
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
164
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
169
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 /*
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
174 */
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179 * Free IRQs
180 * free all IRQs request
181 */
xhci_free_irq(struct xhci_hcd * xhci)182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184 int i;
185 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187 /* return if using legacy interrupt */
188 if (xhci_to_hcd(xhci)->irq >= 0)
189 return;
190
191 if (xhci->msix_entries) {
192 for (i = 0; i < xhci->msix_count; i++)
193 if (xhci->msix_entries[i].vector)
194 free_irq(xhci->msix_entries[i].vector,
195 xhci_to_hcd(xhci));
196 } else if (pdev->irq >= 0)
197 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199 return;
200 }
201
202 /*
203 * Set up MSI
204 */
xhci_setup_msi(struct xhci_hcd * xhci)205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207 int ret;
208 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210 ret = pci_enable_msi(pdev);
211 if (ret) {
212 xhci_err(xhci, "failed to allocate MSI entry\n");
213 return ret;
214 }
215
216 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 0, "xhci_hcd", xhci_to_hcd(xhci));
218 if (ret) {
219 xhci_err(xhci, "disable MSI interrupt\n");
220 pci_disable_msi(pdev);
221 }
222
223 return ret;
224 }
225
226 /*
227 * Set up MSI-X
228 */
xhci_setup_msix(struct xhci_hcd * xhci)229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231 int i, ret = 0;
232 struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235 /*
236 * calculate number of msi-x vectors supported.
237 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 * with max number of interrupters based on the xhci HCSPARAMS1.
239 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 * Add additional 1 vector to ensure always available interrupt.
241 */
242 xhci->msix_count = min(num_online_cpus() + 1,
243 HCS_MAX_INTRS(xhci->hcs_params1));
244
245 xhci->msix_entries =
246 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 GFP_KERNEL);
248 if (!xhci->msix_entries) {
249 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 return -ENOMEM;
251 }
252
253 for (i = 0; i < xhci->msix_count; i++) {
254 xhci->msix_entries[i].entry = i;
255 xhci->msix_entries[i].vector = 0;
256 }
257
258 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 if (ret) {
260 xhci_err(xhci, "Failed to enable MSI-X\n");
261 goto free_entries;
262 }
263
264 for (i = 0; i < xhci->msix_count; i++) {
265 ret = request_irq(xhci->msix_entries[i].vector,
266 (irq_handler_t)xhci_msi_irq,
267 0, "xhci_hcd", xhci_to_hcd(xhci));
268 if (ret)
269 goto disable_msix;
270 }
271
272 hcd->msix_enabled = 1;
273 return ret;
274
275 disable_msix:
276 xhci_err(xhci, "disable MSI-X interrupt\n");
277 xhci_free_irq(xhci);
278 pci_disable_msix(pdev);
279 free_entries:
280 kfree(xhci->msix_entries);
281 xhci->msix_entries = NULL;
282 return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291 xhci_free_irq(xhci);
292
293 if (xhci->msix_entries) {
294 pci_disable_msix(pdev);
295 kfree(xhci->msix_entries);
296 xhci->msix_entries = NULL;
297 } else {
298 pci_disable_msi(pdev);
299 }
300
301 hcd->msix_enabled = 0;
302 return;
303 }
304
305 /*
306 * Initialize memory for HCD and xHC (one-time init).
307 *
308 * Program the PAGESIZE register, initialize the device context array, create
309 * device contexts (?), set up a command ring segment (or two?), create event
310 * ring (one for now).
311 */
xhci_init(struct usb_hcd * hcd)312 int xhci_init(struct usb_hcd *hcd)
313 {
314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 int retval = 0;
316
317 xhci_dbg(xhci, "xhci_init\n");
318 spin_lock_init(&xhci->lock);
319 if (link_quirk) {
320 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 } else {
323 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324 }
325 retval = xhci_mem_init(xhci, GFP_KERNEL);
326 xhci_dbg(xhci, "Finished xhci_init\n");
327
328 return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_event_ring_work(unsigned long arg)335 static void xhci_event_ring_work(unsigned long arg)
336 {
337 unsigned long flags;
338 int temp;
339 u64 temp_64;
340 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 int i, j;
342
343 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345 spin_lock_irqsave(&xhci->lock, flags);
346 temp = xhci_readl(xhci, &xhci->op_regs->status);
347 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
349 xhci_dbg(xhci, "HW died, polling stopped.\n");
350 spin_unlock_irqrestore(&xhci->lock, flags);
351 return;
352 }
353
354 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
355 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
356 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
357 xhci->error_bitmask = 0;
358 xhci_dbg(xhci, "Event ring:\n");
359 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
360 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
361 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
362 temp_64 &= ~ERST_PTR_MASK;
363 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
364 xhci_dbg(xhci, "Command ring:\n");
365 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
366 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
367 xhci_dbg_cmd_ptrs(xhci);
368 for (i = 0; i < MAX_HC_SLOTS; ++i) {
369 if (!xhci->devs[i])
370 continue;
371 for (j = 0; j < 31; ++j) {
372 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
373 }
374 }
375 spin_unlock_irqrestore(&xhci->lock, flags);
376
377 if (!xhci->zombie)
378 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
379 else
380 xhci_dbg(xhci, "Quit polling the event ring.\n");
381 }
382 #endif
383
xhci_run_finished(struct xhci_hcd * xhci)384 static int xhci_run_finished(struct xhci_hcd *xhci)
385 {
386 if (xhci_start(xhci)) {
387 xhci_halt(xhci);
388 return -ENODEV;
389 }
390 xhci->shared_hcd->state = HC_STATE_RUNNING;
391
392 if (xhci->quirks & XHCI_NEC_HOST)
393 xhci_ring_cmd_db(xhci);
394
395 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
396 return 0;
397 }
398
399 /*
400 * Start the HC after it was halted.
401 *
402 * This function is called by the USB core when the HC driver is added.
403 * Its opposite is xhci_stop().
404 *
405 * xhci_init() must be called once before this function can be called.
406 * Reset the HC, enable device slot contexts, program DCBAAP, and
407 * set command ring pointer and event ring pointer.
408 *
409 * Setup MSI-X vectors and enable interrupts.
410 */
xhci_run(struct usb_hcd * hcd)411 int xhci_run(struct usb_hcd *hcd)
412 {
413 u32 temp;
414 u64 temp_64;
415 u32 ret;
416 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
417 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418
419 /* Start the xHCI host controller running only after the USB 2.0 roothub
420 * is setup.
421 */
422
423 hcd->uses_new_polling = 1;
424 if (!usb_hcd_is_primary_hcd(hcd))
425 return xhci_run_finished(xhci);
426
427 xhci_dbg(xhci, "xhci_run\n");
428 /* unregister the legacy interrupt */
429 if (hcd->irq)
430 free_irq(hcd->irq, hcd);
431 hcd->irq = -1;
432
433 ret = xhci_setup_msix(xhci);
434 if (ret)
435 /* fall back to msi*/
436 ret = xhci_setup_msi(xhci);
437
438 if (ret) {
439 /* fall back to legacy interrupt*/
440 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
441 hcd->irq_descr, hcd);
442 if (ret) {
443 xhci_err(xhci, "request interrupt %d failed\n",
444 pdev->irq);
445 return ret;
446 }
447 hcd->irq = pdev->irq;
448 }
449
450 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
451 init_timer(&xhci->event_ring_timer);
452 xhci->event_ring_timer.data = (unsigned long) xhci;
453 xhci->event_ring_timer.function = xhci_event_ring_work;
454 /* Poll the event ring */
455 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
456 xhci->zombie = 0;
457 xhci_dbg(xhci, "Setting event ring polling timer\n");
458 add_timer(&xhci->event_ring_timer);
459 #endif
460
461 xhci_dbg(xhci, "Command ring memory map follows:\n");
462 xhci_debug_ring(xhci, xhci->cmd_ring);
463 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
464 xhci_dbg_cmd_ptrs(xhci);
465
466 xhci_dbg(xhci, "ERST memory map follows:\n");
467 xhci_dbg_erst(xhci, &xhci->erst);
468 xhci_dbg(xhci, "Event ring:\n");
469 xhci_debug_ring(xhci, xhci->event_ring);
470 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
471 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
472 temp_64 &= ~ERST_PTR_MASK;
473 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
474
475 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
476 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
477 temp &= ~ER_IRQ_INTERVAL_MASK;
478 temp |= (u32) 160;
479 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
480
481 /* Set the HCD state before we enable the irqs */
482 temp = xhci_readl(xhci, &xhci->op_regs->command);
483 temp |= (CMD_EIE);
484 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
485 temp);
486 xhci_writel(xhci, temp, &xhci->op_regs->command);
487
488 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
489 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
490 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
491 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
492 &xhci->ir_set->irq_pending);
493 xhci_print_ir_set(xhci, 0);
494
495 if (xhci->quirks & XHCI_NEC_HOST)
496 xhci_queue_vendor_command(xhci, 0, 0, 0,
497 TRB_TYPE(TRB_NEC_GET_FW));
498
499 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
500 return 0;
501 }
502
xhci_only_stop_hcd(struct usb_hcd * hcd)503 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
504 {
505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506
507 spin_lock_irq(&xhci->lock);
508 xhci_halt(xhci);
509
510 /* The shared_hcd is going to be deallocated shortly (the USB core only
511 * calls this function when allocation fails in usb_add_hcd(), or
512 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
513 */
514 xhci->shared_hcd = NULL;
515 spin_unlock_irq(&xhci->lock);
516 }
517
518 /*
519 * Stop xHCI driver.
520 *
521 * This function is called by the USB core when the HC driver is removed.
522 * Its opposite is xhci_run().
523 *
524 * Disable device contexts, disable IRQs, and quiesce the HC.
525 * Reset the HC, finish any completed transactions, and cleanup memory.
526 */
xhci_stop(struct usb_hcd * hcd)527 void xhci_stop(struct usb_hcd *hcd)
528 {
529 u32 temp;
530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531
532 if (!usb_hcd_is_primary_hcd(hcd)) {
533 xhci_only_stop_hcd(xhci->shared_hcd);
534 return;
535 }
536
537 spin_lock_irq(&xhci->lock);
538 /* Make sure the xHC is halted for a USB3 roothub
539 * (xhci_stop() could be called as part of failed init).
540 */
541 xhci_halt(xhci);
542 xhci_reset(xhci);
543 spin_unlock_irq(&xhci->lock);
544
545 xhci_cleanup_msix(xhci);
546
547 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
548 /* Tell the event ring poll function not to reschedule */
549 xhci->zombie = 1;
550 del_timer_sync(&xhci->event_ring_timer);
551 #endif
552
553 if (xhci->quirks & XHCI_AMD_PLL_FIX)
554 usb_amd_dev_put();
555
556 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
557 temp = xhci_readl(xhci, &xhci->op_regs->status);
558 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
559 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
560 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
561 &xhci->ir_set->irq_pending);
562 xhci_print_ir_set(xhci, 0);
563
564 xhci_dbg(xhci, "cleaning up memory\n");
565 xhci_mem_cleanup(xhci);
566 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
567 xhci_readl(xhci, &xhci->op_regs->status));
568 }
569
570 /*
571 * Shutdown HC (not bus-specific)
572 *
573 * This is called when the machine is rebooting or halting. We assume that the
574 * machine will be powered off, and the HC's internal state will be reset.
575 * Don't bother to free memory.
576 *
577 * This will only ever be called with the main usb_hcd (the USB3 roothub).
578 */
xhci_shutdown(struct usb_hcd * hcd)579 void xhci_shutdown(struct usb_hcd *hcd)
580 {
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582
583 spin_lock_irq(&xhci->lock);
584 xhci_halt(xhci);
585 spin_unlock_irq(&xhci->lock);
586
587 xhci_cleanup_msix(xhci);
588
589 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
590 xhci_readl(xhci, &xhci->op_regs->status));
591 }
592
593 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)594 static void xhci_save_registers(struct xhci_hcd *xhci)
595 {
596 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
597 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
598 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
599 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
600 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
601 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
602 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
603 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
604 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
605 }
606
xhci_restore_registers(struct xhci_hcd * xhci)607 static void xhci_restore_registers(struct xhci_hcd *xhci)
608 {
609 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
610 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
611 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
612 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
613 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
614 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
615 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
616 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
617 }
618
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)619 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
620 {
621 u64 val_64;
622
623 /* step 2: initialize command ring buffer */
624 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
625 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
626 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
627 xhci->cmd_ring->dequeue) &
628 (u64) ~CMD_RING_RSVD_BITS) |
629 xhci->cmd_ring->cycle_state;
630 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
631 (long unsigned long) val_64);
632 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
633 }
634
635 /*
636 * The whole command ring must be cleared to zero when we suspend the host.
637 *
638 * The host doesn't save the command ring pointer in the suspend well, so we
639 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
640 * aligned, because of the reserved bits in the command ring dequeue pointer
641 * register. Therefore, we can't just set the dequeue pointer back in the
642 * middle of the ring (TRBs are 16-byte aligned).
643 */
xhci_clear_command_ring(struct xhci_hcd * xhci)644 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
645 {
646 struct xhci_ring *ring;
647 struct xhci_segment *seg;
648
649 ring = xhci->cmd_ring;
650 seg = ring->deq_seg;
651 do {
652 memset(seg->trbs, 0, SEGMENT_SIZE);
653 seg = seg->next;
654 } while (seg != ring->deq_seg);
655
656 /* Reset the software enqueue and dequeue pointers */
657 ring->deq_seg = ring->first_seg;
658 ring->dequeue = ring->first_seg->trbs;
659 ring->enq_seg = ring->deq_seg;
660 ring->enqueue = ring->dequeue;
661
662 /*
663 * Ring is now zeroed, so the HW should look for change of ownership
664 * when the cycle bit is set to 1.
665 */
666 ring->cycle_state = 1;
667
668 /*
669 * Reset the hardware dequeue pointer.
670 * Yes, this will need to be re-written after resume, but we're paranoid
671 * and want to make sure the hardware doesn't access bogus memory
672 * because, say, the BIOS or an SMI started the host without changing
673 * the command ring pointers.
674 */
675 xhci_set_cmd_ring_deq(xhci);
676 }
677
678 /*
679 * Stop HC (not bus-specific)
680 *
681 * This is called when the machine transition into S3/S4 mode.
682 *
683 */
xhci_suspend(struct xhci_hcd * xhci)684 int xhci_suspend(struct xhci_hcd *xhci)
685 {
686 int rc = 0;
687 struct usb_hcd *hcd = xhci_to_hcd(xhci);
688 u32 command;
689 int i;
690
691 spin_lock_irq(&xhci->lock);
692 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
693 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
694 /* step 1: stop endpoint */
695 /* skipped assuming that port suspend has done */
696
697 /* step 2: clear Run/Stop bit */
698 command = xhci_readl(xhci, &xhci->op_regs->command);
699 command &= ~CMD_RUN;
700 xhci_writel(xhci, command, &xhci->op_regs->command);
701 if (handshake(xhci, &xhci->op_regs->status,
702 STS_HALT, STS_HALT, 100*100)) {
703 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
704 spin_unlock_irq(&xhci->lock);
705 return -ETIMEDOUT;
706 }
707 xhci_clear_command_ring(xhci);
708
709 /* step 3: save registers */
710 xhci_save_registers(xhci);
711
712 /* step 4: set CSS flag */
713 command = xhci_readl(xhci, &xhci->op_regs->command);
714 command |= CMD_CSS;
715 xhci_writel(xhci, command, &xhci->op_regs->command);
716 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
717 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
718 spin_unlock_irq(&xhci->lock);
719 return -ETIMEDOUT;
720 }
721 spin_unlock_irq(&xhci->lock);
722
723 /* step 5: remove core well power */
724 /* synchronize irq when using MSI-X */
725 if (xhci->msix_entries) {
726 for (i = 0; i < xhci->msix_count; i++)
727 synchronize_irq(xhci->msix_entries[i].vector);
728 }
729
730 return rc;
731 }
732
733 /*
734 * start xHC (not bus-specific)
735 *
736 * This is called when the machine transition from S3/S4 mode.
737 *
738 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)739 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
740 {
741 u32 command, temp = 0;
742 struct usb_hcd *hcd = xhci_to_hcd(xhci);
743 struct usb_hcd *secondary_hcd;
744 int retval;
745
746 /* Wait a bit if either of the roothubs need to settle from the
747 * transition into bus suspend.
748 */
749 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
750 time_before(jiffies,
751 xhci->bus_state[1].next_statechange))
752 msleep(100);
753
754 spin_lock_irq(&xhci->lock);
755
756 if (!hibernated) {
757 /* step 1: restore register */
758 xhci_restore_registers(xhci);
759 /* step 2: initialize command ring buffer */
760 xhci_set_cmd_ring_deq(xhci);
761 /* step 3: restore state and start state*/
762 /* step 3: set CRS flag */
763 command = xhci_readl(xhci, &xhci->op_regs->command);
764 command |= CMD_CRS;
765 xhci_writel(xhci, command, &xhci->op_regs->command);
766 if (handshake(xhci, &xhci->op_regs->status,
767 STS_RESTORE, 0, 10*100)) {
768 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
769 spin_unlock_irq(&xhci->lock);
770 return -ETIMEDOUT;
771 }
772 temp = xhci_readl(xhci, &xhci->op_regs->status);
773 }
774
775 /* If restore operation fails, re-initialize the HC during resume */
776 if ((temp & STS_SRE) || hibernated) {
777 /* Let the USB core know _both_ roothubs lost power. */
778 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
779 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
780
781 xhci_dbg(xhci, "Stop HCD\n");
782 xhci_halt(xhci);
783 xhci_reset(xhci);
784 spin_unlock_irq(&xhci->lock);
785 xhci_cleanup_msix(xhci);
786
787 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
788 /* Tell the event ring poll function not to reschedule */
789 xhci->zombie = 1;
790 del_timer_sync(&xhci->event_ring_timer);
791 #endif
792
793 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
794 temp = xhci_readl(xhci, &xhci->op_regs->status);
795 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
796 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
797 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
798 &xhci->ir_set->irq_pending);
799 xhci_print_ir_set(xhci, 0);
800
801 xhci_dbg(xhci, "cleaning up memory\n");
802 xhci_mem_cleanup(xhci);
803 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
804 xhci_readl(xhci, &xhci->op_regs->status));
805
806 /* USB core calls the PCI reinit and start functions twice:
807 * first with the primary HCD, and then with the secondary HCD.
808 * If we don't do the same, the host will never be started.
809 */
810 if (!usb_hcd_is_primary_hcd(hcd))
811 secondary_hcd = hcd;
812 else
813 secondary_hcd = xhci->shared_hcd;
814
815 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
816 retval = xhci_init(hcd->primary_hcd);
817 if (retval)
818 return retval;
819 xhci_dbg(xhci, "Start the primary HCD\n");
820 retval = xhci_run(hcd->primary_hcd);
821 if (retval)
822 goto failed_restart;
823
824 xhci_dbg(xhci, "Start the secondary HCD\n");
825 retval = xhci_run(secondary_hcd);
826 if (!retval) {
827 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
828 set_bit(HCD_FLAG_HW_ACCESSIBLE,
829 &xhci->shared_hcd->flags);
830 }
831 failed_restart:
832 hcd->state = HC_STATE_SUSPENDED;
833 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
834 return retval;
835 }
836
837 /* step 4: set Run/Stop bit */
838 command = xhci_readl(xhci, &xhci->op_regs->command);
839 command |= CMD_RUN;
840 xhci_writel(xhci, command, &xhci->op_regs->command);
841 handshake(xhci, &xhci->op_regs->status, STS_HALT,
842 0, 250 * 1000);
843
844 /* step 5: walk topology and initialize portsc,
845 * portpmsc and portli
846 */
847 /* this is done in bus_resume */
848
849 /* step 6: restart each of the previously
850 * Running endpoints by ringing their doorbells
851 */
852
853 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
854 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
855
856 spin_unlock_irq(&xhci->lock);
857 return 0;
858 }
859 #endif /* CONFIG_PM */
860
861 /*-------------------------------------------------------------------------*/
862
863 /**
864 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
865 * HCDs. Find the index for an endpoint given its descriptor. Use the return
866 * value to right shift 1 for the bitmask.
867 *
868 * Index = (epnum * 2) + direction - 1,
869 * where direction = 0 for OUT, 1 for IN.
870 * For control endpoints, the IN index is used (OUT index is unused), so
871 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
872 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)873 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
874 {
875 unsigned int index;
876 if (usb_endpoint_xfer_control(desc))
877 index = (unsigned int) (usb_endpoint_num(desc)*2);
878 else
879 index = (unsigned int) (usb_endpoint_num(desc)*2) +
880 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
881 return index;
882 }
883
884 /* Find the flag for this endpoint (for use in the control context). Use the
885 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
886 * bit 1, etc.
887 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)888 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
889 {
890 return 1 << (xhci_get_endpoint_index(desc) + 1);
891 }
892
893 /* Find the flag for this endpoint (for use in the control context). Use the
894 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
895 * bit 1, etc.
896 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)897 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
898 {
899 return 1 << (ep_index + 1);
900 }
901
902 /* Compute the last valid endpoint context index. Basically, this is the
903 * endpoint index plus one. For slot contexts with more than valid endpoint,
904 * we find the most significant bit set in the added contexts flags.
905 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
906 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
907 */
xhci_last_valid_endpoint(u32 added_ctxs)908 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
909 {
910 return fls(added_ctxs) - 1;
911 }
912
913 /* Returns 1 if the arguments are OK;
914 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
915 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)916 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
917 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
918 const char *func) {
919 struct xhci_hcd *xhci;
920 struct xhci_virt_device *virt_dev;
921
922 if (!hcd || (check_ep && !ep) || !udev) {
923 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
924 func);
925 return -EINVAL;
926 }
927 if (!udev->parent) {
928 printk(KERN_DEBUG "xHCI %s called for root hub\n",
929 func);
930 return 0;
931 }
932
933 if (check_virt_dev) {
934 xhci = hcd_to_xhci(hcd);
935 if (!udev->slot_id || !xhci->devs
936 || !xhci->devs[udev->slot_id]) {
937 printk(KERN_DEBUG "xHCI %s called with unaddressed "
938 "device\n", func);
939 return -EINVAL;
940 }
941
942 virt_dev = xhci->devs[udev->slot_id];
943 if (virt_dev->udev != udev) {
944 printk(KERN_DEBUG "xHCI %s called with udev and "
945 "virt_dev does not match\n", func);
946 return -EINVAL;
947 }
948 }
949
950 return 1;
951 }
952
953 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
954 struct usb_device *udev, struct xhci_command *command,
955 bool ctx_change, bool must_succeed);
956
957 /*
958 * Full speed devices may have a max packet size greater than 8 bytes, but the
959 * USB core doesn't know that until it reads the first 8 bytes of the
960 * descriptor. If the usb_device's max packet size changes after that point,
961 * we need to issue an evaluate context command and wait on it.
962 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)963 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
964 unsigned int ep_index, struct urb *urb)
965 {
966 struct xhci_container_ctx *in_ctx;
967 struct xhci_container_ctx *out_ctx;
968 struct xhci_input_control_ctx *ctrl_ctx;
969 struct xhci_ep_ctx *ep_ctx;
970 int max_packet_size;
971 int hw_max_packet_size;
972 int ret = 0;
973
974 out_ctx = xhci->devs[slot_id]->out_ctx;
975 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
976 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
977 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
978 if (hw_max_packet_size != max_packet_size) {
979 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
980 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
981 max_packet_size);
982 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
983 hw_max_packet_size);
984 xhci_dbg(xhci, "Issuing evaluate context command.\n");
985
986 /* Set up the modified control endpoint 0 */
987 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
988 xhci->devs[slot_id]->out_ctx, ep_index);
989 in_ctx = xhci->devs[slot_id]->in_ctx;
990 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
991 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
992 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
993
994 /* Set up the input context flags for the command */
995 /* FIXME: This won't work if a non-default control endpoint
996 * changes max packet sizes.
997 */
998 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
999 ctrl_ctx->add_flags = EP0_FLAG;
1000 ctrl_ctx->drop_flags = 0;
1001
1002 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1003 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1004 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1005 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1006
1007 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1008 true, false);
1009
1010 /* Clean up the input context for later use by bandwidth
1011 * functions.
1012 */
1013 ctrl_ctx->add_flags = SLOT_FLAG;
1014 }
1015 return ret;
1016 }
1017
1018 /*
1019 * non-error returns are a promise to giveback() the urb later
1020 * we drop ownership so next owner (or urb unlink) can get it
1021 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1022 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1023 {
1024 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1025 unsigned long flags;
1026 int ret = 0;
1027 unsigned int slot_id, ep_index;
1028 struct urb_priv *urb_priv;
1029 int size, i;
1030
1031 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1032 true, true, __func__) <= 0)
1033 return -EINVAL;
1034
1035 slot_id = urb->dev->slot_id;
1036 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1037
1038 if (!HCD_HW_ACCESSIBLE(hcd)) {
1039 if (!in_interrupt())
1040 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1041 ret = -ESHUTDOWN;
1042 goto exit;
1043 }
1044
1045 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1046 size = urb->number_of_packets;
1047 else
1048 size = 1;
1049
1050 urb_priv = kzalloc(sizeof(struct urb_priv) +
1051 size * sizeof(struct xhci_td *), mem_flags);
1052 if (!urb_priv)
1053 return -ENOMEM;
1054
1055 for (i = 0; i < size; i++) {
1056 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1057 if (!urb_priv->td[i]) {
1058 urb_priv->length = i;
1059 xhci_urb_free_priv(xhci, urb_priv);
1060 return -ENOMEM;
1061 }
1062 }
1063
1064 urb_priv->length = size;
1065 urb_priv->td_cnt = 0;
1066 urb->hcpriv = urb_priv;
1067
1068 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1069 /* Check to see if the max packet size for the default control
1070 * endpoint changed during FS device enumeration
1071 */
1072 if (urb->dev->speed == USB_SPEED_FULL) {
1073 ret = xhci_check_maxpacket(xhci, slot_id,
1074 ep_index, urb);
1075 if (ret < 0)
1076 return ret;
1077 }
1078
1079 /* We have a spinlock and interrupts disabled, so we must pass
1080 * atomic context to this function, which may allocate memory.
1081 */
1082 spin_lock_irqsave(&xhci->lock, flags);
1083 if (xhci->xhc_state & XHCI_STATE_DYING)
1084 goto dying;
1085 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1086 slot_id, ep_index);
1087 spin_unlock_irqrestore(&xhci->lock, flags);
1088 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1089 spin_lock_irqsave(&xhci->lock, flags);
1090 if (xhci->xhc_state & XHCI_STATE_DYING)
1091 goto dying;
1092 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1093 EP_GETTING_STREAMS) {
1094 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1095 "is transitioning to using streams.\n");
1096 ret = -EINVAL;
1097 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1098 EP_GETTING_NO_STREAMS) {
1099 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1100 "is transitioning to "
1101 "not having streams.\n");
1102 ret = -EINVAL;
1103 } else {
1104 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1105 slot_id, ep_index);
1106 }
1107 spin_unlock_irqrestore(&xhci->lock, flags);
1108 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1109 spin_lock_irqsave(&xhci->lock, flags);
1110 if (xhci->xhc_state & XHCI_STATE_DYING)
1111 goto dying;
1112 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1113 slot_id, ep_index);
1114 spin_unlock_irqrestore(&xhci->lock, flags);
1115 } else {
1116 spin_lock_irqsave(&xhci->lock, flags);
1117 if (xhci->xhc_state & XHCI_STATE_DYING)
1118 goto dying;
1119 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1120 slot_id, ep_index);
1121 spin_unlock_irqrestore(&xhci->lock, flags);
1122 }
1123 exit:
1124 return ret;
1125 dying:
1126 xhci_urb_free_priv(xhci, urb_priv);
1127 urb->hcpriv = NULL;
1128 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1129 "non-responsive xHCI host.\n",
1130 urb->ep->desc.bEndpointAddress, urb);
1131 spin_unlock_irqrestore(&xhci->lock, flags);
1132 return -ESHUTDOWN;
1133 }
1134
1135 /* Get the right ring for the given URB.
1136 * If the endpoint supports streams, boundary check the URB's stream ID.
1137 * If the endpoint doesn't support streams, return the singular endpoint ring.
1138 */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1139 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1140 struct urb *urb)
1141 {
1142 unsigned int slot_id;
1143 unsigned int ep_index;
1144 unsigned int stream_id;
1145 struct xhci_virt_ep *ep;
1146
1147 slot_id = urb->dev->slot_id;
1148 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1149 stream_id = urb->stream_id;
1150 ep = &xhci->devs[slot_id]->eps[ep_index];
1151 /* Common case: no streams */
1152 if (!(ep->ep_state & EP_HAS_STREAMS))
1153 return ep->ring;
1154
1155 if (stream_id == 0) {
1156 xhci_warn(xhci,
1157 "WARN: Slot ID %u, ep index %u has streams, "
1158 "but URB has no stream ID.\n",
1159 slot_id, ep_index);
1160 return NULL;
1161 }
1162
1163 if (stream_id < ep->stream_info->num_streams)
1164 return ep->stream_info->stream_rings[stream_id];
1165
1166 xhci_warn(xhci,
1167 "WARN: Slot ID %u, ep index %u has "
1168 "stream IDs 1 to %u allocated, "
1169 "but stream ID %u is requested.\n",
1170 slot_id, ep_index,
1171 ep->stream_info->num_streams - 1,
1172 stream_id);
1173 return NULL;
1174 }
1175
1176 /*
1177 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1178 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1179 * should pick up where it left off in the TD, unless a Set Transfer Ring
1180 * Dequeue Pointer is issued.
1181 *
1182 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1183 * the ring. Since the ring is a contiguous structure, they can't be physically
1184 * removed. Instead, there are two options:
1185 *
1186 * 1) If the HC is in the middle of processing the URB to be canceled, we
1187 * simply move the ring's dequeue pointer past those TRBs using the Set
1188 * Transfer Ring Dequeue Pointer command. This will be the common case,
1189 * when drivers timeout on the last submitted URB and attempt to cancel.
1190 *
1191 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1192 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1193 * HC will need to invalidate the any TRBs it has cached after the stop
1194 * endpoint command, as noted in the xHCI 0.95 errata.
1195 *
1196 * 3) The TD may have completed by the time the Stop Endpoint Command
1197 * completes, so software needs to handle that case too.
1198 *
1199 * This function should protect against the TD enqueueing code ringing the
1200 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1201 * It also needs to account for multiple cancellations on happening at the same
1202 * time for the same endpoint.
1203 *
1204 * Note that this function can be called in any context, or so says
1205 * usb_hcd_unlink_urb()
1206 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1207 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1208 {
1209 unsigned long flags;
1210 int ret, i;
1211 u32 temp;
1212 struct xhci_hcd *xhci;
1213 struct urb_priv *urb_priv;
1214 struct xhci_td *td;
1215 unsigned int ep_index;
1216 struct xhci_ring *ep_ring;
1217 struct xhci_virt_ep *ep;
1218
1219 xhci = hcd_to_xhci(hcd);
1220 spin_lock_irqsave(&xhci->lock, flags);
1221 /* Make sure the URB hasn't completed or been unlinked already */
1222 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1223 if (ret || !urb->hcpriv)
1224 goto done;
1225 temp = xhci_readl(xhci, &xhci->op_regs->status);
1226 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1227 xhci_dbg(xhci, "HW died, freeing TD.\n");
1228 urb_priv = urb->hcpriv;
1229
1230 usb_hcd_unlink_urb_from_ep(hcd, urb);
1231 spin_unlock_irqrestore(&xhci->lock, flags);
1232 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1233 xhci_urb_free_priv(xhci, urb_priv);
1234 return ret;
1235 }
1236 if (xhci->xhc_state & XHCI_STATE_DYING) {
1237 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1238 "non-responsive xHCI host.\n",
1239 urb->ep->desc.bEndpointAddress, urb);
1240 /* Let the stop endpoint command watchdog timer (which set this
1241 * state) finish cleaning up the endpoint TD lists. We must
1242 * have caught it in the middle of dropping a lock and giving
1243 * back an URB.
1244 */
1245 goto done;
1246 }
1247
1248 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1249 xhci_dbg(xhci, "Event ring:\n");
1250 xhci_debug_ring(xhci, xhci->event_ring);
1251 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1253 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1254 if (!ep_ring) {
1255 ret = -EINVAL;
1256 goto done;
1257 }
1258
1259 xhci_dbg(xhci, "Endpoint ring:\n");
1260 xhci_debug_ring(xhci, ep_ring);
1261
1262 urb_priv = urb->hcpriv;
1263
1264 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1265 td = urb_priv->td[i];
1266 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1267 }
1268
1269 /* Queue a stop endpoint command, but only if this is
1270 * the first cancellation to be handled.
1271 */
1272 if (!(ep->ep_state & EP_HALT_PENDING)) {
1273 ep->ep_state |= EP_HALT_PENDING;
1274 ep->stop_cmds_pending++;
1275 ep->stop_cmd_timer.expires = jiffies +
1276 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1277 add_timer(&ep->stop_cmd_timer);
1278 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1279 xhci_ring_cmd_db(xhci);
1280 }
1281 done:
1282 spin_unlock_irqrestore(&xhci->lock, flags);
1283 return ret;
1284 }
1285
1286 /* Drop an endpoint from a new bandwidth configuration for this device.
1287 * Only one call to this function is allowed per endpoint before
1288 * check_bandwidth() or reset_bandwidth() must be called.
1289 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1290 * add the endpoint to the schedule with possibly new parameters denoted by a
1291 * different endpoint descriptor in usb_host_endpoint.
1292 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1293 * not allowed.
1294 *
1295 * The USB core will not allow URBs to be queued to an endpoint that is being
1296 * disabled, so there's no need for mutual exclusion to protect
1297 * the xhci->devs[slot_id] structure.
1298 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1299 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1300 struct usb_host_endpoint *ep)
1301 {
1302 struct xhci_hcd *xhci;
1303 struct xhci_container_ctx *in_ctx, *out_ctx;
1304 struct xhci_input_control_ctx *ctrl_ctx;
1305 struct xhci_slot_ctx *slot_ctx;
1306 unsigned int last_ctx;
1307 unsigned int ep_index;
1308 struct xhci_ep_ctx *ep_ctx;
1309 u32 drop_flag;
1310 u32 new_add_flags, new_drop_flags, new_slot_info;
1311 int ret;
1312
1313 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1314 if (ret <= 0)
1315 return ret;
1316 xhci = hcd_to_xhci(hcd);
1317 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1318
1319 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1320 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1321 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1322 __func__, drop_flag);
1323 return 0;
1324 }
1325
1326 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1327 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1328 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1329 ep_index = xhci_get_endpoint_index(&ep->desc);
1330 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1331 /* If the HC already knows the endpoint is disabled,
1332 * or the HCD has noted it is disabled, ignore this request
1333 */
1334 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1335 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1336 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1337 __func__, ep);
1338 return 0;
1339 }
1340
1341 ctrl_ctx->drop_flags |= drop_flag;
1342 new_drop_flags = ctrl_ctx->drop_flags;
1343
1344 ctrl_ctx->add_flags &= ~drop_flag;
1345 new_add_flags = ctrl_ctx->add_flags;
1346
1347 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1348 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1349 /* Update the last valid endpoint context, if we deleted the last one */
1350 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1351 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1352 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1353 }
1354 new_slot_info = slot_ctx->dev_info;
1355
1356 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1357
1358 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1359 (unsigned int) ep->desc.bEndpointAddress,
1360 udev->slot_id,
1361 (unsigned int) new_drop_flags,
1362 (unsigned int) new_add_flags,
1363 (unsigned int) new_slot_info);
1364 return 0;
1365 }
1366
1367 /* Add an endpoint to a new possible bandwidth configuration for this device.
1368 * Only one call to this function is allowed per endpoint before
1369 * check_bandwidth() or reset_bandwidth() must be called.
1370 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1371 * add the endpoint to the schedule with possibly new parameters denoted by a
1372 * different endpoint descriptor in usb_host_endpoint.
1373 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1374 * not allowed.
1375 *
1376 * The USB core will not allow URBs to be queued to an endpoint until the
1377 * configuration or alt setting is installed in the device, so there's no need
1378 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1379 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1380 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1381 struct usb_host_endpoint *ep)
1382 {
1383 struct xhci_hcd *xhci;
1384 struct xhci_container_ctx *in_ctx, *out_ctx;
1385 unsigned int ep_index;
1386 struct xhci_ep_ctx *ep_ctx;
1387 struct xhci_slot_ctx *slot_ctx;
1388 struct xhci_input_control_ctx *ctrl_ctx;
1389 u32 added_ctxs;
1390 unsigned int last_ctx;
1391 u32 new_add_flags, new_drop_flags, new_slot_info;
1392 int ret = 0;
1393
1394 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1395 if (ret <= 0) {
1396 /* So we won't queue a reset ep command for a root hub */
1397 ep->hcpriv = NULL;
1398 return ret;
1399 }
1400 xhci = hcd_to_xhci(hcd);
1401
1402 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1403 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1404 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1405 /* FIXME when we have to issue an evaluate endpoint command to
1406 * deal with ep0 max packet size changing once we get the
1407 * descriptors
1408 */
1409 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1410 __func__, added_ctxs);
1411 return 0;
1412 }
1413
1414 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1415 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1416 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1417 ep_index = xhci_get_endpoint_index(&ep->desc);
1418 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1419 /* If the HCD has already noted the endpoint is enabled,
1420 * ignore this request.
1421 */
1422 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1423 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1424 __func__, ep);
1425 return 0;
1426 }
1427
1428 /*
1429 * Configuration and alternate setting changes must be done in
1430 * process context, not interrupt context (or so documenation
1431 * for usb_set_interface() and usb_set_configuration() claim).
1432 */
1433 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1434 udev, ep, GFP_NOIO) < 0) {
1435 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1436 __func__, ep->desc.bEndpointAddress);
1437 return -ENOMEM;
1438 }
1439
1440 ctrl_ctx->add_flags |= added_ctxs;
1441 new_add_flags = ctrl_ctx->add_flags;
1442
1443 /* If xhci_endpoint_disable() was called for this endpoint, but the
1444 * xHC hasn't been notified yet through the check_bandwidth() call,
1445 * this re-adds a new state for the endpoint from the new endpoint
1446 * descriptors. We must drop and re-add this endpoint, so we leave the
1447 * drop flags alone.
1448 */
1449 new_drop_flags = ctrl_ctx->drop_flags;
1450
1451 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1452 /* Update the last valid endpoint context, if we just added one past */
1453 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1454 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1455 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1456 }
1457 new_slot_info = slot_ctx->dev_info;
1458
1459 /* Store the usb_device pointer for later use */
1460 ep->hcpriv = udev;
1461
1462 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1463 (unsigned int) ep->desc.bEndpointAddress,
1464 udev->slot_id,
1465 (unsigned int) new_drop_flags,
1466 (unsigned int) new_add_flags,
1467 (unsigned int) new_slot_info);
1468 return 0;
1469 }
1470
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1471 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1472 {
1473 struct xhci_input_control_ctx *ctrl_ctx;
1474 struct xhci_ep_ctx *ep_ctx;
1475 struct xhci_slot_ctx *slot_ctx;
1476 int i;
1477
1478 /* When a device's add flag and drop flag are zero, any subsequent
1479 * configure endpoint command will leave that endpoint's state
1480 * untouched. Make sure we don't leave any old state in the input
1481 * endpoint contexts.
1482 */
1483 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1484 ctrl_ctx->drop_flags = 0;
1485 ctrl_ctx->add_flags = 0;
1486 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1487 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1488 /* Endpoint 0 is always valid */
1489 slot_ctx->dev_info |= LAST_CTX(1);
1490 for (i = 1; i < 31; ++i) {
1491 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1492 ep_ctx->ep_info = 0;
1493 ep_ctx->ep_info2 = 0;
1494 ep_ctx->deq = 0;
1495 ep_ctx->tx_info = 0;
1496 }
1497 }
1498
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,int * cmd_status)1499 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1500 struct usb_device *udev, int *cmd_status)
1501 {
1502 int ret;
1503
1504 switch (*cmd_status) {
1505 case COMP_ENOMEM:
1506 dev_warn(&udev->dev, "Not enough host controller resources "
1507 "for new device state.\n");
1508 ret = -ENOMEM;
1509 /* FIXME: can we allocate more resources for the HC? */
1510 break;
1511 case COMP_BW_ERR:
1512 dev_warn(&udev->dev, "Not enough bandwidth "
1513 "for new device state.\n");
1514 ret = -ENOSPC;
1515 /* FIXME: can we go back to the old state? */
1516 break;
1517 case COMP_TRB_ERR:
1518 /* the HCD set up something wrong */
1519 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1520 "add flag = 1, "
1521 "and endpoint is not disabled.\n");
1522 ret = -EINVAL;
1523 break;
1524 case COMP_SUCCESS:
1525 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1526 ret = 0;
1527 break;
1528 default:
1529 xhci_err(xhci, "ERROR: unexpected command completion "
1530 "code 0x%x.\n", *cmd_status);
1531 ret = -EINVAL;
1532 break;
1533 }
1534 return ret;
1535 }
1536
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,int * cmd_status)1537 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1538 struct usb_device *udev, int *cmd_status)
1539 {
1540 int ret;
1541 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1542
1543 switch (*cmd_status) {
1544 case COMP_EINVAL:
1545 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1546 "context command.\n");
1547 ret = -EINVAL;
1548 break;
1549 case COMP_EBADSLT:
1550 dev_warn(&udev->dev, "WARN: slot not enabled for"
1551 "evaluate context command.\n");
1552 case COMP_CTX_STATE:
1553 dev_warn(&udev->dev, "WARN: invalid context state for "
1554 "evaluate context command.\n");
1555 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1556 ret = -EINVAL;
1557 break;
1558 case COMP_SUCCESS:
1559 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1560 ret = 0;
1561 break;
1562 default:
1563 xhci_err(xhci, "ERROR: unexpected command completion "
1564 "code 0x%x.\n", *cmd_status);
1565 ret = -EINVAL;
1566 break;
1567 }
1568 return ret;
1569 }
1570
1571 /* Issue a configure endpoint command or evaluate context command
1572 * and wait for it to finish.
1573 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)1574 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1575 struct usb_device *udev,
1576 struct xhci_command *command,
1577 bool ctx_change, bool must_succeed)
1578 {
1579 int ret;
1580 int timeleft;
1581 unsigned long flags;
1582 struct xhci_container_ctx *in_ctx;
1583 struct completion *cmd_completion;
1584 int *cmd_status;
1585 struct xhci_virt_device *virt_dev;
1586
1587 spin_lock_irqsave(&xhci->lock, flags);
1588 virt_dev = xhci->devs[udev->slot_id];
1589 if (command) {
1590 in_ctx = command->in_ctx;
1591 cmd_completion = command->completion;
1592 cmd_status = &command->status;
1593 command->command_trb = xhci->cmd_ring->enqueue;
1594
1595 /* Enqueue pointer can be left pointing to the link TRB,
1596 * we must handle that
1597 */
1598 if ((command->command_trb->link.control & TRB_TYPE_BITMASK)
1599 == TRB_TYPE(TRB_LINK))
1600 command->command_trb =
1601 xhci->cmd_ring->enq_seg->next->trbs;
1602
1603 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1604 } else {
1605 in_ctx = virt_dev->in_ctx;
1606 cmd_completion = &virt_dev->cmd_completion;
1607 cmd_status = &virt_dev->cmd_status;
1608 }
1609 init_completion(cmd_completion);
1610
1611 if (!ctx_change)
1612 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1613 udev->slot_id, must_succeed);
1614 else
1615 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1616 udev->slot_id);
1617 if (ret < 0) {
1618 if (command)
1619 list_del(&command->cmd_list);
1620 spin_unlock_irqrestore(&xhci->lock, flags);
1621 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1622 return -ENOMEM;
1623 }
1624 xhci_ring_cmd_db(xhci);
1625 spin_unlock_irqrestore(&xhci->lock, flags);
1626
1627 /* Wait for the configure endpoint command to complete */
1628 timeleft = wait_for_completion_interruptible_timeout(
1629 cmd_completion,
1630 USB_CTRL_SET_TIMEOUT);
1631 if (timeleft <= 0) {
1632 xhci_warn(xhci, "%s while waiting for %s command\n",
1633 timeleft == 0 ? "Timeout" : "Signal",
1634 ctx_change == 0 ?
1635 "configure endpoint" :
1636 "evaluate context");
1637 /* FIXME cancel the configure endpoint command */
1638 return -ETIME;
1639 }
1640
1641 if (!ctx_change)
1642 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1643 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1644 }
1645
1646 /* Called after one or more calls to xhci_add_endpoint() or
1647 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1648 * to call xhci_reset_bandwidth().
1649 *
1650 * Since we are in the middle of changing either configuration or
1651 * installing a new alt setting, the USB core won't allow URBs to be
1652 * enqueued for any endpoint on the old config or interface. Nothing
1653 * else should be touching the xhci->devs[slot_id] structure, so we
1654 * don't need to take the xhci->lock for manipulating that.
1655 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)1656 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1657 {
1658 int i;
1659 int ret = 0;
1660 struct xhci_hcd *xhci;
1661 struct xhci_virt_device *virt_dev;
1662 struct xhci_input_control_ctx *ctrl_ctx;
1663 struct xhci_slot_ctx *slot_ctx;
1664
1665 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1666 if (ret <= 0)
1667 return ret;
1668 xhci = hcd_to_xhci(hcd);
1669
1670 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1671 virt_dev = xhci->devs[udev->slot_id];
1672
1673 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1674 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1675 ctrl_ctx->add_flags |= SLOT_FLAG;
1676 ctrl_ctx->add_flags &= ~EP0_FLAG;
1677 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1678 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1679 xhci_dbg(xhci, "New Input Control Context:\n");
1680 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1681 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1682 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1683
1684 ret = xhci_configure_endpoint(xhci, udev, NULL,
1685 false, false);
1686 if (ret) {
1687 /* Callee should call reset_bandwidth() */
1688 return ret;
1689 }
1690
1691 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1692 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1693 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1694
1695 xhci_zero_in_ctx(xhci, virt_dev);
1696 /* Install new rings and free or cache any old rings */
1697 for (i = 1; i < 31; ++i) {
1698 if (!virt_dev->eps[i].new_ring)
1699 continue;
1700 /* Only cache or free the old ring if it exists.
1701 * It may not if this is the first add of an endpoint.
1702 */
1703 if (virt_dev->eps[i].ring) {
1704 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1705 }
1706 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1707 virt_dev->eps[i].new_ring = NULL;
1708 }
1709
1710 return ret;
1711 }
1712
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)1713 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1714 {
1715 struct xhci_hcd *xhci;
1716 struct xhci_virt_device *virt_dev;
1717 int i, ret;
1718
1719 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1720 if (ret <= 0)
1721 return;
1722 xhci = hcd_to_xhci(hcd);
1723
1724 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1725 virt_dev = xhci->devs[udev->slot_id];
1726 /* Free any rings allocated for added endpoints */
1727 for (i = 0; i < 31; ++i) {
1728 if (virt_dev->eps[i].new_ring) {
1729 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1730 virt_dev->eps[i].new_ring = NULL;
1731 }
1732 }
1733 xhci_zero_in_ctx(xhci, virt_dev);
1734 }
1735
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,u32 add_flags,u32 drop_flags)1736 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1737 struct xhci_container_ctx *in_ctx,
1738 struct xhci_container_ctx *out_ctx,
1739 u32 add_flags, u32 drop_flags)
1740 {
1741 struct xhci_input_control_ctx *ctrl_ctx;
1742 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1743 ctrl_ctx->add_flags = add_flags;
1744 ctrl_ctx->drop_flags = drop_flags;
1745 xhci_slot_copy(xhci, in_ctx, out_ctx);
1746 ctrl_ctx->add_flags |= SLOT_FLAG;
1747
1748 xhci_dbg(xhci, "Input Context:\n");
1749 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1750 }
1751
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)1752 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1753 unsigned int slot_id, unsigned int ep_index,
1754 struct xhci_dequeue_state *deq_state)
1755 {
1756 struct xhci_container_ctx *in_ctx;
1757 struct xhci_ep_ctx *ep_ctx;
1758 u32 added_ctxs;
1759 dma_addr_t addr;
1760
1761 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1762 xhci->devs[slot_id]->out_ctx, ep_index);
1763 in_ctx = xhci->devs[slot_id]->in_ctx;
1764 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1765 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1766 deq_state->new_deq_ptr);
1767 if (addr == 0) {
1768 xhci_warn(xhci, "WARN Cannot submit config ep after "
1769 "reset ep command\n");
1770 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1771 deq_state->new_deq_seg,
1772 deq_state->new_deq_ptr);
1773 return;
1774 }
1775 ep_ctx->deq = addr | deq_state->new_cycle_state;
1776
1777 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1778 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1779 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1780 }
1781
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,struct usb_device * udev,unsigned int ep_index)1782 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1783 struct usb_device *udev, unsigned int ep_index)
1784 {
1785 struct xhci_dequeue_state deq_state;
1786 struct xhci_virt_ep *ep;
1787
1788 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1789 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1790 /* We need to move the HW's dequeue pointer past this TD,
1791 * or it will attempt to resend it on the next doorbell ring.
1792 */
1793 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1794 ep_index, ep->stopped_stream, ep->stopped_td,
1795 &deq_state);
1796
1797 /* HW with the reset endpoint quirk will use the saved dequeue state to
1798 * issue a configure endpoint command later.
1799 */
1800 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1801 xhci_dbg(xhci, "Queueing new dequeue state\n");
1802 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1803 ep_index, ep->stopped_stream, &deq_state);
1804 } else {
1805 /* Better hope no one uses the input context between now and the
1806 * reset endpoint completion!
1807 * XXX: No idea how this hardware will react when stream rings
1808 * are enabled.
1809 */
1810 xhci_dbg(xhci, "Setting up input context for "
1811 "configure endpoint command\n");
1812 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1813 ep_index, &deq_state);
1814 }
1815 }
1816
1817 /* Deal with stalled endpoints. The core should have sent the control message
1818 * to clear the halt condition. However, we need to make the xHCI hardware
1819 * reset its sequence number, since a device will expect a sequence number of
1820 * zero after the halt condition is cleared.
1821 * Context: in_interrupt
1822 */
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)1823 void xhci_endpoint_reset(struct usb_hcd *hcd,
1824 struct usb_host_endpoint *ep)
1825 {
1826 struct xhci_hcd *xhci;
1827 struct usb_device *udev;
1828 unsigned int ep_index;
1829 unsigned long flags;
1830 int ret;
1831 struct xhci_virt_ep *virt_ep;
1832
1833 xhci = hcd_to_xhci(hcd);
1834 udev = (struct usb_device *) ep->hcpriv;
1835 /* Called with a root hub endpoint (or an endpoint that wasn't added
1836 * with xhci_add_endpoint()
1837 */
1838 if (!ep->hcpriv)
1839 return;
1840 ep_index = xhci_get_endpoint_index(&ep->desc);
1841 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1842 if (!virt_ep->stopped_td) {
1843 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1844 ep->desc.bEndpointAddress);
1845 return;
1846 }
1847 if (usb_endpoint_xfer_control(&ep->desc)) {
1848 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1849 return;
1850 }
1851
1852 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1853 spin_lock_irqsave(&xhci->lock, flags);
1854 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1855 /*
1856 * Can't change the ring dequeue pointer until it's transitioned to the
1857 * stopped state, which is only upon a successful reset endpoint
1858 * command. Better hope that last command worked!
1859 */
1860 if (!ret) {
1861 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1862 kfree(virt_ep->stopped_td);
1863 xhci_ring_cmd_db(xhci);
1864 }
1865 virt_ep->stopped_td = NULL;
1866 virt_ep->stopped_trb = NULL;
1867 virt_ep->stopped_stream = 0;
1868 spin_unlock_irqrestore(&xhci->lock, flags);
1869
1870 if (ret)
1871 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1872 }
1873
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)1874 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1875 struct usb_device *udev, struct usb_host_endpoint *ep,
1876 unsigned int slot_id)
1877 {
1878 int ret;
1879 unsigned int ep_index;
1880 unsigned int ep_state;
1881
1882 if (!ep)
1883 return -EINVAL;
1884 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1885 if (ret <= 0)
1886 return -EINVAL;
1887 if (ep->ss_ep_comp.bmAttributes == 0) {
1888 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1889 " descriptor for ep 0x%x does not support streams\n",
1890 ep->desc.bEndpointAddress);
1891 return -EINVAL;
1892 }
1893
1894 ep_index = xhci_get_endpoint_index(&ep->desc);
1895 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1896 if (ep_state & EP_HAS_STREAMS ||
1897 ep_state & EP_GETTING_STREAMS) {
1898 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1899 "already has streams set up.\n",
1900 ep->desc.bEndpointAddress);
1901 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1902 "dynamic stream context array reallocation.\n");
1903 return -EINVAL;
1904 }
1905 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1906 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1907 "endpoint 0x%x; URBs are pending.\n",
1908 ep->desc.bEndpointAddress);
1909 return -EINVAL;
1910 }
1911 return 0;
1912 }
1913
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)1914 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1915 unsigned int *num_streams, unsigned int *num_stream_ctxs)
1916 {
1917 unsigned int max_streams;
1918
1919 /* The stream context array size must be a power of two */
1920 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
1921 /*
1922 * Find out how many primary stream array entries the host controller
1923 * supports. Later we may use secondary stream arrays (similar to 2nd
1924 * level page entries), but that's an optional feature for xHCI host
1925 * controllers. xHCs must support at least 4 stream IDs.
1926 */
1927 max_streams = HCC_MAX_PSA(xhci->hcc_params);
1928 if (*num_stream_ctxs > max_streams) {
1929 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1930 max_streams);
1931 *num_stream_ctxs = max_streams;
1932 *num_streams = max_streams;
1933 }
1934 }
1935
1936 /* Returns an error code if one of the endpoint already has streams.
1937 * This does not change any data structures, it only checks and gathers
1938 * information.
1939 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)1940 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1941 struct usb_device *udev,
1942 struct usb_host_endpoint **eps, unsigned int num_eps,
1943 unsigned int *num_streams, u32 *changed_ep_bitmask)
1944 {
1945 unsigned int max_streams;
1946 unsigned int endpoint_flag;
1947 int i;
1948 int ret;
1949
1950 for (i = 0; i < num_eps; i++) {
1951 ret = xhci_check_streams_endpoint(xhci, udev,
1952 eps[i], udev->slot_id);
1953 if (ret < 0)
1954 return ret;
1955
1956 max_streams = USB_SS_MAX_STREAMS(
1957 eps[i]->ss_ep_comp.bmAttributes);
1958 if (max_streams < (*num_streams - 1)) {
1959 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1960 eps[i]->desc.bEndpointAddress,
1961 max_streams);
1962 *num_streams = max_streams+1;
1963 }
1964
1965 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1966 if (*changed_ep_bitmask & endpoint_flag)
1967 return -EINVAL;
1968 *changed_ep_bitmask |= endpoint_flag;
1969 }
1970 return 0;
1971 }
1972
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)1973 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1974 struct usb_device *udev,
1975 struct usb_host_endpoint **eps, unsigned int num_eps)
1976 {
1977 u32 changed_ep_bitmask = 0;
1978 unsigned int slot_id;
1979 unsigned int ep_index;
1980 unsigned int ep_state;
1981 int i;
1982
1983 slot_id = udev->slot_id;
1984 if (!xhci->devs[slot_id])
1985 return 0;
1986
1987 for (i = 0; i < num_eps; i++) {
1988 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1989 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1990 /* Are streams already being freed for the endpoint? */
1991 if (ep_state & EP_GETTING_NO_STREAMS) {
1992 xhci_warn(xhci, "WARN Can't disable streams for "
1993 "endpoint 0x%x\n, "
1994 "streams are being disabled already.",
1995 eps[i]->desc.bEndpointAddress);
1996 return 0;
1997 }
1998 /* Are there actually any streams to free? */
1999 if (!(ep_state & EP_HAS_STREAMS) &&
2000 !(ep_state & EP_GETTING_STREAMS)) {
2001 xhci_warn(xhci, "WARN Can't disable streams for "
2002 "endpoint 0x%x\n, "
2003 "streams are already disabled!",
2004 eps[i]->desc.bEndpointAddress);
2005 xhci_warn(xhci, "WARN xhci_free_streams() called "
2006 "with non-streams endpoint\n");
2007 return 0;
2008 }
2009 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2010 }
2011 return changed_ep_bitmask;
2012 }
2013
2014 /*
2015 * The USB device drivers use this function (though the HCD interface in USB
2016 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2017 * coordinate mass storage command queueing across multiple endpoints (basically
2018 * a stream ID == a task ID).
2019 *
2020 * Setting up streams involves allocating the same size stream context array
2021 * for each endpoint and issuing a configure endpoint command for all endpoints.
2022 *
2023 * Don't allow the call to succeed if one endpoint only supports one stream
2024 * (which means it doesn't support streams at all).
2025 *
2026 * Drivers may get less stream IDs than they asked for, if the host controller
2027 * hardware or endpoints claim they can't support the number of requested
2028 * stream IDs.
2029 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2030 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2031 struct usb_host_endpoint **eps, unsigned int num_eps,
2032 unsigned int num_streams, gfp_t mem_flags)
2033 {
2034 int i, ret;
2035 struct xhci_hcd *xhci;
2036 struct xhci_virt_device *vdev;
2037 struct xhci_command *config_cmd;
2038 unsigned int ep_index;
2039 unsigned int num_stream_ctxs;
2040 unsigned long flags;
2041 u32 changed_ep_bitmask = 0;
2042
2043 if (!eps)
2044 return -EINVAL;
2045
2046 /* Add one to the number of streams requested to account for
2047 * stream 0 that is reserved for xHCI usage.
2048 */
2049 num_streams += 1;
2050 xhci = hcd_to_xhci(hcd);
2051 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2052 num_streams);
2053
2054 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2055 if (!config_cmd) {
2056 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2057 return -ENOMEM;
2058 }
2059
2060 /* Check to make sure all endpoints are not already configured for
2061 * streams. While we're at it, find the maximum number of streams that
2062 * all the endpoints will support and check for duplicate endpoints.
2063 */
2064 spin_lock_irqsave(&xhci->lock, flags);
2065 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2066 num_eps, &num_streams, &changed_ep_bitmask);
2067 if (ret < 0) {
2068 xhci_free_command(xhci, config_cmd);
2069 spin_unlock_irqrestore(&xhci->lock, flags);
2070 return ret;
2071 }
2072 if (num_streams <= 1) {
2073 xhci_warn(xhci, "WARN: endpoints can't handle "
2074 "more than one stream.\n");
2075 xhci_free_command(xhci, config_cmd);
2076 spin_unlock_irqrestore(&xhci->lock, flags);
2077 return -EINVAL;
2078 }
2079 vdev = xhci->devs[udev->slot_id];
2080 /* Mark each endpoint as being in transition, so
2081 * xhci_urb_enqueue() will reject all URBs.
2082 */
2083 for (i = 0; i < num_eps; i++) {
2084 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2085 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2086 }
2087 spin_unlock_irqrestore(&xhci->lock, flags);
2088
2089 /* Setup internal data structures and allocate HW data structures for
2090 * streams (but don't install the HW structures in the input context
2091 * until we're sure all memory allocation succeeded).
2092 */
2093 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2094 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2095 num_stream_ctxs, num_streams);
2096
2097 for (i = 0; i < num_eps; i++) {
2098 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2099 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2100 num_stream_ctxs,
2101 num_streams, mem_flags);
2102 if (!vdev->eps[ep_index].stream_info)
2103 goto cleanup;
2104 /* Set maxPstreams in endpoint context and update deq ptr to
2105 * point to stream context array. FIXME
2106 */
2107 }
2108
2109 /* Set up the input context for a configure endpoint command. */
2110 for (i = 0; i < num_eps; i++) {
2111 struct xhci_ep_ctx *ep_ctx;
2112
2113 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2114 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2115
2116 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2117 vdev->out_ctx, ep_index);
2118 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2119 vdev->eps[ep_index].stream_info);
2120 }
2121 /* Tell the HW to drop its old copy of the endpoint context info
2122 * and add the updated copy from the input context.
2123 */
2124 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2125 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2126
2127 /* Issue and wait for the configure endpoint command */
2128 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2129 false, false);
2130
2131 /* xHC rejected the configure endpoint command for some reason, so we
2132 * leave the old ring intact and free our internal streams data
2133 * structure.
2134 */
2135 if (ret < 0)
2136 goto cleanup;
2137
2138 spin_lock_irqsave(&xhci->lock, flags);
2139 for (i = 0; i < num_eps; i++) {
2140 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2141 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2142 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2143 udev->slot_id, ep_index);
2144 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2145 }
2146 xhci_free_command(xhci, config_cmd);
2147 spin_unlock_irqrestore(&xhci->lock, flags);
2148
2149 /* Subtract 1 for stream 0, which drivers can't use */
2150 return num_streams - 1;
2151
2152 cleanup:
2153 /* If it didn't work, free the streams! */
2154 for (i = 0; i < num_eps; i++) {
2155 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2156 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2157 vdev->eps[ep_index].stream_info = NULL;
2158 /* FIXME Unset maxPstreams in endpoint context and
2159 * update deq ptr to point to normal string ring.
2160 */
2161 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2162 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2163 xhci_endpoint_zero(xhci, vdev, eps[i]);
2164 }
2165 xhci_free_command(xhci, config_cmd);
2166 return -ENOMEM;
2167 }
2168
2169 /* Transition the endpoint from using streams to being a "normal" endpoint
2170 * without streams.
2171 *
2172 * Modify the endpoint context state, submit a configure endpoint command,
2173 * and free all endpoint rings for streams if that completes successfully.
2174 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2175 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2176 struct usb_host_endpoint **eps, unsigned int num_eps,
2177 gfp_t mem_flags)
2178 {
2179 int i, ret;
2180 struct xhci_hcd *xhci;
2181 struct xhci_virt_device *vdev;
2182 struct xhci_command *command;
2183 unsigned int ep_index;
2184 unsigned long flags;
2185 u32 changed_ep_bitmask;
2186
2187 xhci = hcd_to_xhci(hcd);
2188 vdev = xhci->devs[udev->slot_id];
2189
2190 /* Set up a configure endpoint command to remove the streams rings */
2191 spin_lock_irqsave(&xhci->lock, flags);
2192 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2193 udev, eps, num_eps);
2194 if (changed_ep_bitmask == 0) {
2195 spin_unlock_irqrestore(&xhci->lock, flags);
2196 return -EINVAL;
2197 }
2198
2199 /* Use the xhci_command structure from the first endpoint. We may have
2200 * allocated too many, but the driver may call xhci_free_streams() for
2201 * each endpoint it grouped into one call to xhci_alloc_streams().
2202 */
2203 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2204 command = vdev->eps[ep_index].stream_info->free_streams_command;
2205 for (i = 0; i < num_eps; i++) {
2206 struct xhci_ep_ctx *ep_ctx;
2207
2208 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2209 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2210 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2211 EP_GETTING_NO_STREAMS;
2212
2213 xhci_endpoint_copy(xhci, command->in_ctx,
2214 vdev->out_ctx, ep_index);
2215 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2216 &vdev->eps[ep_index]);
2217 }
2218 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2219 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2220 spin_unlock_irqrestore(&xhci->lock, flags);
2221
2222 /* Issue and wait for the configure endpoint command,
2223 * which must succeed.
2224 */
2225 ret = xhci_configure_endpoint(xhci, udev, command,
2226 false, true);
2227
2228 /* xHC rejected the configure endpoint command for some reason, so we
2229 * leave the streams rings intact.
2230 */
2231 if (ret < 0)
2232 return ret;
2233
2234 spin_lock_irqsave(&xhci->lock, flags);
2235 for (i = 0; i < num_eps; i++) {
2236 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2237 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2238 vdev->eps[ep_index].stream_info = NULL;
2239 /* FIXME Unset maxPstreams in endpoint context and
2240 * update deq ptr to point to normal string ring.
2241 */
2242 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2243 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2244 }
2245 spin_unlock_irqrestore(&xhci->lock, flags);
2246
2247 return 0;
2248 }
2249
2250 /*
2251 * This submits a Reset Device Command, which will set the device state to 0,
2252 * set the device address to 0, and disable all the endpoints except the default
2253 * control endpoint. The USB core should come back and call
2254 * xhci_address_device(), and then re-set up the configuration. If this is
2255 * called because of a usb_reset_and_verify_device(), then the old alternate
2256 * settings will be re-installed through the normal bandwidth allocation
2257 * functions.
2258 *
2259 * Wait for the Reset Device command to finish. Remove all structures
2260 * associated with the endpoints that were disabled. Clear the input device
2261 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2262 *
2263 * If the virt_dev to be reset does not exist or does not match the udev,
2264 * it means the device is lost, possibly due to the xHC restore error and
2265 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2266 * re-allocate the device.
2267 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)2268 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2269 {
2270 int ret, i;
2271 unsigned long flags;
2272 struct xhci_hcd *xhci;
2273 unsigned int slot_id;
2274 struct xhci_virt_device *virt_dev;
2275 struct xhci_command *reset_device_cmd;
2276 int timeleft;
2277 int last_freed_endpoint;
2278
2279 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2280 if (ret <= 0)
2281 return ret;
2282 xhci = hcd_to_xhci(hcd);
2283 slot_id = udev->slot_id;
2284 virt_dev = xhci->devs[slot_id];
2285 if (!virt_dev) {
2286 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2287 "not exist. Re-allocate the device\n", slot_id);
2288 ret = xhci_alloc_dev(hcd, udev);
2289 if (ret == 1)
2290 return 0;
2291 else
2292 return -EINVAL;
2293 }
2294
2295 if (virt_dev->udev != udev) {
2296 /* If the virt_dev and the udev does not match, this virt_dev
2297 * may belong to another udev.
2298 * Re-allocate the device.
2299 */
2300 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2301 "not match the udev. Re-allocate the device\n",
2302 slot_id);
2303 ret = xhci_alloc_dev(hcd, udev);
2304 if (ret == 1)
2305 return 0;
2306 else
2307 return -EINVAL;
2308 }
2309
2310 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2311 /* Allocate the command structure that holds the struct completion.
2312 * Assume we're in process context, since the normal device reset
2313 * process has to wait for the device anyway. Storage devices are
2314 * reset as part of error handling, so use GFP_NOIO instead of
2315 * GFP_KERNEL.
2316 */
2317 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2318 if (!reset_device_cmd) {
2319 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2320 return -ENOMEM;
2321 }
2322
2323 /* Attempt to submit the Reset Device command to the command ring */
2324 spin_lock_irqsave(&xhci->lock, flags);
2325 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2326
2327 /* Enqueue pointer can be left pointing to the link TRB,
2328 * we must handle that
2329 */
2330 if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK)
2331 == TRB_TYPE(TRB_LINK))
2332 reset_device_cmd->command_trb =
2333 xhci->cmd_ring->enq_seg->next->trbs;
2334
2335 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2336 ret = xhci_queue_reset_device(xhci, slot_id);
2337 if (ret) {
2338 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2339 list_del(&reset_device_cmd->cmd_list);
2340 spin_unlock_irqrestore(&xhci->lock, flags);
2341 goto command_cleanup;
2342 }
2343 xhci_ring_cmd_db(xhci);
2344 spin_unlock_irqrestore(&xhci->lock, flags);
2345
2346 /* Wait for the Reset Device command to finish */
2347 timeleft = wait_for_completion_interruptible_timeout(
2348 reset_device_cmd->completion,
2349 USB_CTRL_SET_TIMEOUT);
2350 if (timeleft <= 0) {
2351 xhci_warn(xhci, "%s while waiting for reset device command\n",
2352 timeleft == 0 ? "Timeout" : "Signal");
2353 spin_lock_irqsave(&xhci->lock, flags);
2354 /* The timeout might have raced with the event ring handler, so
2355 * only delete from the list if the item isn't poisoned.
2356 */
2357 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2358 list_del(&reset_device_cmd->cmd_list);
2359 spin_unlock_irqrestore(&xhci->lock, flags);
2360 ret = -ETIME;
2361 goto command_cleanup;
2362 }
2363
2364 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2365 * unless we tried to reset a slot ID that wasn't enabled,
2366 * or the device wasn't in the addressed or configured state.
2367 */
2368 ret = reset_device_cmd->status;
2369 switch (ret) {
2370 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2371 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2372 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2373 slot_id,
2374 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2375 xhci_info(xhci, "Not freeing device rings.\n");
2376 /* Don't treat this as an error. May change my mind later. */
2377 ret = 0;
2378 goto command_cleanup;
2379 case COMP_SUCCESS:
2380 xhci_dbg(xhci, "Successful reset device command.\n");
2381 break;
2382 default:
2383 if (xhci_is_vendor_info_code(xhci, ret))
2384 break;
2385 xhci_warn(xhci, "Unknown completion code %u for "
2386 "reset device command.\n", ret);
2387 ret = -EINVAL;
2388 goto command_cleanup;
2389 }
2390
2391 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2392 last_freed_endpoint = 1;
2393 for (i = 1; i < 31; ++i) {
2394 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2395
2396 if (ep->ep_state & EP_HAS_STREAMS) {
2397 xhci_free_stream_info(xhci, ep->stream_info);
2398 ep->stream_info = NULL;
2399 ep->ep_state &= ~EP_HAS_STREAMS;
2400 }
2401
2402 if (ep->ring) {
2403 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2404 last_freed_endpoint = i;
2405 }
2406 }
2407 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2408 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2409 ret = 0;
2410
2411 command_cleanup:
2412 xhci_free_command(xhci, reset_device_cmd);
2413 return ret;
2414 }
2415
2416 /*
2417 * At this point, the struct usb_device is about to go away, the device has
2418 * disconnected, and all traffic has been stopped and the endpoints have been
2419 * disabled. Free any HC data structures associated with that device.
2420 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)2421 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2422 {
2423 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2424 struct xhci_virt_device *virt_dev;
2425 unsigned long flags;
2426 u32 state;
2427 int i, ret;
2428
2429 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2430 if (ret <= 0)
2431 return;
2432
2433 virt_dev = xhci->devs[udev->slot_id];
2434
2435 /* Stop any wayward timer functions (which may grab the lock) */
2436 for (i = 0; i < 31; ++i) {
2437 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2438 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2439 }
2440
2441 spin_lock_irqsave(&xhci->lock, flags);
2442 /* Don't disable the slot if the host controller is dead. */
2443 state = xhci_readl(xhci, &xhci->op_regs->status);
2444 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2445 xhci_free_virt_device(xhci, udev->slot_id);
2446 spin_unlock_irqrestore(&xhci->lock, flags);
2447 return;
2448 }
2449
2450 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2451 spin_unlock_irqrestore(&xhci->lock, flags);
2452 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2453 return;
2454 }
2455 xhci_ring_cmd_db(xhci);
2456 spin_unlock_irqrestore(&xhci->lock, flags);
2457 /*
2458 * Event command completion handler will free any data structures
2459 * associated with the slot. XXX Can free sleep?
2460 */
2461 }
2462
2463 /*
2464 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2465 * timed out, or allocating memory failed. Returns 1 on success.
2466 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)2467 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2468 {
2469 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2470 unsigned long flags;
2471 int timeleft;
2472 int ret;
2473
2474 spin_lock_irqsave(&xhci->lock, flags);
2475 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2476 if (ret) {
2477 spin_unlock_irqrestore(&xhci->lock, flags);
2478 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2479 return 0;
2480 }
2481 xhci_ring_cmd_db(xhci);
2482 spin_unlock_irqrestore(&xhci->lock, flags);
2483
2484 /* XXX: how much time for xHC slot assignment? */
2485 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2486 USB_CTRL_SET_TIMEOUT);
2487 if (timeleft <= 0) {
2488 xhci_warn(xhci, "%s while waiting for a slot\n",
2489 timeleft == 0 ? "Timeout" : "Signal");
2490 /* FIXME cancel the enable slot request */
2491 return 0;
2492 }
2493
2494 if (!xhci->slot_id) {
2495 xhci_err(xhci, "Error while assigning device slot ID\n");
2496 return 0;
2497 }
2498 /* xhci_alloc_virt_device() does not touch rings; no need to lock.
2499 * Use GFP_NOIO, since this function can be called from
2500 * xhci_discover_or_reset_device(), which may be called as part of
2501 * mass storage driver error handling.
2502 */
2503 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2504 /* Disable slot, if we can do it without mem alloc */
2505 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2506 spin_lock_irqsave(&xhci->lock, flags);
2507 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2508 xhci_ring_cmd_db(xhci);
2509 spin_unlock_irqrestore(&xhci->lock, flags);
2510 return 0;
2511 }
2512 udev->slot_id = xhci->slot_id;
2513 /* Is this a LS or FS device under a HS hub? */
2514 /* Hub or peripherial? */
2515 return 1;
2516 }
2517
2518 /*
2519 * Issue an Address Device command (which will issue a SetAddress request to
2520 * the device).
2521 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2522 * we should only issue and wait on one address command at the same time.
2523 *
2524 * We add one to the device address issued by the hardware because the USB core
2525 * uses address 1 for the root hubs (even though they're not really devices).
2526 */
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)2527 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2528 {
2529 unsigned long flags;
2530 int timeleft;
2531 struct xhci_virt_device *virt_dev;
2532 int ret = 0;
2533 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2534 struct xhci_slot_ctx *slot_ctx;
2535 struct xhci_input_control_ctx *ctrl_ctx;
2536 u64 temp_64;
2537
2538 if (!udev->slot_id) {
2539 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2540 return -EINVAL;
2541 }
2542
2543 virt_dev = xhci->devs[udev->slot_id];
2544
2545 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2546 /*
2547 * If this is the first Set Address since device plug-in or
2548 * virt_device realloaction after a resume with an xHCI power loss,
2549 * then set up the slot context.
2550 */
2551 if (!slot_ctx->dev_info)
2552 xhci_setup_addressable_virt_dev(xhci, udev);
2553 /* Otherwise, update the control endpoint ring enqueue pointer. */
2554 else
2555 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2556 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2557 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2558
2559 spin_lock_irqsave(&xhci->lock, flags);
2560 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2561 udev->slot_id);
2562 if (ret) {
2563 spin_unlock_irqrestore(&xhci->lock, flags);
2564 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2565 return ret;
2566 }
2567 xhci_ring_cmd_db(xhci);
2568 spin_unlock_irqrestore(&xhci->lock, flags);
2569
2570 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2571 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2572 USB_CTRL_SET_TIMEOUT);
2573 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2574 * the SetAddress() "recovery interval" required by USB and aborting the
2575 * command on a timeout.
2576 */
2577 if (timeleft <= 0) {
2578 xhci_warn(xhci, "%s while waiting for a slot\n",
2579 timeleft == 0 ? "Timeout" : "Signal");
2580 /* FIXME cancel the address device command */
2581 return -ETIME;
2582 }
2583
2584 switch (virt_dev->cmd_status) {
2585 case COMP_CTX_STATE:
2586 case COMP_EBADSLT:
2587 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2588 udev->slot_id);
2589 ret = -EINVAL;
2590 break;
2591 case COMP_TX_ERR:
2592 dev_warn(&udev->dev, "Device not responding to set address.\n");
2593 ret = -EPROTO;
2594 break;
2595 case COMP_SUCCESS:
2596 xhci_dbg(xhci, "Successful Address Device command\n");
2597 break;
2598 default:
2599 xhci_err(xhci, "ERROR: unexpected command completion "
2600 "code 0x%x.\n", virt_dev->cmd_status);
2601 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2602 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2603 ret = -EINVAL;
2604 break;
2605 }
2606 if (ret) {
2607 return ret;
2608 }
2609 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2610 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2611 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2612 udev->slot_id,
2613 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2614 (unsigned long long)
2615 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2616 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2617 (unsigned long long)virt_dev->out_ctx->dma);
2618 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2619 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2620 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2621 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2622 /*
2623 * USB core uses address 1 for the roothubs, so we add one to the
2624 * address given back to us by the HC.
2625 */
2626 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2627 /* Use kernel assigned address for devices; store xHC assigned
2628 * address locally. */
2629 virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2630 /* Zero the input context control for later use */
2631 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2632 ctrl_ctx->add_flags = 0;
2633 ctrl_ctx->drop_flags = 0;
2634
2635 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2636
2637 return 0;
2638 }
2639
2640 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2641 * internal data structures for the device.
2642 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)2643 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2644 struct usb_tt *tt, gfp_t mem_flags)
2645 {
2646 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2647 struct xhci_virt_device *vdev;
2648 struct xhci_command *config_cmd;
2649 struct xhci_input_control_ctx *ctrl_ctx;
2650 struct xhci_slot_ctx *slot_ctx;
2651 unsigned long flags;
2652 unsigned think_time;
2653 int ret;
2654
2655 /* Ignore root hubs */
2656 if (!hdev->parent)
2657 return 0;
2658
2659 vdev = xhci->devs[hdev->slot_id];
2660 if (!vdev) {
2661 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2662 return -EINVAL;
2663 }
2664 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2665 if (!config_cmd) {
2666 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2667 return -ENOMEM;
2668 }
2669
2670 spin_lock_irqsave(&xhci->lock, flags);
2671 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2672 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2673 ctrl_ctx->add_flags |= SLOT_FLAG;
2674 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2675 slot_ctx->dev_info |= DEV_HUB;
2676 if (tt->multi)
2677 slot_ctx->dev_info |= DEV_MTT;
2678 if (xhci->hci_version > 0x95) {
2679 xhci_dbg(xhci, "xHCI version %x needs hub "
2680 "TT think time and number of ports\n",
2681 (unsigned int) xhci->hci_version);
2682 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2683 /* Set TT think time - convert from ns to FS bit times.
2684 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2685 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2686 */
2687 think_time = tt->think_time;
2688 if (think_time != 0)
2689 think_time = (think_time / 666) - 1;
2690 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2691 } else {
2692 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2693 "TT think time or number of ports\n",
2694 (unsigned int) xhci->hci_version);
2695 }
2696 slot_ctx->dev_state = 0;
2697 spin_unlock_irqrestore(&xhci->lock, flags);
2698
2699 xhci_dbg(xhci, "Set up %s for hub device.\n",
2700 (xhci->hci_version > 0x95) ?
2701 "configure endpoint" : "evaluate context");
2702 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2703 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2704
2705 /* Issue and wait for the configure endpoint or
2706 * evaluate context command.
2707 */
2708 if (xhci->hci_version > 0x95)
2709 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2710 false, false);
2711 else
2712 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2713 true, false);
2714
2715 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2716 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2717
2718 xhci_free_command(xhci, config_cmd);
2719 return ret;
2720 }
2721
xhci_get_frame(struct usb_hcd * hcd)2722 int xhci_get_frame(struct usb_hcd *hcd)
2723 {
2724 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2725 /* EHCI mods by the periodic size. Why? */
2726 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2727 }
2728
2729 MODULE_DESCRIPTION(DRIVER_DESC);
2730 MODULE_AUTHOR(DRIVER_AUTHOR);
2731 MODULE_LICENSE("GPL");
2732
xhci_hcd_init(void)2733 static int __init xhci_hcd_init(void)
2734 {
2735 #ifdef CONFIG_PCI
2736 int retval = 0;
2737
2738 retval = xhci_register_pci();
2739
2740 if (retval < 0) {
2741 printk(KERN_DEBUG "Problem registering PCI driver.");
2742 return retval;
2743 }
2744 #endif
2745 /*
2746 * Check the compiler generated sizes of structures that must be laid
2747 * out in specific ways for hardware access.
2748 */
2749 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2750 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2751 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2752 /* xhci_device_control has eight fields, and also
2753 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2754 */
2755 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2756 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2757 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2758 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2759 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2760 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2761 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2762 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2763 return 0;
2764 }
2765 module_init(xhci_hcd_init);
2766
xhci_hcd_cleanup(void)2767 static void __exit xhci_hcd_cleanup(void)
2768 {
2769 #ifdef CONFIG_PCI
2770 xhci_unregister_pci();
2771 #endif
2772 }
2773 module_exit(xhci_hcd_cleanup);
2774