1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
handshake(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec)55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
xhci_quiesce(struct xhci_hcd * xhci)76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
xhci_halt(struct xhci_hcd * xhci)100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
xhci_start(struct xhci_hcd * xhci)120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
xhci_reset(struct xhci_hcd * xhci)153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
xhci_setup_msi(struct xhci_hcd * xhci)210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
xhci_free_irq(struct xhci_hcd * xhci)235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
xhci_setup_msix(struct xhci_hcd * xhci)256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				(irq_handler_t)xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	if (xhci->quirks & XHCI_PLAT)
319 		return;
320 
321 	xhci_free_irq(xhci);
322 
323 	if (xhci->msix_entries) {
324 		pci_disable_msix(pdev);
325 		kfree(xhci->msix_entries);
326 		xhci->msix_entries = NULL;
327 	} else {
328 		pci_disable_msi(pdev);
329 	}
330 
331 	hcd->msix_enabled = 0;
332 	return;
333 }
334 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)335 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
336 {
337 	int i;
338 
339 	if (xhci->msix_entries) {
340 		for (i = 0; i < xhci->msix_count; i++)
341 			synchronize_irq(xhci->msix_entries[i].vector);
342 	}
343 }
344 
xhci_try_enable_msi(struct usb_hcd * hcd)345 static int xhci_try_enable_msi(struct usb_hcd *hcd)
346 {
347 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
348 	struct pci_dev  *pdev;
349 	int ret;
350 
351 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
352 	if (xhci->quirks & XHCI_PLAT)
353 		return 0;
354 
355 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
356 	/*
357 	 * Some Fresco Logic host controllers advertise MSI, but fail to
358 	 * generate interrupts.  Don't even try to enable MSI.
359 	 */
360 	if (xhci->quirks & XHCI_BROKEN_MSI)
361 		goto legacy_irq;
362 
363 	/* unregister the legacy interrupt */
364 	if (hcd->irq)
365 		free_irq(hcd->irq, hcd);
366 	hcd->irq = 0;
367 
368 	ret = xhci_setup_msix(xhci);
369 	if (ret)
370 		/* fall back to msi*/
371 		ret = xhci_setup_msi(xhci);
372 
373 	if (!ret)
374 		/* hcd->irq is 0, we have MSI */
375 		return 0;
376 
377 	if (!pdev->irq) {
378 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
379 		return -EINVAL;
380 	}
381 
382  legacy_irq:
383 	/* fall back to legacy interrupt*/
384 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
385 			hcd->irq_descr, hcd);
386 	if (ret) {
387 		xhci_err(xhci, "request interrupt %d failed\n",
388 				pdev->irq);
389 		return ret;
390 	}
391 	hcd->irq = pdev->irq;
392 	return 0;
393 }
394 
395 #else
396 
xhci_try_enable_msi(struct usb_hcd * hcd)397 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
398 {
399 	return 0;
400 }
401 
xhci_cleanup_msix(struct xhci_hcd * xhci)402 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
403 {
404 }
405 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)406 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
407 {
408 }
409 
410 #endif
411 
compliance_mode_recovery(unsigned long arg)412 static void compliance_mode_recovery(unsigned long arg)
413 {
414 	struct xhci_hcd *xhci;
415 	struct usb_hcd *hcd;
416 	u32 temp;
417 	int i;
418 
419 	xhci = (struct xhci_hcd *)arg;
420 
421 	for (i = 0; i < xhci->num_usb3_ports; i++) {
422 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
423 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
424 			/*
425 			 * Compliance Mode Detected. Letting USB Core
426 			 * handle the Warm Reset
427 			 */
428 			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
429 					i + 1);
430 			xhci_dbg(xhci, "Attempting Recovery routine!\n");
431 			hcd = xhci->shared_hcd;
432 
433 			if (hcd->state == HC_STATE_SUSPENDED)
434 				usb_hcd_resume_root_hub(hcd);
435 
436 			usb_hcd_poll_rh_status(hcd);
437 		}
438 	}
439 
440 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
441 		mod_timer(&xhci->comp_mode_recovery_timer,
442 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 }
444 
445 /*
446  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
447  * that causes ports behind that hardware to enter compliance mode sometimes.
448  * The quirk creates a timer that polls every 2 seconds the link state of
449  * each host controller's port and recovers it by issuing a Warm reset
450  * if Compliance mode is detected, otherwise the port will become "dead" (no
451  * device connections or disconnections will be detected anymore). Becasue no
452  * status event is generated when entering compliance mode (per xhci spec),
453  * this quirk is needed on systems that have the failing hardware installed.
454  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)455 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 {
457 	xhci->port_status_u0 = 0;
458 	init_timer(&xhci->comp_mode_recovery_timer);
459 
460 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
461 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
462 	xhci->comp_mode_recovery_timer.expires = jiffies +
463 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
464 
465 	set_timer_slack(&xhci->comp_mode_recovery_timer,
466 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
467 	add_timer(&xhci->comp_mode_recovery_timer);
468 	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
469 }
470 
471 /*
472  * This function identifies the systems that have installed the SN65LVPE502CP
473  * USB3.0 re-driver and that need the Compliance Mode Quirk.
474  * Systems:
475  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
476  */
compliance_mode_recovery_timer_quirk_check(void)477 static bool compliance_mode_recovery_timer_quirk_check(void)
478 {
479 	const char *dmi_product_name, *dmi_sys_vendor;
480 
481 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
482 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
483 	if (!dmi_product_name || !dmi_sys_vendor)
484 		return false;
485 
486 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
487 		return false;
488 
489 	if (strstr(dmi_product_name, "Z420") ||
490 			strstr(dmi_product_name, "Z620") ||
491 			strstr(dmi_product_name, "Z820") ||
492 			strstr(dmi_product_name, "Z1 Workstation"))
493 		return true;
494 
495 	return false;
496 }
497 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)498 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
499 {
500 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
501 }
502 
503 
504 /*
505  * Initialize memory for HCD and xHC (one-time init).
506  *
507  * Program the PAGESIZE register, initialize the device context array, create
508  * device contexts (?), set up a command ring segment (or two?), create event
509  * ring (one for now).
510  */
xhci_init(struct usb_hcd * hcd)511 int xhci_init(struct usb_hcd *hcd)
512 {
513 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 	int retval = 0;
515 
516 	xhci_dbg(xhci, "xhci_init\n");
517 	spin_lock_init(&xhci->lock);
518 	if (xhci->hci_version == 0x95 && link_quirk) {
519 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
520 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
521 	} else {
522 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
523 	}
524 	retval = xhci_mem_init(xhci, GFP_KERNEL);
525 	xhci_dbg(xhci, "Finished xhci_init\n");
526 
527 	/* Initializing Compliance Mode Recovery Data If Needed */
528 	if (compliance_mode_recovery_timer_quirk_check()) {
529 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
530 		compliance_mode_recovery_timer_init(xhci);
531 	}
532 
533 	return retval;
534 }
535 
536 /*-------------------------------------------------------------------------*/
537 
538 
539 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_event_ring_work(unsigned long arg)540 static void xhci_event_ring_work(unsigned long arg)
541 {
542 	unsigned long flags;
543 	int temp;
544 	u64 temp_64;
545 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
546 	int i, j;
547 
548 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
549 
550 	spin_lock_irqsave(&xhci->lock, flags);
551 	temp = xhci_readl(xhci, &xhci->op_regs->status);
552 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
553 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
554 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
555 		xhci_dbg(xhci, "HW died, polling stopped.\n");
556 		spin_unlock_irqrestore(&xhci->lock, flags);
557 		return;
558 	}
559 
560 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
561 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
562 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
563 	xhci->error_bitmask = 0;
564 	xhci_dbg(xhci, "Event ring:\n");
565 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
566 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
567 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
568 	temp_64 &= ~ERST_PTR_MASK;
569 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
570 	xhci_dbg(xhci, "Command ring:\n");
571 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
572 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
573 	xhci_dbg_cmd_ptrs(xhci);
574 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
575 		if (!xhci->devs[i])
576 			continue;
577 		for (j = 0; j < 31; ++j) {
578 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
579 		}
580 	}
581 	spin_unlock_irqrestore(&xhci->lock, flags);
582 
583 	if (!xhci->zombie)
584 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
585 	else
586 		xhci_dbg(xhci, "Quit polling the event ring.\n");
587 }
588 #endif
589 
xhci_run_finished(struct xhci_hcd * xhci)590 static int xhci_run_finished(struct xhci_hcd *xhci)
591 {
592 	if (xhci_start(xhci)) {
593 		xhci_halt(xhci);
594 		return -ENODEV;
595 	}
596 	xhci->shared_hcd->state = HC_STATE_RUNNING;
597 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
598 
599 	if (xhci->quirks & XHCI_NEC_HOST)
600 		xhci_ring_cmd_db(xhci);
601 
602 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
603 	return 0;
604 }
605 
606 /*
607  * Start the HC after it was halted.
608  *
609  * This function is called by the USB core when the HC driver is added.
610  * Its opposite is xhci_stop().
611  *
612  * xhci_init() must be called once before this function can be called.
613  * Reset the HC, enable device slot contexts, program DCBAAP, and
614  * set command ring pointer and event ring pointer.
615  *
616  * Setup MSI-X vectors and enable interrupts.
617  */
xhci_run(struct usb_hcd * hcd)618 int xhci_run(struct usb_hcd *hcd)
619 {
620 	u32 temp;
621 	u64 temp_64;
622 	int ret;
623 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
624 
625 	/* Start the xHCI host controller running only after the USB 2.0 roothub
626 	 * is setup.
627 	 */
628 
629 	hcd->uses_new_polling = 1;
630 	if (!usb_hcd_is_primary_hcd(hcd))
631 		return xhci_run_finished(xhci);
632 
633 	xhci_dbg(xhci, "xhci_run\n");
634 
635 	ret = xhci_try_enable_msi(hcd);
636 	if (ret)
637 		return ret;
638 
639 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
640 	init_timer(&xhci->event_ring_timer);
641 	xhci->event_ring_timer.data = (unsigned long) xhci;
642 	xhci->event_ring_timer.function = xhci_event_ring_work;
643 	/* Poll the event ring */
644 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
645 	xhci->zombie = 0;
646 	xhci_dbg(xhci, "Setting event ring polling timer\n");
647 	add_timer(&xhci->event_ring_timer);
648 #endif
649 
650 	xhci_dbg(xhci, "Command ring memory map follows:\n");
651 	xhci_debug_ring(xhci, xhci->cmd_ring);
652 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
653 	xhci_dbg_cmd_ptrs(xhci);
654 
655 	xhci_dbg(xhci, "ERST memory map follows:\n");
656 	xhci_dbg_erst(xhci, &xhci->erst);
657 	xhci_dbg(xhci, "Event ring:\n");
658 	xhci_debug_ring(xhci, xhci->event_ring);
659 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
660 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
661 	temp_64 &= ~ERST_PTR_MASK;
662 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
663 
664 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
665 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
666 	temp &= ~ER_IRQ_INTERVAL_MASK;
667 	temp |= (u32) 160;
668 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
669 
670 	/* Set the HCD state before we enable the irqs */
671 	temp = xhci_readl(xhci, &xhci->op_regs->command);
672 	temp |= (CMD_EIE);
673 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
674 			temp);
675 	xhci_writel(xhci, temp, &xhci->op_regs->command);
676 
677 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
678 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
679 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
681 			&xhci->ir_set->irq_pending);
682 	xhci_print_ir_set(xhci, 0);
683 
684 	if (xhci->quirks & XHCI_NEC_HOST)
685 		xhci_queue_vendor_command(xhci, 0, 0, 0,
686 				TRB_TYPE(TRB_NEC_GET_FW));
687 
688 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
689 	return 0;
690 }
691 
xhci_only_stop_hcd(struct usb_hcd * hcd)692 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
693 {
694 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
695 
696 	spin_lock_irq(&xhci->lock);
697 	xhci_halt(xhci);
698 
699 	/* The shared_hcd is going to be deallocated shortly (the USB core only
700 	 * calls this function when allocation fails in usb_add_hcd(), or
701 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
702 	 */
703 	xhci->shared_hcd = NULL;
704 	spin_unlock_irq(&xhci->lock);
705 }
706 
707 /*
708  * Stop xHCI driver.
709  *
710  * This function is called by the USB core when the HC driver is removed.
711  * Its opposite is xhci_run().
712  *
713  * Disable device contexts, disable IRQs, and quiesce the HC.
714  * Reset the HC, finish any completed transactions, and cleanup memory.
715  */
xhci_stop(struct usb_hcd * hcd)716 void xhci_stop(struct usb_hcd *hcd)
717 {
718 	u32 temp;
719 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720 
721 	if (!usb_hcd_is_primary_hcd(hcd)) {
722 		xhci_only_stop_hcd(xhci->shared_hcd);
723 		return;
724 	}
725 
726 	spin_lock_irq(&xhci->lock);
727 	/* Make sure the xHC is halted for a USB3 roothub
728 	 * (xhci_stop() could be called as part of failed init).
729 	 */
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
737 	/* Tell the event ring poll function not to reschedule */
738 	xhci->zombie = 1;
739 	del_timer_sync(&xhci->event_ring_timer);
740 #endif
741 
742 	/* Deleting Compliance Mode Recovery Timer */
743 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
744 			(!(xhci_all_ports_seen_u0(xhci))))
745 		del_timer_sync(&xhci->comp_mode_recovery_timer);
746 
747 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
748 		usb_amd_dev_put();
749 
750 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
751 	temp = xhci_readl(xhci, &xhci->op_regs->status);
752 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
753 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
754 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
755 			&xhci->ir_set->irq_pending);
756 	xhci_print_ir_set(xhci, 0);
757 
758 	xhci_dbg(xhci, "cleaning up memory\n");
759 	xhci_mem_cleanup(xhci);
760 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
761 		    xhci_readl(xhci, &xhci->op_regs->status));
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
xhci_shutdown(struct usb_hcd * hcd)773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
790 		    xhci_readl(xhci, &xhci->op_regs->status));
791 
792 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
793 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
794 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
795 }
796 
797 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)798 static void xhci_save_registers(struct xhci_hcd *xhci)
799 {
800 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
801 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
802 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
803 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
804 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
805 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
806 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
807 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
808 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
809 }
810 
xhci_restore_registers(struct xhci_hcd * xhci)811 static void xhci_restore_registers(struct xhci_hcd *xhci)
812 {
813 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
814 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
815 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
816 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
817 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
818 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
819 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
820 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
821 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
822 }
823 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)824 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
825 {
826 	u64	val_64;
827 
828 	/* step 2: initialize command ring buffer */
829 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
830 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
831 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
832 				      xhci->cmd_ring->dequeue) &
833 		 (u64) ~CMD_RING_RSVD_BITS) |
834 		xhci->cmd_ring->cycle_state;
835 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
836 			(long unsigned long) val_64);
837 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
838 }
839 
840 /*
841  * The whole command ring must be cleared to zero when we suspend the host.
842  *
843  * The host doesn't save the command ring pointer in the suspend well, so we
844  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
845  * aligned, because of the reserved bits in the command ring dequeue pointer
846  * register.  Therefore, we can't just set the dequeue pointer back in the
847  * middle of the ring (TRBs are 16-byte aligned).
848  */
xhci_clear_command_ring(struct xhci_hcd * xhci)849 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
850 {
851 	struct xhci_ring *ring;
852 	struct xhci_segment *seg;
853 
854 	ring = xhci->cmd_ring;
855 	seg = ring->deq_seg;
856 	do {
857 		memset(seg->trbs, 0,
858 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
859 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
860 			cpu_to_le32(~TRB_CYCLE);
861 		seg = seg->next;
862 	} while (seg != ring->deq_seg);
863 
864 	/* Reset the software enqueue and dequeue pointers */
865 	ring->deq_seg = ring->first_seg;
866 	ring->dequeue = ring->first_seg->trbs;
867 	ring->enq_seg = ring->deq_seg;
868 	ring->enqueue = ring->dequeue;
869 
870 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
871 	/*
872 	 * Ring is now zeroed, so the HW should look for change of ownership
873 	 * when the cycle bit is set to 1.
874 	 */
875 	ring->cycle_state = 1;
876 
877 	/*
878 	 * Reset the hardware dequeue pointer.
879 	 * Yes, this will need to be re-written after resume, but we're paranoid
880 	 * and want to make sure the hardware doesn't access bogus memory
881 	 * because, say, the BIOS or an SMI started the host without changing
882 	 * the command ring pointers.
883 	 */
884 	xhci_set_cmd_ring_deq(xhci);
885 }
886 
887 /*
888  * Stop HC (not bus-specific)
889  *
890  * This is called when the machine transition into S3/S4 mode.
891  *
892  */
xhci_suspend(struct xhci_hcd * xhci)893 int xhci_suspend(struct xhci_hcd *xhci)
894 {
895 	int			rc = 0;
896 	unsigned int		delay = XHCI_MAX_HALT_USEC;
897 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
898 	u32			command;
899 
900 	/* Don't poll the roothubs on bus suspend. */
901 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
902 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
903 	del_timer_sync(&hcd->rh_timer);
904 
905 	spin_lock_irq(&xhci->lock);
906 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
907 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
908 	/* step 1: stop endpoint */
909 	/* skipped assuming that port suspend has done */
910 
911 	/* step 2: clear Run/Stop bit */
912 	command = xhci_readl(xhci, &xhci->op_regs->command);
913 	command &= ~CMD_RUN;
914 	xhci_writel(xhci, command, &xhci->op_regs->command);
915 
916 	/* Some chips from Fresco Logic need an extraordinary delay */
917 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
918 
919 	if (handshake(xhci, &xhci->op_regs->status,
920 		      STS_HALT, STS_HALT, delay)) {
921 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
922 		spin_unlock_irq(&xhci->lock);
923 		return -ETIMEDOUT;
924 	}
925 	xhci_clear_command_ring(xhci);
926 
927 	/* step 3: save registers */
928 	xhci_save_registers(xhci);
929 
930 	/* step 4: set CSS flag */
931 	command = xhci_readl(xhci, &xhci->op_regs->command);
932 	command |= CMD_CSS;
933 	xhci_writel(xhci, command, &xhci->op_regs->command);
934 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
935 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
936 		spin_unlock_irq(&xhci->lock);
937 		return -ETIMEDOUT;
938 	}
939 	spin_unlock_irq(&xhci->lock);
940 
941 	/*
942 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 	 * is about to be suspended.
944 	 */
945 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 			(!(xhci_all_ports_seen_u0(xhci)))) {
947 		del_timer_sync(&xhci->comp_mode_recovery_timer);
948 		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
949 	}
950 
951 	/* step 5: remove core well power */
952 	/* synchronize irq when using MSI-X */
953 	xhci_msix_sync_irqs(xhci);
954 
955 	return rc;
956 }
957 
958 /*
959  * start xHC (not bus-specific)
960  *
961  * This is called when the machine transition from S3/S4 mode.
962  *
963  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)964 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
965 {
966 	u32			command, temp = 0, status;
967 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
968 	struct usb_hcd		*secondary_hcd;
969 	int			retval = 0;
970 	bool			comp_timer_running = false;
971 
972 	/* Wait a bit if either of the roothubs need to settle from the
973 	 * transition into bus suspend.
974 	 */
975 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
976 			time_before(jiffies,
977 				xhci->bus_state[1].next_statechange))
978 		msleep(100);
979 
980 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
981 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
982 
983 	spin_lock_irq(&xhci->lock);
984 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
985 		hibernated = true;
986 
987 	if (!hibernated) {
988 		/* step 1: restore register */
989 		xhci_restore_registers(xhci);
990 		/* step 2: initialize command ring buffer */
991 		xhci_set_cmd_ring_deq(xhci);
992 		/* step 3: restore state and start state*/
993 		/* step 3: set CRS flag */
994 		command = xhci_readl(xhci, &xhci->op_regs->command);
995 		command |= CMD_CRS;
996 		xhci_writel(xhci, command, &xhci->op_regs->command);
997 		if (handshake(xhci, &xhci->op_regs->status,
998 			      STS_RESTORE, 0, 10 * 1000)) {
999 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1000 			spin_unlock_irq(&xhci->lock);
1001 			return -ETIMEDOUT;
1002 		}
1003 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1004 	}
1005 
1006 	/* If restore operation fails, re-initialize the HC during resume */
1007 	if ((temp & STS_SRE) || hibernated) {
1008 
1009 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1010 				!(xhci_all_ports_seen_u0(xhci))) {
1011 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1012 			xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1013 		}
1014 
1015 		/* Let the USB core know _both_ roothubs lost power. */
1016 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1017 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1018 
1019 		xhci_dbg(xhci, "Stop HCD\n");
1020 		xhci_halt(xhci);
1021 		xhci_reset(xhci);
1022 		spin_unlock_irq(&xhci->lock);
1023 		xhci_cleanup_msix(xhci);
1024 
1025 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1026 		/* Tell the event ring poll function not to reschedule */
1027 		xhci->zombie = 1;
1028 		del_timer_sync(&xhci->event_ring_timer);
1029 #endif
1030 
1031 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1032 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1033 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1034 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1035 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1036 				&xhci->ir_set->irq_pending);
1037 		xhci_print_ir_set(xhci, 0);
1038 
1039 		xhci_dbg(xhci, "cleaning up memory\n");
1040 		xhci_mem_cleanup(xhci);
1041 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1042 			    xhci_readl(xhci, &xhci->op_regs->status));
1043 
1044 		/* USB core calls the PCI reinit and start functions twice:
1045 		 * first with the primary HCD, and then with the secondary HCD.
1046 		 * If we don't do the same, the host will never be started.
1047 		 */
1048 		if (!usb_hcd_is_primary_hcd(hcd))
1049 			secondary_hcd = hcd;
1050 		else
1051 			secondary_hcd = xhci->shared_hcd;
1052 
1053 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1054 		retval = xhci_init(hcd->primary_hcd);
1055 		if (retval)
1056 			return retval;
1057 		comp_timer_running = true;
1058 
1059 		xhci_dbg(xhci, "Start the primary HCD\n");
1060 		retval = xhci_run(hcd->primary_hcd);
1061 		if (!retval) {
1062 			xhci_dbg(xhci, "Start the secondary HCD\n");
1063 			retval = xhci_run(secondary_hcd);
1064 		}
1065 		hcd->state = HC_STATE_SUSPENDED;
1066 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1067 		goto done;
1068 	}
1069 
1070 	/* step 4: set Run/Stop bit */
1071 	command = xhci_readl(xhci, &xhci->op_regs->command);
1072 	command |= CMD_RUN;
1073 	xhci_writel(xhci, command, &xhci->op_regs->command);
1074 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1075 		  0, 250 * 1000);
1076 
1077 	/* step 5: walk topology and initialize portsc,
1078 	 * portpmsc and portli
1079 	 */
1080 	/* this is done in bus_resume */
1081 
1082 	/* step 6: restart each of the previously
1083 	 * Running endpoints by ringing their doorbells
1084 	 */
1085 
1086 	spin_unlock_irq(&xhci->lock);
1087 
1088  done:
1089 	if (retval == 0) {
1090 		/* Resume root hubs only when have pending events. */
1091 		status = readl(&xhci->op_regs->status);
1092 		if (status & STS_EINT) {
1093 			usb_hcd_resume_root_hub(hcd);
1094 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1100 	 * be re-initialized Always after a system resume. Ports are subject
1101 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1102 	 * ports have entered previously to U0 before system's suspension.
1103 	 */
1104 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1105 		compliance_mode_recovery_timer_init(xhci);
1106 
1107 	/* Re-enable port polling. */
1108 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1109 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1110 	usb_hcd_poll_rh_status(hcd);
1111 
1112 	return retval;
1113 }
1114 #endif	/* CONFIG_PM */
1115 
1116 /*-------------------------------------------------------------------------*/
1117 
1118 /**
1119  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1120  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1121  * value to right shift 1 for the bitmask.
1122  *
1123  * Index  = (epnum * 2) + direction - 1,
1124  * where direction = 0 for OUT, 1 for IN.
1125  * For control endpoints, the IN index is used (OUT index is unused), so
1126  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1127  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1128 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1129 {
1130 	unsigned int index;
1131 	if (usb_endpoint_xfer_control(desc))
1132 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1133 	else
1134 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1135 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1136 	return index;
1137 }
1138 
1139 /* Find the flag for this endpoint (for use in the control context).  Use the
1140  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1141  * bit 1, etc.
1142  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1143 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1144 {
1145 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1146 }
1147 
1148 /* Find the flag for this endpoint (for use in the control context).  Use the
1149  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1150  * bit 1, etc.
1151  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1152 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1153 {
1154 	return 1 << (ep_index + 1);
1155 }
1156 
1157 /* Compute the last valid endpoint context index.  Basically, this is the
1158  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1159  * we find the most significant bit set in the added contexts flags.
1160  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1161  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1162  */
xhci_last_valid_endpoint(u32 added_ctxs)1163 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1164 {
1165 	return fls(added_ctxs) - 1;
1166 }
1167 
1168 /* Returns 1 if the arguments are OK;
1169  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1170  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1171 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1172 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1173 		const char *func) {
1174 	struct xhci_hcd	*xhci;
1175 	struct xhci_virt_device	*virt_dev;
1176 
1177 	if (!hcd || (check_ep && !ep) || !udev) {
1178 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1179 				func);
1180 		return -EINVAL;
1181 	}
1182 	if (!udev->parent) {
1183 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1184 				func);
1185 		return 0;
1186 	}
1187 
1188 	xhci = hcd_to_xhci(hcd);
1189 	if (check_virt_dev) {
1190 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1191 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1192 						"device\n", func);
1193 			return -EINVAL;
1194 		}
1195 
1196 		virt_dev = xhci->devs[udev->slot_id];
1197 		if (virt_dev->udev != udev) {
1198 			printk(KERN_DEBUG "xHCI %s called with udev and "
1199 					  "virt_dev does not match\n", func);
1200 			return -EINVAL;
1201 		}
1202 	}
1203 
1204 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 		return -ENODEV;
1206 
1207 	return 1;
1208 }
1209 
1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1211 		struct usb_device *udev, struct xhci_command *command,
1212 		bool ctx_change, bool must_succeed);
1213 
1214 /*
1215  * Full speed devices may have a max packet size greater than 8 bytes, but the
1216  * USB core doesn't know that until it reads the first 8 bytes of the
1217  * descriptor.  If the usb_device's max packet size changes after that point,
1218  * we need to issue an evaluate context command and wait on it.
1219  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1221 		unsigned int ep_index, struct urb *urb)
1222 {
1223 	struct xhci_container_ctx *in_ctx;
1224 	struct xhci_container_ctx *out_ctx;
1225 	struct xhci_input_control_ctx *ctrl_ctx;
1226 	struct xhci_ep_ctx *ep_ctx;
1227 	int max_packet_size;
1228 	int hw_max_packet_size;
1229 	int ret = 0;
1230 
1231 	out_ctx = xhci->devs[slot_id]->out_ctx;
1232 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1233 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1234 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1235 	if (hw_max_packet_size != max_packet_size) {
1236 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1237 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1238 				max_packet_size);
1239 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1240 				hw_max_packet_size);
1241 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1242 
1243 		/* Set up the modified control endpoint 0 */
1244 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1245 				xhci->devs[slot_id]->out_ctx, ep_index);
1246 		in_ctx = xhci->devs[slot_id]->in_ctx;
1247 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1248 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1249 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1250 
1251 		/* Set up the input context flags for the command */
1252 		/* FIXME: This won't work if a non-default control endpoint
1253 		 * changes max packet sizes.
1254 		 */
1255 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1256 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1257 		ctrl_ctx->drop_flags = 0;
1258 
1259 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1260 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1261 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1262 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1263 
1264 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1265 				true, false);
1266 
1267 		/* Clean up the input context for later use by bandwidth
1268 		 * functions.
1269 		 */
1270 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1271 	}
1272 	return ret;
1273 }
1274 
1275 /*
1276  * non-error returns are a promise to giveback() the urb later
1277  * we drop ownership so next owner (or urb unlink) can get it
1278  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1279 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1280 {
1281 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1282 	struct xhci_td *buffer;
1283 	unsigned long flags;
1284 	int ret = 0;
1285 	unsigned int slot_id, ep_index;
1286 	struct urb_priv	*urb_priv;
1287 	int size, i;
1288 
1289 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1290 					true, true, __func__) <= 0)
1291 		return -EINVAL;
1292 
1293 	slot_id = urb->dev->slot_id;
1294 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1295 
1296 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1297 		if (!in_interrupt())
1298 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1299 		ret = -ESHUTDOWN;
1300 		goto exit;
1301 	}
1302 
1303 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1304 		size = urb->number_of_packets;
1305 	else
1306 		size = 1;
1307 
1308 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1309 				  size * sizeof(struct xhci_td *), mem_flags);
1310 	if (!urb_priv)
1311 		return -ENOMEM;
1312 
1313 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1314 	if (!buffer) {
1315 		kfree(urb_priv);
1316 		return -ENOMEM;
1317 	}
1318 
1319 	for (i = 0; i < size; i++) {
1320 		urb_priv->td[i] = buffer;
1321 		buffer++;
1322 	}
1323 
1324 	urb_priv->length = size;
1325 	urb_priv->td_cnt = 0;
1326 	urb->hcpriv = urb_priv;
1327 
1328 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 		/* Check to see if the max packet size for the default control
1330 		 * endpoint changed during FS device enumeration
1331 		 */
1332 		if (urb->dev->speed == USB_SPEED_FULL) {
1333 			ret = xhci_check_maxpacket(xhci, slot_id,
1334 					ep_index, urb);
1335 			if (ret < 0) {
1336 				xhci_urb_free_priv(xhci, urb_priv);
1337 				urb->hcpriv = NULL;
1338 				return ret;
1339 			}
1340 		}
1341 
1342 		/* We have a spinlock and interrupts disabled, so we must pass
1343 		 * atomic context to this function, which may allocate memory.
1344 		 */
1345 		spin_lock_irqsave(&xhci->lock, flags);
1346 		if (xhci->xhc_state & XHCI_STATE_DYING)
1347 			goto dying;
1348 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1349 				slot_id, ep_index);
1350 		if (ret)
1351 			goto free_priv;
1352 		spin_unlock_irqrestore(&xhci->lock, flags);
1353 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1354 		spin_lock_irqsave(&xhci->lock, flags);
1355 		if (xhci->xhc_state & XHCI_STATE_DYING)
1356 			goto dying;
1357 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1358 				EP_GETTING_STREAMS) {
1359 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1360 					"is transitioning to using streams.\n");
1361 			ret = -EINVAL;
1362 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1363 				EP_GETTING_NO_STREAMS) {
1364 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1365 					"is transitioning to "
1366 					"not having streams.\n");
1367 			ret = -EINVAL;
1368 		} else {
1369 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1370 					slot_id, ep_index);
1371 		}
1372 		if (ret)
1373 			goto free_priv;
1374 		spin_unlock_irqrestore(&xhci->lock, flags);
1375 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1376 		spin_lock_irqsave(&xhci->lock, flags);
1377 		if (xhci->xhc_state & XHCI_STATE_DYING)
1378 			goto dying;
1379 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380 				slot_id, ep_index);
1381 		if (ret)
1382 			goto free_priv;
1383 		spin_unlock_irqrestore(&xhci->lock, flags);
1384 	} else {
1385 		spin_lock_irqsave(&xhci->lock, flags);
1386 		if (xhci->xhc_state & XHCI_STATE_DYING)
1387 			goto dying;
1388 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1389 				slot_id, ep_index);
1390 		if (ret)
1391 			goto free_priv;
1392 		spin_unlock_irqrestore(&xhci->lock, flags);
1393 	}
1394 exit:
1395 	return ret;
1396 dying:
1397 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1398 			"non-responsive xHCI host.\n",
1399 			urb->ep->desc.bEndpointAddress, urb);
1400 	ret = -ESHUTDOWN;
1401 free_priv:
1402 	xhci_urb_free_priv(xhci, urb_priv);
1403 	urb->hcpriv = NULL;
1404 	spin_unlock_irqrestore(&xhci->lock, flags);
1405 	return ret;
1406 }
1407 
1408 /* Get the right ring for the given URB.
1409  * If the endpoint supports streams, boundary check the URB's stream ID.
1410  * If the endpoint doesn't support streams, return the singular endpoint ring.
1411  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1412 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1413 		struct urb *urb)
1414 {
1415 	unsigned int slot_id;
1416 	unsigned int ep_index;
1417 	unsigned int stream_id;
1418 	struct xhci_virt_ep *ep;
1419 
1420 	slot_id = urb->dev->slot_id;
1421 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1422 	stream_id = urb->stream_id;
1423 	ep = &xhci->devs[slot_id]->eps[ep_index];
1424 	/* Common case: no streams */
1425 	if (!(ep->ep_state & EP_HAS_STREAMS))
1426 		return ep->ring;
1427 
1428 	if (stream_id == 0) {
1429 		xhci_warn(xhci,
1430 				"WARN: Slot ID %u, ep index %u has streams, "
1431 				"but URB has no stream ID.\n",
1432 				slot_id, ep_index);
1433 		return NULL;
1434 	}
1435 
1436 	if (stream_id < ep->stream_info->num_streams)
1437 		return ep->stream_info->stream_rings[stream_id];
1438 
1439 	xhci_warn(xhci,
1440 			"WARN: Slot ID %u, ep index %u has "
1441 			"stream IDs 1 to %u allocated, "
1442 			"but stream ID %u is requested.\n",
1443 			slot_id, ep_index,
1444 			ep->stream_info->num_streams - 1,
1445 			stream_id);
1446 	return NULL;
1447 }
1448 
1449 /*
1450  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1451  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1452  * should pick up where it left off in the TD, unless a Set Transfer Ring
1453  * Dequeue Pointer is issued.
1454  *
1455  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1456  * the ring.  Since the ring is a contiguous structure, they can't be physically
1457  * removed.  Instead, there are two options:
1458  *
1459  *  1) If the HC is in the middle of processing the URB to be canceled, we
1460  *     simply move the ring's dequeue pointer past those TRBs using the Set
1461  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1462  *     when drivers timeout on the last submitted URB and attempt to cancel.
1463  *
1464  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1465  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1466  *     HC will need to invalidate the any TRBs it has cached after the stop
1467  *     endpoint command, as noted in the xHCI 0.95 errata.
1468  *
1469  *  3) The TD may have completed by the time the Stop Endpoint Command
1470  *     completes, so software needs to handle that case too.
1471  *
1472  * This function should protect against the TD enqueueing code ringing the
1473  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1474  * It also needs to account for multiple cancellations on happening at the same
1475  * time for the same endpoint.
1476  *
1477  * Note that this function can be called in any context, or so says
1478  * usb_hcd_unlink_urb()
1479  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1480 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1481 {
1482 	unsigned long flags;
1483 	int ret, i;
1484 	u32 temp;
1485 	struct xhci_hcd *xhci;
1486 	struct urb_priv	*urb_priv;
1487 	struct xhci_td *td;
1488 	unsigned int ep_index;
1489 	struct xhci_ring *ep_ring;
1490 	struct xhci_virt_ep *ep;
1491 
1492 	xhci = hcd_to_xhci(hcd);
1493 	spin_lock_irqsave(&xhci->lock, flags);
1494 	/* Make sure the URB hasn't completed or been unlinked already */
1495 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1496 	if (ret || !urb->hcpriv)
1497 		goto done;
1498 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1499 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1500 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1501 		urb_priv = urb->hcpriv;
1502 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1503 			td = urb_priv->td[i];
1504 			if (!list_empty(&td->td_list))
1505 				list_del_init(&td->td_list);
1506 			if (!list_empty(&td->cancelled_td_list))
1507 				list_del_init(&td->cancelled_td_list);
1508 		}
1509 
1510 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1511 		spin_unlock_irqrestore(&xhci->lock, flags);
1512 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1513 		xhci_urb_free_priv(xhci, urb_priv);
1514 		return ret;
1515 	}
1516 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1517 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1518 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1519 				"non-responsive xHCI host.\n",
1520 				urb->ep->desc.bEndpointAddress, urb);
1521 		/* Let the stop endpoint command watchdog timer (which set this
1522 		 * state) finish cleaning up the endpoint TD lists.  We must
1523 		 * have caught it in the middle of dropping a lock and giving
1524 		 * back an URB.
1525 		 */
1526 		goto done;
1527 	}
1528 
1529 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1530 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1531 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1532 	if (!ep_ring) {
1533 		ret = -EINVAL;
1534 		goto done;
1535 	}
1536 
1537 	urb_priv = urb->hcpriv;
1538 	i = urb_priv->td_cnt;
1539 	if (i < urb_priv->length)
1540 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1541 				"starting at offset 0x%llx\n",
1542 				urb, urb->dev->devpath,
1543 				urb->ep->desc.bEndpointAddress,
1544 				(unsigned long long) xhci_trb_virt_to_dma(
1545 					urb_priv->td[i]->start_seg,
1546 					urb_priv->td[i]->first_trb));
1547 
1548 	for (; i < urb_priv->length; i++) {
1549 		td = urb_priv->td[i];
1550 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1551 	}
1552 
1553 	/* Queue a stop endpoint command, but only if this is
1554 	 * the first cancellation to be handled.
1555 	 */
1556 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1557 		ep->ep_state |= EP_HALT_PENDING;
1558 		ep->stop_cmds_pending++;
1559 		ep->stop_cmd_timer.expires = jiffies +
1560 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1561 		add_timer(&ep->stop_cmd_timer);
1562 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1563 		xhci_ring_cmd_db(xhci);
1564 	}
1565 done:
1566 	spin_unlock_irqrestore(&xhci->lock, flags);
1567 	return ret;
1568 }
1569 
1570 /* Drop an endpoint from a new bandwidth configuration for this device.
1571  * Only one call to this function is allowed per endpoint before
1572  * check_bandwidth() or reset_bandwidth() must be called.
1573  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1574  * add the endpoint to the schedule with possibly new parameters denoted by a
1575  * different endpoint descriptor in usb_host_endpoint.
1576  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1577  * not allowed.
1578  *
1579  * The USB core will not allow URBs to be queued to an endpoint that is being
1580  * disabled, so there's no need for mutual exclusion to protect
1581  * the xhci->devs[slot_id] structure.
1582  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1583 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1584 		struct usb_host_endpoint *ep)
1585 {
1586 	struct xhci_hcd *xhci;
1587 	struct xhci_container_ctx *in_ctx, *out_ctx;
1588 	struct xhci_input_control_ctx *ctrl_ctx;
1589 	struct xhci_slot_ctx *slot_ctx;
1590 	unsigned int last_ctx;
1591 	unsigned int ep_index;
1592 	struct xhci_ep_ctx *ep_ctx;
1593 	u32 drop_flag;
1594 	u32 new_add_flags, new_drop_flags, new_slot_info;
1595 	int ret;
1596 
1597 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1598 	if (ret <= 0)
1599 		return ret;
1600 	xhci = hcd_to_xhci(hcd);
1601 	if (xhci->xhc_state & XHCI_STATE_DYING)
1602 		return -ENODEV;
1603 
1604 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1605 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1606 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1607 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1608 				__func__, drop_flag);
1609 		return 0;
1610 	}
1611 
1612 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1613 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1614 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1615 	ep_index = xhci_get_endpoint_index(&ep->desc);
1616 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1617 	/* If the HC already knows the endpoint is disabled,
1618 	 * or the HCD has noted it is disabled, ignore this request
1619 	 */
1620 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1621 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1622 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1623 	    xhci_get_endpoint_flag(&ep->desc)) {
1624 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1625 				__func__, ep);
1626 		return 0;
1627 	}
1628 
1629 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1630 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1631 
1632 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1633 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1634 
1635 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1636 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1637 	/* Update the last valid endpoint context, if we deleted the last one */
1638 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1639 	    LAST_CTX(last_ctx)) {
1640 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1641 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1642 	}
1643 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1644 
1645 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1646 
1647 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1648 			(unsigned int) ep->desc.bEndpointAddress,
1649 			udev->slot_id,
1650 			(unsigned int) new_drop_flags,
1651 			(unsigned int) new_add_flags,
1652 			(unsigned int) new_slot_info);
1653 	return 0;
1654 }
1655 
1656 /* Add an endpoint to a new possible bandwidth configuration for this device.
1657  * Only one call to this function is allowed per endpoint before
1658  * check_bandwidth() or reset_bandwidth() must be called.
1659  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1660  * add the endpoint to the schedule with possibly new parameters denoted by a
1661  * different endpoint descriptor in usb_host_endpoint.
1662  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1663  * not allowed.
1664  *
1665  * The USB core will not allow URBs to be queued to an endpoint until the
1666  * configuration or alt setting is installed in the device, so there's no need
1667  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1668  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1669 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1670 		struct usb_host_endpoint *ep)
1671 {
1672 	struct xhci_hcd *xhci;
1673 	struct xhci_container_ctx *in_ctx, *out_ctx;
1674 	unsigned int ep_index;
1675 	struct xhci_ep_ctx *ep_ctx;
1676 	struct xhci_slot_ctx *slot_ctx;
1677 	struct xhci_input_control_ctx *ctrl_ctx;
1678 	u32 added_ctxs;
1679 	unsigned int last_ctx;
1680 	u32 new_add_flags, new_drop_flags, new_slot_info;
1681 	struct xhci_virt_device *virt_dev;
1682 	int ret = 0;
1683 
1684 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1685 	if (ret <= 0) {
1686 		/* So we won't queue a reset ep command for a root hub */
1687 		ep->hcpriv = NULL;
1688 		return ret;
1689 	}
1690 	xhci = hcd_to_xhci(hcd);
1691 	if (xhci->xhc_state & XHCI_STATE_DYING)
1692 		return -ENODEV;
1693 
1694 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1695 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1696 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1697 		/* FIXME when we have to issue an evaluate endpoint command to
1698 		 * deal with ep0 max packet size changing once we get the
1699 		 * descriptors
1700 		 */
1701 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1702 				__func__, added_ctxs);
1703 		return 0;
1704 	}
1705 
1706 	virt_dev = xhci->devs[udev->slot_id];
1707 	in_ctx = virt_dev->in_ctx;
1708 	out_ctx = virt_dev->out_ctx;
1709 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1710 	ep_index = xhci_get_endpoint_index(&ep->desc);
1711 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1712 
1713 	/* If this endpoint is already in use, and the upper layers are trying
1714 	 * to add it again without dropping it, reject the addition.
1715 	 */
1716 	if (virt_dev->eps[ep_index].ring &&
1717 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1718 				xhci_get_endpoint_flag(&ep->desc))) {
1719 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1720 				"without dropping it.\n",
1721 				(unsigned int) ep->desc.bEndpointAddress);
1722 		return -EINVAL;
1723 	}
1724 
1725 	/* If the HCD has already noted the endpoint is enabled,
1726 	 * ignore this request.
1727 	 */
1728 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1729 	    xhci_get_endpoint_flag(&ep->desc)) {
1730 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1731 				__func__, ep);
1732 		return 0;
1733 	}
1734 
1735 	/*
1736 	 * Configuration and alternate setting changes must be done in
1737 	 * process context, not interrupt context (or so documenation
1738 	 * for usb_set_interface() and usb_set_configuration() claim).
1739 	 */
1740 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1741 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1742 				__func__, ep->desc.bEndpointAddress);
1743 		return -ENOMEM;
1744 	}
1745 
1746 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1747 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1748 
1749 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1750 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1751 	 * this re-adds a new state for the endpoint from the new endpoint
1752 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1753 	 * drop flags alone.
1754 	 */
1755 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1756 
1757 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1758 	/* Update the last valid endpoint context, if we just added one past */
1759 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1760 	    LAST_CTX(last_ctx)) {
1761 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1762 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1763 	}
1764 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1765 
1766 	/* Store the usb_device pointer for later use */
1767 	ep->hcpriv = udev;
1768 
1769 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1770 			(unsigned int) ep->desc.bEndpointAddress,
1771 			udev->slot_id,
1772 			(unsigned int) new_drop_flags,
1773 			(unsigned int) new_add_flags,
1774 			(unsigned int) new_slot_info);
1775 	return 0;
1776 }
1777 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1778 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1779 {
1780 	struct xhci_input_control_ctx *ctrl_ctx;
1781 	struct xhci_ep_ctx *ep_ctx;
1782 	struct xhci_slot_ctx *slot_ctx;
1783 	int i;
1784 
1785 	/* When a device's add flag and drop flag are zero, any subsequent
1786 	 * configure endpoint command will leave that endpoint's state
1787 	 * untouched.  Make sure we don't leave any old state in the input
1788 	 * endpoint contexts.
1789 	 */
1790 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1791 	ctrl_ctx->drop_flags = 0;
1792 	ctrl_ctx->add_flags = 0;
1793 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1794 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1795 	/* Endpoint 0 is always valid */
1796 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1797 	for (i = 1; i < 31; ++i) {
1798 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1799 		ep_ctx->ep_info = 0;
1800 		ep_ctx->ep_info2 = 0;
1801 		ep_ctx->deq = 0;
1802 		ep_ctx->tx_info = 0;
1803 	}
1804 }
1805 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1806 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1807 		struct usb_device *udev, u32 *cmd_status)
1808 {
1809 	int ret;
1810 
1811 	switch (*cmd_status) {
1812 	case COMP_ENOMEM:
1813 		dev_warn(&udev->dev, "Not enough host controller resources "
1814 				"for new device state.\n");
1815 		ret = -ENOMEM;
1816 		/* FIXME: can we allocate more resources for the HC? */
1817 		break;
1818 	case COMP_BW_ERR:
1819 	case COMP_2ND_BW_ERR:
1820 		dev_warn(&udev->dev, "Not enough bandwidth "
1821 				"for new device state.\n");
1822 		ret = -ENOSPC;
1823 		/* FIXME: can we go back to the old state? */
1824 		break;
1825 	case COMP_TRB_ERR:
1826 		/* the HCD set up something wrong */
1827 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1828 				"add flag = 1, "
1829 				"and endpoint is not disabled.\n");
1830 		ret = -EINVAL;
1831 		break;
1832 	case COMP_DEV_ERR:
1833 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1834 				"configure command.\n");
1835 		ret = -ENODEV;
1836 		break;
1837 	case COMP_SUCCESS:
1838 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1839 		ret = 0;
1840 		break;
1841 	default:
1842 		xhci_err(xhci, "ERROR: unexpected command completion "
1843 				"code 0x%x.\n", *cmd_status);
1844 		ret = -EINVAL;
1845 		break;
1846 	}
1847 	return ret;
1848 }
1849 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1850 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1851 		struct usb_device *udev, u32 *cmd_status)
1852 {
1853 	int ret;
1854 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1855 
1856 	switch (*cmd_status) {
1857 	case COMP_EINVAL:
1858 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1859 				"context command.\n");
1860 		ret = -EINVAL;
1861 		break;
1862 	case COMP_EBADSLT:
1863 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1864 				"evaluate context command.\n");
1865 	case COMP_CTX_STATE:
1866 		dev_warn(&udev->dev, "WARN: invalid context state for "
1867 				"evaluate context command.\n");
1868 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1869 		ret = -EINVAL;
1870 		break;
1871 	case COMP_DEV_ERR:
1872 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1873 				"context command.\n");
1874 		ret = -ENODEV;
1875 		break;
1876 	case COMP_MEL_ERR:
1877 		/* Max Exit Latency too large error */
1878 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1879 		ret = -EINVAL;
1880 		break;
1881 	case COMP_SUCCESS:
1882 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1883 		ret = 0;
1884 		break;
1885 	default:
1886 		xhci_err(xhci, "ERROR: unexpected command completion "
1887 				"code 0x%x.\n", *cmd_status);
1888 		ret = -EINVAL;
1889 		break;
1890 	}
1891 	return ret;
1892 }
1893 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1894 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1895 		struct xhci_container_ctx *in_ctx)
1896 {
1897 	struct xhci_input_control_ctx *ctrl_ctx;
1898 	u32 valid_add_flags;
1899 	u32 valid_drop_flags;
1900 
1901 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1902 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1903 	 * (bit 1).  The default control endpoint is added during the Address
1904 	 * Device command and is never removed until the slot is disabled.
1905 	 */
1906 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1907 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1908 
1909 	/* Use hweight32 to count the number of ones in the add flags, or
1910 	 * number of endpoints added.  Don't count endpoints that are changed
1911 	 * (both added and dropped).
1912 	 */
1913 	return hweight32(valid_add_flags) -
1914 		hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1917 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1918 		struct xhci_container_ctx *in_ctx)
1919 {
1920 	struct xhci_input_control_ctx *ctrl_ctx;
1921 	u32 valid_add_flags;
1922 	u32 valid_drop_flags;
1923 
1924 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1925 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1926 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1927 
1928 	return hweight32(valid_drop_flags) -
1929 		hweight32(valid_add_flags & valid_drop_flags);
1930 }
1931 
1932 /*
1933  * We need to reserve the new number of endpoints before the configure endpoint
1934  * command completes.  We can't subtract the dropped endpoints from the number
1935  * of active endpoints until the command completes because we can oversubscribe
1936  * the host in this case:
1937  *
1938  *  - the first configure endpoint command drops more endpoints than it adds
1939  *  - a second configure endpoint command that adds more endpoints is queued
1940  *  - the first configure endpoint command fails, so the config is unchanged
1941  *  - the second command may succeed, even though there isn't enough resources
1942  *
1943  * Must be called with xhci->lock held.
1944  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1945 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1946 		struct xhci_container_ctx *in_ctx)
1947 {
1948 	u32 added_eps;
1949 
1950 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1951 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1952 		xhci_dbg(xhci, "Not enough ep ctxs: "
1953 				"%u active, need to add %u, limit is %u.\n",
1954 				xhci->num_active_eps, added_eps,
1955 				xhci->limit_active_eps);
1956 		return -ENOMEM;
1957 	}
1958 	xhci->num_active_eps += added_eps;
1959 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1960 			xhci->num_active_eps);
1961 	return 0;
1962 }
1963 
1964 /*
1965  * The configure endpoint was failed by the xHC for some other reason, so we
1966  * need to revert the resources that failed configuration would have used.
1967  *
1968  * Must be called with xhci->lock held.
1969  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1970 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1971 		struct xhci_container_ctx *in_ctx)
1972 {
1973 	u32 num_failed_eps;
1974 
1975 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1976 	xhci->num_active_eps -= num_failed_eps;
1977 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1978 			num_failed_eps,
1979 			xhci->num_active_eps);
1980 }
1981 
1982 /*
1983  * Now that the command has completed, clean up the active endpoint count by
1984  * subtracting out the endpoints that were dropped (but not changed).
1985  *
1986  * Must be called with xhci->lock held.
1987  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1988 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1989 		struct xhci_container_ctx *in_ctx)
1990 {
1991 	u32 num_dropped_eps;
1992 
1993 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1994 	xhci->num_active_eps -= num_dropped_eps;
1995 	if (num_dropped_eps)
1996 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1997 				num_dropped_eps,
1998 				xhci->num_active_eps);
1999 }
2000 
xhci_get_block_size(struct usb_device * udev)2001 unsigned int xhci_get_block_size(struct usb_device *udev)
2002 {
2003 	switch (udev->speed) {
2004 	case USB_SPEED_LOW:
2005 	case USB_SPEED_FULL:
2006 		return FS_BLOCK;
2007 	case USB_SPEED_HIGH:
2008 		return HS_BLOCK;
2009 	case USB_SPEED_SUPER:
2010 		return SS_BLOCK;
2011 	case USB_SPEED_UNKNOWN:
2012 	case USB_SPEED_WIRELESS:
2013 	default:
2014 		/* Should never happen */
2015 		return 1;
2016 	}
2017 }
2018 
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2019 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020 {
2021 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022 		return LS_OVERHEAD;
2023 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024 		return FS_OVERHEAD;
2025 	return HS_OVERHEAD;
2026 }
2027 
2028 /* If we are changing a LS/FS device under a HS hub,
2029  * make sure (if we are activating a new TT) that the HS bus has enough
2030  * bandwidth for this new TT.
2031  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033 		struct xhci_virt_device *virt_dev,
2034 		int old_active_eps)
2035 {
2036 	struct xhci_interval_bw_table *bw_table;
2037 	struct xhci_tt_bw_info *tt_info;
2038 
2039 	/* Find the bandwidth table for the root port this TT is attached to. */
2040 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041 	tt_info = virt_dev->tt_info;
2042 	/* If this TT already had active endpoints, the bandwidth for this TT
2043 	 * has already been added.  Removing all periodic endpoints (and thus
2044 	 * making the TT enactive) will only decrease the bandwidth used.
2045 	 */
2046 	if (old_active_eps)
2047 		return 0;
2048 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050 			return -ENOMEM;
2051 		return 0;
2052 	}
2053 	/* Not sure why we would have no new active endpoints...
2054 	 *
2055 	 * Maybe because of an Evaluate Context change for a hub update or a
2056 	 * control endpoint 0 max packet size change?
2057 	 * FIXME: skip the bandwidth calculation in that case.
2058 	 */
2059 	return 0;
2060 }
2061 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063 		struct xhci_virt_device *virt_dev)
2064 {
2065 	unsigned int bw_reserved;
2066 
2067 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069 		return -ENOMEM;
2070 
2071 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073 		return -ENOMEM;
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * This algorithm is a very conservative estimate of the worst-case scheduling
2080  * scenario for any one interval.  The hardware dynamically schedules the
2081  * packets, so we can't tell which microframe could be the limiting factor in
2082  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083  *
2084  * Obviously, we can't solve an NP complete problem to find the minimum worst
2085  * case scenario.  Instead, we come up with an estimate that is no less than
2086  * the worst case bandwidth used for any one microframe, but may be an
2087  * over-estimate.
2088  *
2089  * We walk the requirements for each endpoint by interval, starting with the
2090  * smallest interval, and place packets in the schedule where there is only one
2091  * possible way to schedule packets for that interval.  In order to simplify
2092  * this algorithm, we record the largest max packet size for each interval, and
2093  * assume all packets will be that size.
2094  *
2095  * For interval 0, we obviously must schedule all packets for each interval.
2096  * The bandwidth for interval 0 is just the amount of data to be transmitted
2097  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098  * the number of packets).
2099  *
2100  * For interval 1, we have two possible microframes to schedule those packets
2101  * in.  For this algorithm, if we can schedule the same number of packets for
2102  * each possible scheduling opportunity (each microframe), we will do so.  The
2103  * remaining number of packets will be saved to be transmitted in the gaps in
2104  * the next interval's scheduling sequence.
2105  *
2106  * As we move those remaining packets to be scheduled with interval 2 packets,
2107  * we have to double the number of remaining packets to transmit.  This is
2108  * because the intervals are actually powers of 2, and we would be transmitting
2109  * the previous interval's packets twice in this interval.  We also have to be
2110  * sure that when we look at the largest max packet size for this interval, we
2111  * also look at the largest max packet size for the remaining packets and take
2112  * the greater of the two.
2113  *
2114  * The algorithm continues to evenly distribute packets in each scheduling
2115  * opportunity, and push the remaining packets out, until we get to the last
2116  * interval.  Then those packets and their associated overhead are just added
2117  * to the bandwidth used.
2118  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2119 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120 		struct xhci_virt_device *virt_dev,
2121 		int old_active_eps)
2122 {
2123 	unsigned int bw_reserved;
2124 	unsigned int max_bandwidth;
2125 	unsigned int bw_used;
2126 	unsigned int block_size;
2127 	struct xhci_interval_bw_table *bw_table;
2128 	unsigned int packet_size = 0;
2129 	unsigned int overhead = 0;
2130 	unsigned int packets_transmitted = 0;
2131 	unsigned int packets_remaining = 0;
2132 	unsigned int i;
2133 
2134 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135 		return xhci_check_ss_bw(xhci, virt_dev);
2136 
2137 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138 		max_bandwidth = HS_BW_LIMIT;
2139 		/* Convert percent of bus BW reserved to blocks reserved */
2140 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141 	} else {
2142 		max_bandwidth = FS_BW_LIMIT;
2143 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144 	}
2145 
2146 	bw_table = virt_dev->bw_table;
2147 	/* We need to translate the max packet size and max ESIT payloads into
2148 	 * the units the hardware uses.
2149 	 */
2150 	block_size = xhci_get_block_size(virt_dev->udev);
2151 
2152 	/* If we are manipulating a LS/FS device under a HS hub, double check
2153 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2154 	 */
2155 	if (virt_dev->tt_info) {
2156 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2157 				virt_dev->real_port);
2158 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2159 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2160 					"newly activated TT.\n");
2161 			return -ENOMEM;
2162 		}
2163 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2164 				virt_dev->tt_info->slot_id,
2165 				virt_dev->tt_info->ttport);
2166 	} else {
2167 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2168 				virt_dev->real_port);
2169 	}
2170 
2171 	/* Add in how much bandwidth will be used for interval zero, or the
2172 	 * rounded max ESIT payload + number of packets * largest overhead.
2173 	 */
2174 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2175 		bw_table->interval_bw[0].num_packets *
2176 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2177 
2178 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2179 		unsigned int bw_added;
2180 		unsigned int largest_mps;
2181 		unsigned int interval_overhead;
2182 
2183 		/*
2184 		 * How many packets could we transmit in this interval?
2185 		 * If packets didn't fit in the previous interval, we will need
2186 		 * to transmit that many packets twice within this interval.
2187 		 */
2188 		packets_remaining = 2 * packets_remaining +
2189 			bw_table->interval_bw[i].num_packets;
2190 
2191 		/* Find the largest max packet size of this or the previous
2192 		 * interval.
2193 		 */
2194 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2195 			largest_mps = 0;
2196 		else {
2197 			struct xhci_virt_ep *virt_ep;
2198 			struct list_head *ep_entry;
2199 
2200 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2201 			virt_ep = list_entry(ep_entry,
2202 					struct xhci_virt_ep, bw_endpoint_list);
2203 			/* Convert to blocks, rounding up */
2204 			largest_mps = DIV_ROUND_UP(
2205 					virt_ep->bw_info.max_packet_size,
2206 					block_size);
2207 		}
2208 		if (largest_mps > packet_size)
2209 			packet_size = largest_mps;
2210 
2211 		/* Use the larger overhead of this or the previous interval. */
2212 		interval_overhead = xhci_get_largest_overhead(
2213 				&bw_table->interval_bw[i]);
2214 		if (interval_overhead > overhead)
2215 			overhead = interval_overhead;
2216 
2217 		/* How many packets can we evenly distribute across
2218 		 * (1 << (i + 1)) possible scheduling opportunities?
2219 		 */
2220 		packets_transmitted = packets_remaining >> (i + 1);
2221 
2222 		/* Add in the bandwidth used for those scheduled packets */
2223 		bw_added = packets_transmitted * (overhead + packet_size);
2224 
2225 		/* How many packets do we have remaining to transmit? */
2226 		packets_remaining = packets_remaining % (1 << (i + 1));
2227 
2228 		/* What largest max packet size should those packets have? */
2229 		/* If we've transmitted all packets, don't carry over the
2230 		 * largest packet size.
2231 		 */
2232 		if (packets_remaining == 0) {
2233 			packet_size = 0;
2234 			overhead = 0;
2235 		} else if (packets_transmitted > 0) {
2236 			/* Otherwise if we do have remaining packets, and we've
2237 			 * scheduled some packets in this interval, take the
2238 			 * largest max packet size from endpoints with this
2239 			 * interval.
2240 			 */
2241 			packet_size = largest_mps;
2242 			overhead = interval_overhead;
2243 		}
2244 		/* Otherwise carry over packet_size and overhead from the last
2245 		 * time we had a remainder.
2246 		 */
2247 		bw_used += bw_added;
2248 		if (bw_used > max_bandwidth) {
2249 			xhci_warn(xhci, "Not enough bandwidth. "
2250 					"Proposed: %u, Max: %u\n",
2251 				bw_used, max_bandwidth);
2252 			return -ENOMEM;
2253 		}
2254 	}
2255 	/*
2256 	 * Ok, we know we have some packets left over after even-handedly
2257 	 * scheduling interval 15.  We don't know which microframes they will
2258 	 * fit into, so we over-schedule and say they will be scheduled every
2259 	 * microframe.
2260 	 */
2261 	if (packets_remaining > 0)
2262 		bw_used += overhead + packet_size;
2263 
2264 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2265 		unsigned int port_index = virt_dev->real_port - 1;
2266 
2267 		/* OK, we're manipulating a HS device attached to a
2268 		 * root port bandwidth domain.  Include the number of active TTs
2269 		 * in the bandwidth used.
2270 		 */
2271 		bw_used += TT_HS_OVERHEAD *
2272 			xhci->rh_bw[port_index].num_active_tts;
2273 	}
2274 
2275 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2276 		"Available: %u " "percent\n",
2277 		bw_used, max_bandwidth, bw_reserved,
2278 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2279 		max_bandwidth);
2280 
2281 	bw_used += bw_reserved;
2282 	if (bw_used > max_bandwidth) {
2283 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2284 				bw_used, max_bandwidth);
2285 		return -ENOMEM;
2286 	}
2287 
2288 	bw_table->bw_used = bw_used;
2289 	return 0;
2290 }
2291 
xhci_is_async_ep(unsigned int ep_type)2292 static bool xhci_is_async_ep(unsigned int ep_type)
2293 {
2294 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2295 					ep_type != ISOC_IN_EP &&
2296 					ep_type != INT_IN_EP);
2297 }
2298 
xhci_is_sync_in_ep(unsigned int ep_type)2299 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2300 {
2301 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2302 }
2303 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2304 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2305 {
2306 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2307 
2308 	if (ep_bw->ep_interval == 0)
2309 		return SS_OVERHEAD_BURST +
2310 			(ep_bw->mult * ep_bw->num_packets *
2311 					(SS_OVERHEAD + mps));
2312 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2313 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2314 				1 << ep_bw->ep_interval);
2315 
2316 }
2317 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2318 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2319 		struct xhci_bw_info *ep_bw,
2320 		struct xhci_interval_bw_table *bw_table,
2321 		struct usb_device *udev,
2322 		struct xhci_virt_ep *virt_ep,
2323 		struct xhci_tt_bw_info *tt_info)
2324 {
2325 	struct xhci_interval_bw	*interval_bw;
2326 	int normalized_interval;
2327 
2328 	if (xhci_is_async_ep(ep_bw->type))
2329 		return;
2330 
2331 	if (udev->speed == USB_SPEED_SUPER) {
2332 		if (xhci_is_sync_in_ep(ep_bw->type))
2333 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2334 				xhci_get_ss_bw_consumed(ep_bw);
2335 		else
2336 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2337 				xhci_get_ss_bw_consumed(ep_bw);
2338 		return;
2339 	}
2340 
2341 	/* SuperSpeed endpoints never get added to intervals in the table, so
2342 	 * this check is only valid for HS/FS/LS devices.
2343 	 */
2344 	if (list_empty(&virt_ep->bw_endpoint_list))
2345 		return;
2346 	/* For LS/FS devices, we need to translate the interval expressed in
2347 	 * microframes to frames.
2348 	 */
2349 	if (udev->speed == USB_SPEED_HIGH)
2350 		normalized_interval = ep_bw->ep_interval;
2351 	else
2352 		normalized_interval = ep_bw->ep_interval - 3;
2353 
2354 	if (normalized_interval == 0)
2355 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2356 	interval_bw = &bw_table->interval_bw[normalized_interval];
2357 	interval_bw->num_packets -= ep_bw->num_packets;
2358 	switch (udev->speed) {
2359 	case USB_SPEED_LOW:
2360 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2361 		break;
2362 	case USB_SPEED_FULL:
2363 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2364 		break;
2365 	case USB_SPEED_HIGH:
2366 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2367 		break;
2368 	case USB_SPEED_SUPER:
2369 	case USB_SPEED_UNKNOWN:
2370 	case USB_SPEED_WIRELESS:
2371 		/* Should never happen because only LS/FS/HS endpoints will get
2372 		 * added to the endpoint list.
2373 		 */
2374 		return;
2375 	}
2376 	if (tt_info)
2377 		tt_info->active_eps -= 1;
2378 	list_del_init(&virt_ep->bw_endpoint_list);
2379 }
2380 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2381 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2382 		struct xhci_bw_info *ep_bw,
2383 		struct xhci_interval_bw_table *bw_table,
2384 		struct usb_device *udev,
2385 		struct xhci_virt_ep *virt_ep,
2386 		struct xhci_tt_bw_info *tt_info)
2387 {
2388 	struct xhci_interval_bw	*interval_bw;
2389 	struct xhci_virt_ep *smaller_ep;
2390 	int normalized_interval;
2391 
2392 	if (xhci_is_async_ep(ep_bw->type))
2393 		return;
2394 
2395 	if (udev->speed == USB_SPEED_SUPER) {
2396 		if (xhci_is_sync_in_ep(ep_bw->type))
2397 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2398 				xhci_get_ss_bw_consumed(ep_bw);
2399 		else
2400 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2401 				xhci_get_ss_bw_consumed(ep_bw);
2402 		return;
2403 	}
2404 
2405 	/* For LS/FS devices, we need to translate the interval expressed in
2406 	 * microframes to frames.
2407 	 */
2408 	if (udev->speed == USB_SPEED_HIGH)
2409 		normalized_interval = ep_bw->ep_interval;
2410 	else
2411 		normalized_interval = ep_bw->ep_interval - 3;
2412 
2413 	if (normalized_interval == 0)
2414 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2415 	interval_bw = &bw_table->interval_bw[normalized_interval];
2416 	interval_bw->num_packets += ep_bw->num_packets;
2417 	switch (udev->speed) {
2418 	case USB_SPEED_LOW:
2419 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2420 		break;
2421 	case USB_SPEED_FULL:
2422 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2423 		break;
2424 	case USB_SPEED_HIGH:
2425 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2426 		break;
2427 	case USB_SPEED_SUPER:
2428 	case USB_SPEED_UNKNOWN:
2429 	case USB_SPEED_WIRELESS:
2430 		/* Should never happen because only LS/FS/HS endpoints will get
2431 		 * added to the endpoint list.
2432 		 */
2433 		return;
2434 	}
2435 
2436 	if (tt_info)
2437 		tt_info->active_eps += 1;
2438 	/* Insert the endpoint into the list, largest max packet size first. */
2439 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2440 			bw_endpoint_list) {
2441 		if (ep_bw->max_packet_size >=
2442 				smaller_ep->bw_info.max_packet_size) {
2443 			/* Add the new ep before the smaller endpoint */
2444 			list_add_tail(&virt_ep->bw_endpoint_list,
2445 					&smaller_ep->bw_endpoint_list);
2446 			return;
2447 		}
2448 	}
2449 	/* Add the new endpoint at the end of the list. */
2450 	list_add_tail(&virt_ep->bw_endpoint_list,
2451 			&interval_bw->endpoints);
2452 }
2453 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2454 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2455 		struct xhci_virt_device *virt_dev,
2456 		int old_active_eps)
2457 {
2458 	struct xhci_root_port_bw_info *rh_bw_info;
2459 	if (!virt_dev->tt_info)
2460 		return;
2461 
2462 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2463 	if (old_active_eps == 0 &&
2464 				virt_dev->tt_info->active_eps != 0) {
2465 		rh_bw_info->num_active_tts += 1;
2466 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2467 	} else if (old_active_eps != 0 &&
2468 				virt_dev->tt_info->active_eps == 0) {
2469 		rh_bw_info->num_active_tts -= 1;
2470 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2471 	}
2472 }
2473 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2474 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2475 		struct xhci_virt_device *virt_dev,
2476 		struct xhci_container_ctx *in_ctx)
2477 {
2478 	struct xhci_bw_info ep_bw_info[31];
2479 	int i;
2480 	struct xhci_input_control_ctx *ctrl_ctx;
2481 	int old_active_eps = 0;
2482 
2483 	if (virt_dev->tt_info)
2484 		old_active_eps = virt_dev->tt_info->active_eps;
2485 
2486 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2487 
2488 	for (i = 0; i < 31; i++) {
2489 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2490 			continue;
2491 
2492 		/* Make a copy of the BW info in case we need to revert this */
2493 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2494 				sizeof(ep_bw_info[i]));
2495 		/* Drop the endpoint from the interval table if the endpoint is
2496 		 * being dropped or changed.
2497 		 */
2498 		if (EP_IS_DROPPED(ctrl_ctx, i))
2499 			xhci_drop_ep_from_interval_table(xhci,
2500 					&virt_dev->eps[i].bw_info,
2501 					virt_dev->bw_table,
2502 					virt_dev->udev,
2503 					&virt_dev->eps[i],
2504 					virt_dev->tt_info);
2505 	}
2506 	/* Overwrite the information stored in the endpoints' bw_info */
2507 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2508 	for (i = 0; i < 31; i++) {
2509 		/* Add any changed or added endpoints to the interval table */
2510 		if (EP_IS_ADDED(ctrl_ctx, i))
2511 			xhci_add_ep_to_interval_table(xhci,
2512 					&virt_dev->eps[i].bw_info,
2513 					virt_dev->bw_table,
2514 					virt_dev->udev,
2515 					&virt_dev->eps[i],
2516 					virt_dev->tt_info);
2517 	}
2518 
2519 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2520 		/* Ok, this fits in the bandwidth we have.
2521 		 * Update the number of active TTs.
2522 		 */
2523 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2524 		return 0;
2525 	}
2526 
2527 	/* We don't have enough bandwidth for this, revert the stored info. */
2528 	for (i = 0; i < 31; i++) {
2529 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2530 			continue;
2531 
2532 		/* Drop the new copies of any added or changed endpoints from
2533 		 * the interval table.
2534 		 */
2535 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2536 			xhci_drop_ep_from_interval_table(xhci,
2537 					&virt_dev->eps[i].bw_info,
2538 					virt_dev->bw_table,
2539 					virt_dev->udev,
2540 					&virt_dev->eps[i],
2541 					virt_dev->tt_info);
2542 		}
2543 		/* Revert the endpoint back to its old information */
2544 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2545 				sizeof(ep_bw_info[i]));
2546 		/* Add any changed or dropped endpoints back into the table */
2547 		if (EP_IS_DROPPED(ctrl_ctx, i))
2548 			xhci_add_ep_to_interval_table(xhci,
2549 					&virt_dev->eps[i].bw_info,
2550 					virt_dev->bw_table,
2551 					virt_dev->udev,
2552 					&virt_dev->eps[i],
2553 					virt_dev->tt_info);
2554 	}
2555 	return -ENOMEM;
2556 }
2557 
2558 
2559 /* Issue a configure endpoint command or evaluate context command
2560  * and wait for it to finish.
2561  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2562 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2563 		struct usb_device *udev,
2564 		struct xhci_command *command,
2565 		bool ctx_change, bool must_succeed)
2566 {
2567 	int ret;
2568 	int timeleft;
2569 	unsigned long flags;
2570 	struct xhci_container_ctx *in_ctx;
2571 	struct completion *cmd_completion;
2572 	u32 *cmd_status;
2573 	struct xhci_virt_device *virt_dev;
2574 	union xhci_trb *cmd_trb;
2575 
2576 	spin_lock_irqsave(&xhci->lock, flags);
2577 	virt_dev = xhci->devs[udev->slot_id];
2578 
2579 	if (command)
2580 		in_ctx = command->in_ctx;
2581 	else
2582 		in_ctx = virt_dev->in_ctx;
2583 
2584 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2585 			xhci_reserve_host_resources(xhci, in_ctx)) {
2586 		spin_unlock_irqrestore(&xhci->lock, flags);
2587 		xhci_warn(xhci, "Not enough host resources, "
2588 				"active endpoint contexts = %u\n",
2589 				xhci->num_active_eps);
2590 		return -ENOMEM;
2591 	}
2592 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2593 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2594 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2595 			xhci_free_host_resources(xhci, in_ctx);
2596 		spin_unlock_irqrestore(&xhci->lock, flags);
2597 		xhci_warn(xhci, "Not enough bandwidth\n");
2598 		return -ENOMEM;
2599 	}
2600 
2601 	if (command) {
2602 		cmd_completion = command->completion;
2603 		cmd_status = &command->status;
2604 		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2605 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2606 	} else {
2607 		cmd_completion = &virt_dev->cmd_completion;
2608 		cmd_status = &virt_dev->cmd_status;
2609 	}
2610 	init_completion(cmd_completion);
2611 
2612 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2613 	if (!ctx_change)
2614 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2615 				udev->slot_id, must_succeed);
2616 	else
2617 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2618 				udev->slot_id);
2619 	if (ret < 0) {
2620 		if (command)
2621 			list_del(&command->cmd_list);
2622 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623 			xhci_free_host_resources(xhci, in_ctx);
2624 		spin_unlock_irqrestore(&xhci->lock, flags);
2625 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2626 		return -ENOMEM;
2627 	}
2628 	xhci_ring_cmd_db(xhci);
2629 	spin_unlock_irqrestore(&xhci->lock, flags);
2630 
2631 	/* Wait for the configure endpoint command to complete */
2632 	timeleft = wait_for_completion_interruptible_timeout(
2633 			cmd_completion,
2634 			XHCI_CMD_DEFAULT_TIMEOUT);
2635 	if (timeleft <= 0) {
2636 		xhci_warn(xhci, "%s while waiting for %s command\n",
2637 				timeleft == 0 ? "Timeout" : "Signal",
2638 				ctx_change == 0 ?
2639 					"configure endpoint" :
2640 					"evaluate context");
2641 		/* cancel the configure endpoint command */
2642 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2643 		if (ret < 0)
2644 			return ret;
2645 		return -ETIME;
2646 	}
2647 
2648 	if (!ctx_change)
2649 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2650 	else
2651 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2652 
2653 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2654 		spin_lock_irqsave(&xhci->lock, flags);
2655 		/* If the command failed, remove the reserved resources.
2656 		 * Otherwise, clean up the estimate to include dropped eps.
2657 		 */
2658 		if (ret)
2659 			xhci_free_host_resources(xhci, in_ctx);
2660 		else
2661 			xhci_finish_resource_reservation(xhci, in_ctx);
2662 		spin_unlock_irqrestore(&xhci->lock, flags);
2663 	}
2664 	return ret;
2665 }
2666 
2667 /* Called after one or more calls to xhci_add_endpoint() or
2668  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2669  * to call xhci_reset_bandwidth().
2670  *
2671  * Since we are in the middle of changing either configuration or
2672  * installing a new alt setting, the USB core won't allow URBs to be
2673  * enqueued for any endpoint on the old config or interface.  Nothing
2674  * else should be touching the xhci->devs[slot_id] structure, so we
2675  * don't need to take the xhci->lock for manipulating that.
2676  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2677 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2678 {
2679 	int i;
2680 	int ret = 0;
2681 	struct xhci_hcd *xhci;
2682 	struct xhci_virt_device	*virt_dev;
2683 	struct xhci_input_control_ctx *ctrl_ctx;
2684 	struct xhci_slot_ctx *slot_ctx;
2685 
2686 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2687 	if (ret <= 0)
2688 		return ret;
2689 	xhci = hcd_to_xhci(hcd);
2690 	if (xhci->xhc_state & XHCI_STATE_DYING)
2691 		return -ENODEV;
2692 
2693 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2694 	virt_dev = xhci->devs[udev->slot_id];
2695 
2696 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2698 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2701 
2702 	/* Don't issue the command if there's no endpoints to update. */
2703 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704 			ctrl_ctx->drop_flags == 0)
2705 		return 0;
2706 
2707 	xhci_dbg(xhci, "New Input Control Context:\n");
2708 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2709 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2710 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2711 
2712 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2713 			false, false);
2714 	if (ret) {
2715 		/* Callee should call reset_bandwidth() */
2716 		return ret;
2717 	}
2718 
2719 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2720 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2721 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2722 
2723 	/* Free any rings that were dropped, but not changed. */
2724 	for (i = 1; i < 31; ++i) {
2725 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2726 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2727 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2728 	}
2729 	xhci_zero_in_ctx(xhci, virt_dev);
2730 	/*
2731 	 * Install any rings for completely new endpoints or changed endpoints,
2732 	 * and free or cache any old rings from changed endpoints.
2733 	 */
2734 	for (i = 1; i < 31; ++i) {
2735 		if (!virt_dev->eps[i].new_ring)
2736 			continue;
2737 		/* Only cache or free the old ring if it exists.
2738 		 * It may not if this is the first add of an endpoint.
2739 		 */
2740 		if (virt_dev->eps[i].ring) {
2741 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2742 		}
2743 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2744 		virt_dev->eps[i].new_ring = NULL;
2745 	}
2746 
2747 	return ret;
2748 }
2749 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2750 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2751 {
2752 	struct xhci_hcd *xhci;
2753 	struct xhci_virt_device	*virt_dev;
2754 	int i, ret;
2755 
2756 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2757 	if (ret <= 0)
2758 		return;
2759 	xhci = hcd_to_xhci(hcd);
2760 
2761 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2762 	virt_dev = xhci->devs[udev->slot_id];
2763 	/* Free any rings allocated for added endpoints */
2764 	for (i = 0; i < 31; ++i) {
2765 		if (virt_dev->eps[i].new_ring) {
2766 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2767 			virt_dev->eps[i].new_ring = NULL;
2768 		}
2769 	}
2770 	xhci_zero_in_ctx(xhci, virt_dev);
2771 }
2772 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,u32 add_flags,u32 drop_flags)2773 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2774 		struct xhci_container_ctx *in_ctx,
2775 		struct xhci_container_ctx *out_ctx,
2776 		u32 add_flags, u32 drop_flags)
2777 {
2778 	struct xhci_input_control_ctx *ctrl_ctx;
2779 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2780 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2781 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2782 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2783 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2784 
2785 	xhci_dbg(xhci, "Input Context:\n");
2786 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2787 }
2788 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2789 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2790 		unsigned int slot_id, unsigned int ep_index,
2791 		struct xhci_dequeue_state *deq_state)
2792 {
2793 	struct xhci_container_ctx *in_ctx;
2794 	struct xhci_ep_ctx *ep_ctx;
2795 	u32 added_ctxs;
2796 	dma_addr_t addr;
2797 
2798 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2799 			xhci->devs[slot_id]->out_ctx, ep_index);
2800 	in_ctx = xhci->devs[slot_id]->in_ctx;
2801 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2802 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2803 			deq_state->new_deq_ptr);
2804 	if (addr == 0) {
2805 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2806 				"reset ep command\n");
2807 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2808 				deq_state->new_deq_seg,
2809 				deq_state->new_deq_ptr);
2810 		return;
2811 	}
2812 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2813 
2814 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2815 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2816 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2817 }
2818 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,struct usb_device * udev,unsigned int ep_index)2819 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2820 		struct usb_device *udev, unsigned int ep_index)
2821 {
2822 	struct xhci_dequeue_state deq_state;
2823 	struct xhci_virt_ep *ep;
2824 
2825 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2826 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2827 	/* We need to move the HW's dequeue pointer past this TD,
2828 	 * or it will attempt to resend it on the next doorbell ring.
2829 	 */
2830 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2831 			ep_index, ep->stopped_stream, ep->stopped_td,
2832 			&deq_state);
2833 
2834 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2835 	 * issue a configure endpoint command later.
2836 	 */
2837 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2838 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2839 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2840 				ep_index, ep->stopped_stream, &deq_state);
2841 	} else {
2842 		/* Better hope no one uses the input context between now and the
2843 		 * reset endpoint completion!
2844 		 * XXX: No idea how this hardware will react when stream rings
2845 		 * are enabled.
2846 		 */
2847 		xhci_dbg(xhci, "Setting up input context for "
2848 				"configure endpoint command\n");
2849 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2850 				ep_index, &deq_state);
2851 	}
2852 }
2853 
2854 /* Deal with stalled endpoints.  The core should have sent the control message
2855  * to clear the halt condition.  However, we need to make the xHCI hardware
2856  * reset its sequence number, since a device will expect a sequence number of
2857  * zero after the halt condition is cleared.
2858  * Context: in_interrupt
2859  */
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2860 void xhci_endpoint_reset(struct usb_hcd *hcd,
2861 		struct usb_host_endpoint *ep)
2862 {
2863 	struct xhci_hcd *xhci;
2864 	struct usb_device *udev;
2865 	unsigned int ep_index;
2866 	unsigned long flags;
2867 	int ret;
2868 	struct xhci_virt_ep *virt_ep;
2869 
2870 	xhci = hcd_to_xhci(hcd);
2871 	udev = (struct usb_device *) ep->hcpriv;
2872 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2873 	 * with xhci_add_endpoint()
2874 	 */
2875 	if (!ep->hcpriv)
2876 		return;
2877 	ep_index = xhci_get_endpoint_index(&ep->desc);
2878 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2879 	if (!virt_ep->stopped_td) {
2880 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2881 				ep->desc.bEndpointAddress);
2882 		return;
2883 	}
2884 	if (usb_endpoint_xfer_control(&ep->desc)) {
2885 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2886 		return;
2887 	}
2888 
2889 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2890 	spin_lock_irqsave(&xhci->lock, flags);
2891 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2892 	/*
2893 	 * Can't change the ring dequeue pointer until it's transitioned to the
2894 	 * stopped state, which is only upon a successful reset endpoint
2895 	 * command.  Better hope that last command worked!
2896 	 */
2897 	if (!ret) {
2898 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2899 		kfree(virt_ep->stopped_td);
2900 		xhci_ring_cmd_db(xhci);
2901 	}
2902 	virt_ep->stopped_td = NULL;
2903 	virt_ep->stopped_trb = NULL;
2904 	virt_ep->stopped_stream = 0;
2905 	spin_unlock_irqrestore(&xhci->lock, flags);
2906 
2907 	if (ret)
2908 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2909 }
2910 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)2911 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2912 		struct usb_device *udev, struct usb_host_endpoint *ep,
2913 		unsigned int slot_id)
2914 {
2915 	int ret;
2916 	unsigned int ep_index;
2917 	unsigned int ep_state;
2918 
2919 	if (!ep)
2920 		return -EINVAL;
2921 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2922 	if (ret <= 0)
2923 		return -EINVAL;
2924 	if (ep->ss_ep_comp.bmAttributes == 0) {
2925 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2926 				" descriptor for ep 0x%x does not support streams\n",
2927 				ep->desc.bEndpointAddress);
2928 		return -EINVAL;
2929 	}
2930 
2931 	ep_index = xhci_get_endpoint_index(&ep->desc);
2932 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2933 	if (ep_state & EP_HAS_STREAMS ||
2934 			ep_state & EP_GETTING_STREAMS) {
2935 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2936 				"already has streams set up.\n",
2937 				ep->desc.bEndpointAddress);
2938 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2939 				"dynamic stream context array reallocation.\n");
2940 		return -EINVAL;
2941 	}
2942 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2943 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2944 				"endpoint 0x%x; URBs are pending.\n",
2945 				ep->desc.bEndpointAddress);
2946 		return -EINVAL;
2947 	}
2948 	return 0;
2949 }
2950 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)2951 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2952 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2953 {
2954 	unsigned int max_streams;
2955 
2956 	/* The stream context array size must be a power of two */
2957 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2958 	/*
2959 	 * Find out how many primary stream array entries the host controller
2960 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2961 	 * level page entries), but that's an optional feature for xHCI host
2962 	 * controllers. xHCs must support at least 4 stream IDs.
2963 	 */
2964 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2965 	if (*num_stream_ctxs > max_streams) {
2966 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2967 				max_streams);
2968 		*num_stream_ctxs = max_streams;
2969 		*num_streams = max_streams;
2970 	}
2971 }
2972 
2973 /* Returns an error code if one of the endpoint already has streams.
2974  * This does not change any data structures, it only checks and gathers
2975  * information.
2976  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)2977 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2978 		struct usb_device *udev,
2979 		struct usb_host_endpoint **eps, unsigned int num_eps,
2980 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2981 {
2982 	unsigned int max_streams;
2983 	unsigned int endpoint_flag;
2984 	int i;
2985 	int ret;
2986 
2987 	for (i = 0; i < num_eps; i++) {
2988 		ret = xhci_check_streams_endpoint(xhci, udev,
2989 				eps[i], udev->slot_id);
2990 		if (ret < 0)
2991 			return ret;
2992 
2993 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2994 		if (max_streams < (*num_streams - 1)) {
2995 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2996 					eps[i]->desc.bEndpointAddress,
2997 					max_streams);
2998 			*num_streams = max_streams+1;
2999 		}
3000 
3001 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3002 		if (*changed_ep_bitmask & endpoint_flag)
3003 			return -EINVAL;
3004 		*changed_ep_bitmask |= endpoint_flag;
3005 	}
3006 	return 0;
3007 }
3008 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3009 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3010 		struct usb_device *udev,
3011 		struct usb_host_endpoint **eps, unsigned int num_eps)
3012 {
3013 	u32 changed_ep_bitmask = 0;
3014 	unsigned int slot_id;
3015 	unsigned int ep_index;
3016 	unsigned int ep_state;
3017 	int i;
3018 
3019 	slot_id = udev->slot_id;
3020 	if (!xhci->devs[slot_id])
3021 		return 0;
3022 
3023 	for (i = 0; i < num_eps; i++) {
3024 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3025 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3026 		/* Are streams already being freed for the endpoint? */
3027 		if (ep_state & EP_GETTING_NO_STREAMS) {
3028 			xhci_warn(xhci, "WARN Can't disable streams for "
3029 					"endpoint 0x%x\n, "
3030 					"streams are being disabled already.",
3031 					eps[i]->desc.bEndpointAddress);
3032 			return 0;
3033 		}
3034 		/* Are there actually any streams to free? */
3035 		if (!(ep_state & EP_HAS_STREAMS) &&
3036 				!(ep_state & EP_GETTING_STREAMS)) {
3037 			xhci_warn(xhci, "WARN Can't disable streams for "
3038 					"endpoint 0x%x\n, "
3039 					"streams are already disabled!",
3040 					eps[i]->desc.bEndpointAddress);
3041 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3042 					"with non-streams endpoint\n");
3043 			return 0;
3044 		}
3045 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3046 	}
3047 	return changed_ep_bitmask;
3048 }
3049 
3050 /*
3051  * The USB device drivers use this function (though the HCD interface in USB
3052  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3053  * coordinate mass storage command queueing across multiple endpoints (basically
3054  * a stream ID == a task ID).
3055  *
3056  * Setting up streams involves allocating the same size stream context array
3057  * for each endpoint and issuing a configure endpoint command for all endpoints.
3058  *
3059  * Don't allow the call to succeed if one endpoint only supports one stream
3060  * (which means it doesn't support streams at all).
3061  *
3062  * Drivers may get less stream IDs than they asked for, if the host controller
3063  * hardware or endpoints claim they can't support the number of requested
3064  * stream IDs.
3065  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3066 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3067 		struct usb_host_endpoint **eps, unsigned int num_eps,
3068 		unsigned int num_streams, gfp_t mem_flags)
3069 {
3070 	int i, ret;
3071 	struct xhci_hcd *xhci;
3072 	struct xhci_virt_device *vdev;
3073 	struct xhci_command *config_cmd;
3074 	unsigned int ep_index;
3075 	unsigned int num_stream_ctxs;
3076 	unsigned long flags;
3077 	u32 changed_ep_bitmask = 0;
3078 
3079 	if (!eps)
3080 		return -EINVAL;
3081 
3082 	/* Add one to the number of streams requested to account for
3083 	 * stream 0 that is reserved for xHCI usage.
3084 	 */
3085 	num_streams += 1;
3086 	xhci = hcd_to_xhci(hcd);
3087 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3088 			num_streams);
3089 
3090 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3091 	if (!config_cmd) {
3092 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3093 		return -ENOMEM;
3094 	}
3095 
3096 	/* Check to make sure all endpoints are not already configured for
3097 	 * streams.  While we're at it, find the maximum number of streams that
3098 	 * all the endpoints will support and check for duplicate endpoints.
3099 	 */
3100 	spin_lock_irqsave(&xhci->lock, flags);
3101 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3102 			num_eps, &num_streams, &changed_ep_bitmask);
3103 	if (ret < 0) {
3104 		xhci_free_command(xhci, config_cmd);
3105 		spin_unlock_irqrestore(&xhci->lock, flags);
3106 		return ret;
3107 	}
3108 	if (num_streams <= 1) {
3109 		xhci_warn(xhci, "WARN: endpoints can't handle "
3110 				"more than one stream.\n");
3111 		xhci_free_command(xhci, config_cmd);
3112 		spin_unlock_irqrestore(&xhci->lock, flags);
3113 		return -EINVAL;
3114 	}
3115 	vdev = xhci->devs[udev->slot_id];
3116 	/* Mark each endpoint as being in transition, so
3117 	 * xhci_urb_enqueue() will reject all URBs.
3118 	 */
3119 	for (i = 0; i < num_eps; i++) {
3120 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3122 	}
3123 	spin_unlock_irqrestore(&xhci->lock, flags);
3124 
3125 	/* Setup internal data structures and allocate HW data structures for
3126 	 * streams (but don't install the HW structures in the input context
3127 	 * until we're sure all memory allocation succeeded).
3128 	 */
3129 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3130 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3131 			num_stream_ctxs, num_streams);
3132 
3133 	for (i = 0; i < num_eps; i++) {
3134 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3136 				num_stream_ctxs,
3137 				num_streams, mem_flags);
3138 		if (!vdev->eps[ep_index].stream_info)
3139 			goto cleanup;
3140 		/* Set maxPstreams in endpoint context and update deq ptr to
3141 		 * point to stream context array. FIXME
3142 		 */
3143 	}
3144 
3145 	/* Set up the input context for a configure endpoint command. */
3146 	for (i = 0; i < num_eps; i++) {
3147 		struct xhci_ep_ctx *ep_ctx;
3148 
3149 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3150 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3151 
3152 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3153 				vdev->out_ctx, ep_index);
3154 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3155 				vdev->eps[ep_index].stream_info);
3156 	}
3157 	/* Tell the HW to drop its old copy of the endpoint context info
3158 	 * and add the updated copy from the input context.
3159 	 */
3160 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3161 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3162 
3163 	/* Issue and wait for the configure endpoint command */
3164 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3165 			false, false);
3166 
3167 	/* xHC rejected the configure endpoint command for some reason, so we
3168 	 * leave the old ring intact and free our internal streams data
3169 	 * structure.
3170 	 */
3171 	if (ret < 0)
3172 		goto cleanup;
3173 
3174 	spin_lock_irqsave(&xhci->lock, flags);
3175 	for (i = 0; i < num_eps; i++) {
3176 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3177 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3178 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3179 			 udev->slot_id, ep_index);
3180 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3181 	}
3182 	xhci_free_command(xhci, config_cmd);
3183 	spin_unlock_irqrestore(&xhci->lock, flags);
3184 
3185 	/* Subtract 1 for stream 0, which drivers can't use */
3186 	return num_streams - 1;
3187 
3188 cleanup:
3189 	/* If it didn't work, free the streams! */
3190 	for (i = 0; i < num_eps; i++) {
3191 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3192 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3193 		vdev->eps[ep_index].stream_info = NULL;
3194 		/* FIXME Unset maxPstreams in endpoint context and
3195 		 * update deq ptr to point to normal string ring.
3196 		 */
3197 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3198 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3199 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3200 	}
3201 	xhci_free_command(xhci, config_cmd);
3202 	return -ENOMEM;
3203 }
3204 
3205 /* Transition the endpoint from using streams to being a "normal" endpoint
3206  * without streams.
3207  *
3208  * Modify the endpoint context state, submit a configure endpoint command,
3209  * and free all endpoint rings for streams if that completes successfully.
3210  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3211 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3212 		struct usb_host_endpoint **eps, unsigned int num_eps,
3213 		gfp_t mem_flags)
3214 {
3215 	int i, ret;
3216 	struct xhci_hcd *xhci;
3217 	struct xhci_virt_device *vdev;
3218 	struct xhci_command *command;
3219 	unsigned int ep_index;
3220 	unsigned long flags;
3221 	u32 changed_ep_bitmask;
3222 
3223 	xhci = hcd_to_xhci(hcd);
3224 	vdev = xhci->devs[udev->slot_id];
3225 
3226 	/* Set up a configure endpoint command to remove the streams rings */
3227 	spin_lock_irqsave(&xhci->lock, flags);
3228 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3229 			udev, eps, num_eps);
3230 	if (changed_ep_bitmask == 0) {
3231 		spin_unlock_irqrestore(&xhci->lock, flags);
3232 		return -EINVAL;
3233 	}
3234 
3235 	/* Use the xhci_command structure from the first endpoint.  We may have
3236 	 * allocated too many, but the driver may call xhci_free_streams() for
3237 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3238 	 */
3239 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3240 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3241 	for (i = 0; i < num_eps; i++) {
3242 		struct xhci_ep_ctx *ep_ctx;
3243 
3244 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3246 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3247 			EP_GETTING_NO_STREAMS;
3248 
3249 		xhci_endpoint_copy(xhci, command->in_ctx,
3250 				vdev->out_ctx, ep_index);
3251 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3252 				&vdev->eps[ep_index]);
3253 	}
3254 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3255 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3256 	spin_unlock_irqrestore(&xhci->lock, flags);
3257 
3258 	/* Issue and wait for the configure endpoint command,
3259 	 * which must succeed.
3260 	 */
3261 	ret = xhci_configure_endpoint(xhci, udev, command,
3262 			false, true);
3263 
3264 	/* xHC rejected the configure endpoint command for some reason, so we
3265 	 * leave the streams rings intact.
3266 	 */
3267 	if (ret < 0)
3268 		return ret;
3269 
3270 	spin_lock_irqsave(&xhci->lock, flags);
3271 	for (i = 0; i < num_eps; i++) {
3272 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3273 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3274 		vdev->eps[ep_index].stream_info = NULL;
3275 		/* FIXME Unset maxPstreams in endpoint context and
3276 		 * update deq ptr to point to normal string ring.
3277 		 */
3278 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3279 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3280 	}
3281 	spin_unlock_irqrestore(&xhci->lock, flags);
3282 
3283 	return 0;
3284 }
3285 
3286 /*
3287  * Deletes endpoint resources for endpoints that were active before a Reset
3288  * Device command, or a Disable Slot command.  The Reset Device command leaves
3289  * the control endpoint intact, whereas the Disable Slot command deletes it.
3290  *
3291  * Must be called with xhci->lock held.
3292  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3293 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3294 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3295 {
3296 	int i;
3297 	unsigned int num_dropped_eps = 0;
3298 	unsigned int drop_flags = 0;
3299 
3300 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3301 		if (virt_dev->eps[i].ring) {
3302 			drop_flags |= 1 << i;
3303 			num_dropped_eps++;
3304 		}
3305 	}
3306 	xhci->num_active_eps -= num_dropped_eps;
3307 	if (num_dropped_eps)
3308 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3309 				"%u now active.\n",
3310 				num_dropped_eps, drop_flags,
3311 				xhci->num_active_eps);
3312 }
3313 
3314 /*
3315  * This submits a Reset Device Command, which will set the device state to 0,
3316  * set the device address to 0, and disable all the endpoints except the default
3317  * control endpoint.  The USB core should come back and call
3318  * xhci_address_device(), and then re-set up the configuration.  If this is
3319  * called because of a usb_reset_and_verify_device(), then the old alternate
3320  * settings will be re-installed through the normal bandwidth allocation
3321  * functions.
3322  *
3323  * Wait for the Reset Device command to finish.  Remove all structures
3324  * associated with the endpoints that were disabled.  Clear the input device
3325  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3326  *
3327  * If the virt_dev to be reset does not exist or does not match the udev,
3328  * it means the device is lost, possibly due to the xHC restore error and
3329  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3330  * re-allocate the device.
3331  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3332 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3333 {
3334 	int ret, i;
3335 	unsigned long flags;
3336 	struct xhci_hcd *xhci;
3337 	unsigned int slot_id;
3338 	struct xhci_virt_device *virt_dev;
3339 	struct xhci_command *reset_device_cmd;
3340 	int timeleft;
3341 	int last_freed_endpoint;
3342 	struct xhci_slot_ctx *slot_ctx;
3343 	int old_active_eps = 0;
3344 
3345 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3346 	if (ret <= 0)
3347 		return ret;
3348 	xhci = hcd_to_xhci(hcd);
3349 	slot_id = udev->slot_id;
3350 	virt_dev = xhci->devs[slot_id];
3351 	if (!virt_dev) {
3352 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3353 				"not exist. Re-allocate the device\n", slot_id);
3354 		ret = xhci_alloc_dev(hcd, udev);
3355 		if (ret == 1)
3356 			return 0;
3357 		else
3358 			return -EINVAL;
3359 	}
3360 
3361 	if (virt_dev->udev != udev) {
3362 		/* If the virt_dev and the udev does not match, this virt_dev
3363 		 * may belong to another udev.
3364 		 * Re-allocate the device.
3365 		 */
3366 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3367 				"not match the udev. Re-allocate the device\n",
3368 				slot_id);
3369 		ret = xhci_alloc_dev(hcd, udev);
3370 		if (ret == 1)
3371 			return 0;
3372 		else
3373 			return -EINVAL;
3374 	}
3375 
3376 	/* If device is not setup, there is no point in resetting it */
3377 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3378 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3379 						SLOT_STATE_DISABLED)
3380 		return 0;
3381 
3382 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3383 	/* Allocate the command structure that holds the struct completion.
3384 	 * Assume we're in process context, since the normal device reset
3385 	 * process has to wait for the device anyway.  Storage devices are
3386 	 * reset as part of error handling, so use GFP_NOIO instead of
3387 	 * GFP_KERNEL.
3388 	 */
3389 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3390 	if (!reset_device_cmd) {
3391 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3392 		return -ENOMEM;
3393 	}
3394 
3395 	/* Attempt to submit the Reset Device command to the command ring */
3396 	spin_lock_irqsave(&xhci->lock, flags);
3397 	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3398 
3399 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3400 	ret = xhci_queue_reset_device(xhci, slot_id);
3401 	if (ret) {
3402 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3403 		list_del(&reset_device_cmd->cmd_list);
3404 		spin_unlock_irqrestore(&xhci->lock, flags);
3405 		goto command_cleanup;
3406 	}
3407 	xhci_ring_cmd_db(xhci);
3408 	spin_unlock_irqrestore(&xhci->lock, flags);
3409 
3410 	/* Wait for the Reset Device command to finish */
3411 	timeleft = wait_for_completion_interruptible_timeout(
3412 			reset_device_cmd->completion,
3413 			USB_CTRL_SET_TIMEOUT);
3414 	if (timeleft <= 0) {
3415 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3416 				timeleft == 0 ? "Timeout" : "Signal");
3417 		spin_lock_irqsave(&xhci->lock, flags);
3418 		/* The timeout might have raced with the event ring handler, so
3419 		 * only delete from the list if the item isn't poisoned.
3420 		 */
3421 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3422 			list_del(&reset_device_cmd->cmd_list);
3423 		spin_unlock_irqrestore(&xhci->lock, flags);
3424 		ret = -ETIME;
3425 		goto command_cleanup;
3426 	}
3427 
3428 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3429 	 * unless we tried to reset a slot ID that wasn't enabled,
3430 	 * or the device wasn't in the addressed or configured state.
3431 	 */
3432 	ret = reset_device_cmd->status;
3433 	switch (ret) {
3434 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3435 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3436 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3437 				slot_id,
3438 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3439 		xhci_info(xhci, "Not freeing device rings.\n");
3440 		/* Don't treat this as an error.  May change my mind later. */
3441 		ret = 0;
3442 		goto command_cleanup;
3443 	case COMP_SUCCESS:
3444 		xhci_dbg(xhci, "Successful reset device command.\n");
3445 		break;
3446 	default:
3447 		if (xhci_is_vendor_info_code(xhci, ret))
3448 			break;
3449 		xhci_warn(xhci, "Unknown completion code %u for "
3450 				"reset device command.\n", ret);
3451 		ret = -EINVAL;
3452 		goto command_cleanup;
3453 	}
3454 
3455 	/* Free up host controller endpoint resources */
3456 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3457 		spin_lock_irqsave(&xhci->lock, flags);
3458 		/* Don't delete the default control endpoint resources */
3459 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3460 		spin_unlock_irqrestore(&xhci->lock, flags);
3461 	}
3462 
3463 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3464 	last_freed_endpoint = 1;
3465 	for (i = 1; i < 31; ++i) {
3466 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3467 
3468 		if (ep->ep_state & EP_HAS_STREAMS) {
3469 			xhci_free_stream_info(xhci, ep->stream_info);
3470 			ep->stream_info = NULL;
3471 			ep->ep_state &= ~EP_HAS_STREAMS;
3472 		}
3473 
3474 		if (ep->ring) {
3475 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3476 			last_freed_endpoint = i;
3477 		}
3478 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3479 			xhci_drop_ep_from_interval_table(xhci,
3480 					&virt_dev->eps[i].bw_info,
3481 					virt_dev->bw_table,
3482 					udev,
3483 					&virt_dev->eps[i],
3484 					virt_dev->tt_info);
3485 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3486 	}
3487 	/* If necessary, update the number of active TTs on this root port */
3488 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3489 
3490 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3491 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3492 	ret = 0;
3493 
3494 command_cleanup:
3495 	xhci_free_command(xhci, reset_device_cmd);
3496 	return ret;
3497 }
3498 
3499 /*
3500  * At this point, the struct usb_device is about to go away, the device has
3501  * disconnected, and all traffic has been stopped and the endpoints have been
3502  * disabled.  Free any HC data structures associated with that device.
3503  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3504 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3505 {
3506 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3507 	struct xhci_virt_device *virt_dev;
3508 	struct device *dev = hcd->self.controller;
3509 	unsigned long flags;
3510 	u32 state;
3511 	int i, ret;
3512 
3513 #ifndef CONFIG_USB_DEFAULT_PERSIST
3514 	/*
3515 	 * We called pm_runtime_get_noresume when the device was attached.
3516 	 * Decrement the counter here to allow controller to runtime suspend
3517 	 * if no devices remain.
3518 	 */
3519 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3520 		pm_runtime_put_noidle(dev);
3521 #endif
3522 
3523 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3524 	/* If the host is halted due to driver unload, we still need to free the
3525 	 * device.
3526 	 */
3527 	if (ret <= 0 && ret != -ENODEV)
3528 		return;
3529 
3530 	virt_dev = xhci->devs[udev->slot_id];
3531 
3532 	/* Stop any wayward timer functions (which may grab the lock) */
3533 	for (i = 0; i < 31; ++i) {
3534 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3535 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3536 	}
3537 
3538 	if (udev->usb2_hw_lpm_enabled) {
3539 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3540 		udev->usb2_hw_lpm_enabled = 0;
3541 	}
3542 
3543 	spin_lock_irqsave(&xhci->lock, flags);
3544 	/* Don't disable the slot if the host controller is dead. */
3545 	state = xhci_readl(xhci, &xhci->op_regs->status);
3546 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3547 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3548 		xhci_free_virt_device(xhci, udev->slot_id);
3549 		spin_unlock_irqrestore(&xhci->lock, flags);
3550 		return;
3551 	}
3552 
3553 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3554 		spin_unlock_irqrestore(&xhci->lock, flags);
3555 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3556 		return;
3557 	}
3558 	xhci_ring_cmd_db(xhci);
3559 	spin_unlock_irqrestore(&xhci->lock, flags);
3560 	/*
3561 	 * Event command completion handler will free any data structures
3562 	 * associated with the slot.  XXX Can free sleep?
3563 	 */
3564 }
3565 
3566 /*
3567  * Checks if we have enough host controller resources for the default control
3568  * endpoint.
3569  *
3570  * Must be called with xhci->lock held.
3571  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3572 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3573 {
3574 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3575 		xhci_dbg(xhci, "Not enough ep ctxs: "
3576 				"%u active, need to add 1, limit is %u.\n",
3577 				xhci->num_active_eps, xhci->limit_active_eps);
3578 		return -ENOMEM;
3579 	}
3580 	xhci->num_active_eps += 1;
3581 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3582 			xhci->num_active_eps);
3583 	return 0;
3584 }
3585 
3586 
3587 /*
3588  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3589  * timed out, or allocating memory failed.  Returns 1 on success.
3590  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3591 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3592 {
3593 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3594 	struct device *dev = hcd->self.controller;
3595 	unsigned long flags;
3596 	int timeleft;
3597 	int ret;
3598 	union xhci_trb *cmd_trb;
3599 
3600 	spin_lock_irqsave(&xhci->lock, flags);
3601 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3602 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3603 	if (ret) {
3604 		spin_unlock_irqrestore(&xhci->lock, flags);
3605 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3606 		return 0;
3607 	}
3608 	xhci_ring_cmd_db(xhci);
3609 	spin_unlock_irqrestore(&xhci->lock, flags);
3610 
3611 	/* XXX: how much time for xHC slot assignment? */
3612 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3613 			XHCI_CMD_DEFAULT_TIMEOUT);
3614 	if (timeleft <= 0) {
3615 		xhci_warn(xhci, "%s while waiting for a slot\n",
3616 				timeleft == 0 ? "Timeout" : "Signal");
3617 		/* cancel the enable slot request */
3618 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3619 	}
3620 
3621 	if (!xhci->slot_id) {
3622 		xhci_err(xhci, "Error while assigning device slot ID\n");
3623 		return 0;
3624 	}
3625 
3626 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3627 		spin_lock_irqsave(&xhci->lock, flags);
3628 		ret = xhci_reserve_host_control_ep_resources(xhci);
3629 		if (ret) {
3630 			spin_unlock_irqrestore(&xhci->lock, flags);
3631 			xhci_warn(xhci, "Not enough host resources, "
3632 					"active endpoint contexts = %u\n",
3633 					xhci->num_active_eps);
3634 			goto disable_slot;
3635 		}
3636 		spin_unlock_irqrestore(&xhci->lock, flags);
3637 	}
3638 	/* Use GFP_NOIO, since this function can be called from
3639 	 * xhci_discover_or_reset_device(), which may be called as part of
3640 	 * mass storage driver error handling.
3641 	 */
3642 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3643 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3644 		goto disable_slot;
3645 	}
3646 	udev->slot_id = xhci->slot_id;
3647 
3648 #ifndef CONFIG_USB_DEFAULT_PERSIST
3649 	/*
3650 	 * If resetting upon resume, we can't put the controller into runtime
3651 	 * suspend if there is a device attached.
3652 	 */
3653 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3654 		pm_runtime_get_noresume(dev);
3655 #endif
3656 
3657 	/* Is this a LS or FS device under a HS hub? */
3658 	/* Hub or peripherial? */
3659 	return 1;
3660 
3661 disable_slot:
3662 	/* Disable slot, if we can do it without mem alloc */
3663 	spin_lock_irqsave(&xhci->lock, flags);
3664 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3665 		xhci_ring_cmd_db(xhci);
3666 	spin_unlock_irqrestore(&xhci->lock, flags);
3667 	return 0;
3668 }
3669 
3670 /*
3671  * Issue an Address Device command (which will issue a SetAddress request to
3672  * the device).
3673  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3674  * we should only issue and wait on one address command at the same time.
3675  *
3676  * We add one to the device address issued by the hardware because the USB core
3677  * uses address 1 for the root hubs (even though they're not really devices).
3678  */
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3679 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3680 {
3681 	unsigned long flags;
3682 	int timeleft;
3683 	struct xhci_virt_device *virt_dev;
3684 	int ret = 0;
3685 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686 	struct xhci_slot_ctx *slot_ctx;
3687 	struct xhci_input_control_ctx *ctrl_ctx;
3688 	u64 temp_64;
3689 	union xhci_trb *cmd_trb;
3690 
3691 	if (!udev->slot_id) {
3692 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3693 		return -EINVAL;
3694 	}
3695 
3696 	virt_dev = xhci->devs[udev->slot_id];
3697 
3698 	if (WARN_ON(!virt_dev)) {
3699 		/*
3700 		 * In plug/unplug torture test with an NEC controller,
3701 		 * a zero-dereference was observed once due to virt_dev = 0.
3702 		 * Print useful debug rather than crash if it is observed again!
3703 		 */
3704 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3705 			udev->slot_id);
3706 		return -EINVAL;
3707 	}
3708 
3709 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3710 	/*
3711 	 * If this is the first Set Address since device plug-in or
3712 	 * virt_device realloaction after a resume with an xHCI power loss,
3713 	 * then set up the slot context.
3714 	 */
3715 	if (!slot_ctx->dev_info)
3716 		xhci_setup_addressable_virt_dev(xhci, udev);
3717 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3718 	else
3719 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3720 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3721 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3722 	ctrl_ctx->drop_flags = 0;
3723 
3724 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3725 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3726 
3727 	spin_lock_irqsave(&xhci->lock, flags);
3728 	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3729 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3730 					udev->slot_id);
3731 	if (ret) {
3732 		spin_unlock_irqrestore(&xhci->lock, flags);
3733 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3734 		return ret;
3735 	}
3736 	xhci_ring_cmd_db(xhci);
3737 	spin_unlock_irqrestore(&xhci->lock, flags);
3738 
3739 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3740 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3741 			XHCI_CMD_DEFAULT_TIMEOUT);
3742 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3743 	 * the SetAddress() "recovery interval" required by USB and aborting the
3744 	 * command on a timeout.
3745 	 */
3746 	if (timeleft <= 0) {
3747 		xhci_warn(xhci, "%s while waiting for address device command\n",
3748 				timeleft == 0 ? "Timeout" : "Signal");
3749 		/* cancel the address device command */
3750 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3751 		if (ret < 0)
3752 			return ret;
3753 		return -ETIME;
3754 	}
3755 
3756 	switch (virt_dev->cmd_status) {
3757 	case COMP_CTX_STATE:
3758 	case COMP_EBADSLT:
3759 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3760 				udev->slot_id);
3761 		ret = -EINVAL;
3762 		break;
3763 	case COMP_TX_ERR:
3764 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3765 		ret = -EPROTO;
3766 		break;
3767 	case COMP_DEV_ERR:
3768 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3769 				"device command.\n");
3770 		ret = -ENODEV;
3771 		break;
3772 	case COMP_SUCCESS:
3773 		xhci_dbg(xhci, "Successful Address Device command\n");
3774 		break;
3775 	default:
3776 		xhci_err(xhci, "ERROR: unexpected command completion "
3777 				"code 0x%x.\n", virt_dev->cmd_status);
3778 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3779 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3780 		ret = -EINVAL;
3781 		break;
3782 	}
3783 	if (ret) {
3784 		return ret;
3785 	}
3786 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3787 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3788 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3789 		 udev->slot_id,
3790 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3791 		 (unsigned long long)
3792 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3793 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3794 			(unsigned long long)virt_dev->out_ctx->dma);
3795 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3796 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3797 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3798 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3799 	/*
3800 	 * USB core uses address 1 for the roothubs, so we add one to the
3801 	 * address given back to us by the HC.
3802 	 */
3803 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3804 	/* Use kernel assigned address for devices; store xHC assigned
3805 	 * address locally. */
3806 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3807 		+ 1;
3808 	/* Zero the input context control for later use */
3809 	ctrl_ctx->add_flags = 0;
3810 	ctrl_ctx->drop_flags = 0;
3811 
3812 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3813 
3814 	return 0;
3815 }
3816 
3817 #ifdef CONFIG_USB_SUSPEND
3818 
3819 /* BESL to HIRD Encoding array for USB2 LPM */
3820 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3821 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3822 
3823 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)3824 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3825 					struct usb_device *udev)
3826 {
3827 	int u2del, besl, besl_host;
3828 	int besl_device = 0;
3829 	u32 field;
3830 
3831 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3832 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3833 
3834 	if (field & USB_BESL_SUPPORT) {
3835 		for (besl_host = 0; besl_host < 16; besl_host++) {
3836 			if (xhci_besl_encoding[besl_host] >= u2del)
3837 				break;
3838 		}
3839 		/* Use baseline BESL value as default */
3840 		if (field & USB_BESL_BASELINE_VALID)
3841 			besl_device = USB_GET_BESL_BASELINE(field);
3842 		else if (field & USB_BESL_DEEP_VALID)
3843 			besl_device = USB_GET_BESL_DEEP(field);
3844 	} else {
3845 		if (u2del <= 50)
3846 			besl_host = 0;
3847 		else
3848 			besl_host = (u2del - 51) / 75 + 1;
3849 	}
3850 
3851 	besl = besl_host + besl_device;
3852 	if (besl > 15)
3853 		besl = 15;
3854 
3855 	return besl;
3856 }
3857 
xhci_usb2_software_lpm_test(struct usb_hcd * hcd,struct usb_device * udev)3858 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3859 					struct usb_device *udev)
3860 {
3861 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3862 	struct dev_info	*dev_info;
3863 	__le32 __iomem	**port_array;
3864 	__le32 __iomem	*addr, *pm_addr;
3865 	u32		temp, dev_id;
3866 	unsigned int	port_num;
3867 	unsigned long	flags;
3868 	int		hird;
3869 	int		ret;
3870 
3871 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3872 			!udev->lpm_capable)
3873 		return -EINVAL;
3874 
3875 	/* we only support lpm for non-hub device connected to root hub yet */
3876 	if (!udev->parent || udev->parent->parent ||
3877 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3878 		return -EINVAL;
3879 
3880 	spin_lock_irqsave(&xhci->lock, flags);
3881 
3882 	/* Look for devices in lpm_failed_devs list */
3883 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3884 			le16_to_cpu(udev->descriptor.idProduct);
3885 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3886 		if (dev_info->dev_id == dev_id) {
3887 			ret = -EINVAL;
3888 			goto finish;
3889 		}
3890 	}
3891 
3892 	port_array = xhci->usb2_ports;
3893 	port_num = udev->portnum - 1;
3894 
3895 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3896 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3897 		ret = -EINVAL;
3898 		goto finish;
3899 	}
3900 
3901 	/*
3902 	 * Test USB 2.0 software LPM.
3903 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3904 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3905 	 * in the June 2011 errata release.
3906 	 */
3907 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3908 	/*
3909 	 * Set L1 Device Slot and HIRD/BESL.
3910 	 * Check device's USB 2.0 extension descriptor to determine whether
3911 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3912 	 */
3913 	pm_addr = port_array[port_num] + 1;
3914 	hird = xhci_calculate_hird_besl(xhci, udev);
3915 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3916 	xhci_writel(xhci, temp, pm_addr);
3917 
3918 	/* Set port link state to U2(L1) */
3919 	addr = port_array[port_num];
3920 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3921 
3922 	/* wait for ACK */
3923 	spin_unlock_irqrestore(&xhci->lock, flags);
3924 	msleep(10);
3925 	spin_lock_irqsave(&xhci->lock, flags);
3926 
3927 	/* Check L1 Status */
3928 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3929 	if (ret != -ETIMEDOUT) {
3930 		/* enter L1 successfully */
3931 		temp = xhci_readl(xhci, addr);
3932 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3933 				port_num, temp);
3934 		ret = 0;
3935 	} else {
3936 		temp = xhci_readl(xhci, pm_addr);
3937 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3938 				port_num, temp & PORT_L1S_MASK);
3939 		ret = -EINVAL;
3940 	}
3941 
3942 	/* Resume the port */
3943 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3944 
3945 	spin_unlock_irqrestore(&xhci->lock, flags);
3946 	msleep(10);
3947 	spin_lock_irqsave(&xhci->lock, flags);
3948 
3949 	/* Clear PLC */
3950 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3951 
3952 	/* Check PORTSC to make sure the device is in the right state */
3953 	if (!ret) {
3954 		temp = xhci_readl(xhci, addr);
3955 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3956 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3957 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3958 			xhci_dbg(xhci, "port L1 resume fail\n");
3959 			ret = -EINVAL;
3960 		}
3961 	}
3962 
3963 	if (ret) {
3964 		/* Insert dev to lpm_failed_devs list */
3965 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3966 				"re-enumerate\n");
3967 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3968 		if (!dev_info) {
3969 			ret = -ENOMEM;
3970 			goto finish;
3971 		}
3972 		dev_info->dev_id = dev_id;
3973 		INIT_LIST_HEAD(&dev_info->list);
3974 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3975 	} else {
3976 		xhci_ring_device(xhci, udev->slot_id);
3977 	}
3978 
3979 finish:
3980 	spin_unlock_irqrestore(&xhci->lock, flags);
3981 	return ret;
3982 }
3983 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)3984 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3985 			struct usb_device *udev, int enable)
3986 {
3987 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3988 	__le32 __iomem	**port_array;
3989 	__le32 __iomem	*pm_addr;
3990 	u32		temp;
3991 	unsigned int	port_num;
3992 	unsigned long	flags;
3993 	int		hird;
3994 
3995 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3996 			!udev->lpm_capable)
3997 		return -EPERM;
3998 
3999 	if (!udev->parent || udev->parent->parent ||
4000 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4001 		return -EPERM;
4002 
4003 	if (udev->usb2_hw_lpm_capable != 1)
4004 		return -EPERM;
4005 
4006 	spin_lock_irqsave(&xhci->lock, flags);
4007 
4008 	port_array = xhci->usb2_ports;
4009 	port_num = udev->portnum - 1;
4010 	pm_addr = port_array[port_num] + 1;
4011 	temp = xhci_readl(xhci, pm_addr);
4012 
4013 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4014 			enable ? "enable" : "disable", port_num);
4015 
4016 	hird = xhci_calculate_hird_besl(xhci, udev);
4017 
4018 	if (enable) {
4019 		temp &= ~PORT_HIRD_MASK;
4020 		temp |= PORT_HIRD(hird) | PORT_RWE;
4021 		xhci_writel(xhci, temp, pm_addr);
4022 		temp = xhci_readl(xhci, pm_addr);
4023 		temp |= PORT_HLE;
4024 		xhci_writel(xhci, temp, pm_addr);
4025 	} else {
4026 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4027 		xhci_writel(xhci, temp, pm_addr);
4028 	}
4029 
4030 	spin_unlock_irqrestore(&xhci->lock, flags);
4031 	return 0;
4032 }
4033 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4034 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4035 {
4036 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4037 	int		ret;
4038 
4039 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4040 	if (!ret) {
4041 		xhci_dbg(xhci, "software LPM test succeed\n");
4042 		if (xhci->hw_lpm_support == 1) {
4043 			udev->usb2_hw_lpm_capable = 1;
4044 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4045 			if (!ret)
4046 				udev->usb2_hw_lpm_enabled = 1;
4047 		}
4048 	}
4049 
4050 	return 0;
4051 }
4052 
4053 #else
4054 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4055 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4056 				struct usb_device *udev, int enable)
4057 {
4058 	return 0;
4059 }
4060 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4061 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4062 {
4063 	return 0;
4064 }
4065 
4066 #endif /* CONFIG_USB_SUSPEND */
4067 
4068 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4069  * internal data structures for the device.
4070  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4071 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4072 			struct usb_tt *tt, gfp_t mem_flags)
4073 {
4074 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4075 	struct xhci_virt_device *vdev;
4076 	struct xhci_command *config_cmd;
4077 	struct xhci_input_control_ctx *ctrl_ctx;
4078 	struct xhci_slot_ctx *slot_ctx;
4079 	unsigned long flags;
4080 	unsigned think_time;
4081 	int ret;
4082 
4083 	/* Ignore root hubs */
4084 	if (!hdev->parent)
4085 		return 0;
4086 
4087 	vdev = xhci->devs[hdev->slot_id];
4088 	if (!vdev) {
4089 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4090 		return -EINVAL;
4091 	}
4092 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4093 	if (!config_cmd) {
4094 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4095 		return -ENOMEM;
4096 	}
4097 
4098 	spin_lock_irqsave(&xhci->lock, flags);
4099 	if (hdev->speed == USB_SPEED_HIGH &&
4100 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4101 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4102 		xhci_free_command(xhci, config_cmd);
4103 		spin_unlock_irqrestore(&xhci->lock, flags);
4104 		return -ENOMEM;
4105 	}
4106 
4107 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4108 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4109 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4110 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4111 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4112 	if (tt->multi)
4113 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4114 	if (xhci->hci_version > 0x95) {
4115 		xhci_dbg(xhci, "xHCI version %x needs hub "
4116 				"TT think time and number of ports\n",
4117 				(unsigned int) xhci->hci_version);
4118 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4119 		/* Set TT think time - convert from ns to FS bit times.
4120 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4121 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4122 		 *
4123 		 * xHCI 1.0: this field shall be 0 if the device is not a
4124 		 * High-spped hub.
4125 		 */
4126 		think_time = tt->think_time;
4127 		if (think_time != 0)
4128 			think_time = (think_time / 666) - 1;
4129 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4130 			slot_ctx->tt_info |=
4131 				cpu_to_le32(TT_THINK_TIME(think_time));
4132 	} else {
4133 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4134 				"TT think time or number of ports\n",
4135 				(unsigned int) xhci->hci_version);
4136 	}
4137 	slot_ctx->dev_state = 0;
4138 	spin_unlock_irqrestore(&xhci->lock, flags);
4139 
4140 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4141 			(xhci->hci_version > 0x95) ?
4142 			"configure endpoint" : "evaluate context");
4143 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4144 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4145 
4146 	/* Issue and wait for the configure endpoint or
4147 	 * evaluate context command.
4148 	 */
4149 	if (xhci->hci_version > 0x95)
4150 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4151 				false, false);
4152 	else
4153 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4154 				true, false);
4155 
4156 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4157 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4158 
4159 	xhci_free_command(xhci, config_cmd);
4160 	return ret;
4161 }
4162 
xhci_get_frame(struct usb_hcd * hcd)4163 int xhci_get_frame(struct usb_hcd *hcd)
4164 {
4165 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166 	/* EHCI mods by the periodic size.  Why? */
4167 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4168 }
4169 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4170 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4171 {
4172 	struct xhci_hcd		*xhci;
4173 	struct device		*dev = hcd->self.controller;
4174 	int			retval;
4175 	u32			temp;
4176 
4177 	/* Accept arbitrarily long scatter-gather lists */
4178 	hcd->self.sg_tablesize = ~0;
4179 
4180 	if (usb_hcd_is_primary_hcd(hcd)) {
4181 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4182 		if (!xhci)
4183 			return -ENOMEM;
4184 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4185 		xhci->main_hcd = hcd;
4186 		/* Mark the first roothub as being USB 2.0.
4187 		 * The xHCI driver will register the USB 3.0 roothub.
4188 		 */
4189 		hcd->speed = HCD_USB2;
4190 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4191 		/*
4192 		 * USB 2.0 roothub under xHCI has an integrated TT,
4193 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4194 		 * companion controller.
4195 		 */
4196 		hcd->has_tt = 1;
4197 	} else {
4198 		/* xHCI private pointer was set in xhci_pci_probe for the second
4199 		 * registered roothub.
4200 		 */
4201 		xhci = hcd_to_xhci(hcd);
4202 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4203 		if (HCC_64BIT_ADDR(temp)) {
4204 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4205 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4206 		} else {
4207 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4208 		}
4209 		return 0;
4210 	}
4211 
4212 	xhci->cap_regs = hcd->regs;
4213 	xhci->op_regs = hcd->regs +
4214 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4215 	xhci->run_regs = hcd->regs +
4216 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4217 	/* Cache read-only capability registers */
4218 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4219 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4220 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4221 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4222 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4223 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4224 	xhci_print_registers(xhci);
4225 
4226 	get_quirks(dev, xhci);
4227 
4228 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4229 	 * success event after a short transfer. This quirk will ignore such
4230 	 * spurious event.
4231 	 */
4232 	if (xhci->hci_version > 0x96)
4233 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4234 
4235 	/* Make sure the HC is halted. */
4236 	retval = xhci_halt(xhci);
4237 	if (retval)
4238 		goto error;
4239 
4240 	xhci_dbg(xhci, "Resetting HCD\n");
4241 	/* Reset the internal HC memory state and registers. */
4242 	retval = xhci_reset(xhci);
4243 	if (retval)
4244 		goto error;
4245 	xhci_dbg(xhci, "Reset complete\n");
4246 
4247 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4248 	if (HCC_64BIT_ADDR(temp)) {
4249 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4250 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4251 	} else {
4252 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4253 	}
4254 
4255 	xhci_dbg(xhci, "Calling HCD init\n");
4256 	/* Initialize HCD and host controller data structures. */
4257 	retval = xhci_init(hcd);
4258 	if (retval)
4259 		goto error;
4260 	xhci_dbg(xhci, "Called HCD init\n");
4261 	return 0;
4262 error:
4263 	kfree(xhci);
4264 	return retval;
4265 }
4266 
4267 MODULE_DESCRIPTION(DRIVER_DESC);
4268 MODULE_AUTHOR(DRIVER_AUTHOR);
4269 MODULE_LICENSE("GPL");
4270 
xhci_hcd_init(void)4271 static int __init xhci_hcd_init(void)
4272 {
4273 	int retval;
4274 
4275 	retval = xhci_register_pci();
4276 	if (retval < 0) {
4277 		printk(KERN_DEBUG "Problem registering PCI driver.");
4278 		return retval;
4279 	}
4280 	retval = xhci_register_plat();
4281 	if (retval < 0) {
4282 		printk(KERN_DEBUG "Problem registering platform driver.");
4283 		goto unreg_pci;
4284 	}
4285 	/*
4286 	 * Check the compiler generated sizes of structures that must be laid
4287 	 * out in specific ways for hardware access.
4288 	 */
4289 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4290 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4291 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4292 	/* xhci_device_control has eight fields, and also
4293 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4294 	 */
4295 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4296 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4297 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4298 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4299 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4300 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4301 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4302 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4303 	return 0;
4304 unreg_pci:
4305 	xhci_unregister_pci();
4306 	return retval;
4307 }
4308 module_init(xhci_hcd_init);
4309 
xhci_hcd_cleanup(void)4310 static void __exit xhci_hcd_cleanup(void)
4311 {
4312 	xhci_unregister_pci();
4313 	xhci_unregister_plat();
4314 }
4315 module_exit(xhci_hcd_cleanup);
4316