1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,gfp_t flags)37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
39 {
40 struct xhci_segment *seg;
41 dma_addr_t dma;
42 int i;
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
46 return NULL;
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
51 return NULL;
52 }
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg);
73 }
74
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77 {
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87 }
88
89 /*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type)96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
104 if (type != TYPE_EVENT) {
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
112 /* Always set the chain bit with 0.95 hardware */
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148 }
149
150 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 if (!ring)
154 return;
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
159 kfree(ring);
160 }
161
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
164 {
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
176 */
177 ring->cycle_state = cycle_state;
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188
189 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
194 {
195 struct xhci_segment *prev;
196
197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
206 next = xhci_segment_alloc(xhci, cycle_state, flags);
207 if (!next) {
208 prev = *first;
209 while (prev) {
210 next = prev->next;
211 xhci_segment_free(xhci, prev);
212 prev = next;
213 }
214 return -ENOMEM;
215 }
216 xhci_link_segments(xhci, prev, next, type);
217
218 prev = next;
219 num_segs--;
220 }
221 xhci_link_segments(xhci, prev, *first, type);
222 *last = prev;
223
224 return 0;
225 }
226
227 /**
228 * Create a new ring with zero or more segments.
229 *
230 * Link each segment together into a ring.
231 * Set the end flag and the cycle toggle bit on the last segment.
232 * See section 4.9.1 and figures 15 and 16.
233 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 unsigned int num_segs, unsigned int cycle_state,
236 enum xhci_ring_type type, gfp_t flags)
237 {
238 struct xhci_ring *ring;
239 int ret;
240
241 ring = kzalloc(sizeof *(ring), flags);
242 if (!ring)
243 return NULL;
244
245 ring->num_segs = num_segs;
246 INIT_LIST_HEAD(&ring->td_list);
247 ring->type = type;
248 if (num_segs == 0)
249 return ring;
250
251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 &ring->last_seg, num_segs, cycle_state, type, flags);
253 if (ret)
254 goto fail;
255
256 /* Only event ring does not use link TRB */
257 if (type != TYPE_EVENT) {
258 /* See section 4.9.2.1 and 6.4.4.1 */
259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 cpu_to_le32(LINK_TOGGLE);
261 }
262 xhci_initialize_ring_info(ring, cycle_state);
263 return ring;
264
265 fail:
266 kfree(ring);
267 return NULL;
268 }
269
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 struct xhci_virt_device *virt_dev,
272 unsigned int ep_index)
273 {
274 int rings_cached;
275
276 rings_cached = virt_dev->num_rings_cached;
277 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 virt_dev->ring_cache[rings_cached] =
279 virt_dev->eps[ep_index].ring;
280 virt_dev->num_rings_cached++;
281 xhci_dbg(xhci, "Cached old ring, "
282 "%d ring%s cached\n",
283 virt_dev->num_rings_cached,
284 (virt_dev->num_rings_cached > 1) ? "s" : "");
285 } else {
286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 xhci_dbg(xhci, "Ring cache full (%d rings), "
288 "freeing ring\n",
289 virt_dev->num_rings_cached);
290 }
291 virt_dev->eps[ep_index].ring = NULL;
292 }
293
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295 * pointers to the beginning of the ring.
296 */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int cycle_state,enum xhci_ring_type type)297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 struct xhci_ring *ring, unsigned int cycle_state,
299 enum xhci_ring_type type)
300 {
301 struct xhci_segment *seg = ring->first_seg;
302 int i;
303
304 do {
305 memset(seg->trbs, 0,
306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 if (cycle_state == 0) {
308 for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 seg->trbs[i].link.control |= TRB_CYCLE;
310 }
311 /* All endpoint rings have link TRBs */
312 xhci_link_segments(xhci, seg, seg->next, type);
313 seg = seg->next;
314 } while (seg != ring->first_seg);
315 ring->type = type;
316 xhci_initialize_ring_info(ring, cycle_state);
317 /* td list should be empty since all URBs have been cancelled,
318 * but just in case...
319 */
320 INIT_LIST_HEAD(&ring->td_list);
321 }
322
323 /*
324 * Expand an existing ring.
325 * Look for a cached ring or allocate a new ring which has same segment numbers
326 * and link the two rings.
327 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 unsigned int num_trbs, gfp_t flags)
330 {
331 struct xhci_segment *first;
332 struct xhci_segment *last;
333 unsigned int num_segs;
334 unsigned int num_segs_needed;
335 int ret;
336
337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 (TRBS_PER_SEGMENT - 1);
339
340 /* Allocate number of segments we needed, or double the ring size */
341 num_segs = ring->num_segs > num_segs_needed ?
342 ring->num_segs : num_segs_needed;
343
344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 num_segs, ring->cycle_state, ring->type, flags);
346 if (ret)
347 return -ENOMEM;
348
349 xhci_link_rings(xhci, ring, first, last, num_segs);
350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 ring->num_segs);
352
353 return 0;
354 }
355
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 int type, gfp_t flags)
360 {
361 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
362 if (!ctx)
363 return NULL;
364
365 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
366 ctx->type = type;
367 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
368 if (type == XHCI_CTX_TYPE_INPUT)
369 ctx->size += CTX_SIZE(xhci->hcc_params);
370
371 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
372 if (!ctx->bytes) {
373 kfree(ctx);
374 return NULL;
375 }
376 memset(ctx->bytes, 0, ctx->size);
377 return ctx;
378 }
379
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)380 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
381 struct xhci_container_ctx *ctx)
382 {
383 if (!ctx)
384 return;
385 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
386 kfree(ctx);
387 }
388
xhci_get_input_control_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)389 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
390 struct xhci_container_ctx *ctx)
391 {
392 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
393 return (struct xhci_input_control_ctx *)ctx->bytes;
394 }
395
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)396 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
397 struct xhci_container_ctx *ctx)
398 {
399 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
400 return (struct xhci_slot_ctx *)ctx->bytes;
401
402 return (struct xhci_slot_ctx *)
403 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
404 }
405
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)406 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
407 struct xhci_container_ctx *ctx,
408 unsigned int ep_index)
409 {
410 /* increment ep index by offset of start of ep ctx array */
411 ep_index++;
412 if (ctx->type == XHCI_CTX_TYPE_INPUT)
413 ep_index++;
414
415 return (struct xhci_ep_ctx *)
416 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
417 }
418
419
420 /***************** Streams structures manipulation *************************/
421
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)422 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
423 unsigned int num_stream_ctxs,
424 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
425 {
426 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
427
428 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
429 dma_free_coherent(&pdev->dev,
430 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
431 stream_ctx, dma);
432 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
433 return dma_pool_free(xhci->small_streams_pool,
434 stream_ctx, dma);
435 else
436 return dma_pool_free(xhci->medium_streams_pool,
437 stream_ctx, dma);
438 }
439
440 /*
441 * The stream context array for each endpoint with bulk streams enabled can
442 * vary in size, based on:
443 * - how many streams the endpoint supports,
444 * - the maximum primary stream array size the host controller supports,
445 * - and how many streams the device driver asks for.
446 *
447 * The stream context array must be a power of 2, and can be as small as
448 * 64 bytes or as large as 1MB.
449 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)450 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
451 unsigned int num_stream_ctxs, dma_addr_t *dma,
452 gfp_t mem_flags)
453 {
454 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
455
456 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
457 return dma_alloc_coherent(&pdev->dev,
458 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
459 dma, mem_flags);
460 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
461 return dma_pool_alloc(xhci->small_streams_pool,
462 mem_flags, dma);
463 else
464 return dma_pool_alloc(xhci->medium_streams_pool,
465 mem_flags, dma);
466 }
467
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)468 struct xhci_ring *xhci_dma_to_transfer_ring(
469 struct xhci_virt_ep *ep,
470 u64 address)
471 {
472 if (ep->ep_state & EP_HAS_STREAMS)
473 return radix_tree_lookup(&ep->stream_info->trb_address_map,
474 address >> SEGMENT_SHIFT);
475 return ep->ring;
476 }
477
478 /* Only use this when you know stream_info is valid */
479 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
dma_to_stream_ring(struct xhci_stream_info * stream_info,u64 address)480 static struct xhci_ring *dma_to_stream_ring(
481 struct xhci_stream_info *stream_info,
482 u64 address)
483 {
484 return radix_tree_lookup(&stream_info->trb_address_map,
485 address >> SEGMENT_SHIFT);
486 }
487 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
488
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)489 struct xhci_ring *xhci_stream_id_to_ring(
490 struct xhci_virt_device *dev,
491 unsigned int ep_index,
492 unsigned int stream_id)
493 {
494 struct xhci_virt_ep *ep = &dev->eps[ep_index];
495
496 if (stream_id == 0)
497 return ep->ring;
498 if (!ep->stream_info)
499 return NULL;
500
501 if (stream_id > ep->stream_info->num_streams)
502 return NULL;
503 return ep->stream_info->stream_rings[stream_id];
504 }
505
506 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_test_radix_tree(struct xhci_hcd * xhci,unsigned int num_streams,struct xhci_stream_info * stream_info)507 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
508 unsigned int num_streams,
509 struct xhci_stream_info *stream_info)
510 {
511 u32 cur_stream;
512 struct xhci_ring *cur_ring;
513 u64 addr;
514
515 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
516 struct xhci_ring *mapped_ring;
517 int trb_size = sizeof(union xhci_trb);
518
519 cur_ring = stream_info->stream_rings[cur_stream];
520 for (addr = cur_ring->first_seg->dma;
521 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
522 addr += trb_size) {
523 mapped_ring = dma_to_stream_ring(stream_info, addr);
524 if (cur_ring != mapped_ring) {
525 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
526 "didn't map to stream ID %u; "
527 "mapped to ring %p\n",
528 (unsigned long long) addr,
529 cur_stream,
530 mapped_ring);
531 return -EINVAL;
532 }
533 }
534 /* One TRB after the end of the ring segment shouldn't return a
535 * pointer to the current ring (although it may be a part of a
536 * different ring).
537 */
538 mapped_ring = dma_to_stream_ring(stream_info, addr);
539 if (mapped_ring != cur_ring) {
540 /* One TRB before should also fail */
541 addr = cur_ring->first_seg->dma - trb_size;
542 mapped_ring = dma_to_stream_ring(stream_info, addr);
543 }
544 if (mapped_ring == cur_ring) {
545 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
546 "mapped to valid stream ID %u; "
547 "mapped ring = %p\n",
548 (unsigned long long) addr,
549 cur_stream,
550 mapped_ring);
551 return -EINVAL;
552 }
553 }
554 return 0;
555 }
556 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
557
558 /*
559 * Change an endpoint's internal structure so it supports stream IDs. The
560 * number of requested streams includes stream 0, which cannot be used by device
561 * drivers.
562 *
563 * The number of stream contexts in the stream context array may be bigger than
564 * the number of streams the driver wants to use. This is because the number of
565 * stream context array entries must be a power of two.
566 *
567 * We need a radix tree for mapping physical addresses of TRBs to which stream
568 * ID they belong to. We need to do this because the host controller won't tell
569 * us which stream ring the TRB came from. We could store the stream ID in an
570 * event data TRB, but that doesn't help us for the cancellation case, since the
571 * endpoint may stop before it reaches that event data TRB.
572 *
573 * The radix tree maps the upper portion of the TRB DMA address to a ring
574 * segment that has the same upper portion of DMA addresses. For example, say I
575 * have segments of size 1KB, that are always 64-byte aligned. A segment may
576 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
577 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
578 * pass the radix tree a key to get the right stream ID:
579 *
580 * 0x10c90fff >> 10 = 0x43243
581 * 0x10c912c0 >> 10 = 0x43244
582 * 0x10c91400 >> 10 = 0x43245
583 *
584 * Obviously, only those TRBs with DMA addresses that are within the segment
585 * will make the radix tree return the stream ID for that ring.
586 *
587 * Caveats for the radix tree:
588 *
589 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
590 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
591 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
592 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
593 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
594 * extended systems (where the DMA address can be bigger than 32-bits),
595 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
596 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)597 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
598 unsigned int num_stream_ctxs,
599 unsigned int num_streams, gfp_t mem_flags)
600 {
601 struct xhci_stream_info *stream_info;
602 u32 cur_stream;
603 struct xhci_ring *cur_ring;
604 unsigned long key;
605 u64 addr;
606 int ret;
607
608 xhci_dbg(xhci, "Allocating %u streams and %u "
609 "stream context array entries.\n",
610 num_streams, num_stream_ctxs);
611 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
612 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
613 return NULL;
614 }
615 xhci->cmd_ring_reserved_trbs++;
616
617 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
618 if (!stream_info)
619 goto cleanup_trbs;
620
621 stream_info->num_streams = num_streams;
622 stream_info->num_stream_ctxs = num_stream_ctxs;
623
624 /* Initialize the array of virtual pointers to stream rings. */
625 stream_info->stream_rings = kzalloc(
626 sizeof(struct xhci_ring *)*num_streams,
627 mem_flags);
628 if (!stream_info->stream_rings)
629 goto cleanup_info;
630
631 /* Initialize the array of DMA addresses for stream rings for the HW. */
632 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
633 num_stream_ctxs, &stream_info->ctx_array_dma,
634 mem_flags);
635 if (!stream_info->stream_ctx_array)
636 goto cleanup_ctx;
637 memset(stream_info->stream_ctx_array, 0,
638 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
639
640 /* Allocate everything needed to free the stream rings later */
641 stream_info->free_streams_command =
642 xhci_alloc_command(xhci, true, true, mem_flags);
643 if (!stream_info->free_streams_command)
644 goto cleanup_ctx;
645
646 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
647
648 /* Allocate rings for all the streams that the driver will use,
649 * and add their segment DMA addresses to the radix tree.
650 * Stream 0 is reserved.
651 */
652 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
653 stream_info->stream_rings[cur_stream] =
654 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
655 cur_ring = stream_info->stream_rings[cur_stream];
656 if (!cur_ring)
657 goto cleanup_rings;
658 cur_ring->stream_id = cur_stream;
659 /* Set deq ptr, cycle bit, and stream context type */
660 addr = cur_ring->first_seg->dma |
661 SCT_FOR_CTX(SCT_PRI_TR) |
662 cur_ring->cycle_state;
663 stream_info->stream_ctx_array[cur_stream].stream_ring =
664 cpu_to_le64(addr);
665 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
666 cur_stream, (unsigned long long) addr);
667
668 key = (unsigned long)
669 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
670 ret = radix_tree_insert(&stream_info->trb_address_map,
671 key, cur_ring);
672 if (ret) {
673 xhci_ring_free(xhci, cur_ring);
674 stream_info->stream_rings[cur_stream] = NULL;
675 goto cleanup_rings;
676 }
677 }
678 /* Leave the other unused stream ring pointers in the stream context
679 * array initialized to zero. This will cause the xHC to give us an
680 * error if the device asks for a stream ID we don't have setup (if it
681 * was any other way, the host controller would assume the ring is
682 * "empty" and wait forever for data to be queued to that stream ID).
683 */
684 #if XHCI_DEBUG
685 /* Do a little test on the radix tree to make sure it returns the
686 * correct values.
687 */
688 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
689 goto cleanup_rings;
690 #endif
691
692 return stream_info;
693
694 cleanup_rings:
695 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
696 cur_ring = stream_info->stream_rings[cur_stream];
697 if (cur_ring) {
698 addr = cur_ring->first_seg->dma;
699 radix_tree_delete(&stream_info->trb_address_map,
700 addr >> SEGMENT_SHIFT);
701 xhci_ring_free(xhci, cur_ring);
702 stream_info->stream_rings[cur_stream] = NULL;
703 }
704 }
705 xhci_free_command(xhci, stream_info->free_streams_command);
706 cleanup_ctx:
707 kfree(stream_info->stream_rings);
708 cleanup_info:
709 kfree(stream_info);
710 cleanup_trbs:
711 xhci->cmd_ring_reserved_trbs--;
712 return NULL;
713 }
714 /*
715 * Sets the MaxPStreams field and the Linear Stream Array field.
716 * Sets the dequeue pointer to the stream context array.
717 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)718 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
719 struct xhci_ep_ctx *ep_ctx,
720 struct xhci_stream_info *stream_info)
721 {
722 u32 max_primary_streams;
723 /* MaxPStreams is the number of stream context array entries, not the
724 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
725 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
726 */
727 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
728 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
729 1 << (max_primary_streams + 1));
730 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
731 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
732 | EP_HAS_LSA);
733 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
734 }
735
736 /*
737 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
738 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
739 * not at the beginning of the ring).
740 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)741 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
742 struct xhci_ep_ctx *ep_ctx,
743 struct xhci_virt_ep *ep)
744 {
745 dma_addr_t addr;
746 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
747 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
748 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
749 }
750
751 /* Frees all stream contexts associated with the endpoint,
752 *
753 * Caller should fix the endpoint context streams fields.
754 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)755 void xhci_free_stream_info(struct xhci_hcd *xhci,
756 struct xhci_stream_info *stream_info)
757 {
758 int cur_stream;
759 struct xhci_ring *cur_ring;
760 dma_addr_t addr;
761
762 if (!stream_info)
763 return;
764
765 for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 cur_stream++) {
767 cur_ring = stream_info->stream_rings[cur_stream];
768 if (cur_ring) {
769 addr = cur_ring->first_seg->dma;
770 radix_tree_delete(&stream_info->trb_address_map,
771 addr >> SEGMENT_SHIFT);
772 xhci_ring_free(xhci, cur_ring);
773 stream_info->stream_rings[cur_stream] = NULL;
774 }
775 }
776 xhci_free_command(xhci, stream_info->free_streams_command);
777 xhci->cmd_ring_reserved_trbs--;
778 if (stream_info->stream_ctx_array)
779 xhci_free_stream_ctx(xhci,
780 stream_info->num_stream_ctxs,
781 stream_info->stream_ctx_array,
782 stream_info->ctx_array_dma);
783
784 if (stream_info)
785 kfree(stream_info->stream_rings);
786 kfree(stream_info);
787 }
788
789
790 /***************** Device context manipulation *************************/
791
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)792 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
793 struct xhci_virt_ep *ep)
794 {
795 init_timer(&ep->stop_cmd_timer);
796 ep->stop_cmd_timer.data = (unsigned long) ep;
797 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
798 ep->xhci = xhci;
799 }
800
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)801 static void xhci_free_tt_info(struct xhci_hcd *xhci,
802 struct xhci_virt_device *virt_dev,
803 int slot_id)
804 {
805 struct list_head *tt_list_head;
806 struct xhci_tt_bw_info *tt_info, *next;
807 bool slot_found = false;
808
809 /* If the device never made it past the Set Address stage,
810 * it may not have the real_port set correctly.
811 */
812 if (virt_dev->real_port == 0 ||
813 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
814 xhci_dbg(xhci, "Bad real port.\n");
815 return;
816 }
817
818 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
819 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
820 /* Multi-TT hubs will have more than one entry */
821 if (tt_info->slot_id == slot_id) {
822 slot_found = true;
823 list_del(&tt_info->tt_list);
824 kfree(tt_info);
825 } else if (slot_found) {
826 break;
827 }
828 }
829 }
830
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)831 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
832 struct xhci_virt_device *virt_dev,
833 struct usb_device *hdev,
834 struct usb_tt *tt, gfp_t mem_flags)
835 {
836 struct xhci_tt_bw_info *tt_info;
837 unsigned int num_ports;
838 int i, j;
839
840 if (!tt->multi)
841 num_ports = 1;
842 else
843 num_ports = hdev->maxchild;
844
845 for (i = 0; i < num_ports; i++, tt_info++) {
846 struct xhci_interval_bw_table *bw_table;
847
848 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
849 if (!tt_info)
850 goto free_tts;
851 INIT_LIST_HEAD(&tt_info->tt_list);
852 list_add(&tt_info->tt_list,
853 &xhci->rh_bw[virt_dev->real_port - 1].tts);
854 tt_info->slot_id = virt_dev->udev->slot_id;
855 if (tt->multi)
856 tt_info->ttport = i+1;
857 bw_table = &tt_info->bw_table;
858 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
859 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
860 }
861 return 0;
862
863 free_tts:
864 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
865 return -ENOMEM;
866 }
867
868
869 /* All the xhci_tds in the ring's TD list should be freed at this point.
870 * Should be called with xhci->lock held if there is any chance the TT lists
871 * will be manipulated by the configure endpoint, allocate device, or update
872 * hub functions while this function is removing the TT entries from the list.
873 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)874 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
875 {
876 struct xhci_virt_device *dev;
877 int i;
878 int old_active_eps = 0;
879
880 /* Slot ID 0 is reserved */
881 if (slot_id == 0 || !xhci->devs[slot_id])
882 return;
883
884 dev = xhci->devs[slot_id];
885 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
886 if (!dev)
887 return;
888
889 if (dev->tt_info)
890 old_active_eps = dev->tt_info->active_eps;
891
892 for (i = 0; i < 31; ++i) {
893 if (dev->eps[i].ring)
894 xhci_ring_free(xhci, dev->eps[i].ring);
895 if (dev->eps[i].stream_info)
896 xhci_free_stream_info(xhci,
897 dev->eps[i].stream_info);
898 /* Endpoints on the TT/root port lists should have been removed
899 * when usb_disable_device() was called for the device.
900 * We can't drop them anyway, because the udev might have gone
901 * away by this point, and we can't tell what speed it was.
902 */
903 if (!list_empty(&dev->eps[i].bw_endpoint_list))
904 xhci_warn(xhci, "Slot %u endpoint %u "
905 "not removed from BW list!\n",
906 slot_id, i);
907 }
908 /* If this is a hub, free the TT(s) from the TT list */
909 xhci_free_tt_info(xhci, dev, slot_id);
910 /* If necessary, update the number of active TTs on this root port */
911 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
912
913 if (dev->ring_cache) {
914 for (i = 0; i < dev->num_rings_cached; i++)
915 xhci_ring_free(xhci, dev->ring_cache[i]);
916 kfree(dev->ring_cache);
917 }
918
919 if (dev->in_ctx)
920 xhci_free_container_ctx(xhci, dev->in_ctx);
921 if (dev->out_ctx)
922 xhci_free_container_ctx(xhci, dev->out_ctx);
923
924 kfree(xhci->devs[slot_id]);
925 xhci->devs[slot_id] = NULL;
926 }
927
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)928 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
929 struct usb_device *udev, gfp_t flags)
930 {
931 struct xhci_virt_device *dev;
932 int i;
933
934 /* Slot ID 0 is reserved */
935 if (slot_id == 0 || xhci->devs[slot_id]) {
936 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
937 return 0;
938 }
939
940 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
941 if (!xhci->devs[slot_id])
942 return 0;
943 dev = xhci->devs[slot_id];
944
945 /* Allocate the (output) device context that will be used in the HC. */
946 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
947 if (!dev->out_ctx)
948 goto fail;
949
950 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
951 (unsigned long long)dev->out_ctx->dma);
952
953 /* Allocate the (input) device context for address device command */
954 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
955 if (!dev->in_ctx)
956 goto fail;
957
958 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
959 (unsigned long long)dev->in_ctx->dma);
960
961 /* Initialize the cancellation list and watchdog timers for each ep */
962 for (i = 0; i < 31; i++) {
963 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
964 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
965 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
966 }
967
968 /* Allocate endpoint 0 ring */
969 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
970 if (!dev->eps[0].ring)
971 goto fail;
972
973 /* Allocate pointers to the ring cache */
974 dev->ring_cache = kzalloc(
975 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
976 flags);
977 if (!dev->ring_cache)
978 goto fail;
979 dev->num_rings_cached = 0;
980
981 init_completion(&dev->cmd_completion);
982 INIT_LIST_HEAD(&dev->cmd_list);
983 dev->udev = udev;
984
985 /* Point to output device context in dcbaa. */
986 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
987 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
988 slot_id,
989 &xhci->dcbaa->dev_context_ptrs[slot_id],
990 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
991
992 return 1;
993 fail:
994 xhci_free_virt_device(xhci, slot_id);
995 return 0;
996 }
997
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)998 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
999 struct usb_device *udev)
1000 {
1001 struct xhci_virt_device *virt_dev;
1002 struct xhci_ep_ctx *ep0_ctx;
1003 struct xhci_ring *ep_ring;
1004
1005 virt_dev = xhci->devs[udev->slot_id];
1006 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1007 ep_ring = virt_dev->eps[0].ring;
1008 /*
1009 * FIXME we don't keep track of the dequeue pointer very well after a
1010 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1011 * host to our enqueue pointer. This should only be called after a
1012 * configured device has reset, so all control transfers should have
1013 * been completed or cancelled before the reset.
1014 */
1015 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1016 ep_ring->enqueue)
1017 | ep_ring->cycle_state);
1018 }
1019
1020 /*
1021 * The xHCI roothub may have ports of differing speeds in any order in the port
1022 * status registers. xhci->port_array provides an array of the port speed for
1023 * each offset into the port status registers.
1024 *
1025 * The xHCI hardware wants to know the roothub port number that the USB device
1026 * is attached to (or the roothub port its ancestor hub is attached to). All we
1027 * know is the index of that port under either the USB 2.0 or the USB 3.0
1028 * roothub, but that doesn't give us the real index into the HW port status
1029 * registers. Scan through the xHCI roothub port array, looking for the Nth
1030 * entry of the correct port speed. Return the port number of that entry.
1031 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1032 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1033 struct usb_device *udev)
1034 {
1035 struct usb_device *top_dev;
1036 unsigned int num_similar_speed_ports;
1037 unsigned int faked_port_num;
1038 int i;
1039
1040 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1041 top_dev = top_dev->parent)
1042 /* Found device below root hub */;
1043 faked_port_num = top_dev->portnum;
1044 for (i = 0, num_similar_speed_ports = 0;
1045 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1046 u8 port_speed = xhci->port_array[i];
1047
1048 /*
1049 * Skip ports that don't have known speeds, or have duplicate
1050 * Extended Capabilities port speed entries.
1051 */
1052 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1053 continue;
1054
1055 /*
1056 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1057 * 1.1 ports are under the USB 2.0 hub. If the port speed
1058 * matches the device speed, it's a similar speed port.
1059 */
1060 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1061 num_similar_speed_ports++;
1062 if (num_similar_speed_ports == faked_port_num)
1063 /* Roothub ports are numbered from 1 to N */
1064 return i+1;
1065 }
1066 return 0;
1067 }
1068
1069 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1070 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1071 {
1072 struct xhci_virt_device *dev;
1073 struct xhci_ep_ctx *ep0_ctx;
1074 struct xhci_slot_ctx *slot_ctx;
1075 u32 port_num;
1076 struct usb_device *top_dev;
1077
1078 dev = xhci->devs[udev->slot_id];
1079 /* Slot ID 0 is reserved */
1080 if (udev->slot_id == 0 || !dev) {
1081 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1082 udev->slot_id);
1083 return -EINVAL;
1084 }
1085 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1086 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1087
1088 /* 3) Only the control endpoint is valid - one endpoint context */
1089 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1090 switch (udev->speed) {
1091 case USB_SPEED_SUPER:
1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1093 break;
1094 case USB_SPEED_HIGH:
1095 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1096 break;
1097 case USB_SPEED_FULL:
1098 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1099 break;
1100 case USB_SPEED_LOW:
1101 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1102 break;
1103 case USB_SPEED_WIRELESS:
1104 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1105 return -EINVAL;
1106 break;
1107 default:
1108 /* Speed was set earlier, this shouldn't happen. */
1109 BUG();
1110 }
1111 /* Find the root hub port this device is under */
1112 port_num = xhci_find_real_port_number(xhci, udev);
1113 if (!port_num)
1114 return -EINVAL;
1115 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1116 /* Set the port number in the virtual_device to the faked port number */
1117 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1118 top_dev = top_dev->parent)
1119 /* Found device below root hub */;
1120 dev->fake_port = top_dev->portnum;
1121 dev->real_port = port_num;
1122 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1123 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1124
1125 /* Find the right bandwidth table that this device will be a part of.
1126 * If this is a full speed device attached directly to a root port (or a
1127 * decendent of one), it counts as a primary bandwidth domain, not a
1128 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1129 * will never be created for the HS root hub.
1130 */
1131 if (!udev->tt || !udev->tt->hub->parent) {
1132 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1133 } else {
1134 struct xhci_root_port_bw_info *rh_bw;
1135 struct xhci_tt_bw_info *tt_bw;
1136
1137 rh_bw = &xhci->rh_bw[port_num - 1];
1138 /* Find the right TT. */
1139 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1140 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1141 continue;
1142
1143 if (!dev->udev->tt->multi ||
1144 (udev->tt->multi &&
1145 tt_bw->ttport == dev->udev->ttport)) {
1146 dev->bw_table = &tt_bw->bw_table;
1147 dev->tt_info = tt_bw;
1148 break;
1149 }
1150 }
1151 if (!dev->tt_info)
1152 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1153 }
1154
1155 /* Is this a LS/FS device under an external HS hub? */
1156 if (udev->tt && udev->tt->hub->parent) {
1157 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1158 (udev->ttport << 8));
1159 if (udev->tt->multi)
1160 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1161 }
1162 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1163 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1164
1165 /* Step 4 - ring already allocated */
1166 /* Step 5 */
1167 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1168 /*
1169 * XXX: Not sure about wireless USB devices.
1170 */
1171 switch (udev->speed) {
1172 case USB_SPEED_SUPER:
1173 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1174 break;
1175 case USB_SPEED_HIGH:
1176 /* USB core guesses at a 64-byte max packet first for FS devices */
1177 case USB_SPEED_FULL:
1178 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1179 break;
1180 case USB_SPEED_LOW:
1181 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1182 break;
1183 case USB_SPEED_WIRELESS:
1184 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1185 return -EINVAL;
1186 break;
1187 default:
1188 /* New speed? */
1189 BUG();
1190 }
1191 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1193
1194 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1195 dev->eps[0].ring->cycle_state);
1196
1197 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1198
1199 return 0;
1200 }
1201
1202 /*
1203 * Convert interval expressed as 2^(bInterval - 1) == interval into
1204 * straight exponent value 2^n == interval.
1205 *
1206 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1207 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1208 struct usb_host_endpoint *ep)
1209 {
1210 unsigned int interval;
1211
1212 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1213 if (interval != ep->desc.bInterval - 1)
1214 dev_warn(&udev->dev,
1215 "ep %#x - rounding interval to %d %sframes\n",
1216 ep->desc.bEndpointAddress,
1217 1 << interval,
1218 udev->speed == USB_SPEED_FULL ? "" : "micro");
1219
1220 if (udev->speed == USB_SPEED_FULL) {
1221 /*
1222 * Full speed isoc endpoints specify interval in frames,
1223 * not microframes. We are using microframes everywhere,
1224 * so adjust accordingly.
1225 */
1226 interval += 3; /* 1 frame = 2^3 uframes */
1227 }
1228
1229 return interval;
1230 }
1231
1232 /*
1233 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1234 * microframes, rounded down to nearest power of 2.
1235 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1236 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1237 struct usb_host_endpoint *ep, unsigned int desc_interval,
1238 unsigned int min_exponent, unsigned int max_exponent)
1239 {
1240 unsigned int interval;
1241
1242 interval = fls(desc_interval) - 1;
1243 interval = clamp_val(interval, min_exponent, max_exponent);
1244 if ((1 << interval) != desc_interval)
1245 dev_warn(&udev->dev,
1246 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1247 ep->desc.bEndpointAddress,
1248 1 << interval,
1249 desc_interval);
1250
1251 return interval;
1252 }
1253
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1254 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1255 struct usb_host_endpoint *ep)
1256 {
1257 if (ep->desc.bInterval == 0)
1258 return 0;
1259 return xhci_microframes_to_exponent(udev, ep,
1260 ep->desc.bInterval, 0, 15);
1261 }
1262
1263
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1264 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1265 struct usb_host_endpoint *ep)
1266 {
1267 return xhci_microframes_to_exponent(udev, ep,
1268 ep->desc.bInterval * 8, 3, 10);
1269 }
1270
1271 /* Return the polling or NAK interval.
1272 *
1273 * The polling interval is expressed in "microframes". If xHCI's Interval field
1274 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1275 *
1276 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1277 * is set to 0.
1278 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1279 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1280 struct usb_host_endpoint *ep)
1281 {
1282 unsigned int interval = 0;
1283
1284 switch (udev->speed) {
1285 case USB_SPEED_HIGH:
1286 /* Max NAK rate */
1287 if (usb_endpoint_xfer_control(&ep->desc) ||
1288 usb_endpoint_xfer_bulk(&ep->desc)) {
1289 interval = xhci_parse_microframe_interval(udev, ep);
1290 break;
1291 }
1292 /* Fall through - SS and HS isoc/int have same decoding */
1293
1294 case USB_SPEED_SUPER:
1295 if (usb_endpoint_xfer_int(&ep->desc) ||
1296 usb_endpoint_xfer_isoc(&ep->desc)) {
1297 interval = xhci_parse_exponent_interval(udev, ep);
1298 }
1299 break;
1300
1301 case USB_SPEED_FULL:
1302 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1303 interval = xhci_parse_exponent_interval(udev, ep);
1304 break;
1305 }
1306 /*
1307 * Fall through for interrupt endpoint interval decoding
1308 * since it uses the same rules as low speed interrupt
1309 * endpoints.
1310 */
1311
1312 case USB_SPEED_LOW:
1313 if (usb_endpoint_xfer_int(&ep->desc) ||
1314 usb_endpoint_xfer_isoc(&ep->desc)) {
1315
1316 interval = xhci_parse_frame_interval(udev, ep);
1317 }
1318 break;
1319
1320 default:
1321 BUG();
1322 }
1323 return EP_INTERVAL(interval);
1324 }
1325
1326 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1327 * High speed endpoint descriptors can define "the number of additional
1328 * transaction opportunities per microframe", but that goes in the Max Burst
1329 * endpoint context field.
1330 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1331 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1332 struct usb_host_endpoint *ep)
1333 {
1334 if (udev->speed != USB_SPEED_SUPER ||
1335 !usb_endpoint_xfer_isoc(&ep->desc))
1336 return 0;
1337 return ep->ss_ep_comp.bmAttributes;
1338 }
1339
xhci_get_endpoint_type(struct usb_device * udev,struct usb_host_endpoint * ep)1340 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1341 struct usb_host_endpoint *ep)
1342 {
1343 int in;
1344 u32 type;
1345
1346 in = usb_endpoint_dir_in(&ep->desc);
1347 if (usb_endpoint_xfer_control(&ep->desc)) {
1348 type = EP_TYPE(CTRL_EP);
1349 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1350 if (in)
1351 type = EP_TYPE(BULK_IN_EP);
1352 else
1353 type = EP_TYPE(BULK_OUT_EP);
1354 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1355 if (in)
1356 type = EP_TYPE(ISOC_IN_EP);
1357 else
1358 type = EP_TYPE(ISOC_OUT_EP);
1359 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1360 if (in)
1361 type = EP_TYPE(INT_IN_EP);
1362 else
1363 type = EP_TYPE(INT_OUT_EP);
1364 } else {
1365 BUG();
1366 }
1367 return type;
1368 }
1369
1370 /* Return the maximum endpoint service interval time (ESIT) payload.
1371 * Basically, this is the maxpacket size, multiplied by the burst size
1372 * and mult size.
1373 */
xhci_get_max_esit_payload(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1374 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1375 struct usb_device *udev,
1376 struct usb_host_endpoint *ep)
1377 {
1378 int max_burst;
1379 int max_packet;
1380
1381 /* Only applies for interrupt or isochronous endpoints */
1382 if (usb_endpoint_xfer_control(&ep->desc) ||
1383 usb_endpoint_xfer_bulk(&ep->desc))
1384 return 0;
1385
1386 if (udev->speed == USB_SPEED_SUPER)
1387 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1388
1389 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1390 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1391 /* A 0 in max burst means 1 transfer per ESIT */
1392 return max_packet * (max_burst + 1);
1393 }
1394
1395 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1396 * Drivers will have to call usb_alloc_streams() to do that.
1397 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1398 int xhci_endpoint_init(struct xhci_hcd *xhci,
1399 struct xhci_virt_device *virt_dev,
1400 struct usb_device *udev,
1401 struct usb_host_endpoint *ep,
1402 gfp_t mem_flags)
1403 {
1404 unsigned int ep_index;
1405 struct xhci_ep_ctx *ep_ctx;
1406 struct xhci_ring *ep_ring;
1407 unsigned int max_packet;
1408 unsigned int max_burst;
1409 enum xhci_ring_type type;
1410 u32 max_esit_payload;
1411
1412 ep_index = xhci_get_endpoint_index(&ep->desc);
1413 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1414
1415 type = usb_endpoint_type(&ep->desc);
1416 /* Set up the endpoint ring */
1417 virt_dev->eps[ep_index].new_ring =
1418 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1419 if (!virt_dev->eps[ep_index].new_ring) {
1420 /* Attempt to use the ring cache */
1421 if (virt_dev->num_rings_cached == 0)
1422 return -ENOMEM;
1423 virt_dev->eps[ep_index].new_ring =
1424 virt_dev->ring_cache[virt_dev->num_rings_cached];
1425 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1426 virt_dev->num_rings_cached--;
1427 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1428 1, type);
1429 }
1430 virt_dev->eps[ep_index].skip = false;
1431 ep_ring = virt_dev->eps[ep_index].new_ring;
1432 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1433
1434 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1435 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1436
1437 /* FIXME dig Mult and streams info out of ep companion desc */
1438
1439 /* Allow 3 retries for everything but isoc;
1440 * CErr shall be set to 0 for Isoch endpoints.
1441 */
1442 if (!usb_endpoint_xfer_isoc(&ep->desc))
1443 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1444 else
1445 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1446
1447 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1448
1449 /* Set the max packet size and max burst */
1450 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1451 max_burst = 0;
1452 switch (udev->speed) {
1453 case USB_SPEED_SUPER:
1454 /* dig out max burst from ep companion desc */
1455 max_burst = ep->ss_ep_comp.bMaxBurst;
1456 break;
1457 case USB_SPEED_HIGH:
1458 /* Some devices get this wrong */
1459 if (usb_endpoint_xfer_bulk(&ep->desc))
1460 max_packet = 512;
1461 /* bits 11:12 specify the number of additional transaction
1462 * opportunities per microframe (USB 2.0, section 9.6.6)
1463 */
1464 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1465 usb_endpoint_xfer_int(&ep->desc)) {
1466 max_burst = (usb_endpoint_maxp(&ep->desc)
1467 & 0x1800) >> 11;
1468 }
1469 break;
1470 case USB_SPEED_FULL:
1471 case USB_SPEED_LOW:
1472 break;
1473 default:
1474 BUG();
1475 }
1476 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1477 MAX_BURST(max_burst));
1478 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1479 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1480
1481 /*
1482 * XXX no idea how to calculate the average TRB buffer length for bulk
1483 * endpoints, as the driver gives us no clue how big each scatter gather
1484 * list entry (or buffer) is going to be.
1485 *
1486 * For isochronous and interrupt endpoints, we set it to the max
1487 * available, until we have new API in the USB core to allow drivers to
1488 * declare how much bandwidth they actually need.
1489 *
1490 * Normally, it would be calculated by taking the total of the buffer
1491 * lengths in the TD and then dividing by the number of TRBs in a TD,
1492 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1493 * use Event Data TRBs, and we don't chain in a link TRB on short
1494 * transfers, we're basically dividing by 1.
1495 *
1496 * xHCI 1.0 specification indicates that the Average TRB Length should
1497 * be set to 8 for control endpoints.
1498 */
1499 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1500 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1501 else
1502 ep_ctx->tx_info |=
1503 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1504
1505 /* FIXME Debug endpoint context */
1506 return 0;
1507 }
1508
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1509 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1510 struct xhci_virt_device *virt_dev,
1511 struct usb_host_endpoint *ep)
1512 {
1513 unsigned int ep_index;
1514 struct xhci_ep_ctx *ep_ctx;
1515
1516 ep_index = xhci_get_endpoint_index(&ep->desc);
1517 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1518
1519 ep_ctx->ep_info = 0;
1520 ep_ctx->ep_info2 = 0;
1521 ep_ctx->deq = 0;
1522 ep_ctx->tx_info = 0;
1523 /* Don't free the endpoint ring until the set interface or configuration
1524 * request succeeds.
1525 */
1526 }
1527
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1528 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1529 {
1530 bw_info->ep_interval = 0;
1531 bw_info->mult = 0;
1532 bw_info->num_packets = 0;
1533 bw_info->max_packet_size = 0;
1534 bw_info->type = 0;
1535 bw_info->max_esit_payload = 0;
1536 }
1537
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1538 void xhci_update_bw_info(struct xhci_hcd *xhci,
1539 struct xhci_container_ctx *in_ctx,
1540 struct xhci_input_control_ctx *ctrl_ctx,
1541 struct xhci_virt_device *virt_dev)
1542 {
1543 struct xhci_bw_info *bw_info;
1544 struct xhci_ep_ctx *ep_ctx;
1545 unsigned int ep_type;
1546 int i;
1547
1548 for (i = 1; i < 31; ++i) {
1549 bw_info = &virt_dev->eps[i].bw_info;
1550
1551 /* We can't tell what endpoint type is being dropped, but
1552 * unconditionally clearing the bandwidth info for non-periodic
1553 * endpoints should be harmless because the info will never be
1554 * set in the first place.
1555 */
1556 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1557 /* Dropped endpoint */
1558 xhci_clear_endpoint_bw_info(bw_info);
1559 continue;
1560 }
1561
1562 if (EP_IS_ADDED(ctrl_ctx, i)) {
1563 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1564 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1565
1566 /* Ignore non-periodic endpoints */
1567 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1568 ep_type != ISOC_IN_EP &&
1569 ep_type != INT_IN_EP)
1570 continue;
1571
1572 /* Added or changed endpoint */
1573 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1574 le32_to_cpu(ep_ctx->ep_info));
1575 /* Number of packets and mult are zero-based in the
1576 * input context, but we want one-based for the
1577 * interval table.
1578 */
1579 bw_info->mult = CTX_TO_EP_MULT(
1580 le32_to_cpu(ep_ctx->ep_info)) + 1;
1581 bw_info->num_packets = CTX_TO_MAX_BURST(
1582 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1583 bw_info->max_packet_size = MAX_PACKET_DECODED(
1584 le32_to_cpu(ep_ctx->ep_info2));
1585 bw_info->type = ep_type;
1586 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1587 le32_to_cpu(ep_ctx->tx_info));
1588 }
1589 }
1590 }
1591
1592 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1593 * Useful when you want to change one particular aspect of the endpoint and then
1594 * issue a configure endpoint command.
1595 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1596 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1597 struct xhci_container_ctx *in_ctx,
1598 struct xhci_container_ctx *out_ctx,
1599 unsigned int ep_index)
1600 {
1601 struct xhci_ep_ctx *out_ep_ctx;
1602 struct xhci_ep_ctx *in_ep_ctx;
1603
1604 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1605 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1606
1607 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1608 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1609 in_ep_ctx->deq = out_ep_ctx->deq;
1610 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1611 }
1612
1613 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1614 * Useful when you want to change one particular aspect of the endpoint and then
1615 * issue a configure endpoint command. Only the context entries field matters,
1616 * but we'll copy the whole thing anyway.
1617 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1618 void xhci_slot_copy(struct xhci_hcd *xhci,
1619 struct xhci_container_ctx *in_ctx,
1620 struct xhci_container_ctx *out_ctx)
1621 {
1622 struct xhci_slot_ctx *in_slot_ctx;
1623 struct xhci_slot_ctx *out_slot_ctx;
1624
1625 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1626 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1627
1628 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1629 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1630 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1631 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1632 }
1633
1634 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1635 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1636 {
1637 int i;
1638 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1639 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1640
1641 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1642
1643 if (!num_sp)
1644 return 0;
1645
1646 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1647 if (!xhci->scratchpad)
1648 goto fail_sp;
1649
1650 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1651 num_sp * sizeof(u64),
1652 &xhci->scratchpad->sp_dma, flags);
1653 if (!xhci->scratchpad->sp_array)
1654 goto fail_sp2;
1655
1656 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1657 if (!xhci->scratchpad->sp_buffers)
1658 goto fail_sp3;
1659
1660 xhci->scratchpad->sp_dma_buffers =
1661 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1662
1663 if (!xhci->scratchpad->sp_dma_buffers)
1664 goto fail_sp4;
1665
1666 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1667 for (i = 0; i < num_sp; i++) {
1668 dma_addr_t dma;
1669 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1670 flags);
1671 if (!buf)
1672 goto fail_sp5;
1673
1674 xhci->scratchpad->sp_array[i] = dma;
1675 xhci->scratchpad->sp_buffers[i] = buf;
1676 xhci->scratchpad->sp_dma_buffers[i] = dma;
1677 }
1678
1679 return 0;
1680
1681 fail_sp5:
1682 for (i = i - 1; i >= 0; i--) {
1683 dma_free_coherent(dev, xhci->page_size,
1684 xhci->scratchpad->sp_buffers[i],
1685 xhci->scratchpad->sp_dma_buffers[i]);
1686 }
1687 kfree(xhci->scratchpad->sp_dma_buffers);
1688
1689 fail_sp4:
1690 kfree(xhci->scratchpad->sp_buffers);
1691
1692 fail_sp3:
1693 dma_free_coherent(dev, num_sp * sizeof(u64),
1694 xhci->scratchpad->sp_array,
1695 xhci->scratchpad->sp_dma);
1696
1697 fail_sp2:
1698 kfree(xhci->scratchpad);
1699 xhci->scratchpad = NULL;
1700
1701 fail_sp:
1702 return -ENOMEM;
1703 }
1704
scratchpad_free(struct xhci_hcd * xhci)1705 static void scratchpad_free(struct xhci_hcd *xhci)
1706 {
1707 int num_sp;
1708 int i;
1709 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1710
1711 if (!xhci->scratchpad)
1712 return;
1713
1714 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1715
1716 for (i = 0; i < num_sp; i++) {
1717 dma_free_coherent(&pdev->dev, xhci->page_size,
1718 xhci->scratchpad->sp_buffers[i],
1719 xhci->scratchpad->sp_dma_buffers[i]);
1720 }
1721 kfree(xhci->scratchpad->sp_dma_buffers);
1722 kfree(xhci->scratchpad->sp_buffers);
1723 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1724 xhci->scratchpad->sp_array,
1725 xhci->scratchpad->sp_dma);
1726 kfree(xhci->scratchpad);
1727 xhci->scratchpad = NULL;
1728 }
1729
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1730 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1731 bool allocate_in_ctx, bool allocate_completion,
1732 gfp_t mem_flags)
1733 {
1734 struct xhci_command *command;
1735
1736 command = kzalloc(sizeof(*command), mem_flags);
1737 if (!command)
1738 return NULL;
1739
1740 if (allocate_in_ctx) {
1741 command->in_ctx =
1742 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1743 mem_flags);
1744 if (!command->in_ctx) {
1745 kfree(command);
1746 return NULL;
1747 }
1748 }
1749
1750 if (allocate_completion) {
1751 command->completion =
1752 kzalloc(sizeof(struct completion), mem_flags);
1753 if (!command->completion) {
1754 xhci_free_container_ctx(xhci, command->in_ctx);
1755 kfree(command);
1756 return NULL;
1757 }
1758 init_completion(command->completion);
1759 }
1760
1761 command->status = 0;
1762 INIT_LIST_HEAD(&command->cmd_list);
1763 return command;
1764 }
1765
xhci_urb_free_priv(struct xhci_hcd * xhci,struct urb_priv * urb_priv)1766 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1767 {
1768 if (urb_priv) {
1769 kfree(urb_priv->td[0]);
1770 kfree(urb_priv);
1771 }
1772 }
1773
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1774 void xhci_free_command(struct xhci_hcd *xhci,
1775 struct xhci_command *command)
1776 {
1777 xhci_free_container_ctx(xhci,
1778 command->in_ctx);
1779 kfree(command->completion);
1780 kfree(command);
1781 }
1782
xhci_mem_cleanup(struct xhci_hcd * xhci)1783 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1784 {
1785 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1786 struct dev_info *dev_info, *next;
1787 struct xhci_cd *cur_cd, *next_cd;
1788 unsigned long flags;
1789 int size;
1790 int i, j, num_ports;
1791
1792 /* Free the Event Ring Segment Table and the actual Event Ring */
1793 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1794 if (xhci->erst.entries)
1795 dma_free_coherent(&pdev->dev, size,
1796 xhci->erst.entries, xhci->erst.erst_dma_addr);
1797 xhci->erst.entries = NULL;
1798 xhci_dbg(xhci, "Freed ERST\n");
1799 if (xhci->event_ring)
1800 xhci_ring_free(xhci, xhci->event_ring);
1801 xhci->event_ring = NULL;
1802 xhci_dbg(xhci, "Freed event ring\n");
1803
1804 xhci->cmd_ring_reserved_trbs = 0;
1805 if (xhci->cmd_ring)
1806 xhci_ring_free(xhci, xhci->cmd_ring);
1807 xhci->cmd_ring = NULL;
1808 xhci_dbg(xhci, "Freed command ring\n");
1809 list_for_each_entry_safe(cur_cd, next_cd,
1810 &xhci->cancel_cmd_list, cancel_cmd_list) {
1811 list_del(&cur_cd->cancel_cmd_list);
1812 kfree(cur_cd);
1813 }
1814
1815 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1816 for (i = 0; i < num_ports; i++) {
1817 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1818 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1819 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1820 while (!list_empty(ep))
1821 list_del_init(ep->next);
1822 }
1823 }
1824
1825 for (i = 1; i < MAX_HC_SLOTS; ++i)
1826 xhci_free_virt_device(xhci, i);
1827
1828 if (xhci->segment_pool)
1829 dma_pool_destroy(xhci->segment_pool);
1830 xhci->segment_pool = NULL;
1831 xhci_dbg(xhci, "Freed segment pool\n");
1832
1833 if (xhci->device_pool)
1834 dma_pool_destroy(xhci->device_pool);
1835 xhci->device_pool = NULL;
1836 xhci_dbg(xhci, "Freed device context pool\n");
1837
1838 if (xhci->small_streams_pool)
1839 dma_pool_destroy(xhci->small_streams_pool);
1840 xhci->small_streams_pool = NULL;
1841 xhci_dbg(xhci, "Freed small stream array pool\n");
1842
1843 if (xhci->medium_streams_pool)
1844 dma_pool_destroy(xhci->medium_streams_pool);
1845 xhci->medium_streams_pool = NULL;
1846 xhci_dbg(xhci, "Freed medium stream array pool\n");
1847
1848 if (xhci->dcbaa)
1849 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1850 xhci->dcbaa, xhci->dcbaa->dma);
1851 xhci->dcbaa = NULL;
1852
1853 scratchpad_free(xhci);
1854
1855 spin_lock_irqsave(&xhci->lock, flags);
1856 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1857 list_del(&dev_info->list);
1858 kfree(dev_info);
1859 }
1860 spin_unlock_irqrestore(&xhci->lock, flags);
1861
1862 if (!xhci->rh_bw)
1863 goto no_bw;
1864
1865 for (i = 0; i < num_ports; i++) {
1866 struct xhci_tt_bw_info *tt, *n;
1867 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1868 list_del(&tt->tt_list);
1869 kfree(tt);
1870 }
1871 }
1872
1873 no_bw:
1874 xhci->num_usb2_ports = 0;
1875 xhci->num_usb3_ports = 0;
1876 xhci->num_active_eps = 0;
1877 kfree(xhci->usb2_ports);
1878 kfree(xhci->usb3_ports);
1879 kfree(xhci->port_array);
1880 kfree(xhci->rh_bw);
1881
1882 xhci->page_size = 0;
1883 xhci->page_shift = 0;
1884 xhci->bus_state[0].bus_suspended = 0;
1885 xhci->bus_state[1].bus_suspended = 0;
1886 }
1887
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1888 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1889 struct xhci_segment *input_seg,
1890 union xhci_trb *start_trb,
1891 union xhci_trb *end_trb,
1892 dma_addr_t input_dma,
1893 struct xhci_segment *result_seg,
1894 char *test_name, int test_number)
1895 {
1896 unsigned long long start_dma;
1897 unsigned long long end_dma;
1898 struct xhci_segment *seg;
1899
1900 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1901 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1902
1903 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1904 if (seg != result_seg) {
1905 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1906 test_name, test_number);
1907 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1908 "input DMA 0x%llx\n",
1909 input_seg,
1910 (unsigned long long) input_dma);
1911 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1912 "ending TRB %p (0x%llx DMA)\n",
1913 start_trb, start_dma,
1914 end_trb, end_dma);
1915 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1916 result_seg, seg);
1917 return -1;
1918 }
1919 return 0;
1920 }
1921
1922 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci,gfp_t mem_flags)1923 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1924 {
1925 struct {
1926 dma_addr_t input_dma;
1927 struct xhci_segment *result_seg;
1928 } simple_test_vector [] = {
1929 /* A zeroed DMA field should fail */
1930 { 0, NULL },
1931 /* One TRB before the ring start should fail */
1932 { xhci->event_ring->first_seg->dma - 16, NULL },
1933 /* One byte before the ring start should fail */
1934 { xhci->event_ring->first_seg->dma - 1, NULL },
1935 /* Starting TRB should succeed */
1936 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1937 /* Ending TRB should succeed */
1938 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1939 xhci->event_ring->first_seg },
1940 /* One byte after the ring end should fail */
1941 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1942 /* One TRB after the ring end should fail */
1943 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1944 /* An address of all ones should fail */
1945 { (dma_addr_t) (~0), NULL },
1946 };
1947 struct {
1948 struct xhci_segment *input_seg;
1949 union xhci_trb *start_trb;
1950 union xhci_trb *end_trb;
1951 dma_addr_t input_dma;
1952 struct xhci_segment *result_seg;
1953 } complex_test_vector [] = {
1954 /* Test feeding a valid DMA address from a different ring */
1955 { .input_seg = xhci->event_ring->first_seg,
1956 .start_trb = xhci->event_ring->first_seg->trbs,
1957 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958 .input_dma = xhci->cmd_ring->first_seg->dma,
1959 .result_seg = NULL,
1960 },
1961 /* Test feeding a valid end TRB from a different ring */
1962 { .input_seg = xhci->event_ring->first_seg,
1963 .start_trb = xhci->event_ring->first_seg->trbs,
1964 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1965 .input_dma = xhci->cmd_ring->first_seg->dma,
1966 .result_seg = NULL,
1967 },
1968 /* Test feeding a valid start and end TRB from a different ring */
1969 { .input_seg = xhci->event_ring->first_seg,
1970 .start_trb = xhci->cmd_ring->first_seg->trbs,
1971 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1972 .input_dma = xhci->cmd_ring->first_seg->dma,
1973 .result_seg = NULL,
1974 },
1975 /* TRB in this ring, but after this TD */
1976 { .input_seg = xhci->event_ring->first_seg,
1977 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1978 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1979 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1980 .result_seg = NULL,
1981 },
1982 /* TRB in this ring, but before this TD */
1983 { .input_seg = xhci->event_ring->first_seg,
1984 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1985 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1986 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1987 .result_seg = NULL,
1988 },
1989 /* TRB in this ring, but after this wrapped TD */
1990 { .input_seg = xhci->event_ring->first_seg,
1991 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1993 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1994 .result_seg = NULL,
1995 },
1996 /* TRB in this ring, but before this wrapped TD */
1997 { .input_seg = xhci->event_ring->first_seg,
1998 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1999 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2000 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2001 .result_seg = NULL,
2002 },
2003 /* TRB not in this ring, and we have a wrapped TD */
2004 { .input_seg = xhci->event_ring->first_seg,
2005 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2006 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2007 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2008 .result_seg = NULL,
2009 },
2010 };
2011
2012 unsigned int num_tests;
2013 int i, ret;
2014
2015 num_tests = ARRAY_SIZE(simple_test_vector);
2016 for (i = 0; i < num_tests; i++) {
2017 ret = xhci_test_trb_in_td(xhci,
2018 xhci->event_ring->first_seg,
2019 xhci->event_ring->first_seg->trbs,
2020 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021 simple_test_vector[i].input_dma,
2022 simple_test_vector[i].result_seg,
2023 "Simple", i);
2024 if (ret < 0)
2025 return ret;
2026 }
2027
2028 num_tests = ARRAY_SIZE(complex_test_vector);
2029 for (i = 0; i < num_tests; i++) {
2030 ret = xhci_test_trb_in_td(xhci,
2031 complex_test_vector[i].input_seg,
2032 complex_test_vector[i].start_trb,
2033 complex_test_vector[i].end_trb,
2034 complex_test_vector[i].input_dma,
2035 complex_test_vector[i].result_seg,
2036 "Complex", i);
2037 if (ret < 0)
2038 return ret;
2039 }
2040 xhci_dbg(xhci, "TRB math tests passed.\n");
2041 return 0;
2042 }
2043
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2044 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2045 {
2046 u64 temp;
2047 dma_addr_t deq;
2048
2049 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2050 xhci->event_ring->dequeue);
2051 if (deq == 0 && !in_interrupt())
2052 xhci_warn(xhci, "WARN something wrong with SW event ring "
2053 "dequeue ptr.\n");
2054 /* Update HC event ring dequeue pointer */
2055 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2056 temp &= ERST_PTR_MASK;
2057 /* Don't clear the EHB bit (which is RW1C) because
2058 * there might be more events to service.
2059 */
2060 temp &= ~ERST_EHB;
2061 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2062 "preserving EHB bit\n");
2063 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2064 &xhci->ir_set->erst_dequeue);
2065 }
2066
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,u8 major_revision)2067 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2068 __le32 __iomem *addr, u8 major_revision)
2069 {
2070 u32 temp, port_offset, port_count;
2071 int i;
2072
2073 if (major_revision > 0x03) {
2074 xhci_warn(xhci, "Ignoring unknown port speed, "
2075 "Ext Cap %p, revision = 0x%x\n",
2076 addr, major_revision);
2077 /* Ignoring port protocol we can't understand. FIXME */
2078 return;
2079 }
2080
2081 /* Port offset and count in the third dword, see section 7.2 */
2082 temp = xhci_readl(xhci, addr + 2);
2083 port_offset = XHCI_EXT_PORT_OFF(temp);
2084 port_count = XHCI_EXT_PORT_COUNT(temp);
2085 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2086 "count = %u, revision = 0x%x\n",
2087 addr, port_offset, port_count, major_revision);
2088 /* Port count includes the current port offset */
2089 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2090 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2091 return;
2092
2093 /* Check the host's USB2 LPM capability */
2094 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2095 (temp & XHCI_L1C)) {
2096 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2097 xhci->sw_lpm_support = 1;
2098 }
2099
2100 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2101 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2102 xhci->sw_lpm_support = 1;
2103 if (temp & XHCI_HLC) {
2104 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2105 xhci->hw_lpm_support = 1;
2106 }
2107 }
2108
2109 port_offset--;
2110 for (i = port_offset; i < (port_offset + port_count); i++) {
2111 /* Duplicate entry. Ignore the port if the revisions differ. */
2112 if (xhci->port_array[i] != 0) {
2113 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2114 " port %u\n", addr, i);
2115 xhci_warn(xhci, "Port was marked as USB %u, "
2116 "duplicated as USB %u\n",
2117 xhci->port_array[i], major_revision);
2118 /* Only adjust the roothub port counts if we haven't
2119 * found a similar duplicate.
2120 */
2121 if (xhci->port_array[i] != major_revision &&
2122 xhci->port_array[i] != DUPLICATE_ENTRY) {
2123 if (xhci->port_array[i] == 0x03)
2124 xhci->num_usb3_ports--;
2125 else
2126 xhci->num_usb2_ports--;
2127 xhci->port_array[i] = DUPLICATE_ENTRY;
2128 }
2129 /* FIXME: Should we disable the port? */
2130 continue;
2131 }
2132 xhci->port_array[i] = major_revision;
2133 if (major_revision == 0x03)
2134 xhci->num_usb3_ports++;
2135 else
2136 xhci->num_usb2_ports++;
2137 }
2138 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2139 }
2140
2141 /*
2142 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2143 * specify what speeds each port is supposed to be. We can't count on the port
2144 * speed bits in the PORTSC register being correct until a device is connected,
2145 * but we need to set up the two fake roothubs with the correct number of USB
2146 * 3.0 and USB 2.0 ports at host controller initialization time.
2147 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2148 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2149 {
2150 __le32 __iomem *addr;
2151 u32 offset;
2152 unsigned int num_ports;
2153 int i, j, port_index;
2154
2155 addr = &xhci->cap_regs->hcc_params;
2156 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2157 if (offset == 0) {
2158 xhci_err(xhci, "No Extended Capability registers, "
2159 "unable to set up roothub.\n");
2160 return -ENODEV;
2161 }
2162
2163 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2164 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2165 if (!xhci->port_array)
2166 return -ENOMEM;
2167
2168 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2169 if (!xhci->rh_bw)
2170 return -ENOMEM;
2171 for (i = 0; i < num_ports; i++) {
2172 struct xhci_interval_bw_table *bw_table;
2173
2174 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2175 bw_table = &xhci->rh_bw[i].bw_table;
2176 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2177 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2178 }
2179
2180 /*
2181 * For whatever reason, the first capability offset is from the
2182 * capability register base, not from the HCCPARAMS register.
2183 * See section 5.3.6 for offset calculation.
2184 */
2185 addr = &xhci->cap_regs->hc_capbase + offset;
2186 while (1) {
2187 u32 cap_id;
2188
2189 cap_id = xhci_readl(xhci, addr);
2190 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2191 xhci_add_in_port(xhci, num_ports, addr,
2192 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2193 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2194 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2195 == num_ports)
2196 break;
2197 /*
2198 * Once you're into the Extended Capabilities, the offset is
2199 * always relative to the register holding the offset.
2200 */
2201 addr += offset;
2202 }
2203
2204 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2205 xhci_warn(xhci, "No ports on the roothubs?\n");
2206 return -ENODEV;
2207 }
2208 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2209 xhci->num_usb2_ports, xhci->num_usb3_ports);
2210
2211 /* Place limits on the number of roothub ports so that the hub
2212 * descriptors aren't longer than the USB core will allocate.
2213 */
2214 if (xhci->num_usb3_ports > 15) {
2215 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2216 xhci->num_usb3_ports = 15;
2217 }
2218 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2219 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2220 USB_MAXCHILDREN);
2221 xhci->num_usb2_ports = USB_MAXCHILDREN;
2222 }
2223
2224 /*
2225 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2226 * Not sure how the USB core will handle a hub with no ports...
2227 */
2228 if (xhci->num_usb2_ports) {
2229 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2230 xhci->num_usb2_ports, flags);
2231 if (!xhci->usb2_ports)
2232 return -ENOMEM;
2233
2234 port_index = 0;
2235 for (i = 0; i < num_ports; i++) {
2236 if (xhci->port_array[i] == 0x03 ||
2237 xhci->port_array[i] == 0 ||
2238 xhci->port_array[i] == DUPLICATE_ENTRY)
2239 continue;
2240
2241 xhci->usb2_ports[port_index] =
2242 &xhci->op_regs->port_status_base +
2243 NUM_PORT_REGS*i;
2244 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2245 "addr = %p\n", i,
2246 xhci->usb2_ports[port_index]);
2247 port_index++;
2248 if (port_index == xhci->num_usb2_ports)
2249 break;
2250 }
2251 }
2252 if (xhci->num_usb3_ports) {
2253 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2254 xhci->num_usb3_ports, flags);
2255 if (!xhci->usb3_ports)
2256 return -ENOMEM;
2257
2258 port_index = 0;
2259 for (i = 0; i < num_ports; i++)
2260 if (xhci->port_array[i] == 0x03) {
2261 xhci->usb3_ports[port_index] =
2262 &xhci->op_regs->port_status_base +
2263 NUM_PORT_REGS*i;
2264 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2265 "addr = %p\n", i,
2266 xhci->usb3_ports[port_index]);
2267 port_index++;
2268 if (port_index == xhci->num_usb3_ports)
2269 break;
2270 }
2271 }
2272 return 0;
2273 }
2274
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2275 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2276 {
2277 dma_addr_t dma;
2278 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2279 unsigned int val, val2;
2280 u64 val_64;
2281 struct xhci_segment *seg;
2282 u32 page_size, temp;
2283 int i;
2284
2285 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2286 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2287
2288 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2289 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2290 for (i = 0; i < 16; i++) {
2291 if ((0x1 & page_size) != 0)
2292 break;
2293 page_size = page_size >> 1;
2294 }
2295 if (i < 16)
2296 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2297 else
2298 xhci_warn(xhci, "WARN: no supported page size\n");
2299 /* Use 4K pages, since that's common and the minimum the HC supports */
2300 xhci->page_shift = 12;
2301 xhci->page_size = 1 << xhci->page_shift;
2302 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2303
2304 /*
2305 * Program the Number of Device Slots Enabled field in the CONFIG
2306 * register with the max value of slots the HC can handle.
2307 */
2308 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2309 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2310 (unsigned int) val);
2311 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2312 val |= (val2 & ~HCS_SLOTS_MASK);
2313 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2314 (unsigned int) val);
2315 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2316
2317 /*
2318 * Section 5.4.8 - doorbell array must be
2319 * "physically contiguous and 64-byte (cache line) aligned".
2320 */
2321 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2322 GFP_KERNEL);
2323 if (!xhci->dcbaa)
2324 goto fail;
2325 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2326 xhci->dcbaa->dma = dma;
2327 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2328 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2329 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2330
2331 /*
2332 * Initialize the ring segment pool. The ring must be a contiguous
2333 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2334 * however, the command ring segment needs 64-byte aligned segments,
2335 * so we pick the greater alignment need.
2336 */
2337 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2338 SEGMENT_SIZE, 64, xhci->page_size);
2339
2340 /* See Table 46 and Note on Figure 55 */
2341 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2342 2112, 64, xhci->page_size);
2343 if (!xhci->segment_pool || !xhci->device_pool)
2344 goto fail;
2345
2346 /* Linear stream context arrays don't have any boundary restrictions,
2347 * and only need to be 16-byte aligned.
2348 */
2349 xhci->small_streams_pool =
2350 dma_pool_create("xHCI 256 byte stream ctx arrays",
2351 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2352 xhci->medium_streams_pool =
2353 dma_pool_create("xHCI 1KB stream ctx arrays",
2354 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2355 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2356 * will be allocated with dma_alloc_coherent()
2357 */
2358
2359 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2360 goto fail;
2361
2362 /* Set up the command ring to have one segments for now. */
2363 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2364 if (!xhci->cmd_ring)
2365 goto fail;
2366 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2367 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2368 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2369
2370 /* Set the address in the Command Ring Control register */
2371 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2372 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2373 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2374 xhci->cmd_ring->cycle_state;
2375 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2376 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2377 xhci_dbg_cmd_ptrs(xhci);
2378
2379 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2380 val &= DBOFF_MASK;
2381 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2382 " from cap regs base addr\n", val);
2383 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2384 xhci_dbg_regs(xhci);
2385 xhci_print_run_regs(xhci);
2386 /* Set ir_set to interrupt register set 0 */
2387 xhci->ir_set = &xhci->run_regs->ir_set[0];
2388
2389 /*
2390 * Event ring setup: Allocate a normal ring, but also setup
2391 * the event ring segment table (ERST). Section 4.9.3.
2392 */
2393 xhci_dbg(xhci, "// Allocating event ring\n");
2394 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2395 flags);
2396 if (!xhci->event_ring)
2397 goto fail;
2398 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2399 goto fail;
2400
2401 xhci->erst.entries = dma_alloc_coherent(dev,
2402 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2403 GFP_KERNEL);
2404 if (!xhci->erst.entries)
2405 goto fail;
2406 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2407 (unsigned long long)dma);
2408
2409 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2410 xhci->erst.num_entries = ERST_NUM_SEGS;
2411 xhci->erst.erst_dma_addr = dma;
2412 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2413 xhci->erst.num_entries,
2414 xhci->erst.entries,
2415 (unsigned long long)xhci->erst.erst_dma_addr);
2416
2417 /* set ring base address and size for each segment table entry */
2418 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2419 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2420 entry->seg_addr = cpu_to_le64(seg->dma);
2421 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2422 entry->rsvd = 0;
2423 seg = seg->next;
2424 }
2425
2426 /* set ERST count with the number of entries in the segment table */
2427 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2428 val &= ERST_SIZE_MASK;
2429 val |= ERST_NUM_SEGS;
2430 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2431 val);
2432 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2433
2434 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2435 /* set the segment table base address */
2436 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2437 (unsigned long long)xhci->erst.erst_dma_addr);
2438 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2439 val_64 &= ERST_PTR_MASK;
2440 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2441 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2442
2443 /* Set the event ring dequeue address */
2444 xhci_set_hc_event_deq(xhci);
2445 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2446 xhci_print_ir_set(xhci, 0);
2447
2448 /*
2449 * XXX: Might need to set the Interrupter Moderation Register to
2450 * something other than the default (~1ms minimum between interrupts).
2451 * See section 5.5.1.2.
2452 */
2453 init_completion(&xhci->addr_dev);
2454 for (i = 0; i < MAX_HC_SLOTS; ++i)
2455 xhci->devs[i] = NULL;
2456 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2457 xhci->bus_state[0].resume_done[i] = 0;
2458 xhci->bus_state[1].resume_done[i] = 0;
2459 }
2460
2461 if (scratchpad_alloc(xhci, flags))
2462 goto fail;
2463 if (xhci_setup_port_arrays(xhci, flags))
2464 goto fail;
2465
2466 /* Enable USB 3.0 device notifications for function remote wake, which
2467 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2468 * U3 (device suspend).
2469 */
2470 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2471 temp &= ~DEV_NOTE_MASK;
2472 temp |= DEV_NOTE_FWAKE;
2473 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2474
2475 return 0;
2476
2477 fail:
2478 xhci_warn(xhci, "Couldn't initialize memory\n");
2479 xhci_halt(xhci);
2480 xhci_reset(xhci);
2481 xhci_mem_cleanup(xhci);
2482 return -ENOMEM;
2483 }
2484