1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
xhci_segment_alloc(struct xhci_hcd * xhci,gfp_t flags)37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
51 }
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60 }
61
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
74 }
75
76 /*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,bool link_trbs)83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85 {
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 }
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
113
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
123 }
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
127 }
128
xhci_initialize_ring_info(struct xhci_ring * ring)129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139 */
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
144 }
145
146 /**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,bool link_trbs,gfp_t flags)153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
158
159 ring = kzalloc(sizeof *(ring), flags);
160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161 if (!ring)
162 return NULL;
163
164 INIT_LIST_HEAD(&ring->td_list);
165 if (num_segs == 0)
166 return ring;
167
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
172
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
176
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
181
182 prev = next;
183 num_segs--;
184 }
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
193 }
194 xhci_initialize_ring_info(ring);
195 return ring;
196
197 fail:
198 xhci_ring_free(xhci, ring);
199 return NULL;
200 }
201
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
205 {
206 int rings_cached;
207
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
223 }
224 virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring)230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
232 {
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
244 */
245 INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)250 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 int type, gfp_t flags)
252 {
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
256
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
266 }
267
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)268 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 struct xhci_container_ctx *ctx)
270 {
271 if (!ctx)
272 return;
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
275 }
276
xhci_get_input_control_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
279 {
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
286 {
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
289
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
297 {
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
302
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307
308 /***************** Streams structures manipulation *************************/
309
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)310 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311 unsigned int num_stream_ctxs,
312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313 {
314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317 pci_free_consistent(pdev,
318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319 stream_ctx, dma);
320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321 return dma_pool_free(xhci->small_streams_pool,
322 stream_ctx, dma);
323 else
324 return dma_pool_free(xhci->medium_streams_pool,
325 stream_ctx, dma);
326 }
327
328 /*
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 * - how many streams the endpoint supports,
332 * - the maximum primary stream array size the host controller supports,
333 * - and how many streams the device driver asks for.
334 *
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
337 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)338 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339 unsigned int num_stream_ctxs, dma_addr_t *dma,
340 gfp_t mem_flags)
341 {
342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345 return pci_alloc_consistent(pdev,
346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347 dma);
348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349 return dma_pool_alloc(xhci->small_streams_pool,
350 mem_flags, dma);
351 else
352 return dma_pool_alloc(xhci->medium_streams_pool,
353 mem_flags, dma);
354 }
355
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)356 struct xhci_ring *xhci_dma_to_transfer_ring(
357 struct xhci_virt_ep *ep,
358 u64 address)
359 {
360 if (ep->ep_state & EP_HAS_STREAMS)
361 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
363 return ep->ring;
364 }
365
366 /* Only use this when you know stream_info is valid */
367 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
dma_to_stream_ring(struct xhci_stream_info * stream_info,u64 address)368 static struct xhci_ring *dma_to_stream_ring(
369 struct xhci_stream_info *stream_info,
370 u64 address)
371 {
372 return radix_tree_lookup(&stream_info->trb_address_map,
373 address >> SEGMENT_SHIFT);
374 }
375 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)377 struct xhci_ring *xhci_stream_id_to_ring(
378 struct xhci_virt_device *dev,
379 unsigned int ep_index,
380 unsigned int stream_id)
381 {
382 struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384 if (stream_id == 0)
385 return ep->ring;
386 if (!ep->stream_info)
387 return NULL;
388
389 if (stream_id > ep->stream_info->num_streams)
390 return NULL;
391 return ep->stream_info->stream_rings[stream_id];
392 }
393
394 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_test_radix_tree(struct xhci_hcd * xhci,unsigned int num_streams,struct xhci_stream_info * stream_info)395 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396 unsigned int num_streams,
397 struct xhci_stream_info *stream_info)
398 {
399 u32 cur_stream;
400 struct xhci_ring *cur_ring;
401 u64 addr;
402
403 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404 struct xhci_ring *mapped_ring;
405 int trb_size = sizeof(union xhci_trb);
406
407 cur_ring = stream_info->stream_rings[cur_stream];
408 for (addr = cur_ring->first_seg->dma;
409 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410 addr += trb_size) {
411 mapped_ring = dma_to_stream_ring(stream_info, addr);
412 if (cur_ring != mapped_ring) {
413 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414 "didn't map to stream ID %u; "
415 "mapped to ring %p\n",
416 (unsigned long long) addr,
417 cur_stream,
418 mapped_ring);
419 return -EINVAL;
420 }
421 }
422 /* One TRB after the end of the ring segment shouldn't return a
423 * pointer to the current ring (although it may be a part of a
424 * different ring).
425 */
426 mapped_ring = dma_to_stream_ring(stream_info, addr);
427 if (mapped_ring != cur_ring) {
428 /* One TRB before should also fail */
429 addr = cur_ring->first_seg->dma - trb_size;
430 mapped_ring = dma_to_stream_ring(stream_info, addr);
431 }
432 if (mapped_ring == cur_ring) {
433 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434 "mapped to valid stream ID %u; "
435 "mapped ring = %p\n",
436 (unsigned long long) addr,
437 cur_stream,
438 mapped_ring);
439 return -EINVAL;
440 }
441 }
442 return 0;
443 }
444 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
445
446 /*
447 * Change an endpoint's internal structure so it supports stream IDs. The
448 * number of requested streams includes stream 0, which cannot be used by device
449 * drivers.
450 *
451 * The number of stream contexts in the stream context array may be bigger than
452 * the number of streams the driver wants to use. This is because the number of
453 * stream context array entries must be a power of two.
454 *
455 * We need a radix tree for mapping physical addresses of TRBs to which stream
456 * ID they belong to. We need to do this because the host controller won't tell
457 * us which stream ring the TRB came from. We could store the stream ID in an
458 * event data TRB, but that doesn't help us for the cancellation case, since the
459 * endpoint may stop before it reaches that event data TRB.
460 *
461 * The radix tree maps the upper portion of the TRB DMA address to a ring
462 * segment that has the same upper portion of DMA addresses. For example, say I
463 * have segments of size 1KB, that are always 64-byte aligned. A segment may
464 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
465 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
466 * pass the radix tree a key to get the right stream ID:
467 *
468 * 0x10c90fff >> 10 = 0x43243
469 * 0x10c912c0 >> 10 = 0x43244
470 * 0x10c91400 >> 10 = 0x43245
471 *
472 * Obviously, only those TRBs with DMA addresses that are within the segment
473 * will make the radix tree return the stream ID for that ring.
474 *
475 * Caveats for the radix tree:
476 *
477 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
482 * extended systems (where the DMA address can be bigger than 32-bits),
483 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
484 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)485 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486 unsigned int num_stream_ctxs,
487 unsigned int num_streams, gfp_t mem_flags)
488 {
489 struct xhci_stream_info *stream_info;
490 u32 cur_stream;
491 struct xhci_ring *cur_ring;
492 unsigned long key;
493 u64 addr;
494 int ret;
495
496 xhci_dbg(xhci, "Allocating %u streams and %u "
497 "stream context array entries.\n",
498 num_streams, num_stream_ctxs);
499 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501 return NULL;
502 }
503 xhci->cmd_ring_reserved_trbs++;
504
505 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506 if (!stream_info)
507 goto cleanup_trbs;
508
509 stream_info->num_streams = num_streams;
510 stream_info->num_stream_ctxs = num_stream_ctxs;
511
512 /* Initialize the array of virtual pointers to stream rings. */
513 stream_info->stream_rings = kzalloc(
514 sizeof(struct xhci_ring *)*num_streams,
515 mem_flags);
516 if (!stream_info->stream_rings)
517 goto cleanup_info;
518
519 /* Initialize the array of DMA addresses for stream rings for the HW. */
520 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521 num_stream_ctxs, &stream_info->ctx_array_dma,
522 mem_flags);
523 if (!stream_info->stream_ctx_array)
524 goto cleanup_ctx;
525 memset(stream_info->stream_ctx_array, 0,
526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527
528 /* Allocate everything needed to free the stream rings later */
529 stream_info->free_streams_command =
530 xhci_alloc_command(xhci, true, true, mem_flags);
531 if (!stream_info->free_streams_command)
532 goto cleanup_ctx;
533
534 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535
536 /* Allocate rings for all the streams that the driver will use,
537 * and add their segment DMA addresses to the radix tree.
538 * Stream 0 is reserved.
539 */
540 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541 stream_info->stream_rings[cur_stream] =
542 xhci_ring_alloc(xhci, 1, true, mem_flags);
543 cur_ring = stream_info->stream_rings[cur_stream];
544 if (!cur_ring)
545 goto cleanup_rings;
546 cur_ring->stream_id = cur_stream;
547 /* Set deq ptr, cycle bit, and stream context type */
548 addr = cur_ring->first_seg->dma |
549 SCT_FOR_CTX(SCT_PRI_TR) |
550 cur_ring->cycle_state;
551 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553 cur_stream, (unsigned long long) addr);
554
555 key = (unsigned long)
556 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557 ret = radix_tree_insert(&stream_info->trb_address_map,
558 key, cur_ring);
559 if (ret) {
560 xhci_ring_free(xhci, cur_ring);
561 stream_info->stream_rings[cur_stream] = NULL;
562 goto cleanup_rings;
563 }
564 }
565 /* Leave the other unused stream ring pointers in the stream context
566 * array initialized to zero. This will cause the xHC to give us an
567 * error if the device asks for a stream ID we don't have setup (if it
568 * was any other way, the host controller would assume the ring is
569 * "empty" and wait forever for data to be queued to that stream ID).
570 */
571 #if XHCI_DEBUG
572 /* Do a little test on the radix tree to make sure it returns the
573 * correct values.
574 */
575 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576 goto cleanup_rings;
577 #endif
578
579 return stream_info;
580
581 cleanup_rings:
582 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583 cur_ring = stream_info->stream_rings[cur_stream];
584 if (cur_ring) {
585 addr = cur_ring->first_seg->dma;
586 radix_tree_delete(&stream_info->trb_address_map,
587 addr >> SEGMENT_SHIFT);
588 xhci_ring_free(xhci, cur_ring);
589 stream_info->stream_rings[cur_stream] = NULL;
590 }
591 }
592 xhci_free_command(xhci, stream_info->free_streams_command);
593 cleanup_ctx:
594 kfree(stream_info->stream_rings);
595 cleanup_info:
596 kfree(stream_info);
597 cleanup_trbs:
598 xhci->cmd_ring_reserved_trbs--;
599 return NULL;
600 }
601 /*
602 * Sets the MaxPStreams field and the Linear Stream Array field.
603 * Sets the dequeue pointer to the stream context array.
604 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)605 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606 struct xhci_ep_ctx *ep_ctx,
607 struct xhci_stream_info *stream_info)
608 {
609 u32 max_primary_streams;
610 /* MaxPStreams is the number of stream context array entries, not the
611 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
612 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613 */
614 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616 1 << (max_primary_streams + 1));
617 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619 ep_ctx->ep_info |= EP_HAS_LSA;
620 ep_ctx->deq = stream_info->ctx_array_dma;
621 }
622
623 /*
624 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626 * not at the beginning of the ring).
627 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)628 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629 struct xhci_ep_ctx *ep_ctx,
630 struct xhci_virt_ep *ep)
631 {
632 dma_addr_t addr;
633 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634 ep_ctx->ep_info &= ~EP_HAS_LSA;
635 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636 ep_ctx->deq = addr | ep->ring->cycle_state;
637 }
638
639 /* Frees all stream contexts associated with the endpoint,
640 *
641 * Caller should fix the endpoint context streams fields.
642 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)643 void xhci_free_stream_info(struct xhci_hcd *xhci,
644 struct xhci_stream_info *stream_info)
645 {
646 int cur_stream;
647 struct xhci_ring *cur_ring;
648 dma_addr_t addr;
649
650 if (!stream_info)
651 return;
652
653 for (cur_stream = 1; cur_stream < stream_info->num_streams;
654 cur_stream++) {
655 cur_ring = stream_info->stream_rings[cur_stream];
656 if (cur_ring) {
657 addr = cur_ring->first_seg->dma;
658 radix_tree_delete(&stream_info->trb_address_map,
659 addr >> SEGMENT_SHIFT);
660 xhci_ring_free(xhci, cur_ring);
661 stream_info->stream_rings[cur_stream] = NULL;
662 }
663 }
664 xhci_free_command(xhci, stream_info->free_streams_command);
665 xhci->cmd_ring_reserved_trbs--;
666 if (stream_info->stream_ctx_array)
667 xhci_free_stream_ctx(xhci,
668 stream_info->num_stream_ctxs,
669 stream_info->stream_ctx_array,
670 stream_info->ctx_array_dma);
671
672 if (stream_info)
673 kfree(stream_info->stream_rings);
674 kfree(stream_info);
675 }
676
677
678 /***************** Device context manipulation *************************/
679
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)680 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681 struct xhci_virt_ep *ep)
682 {
683 init_timer(&ep->stop_cmd_timer);
684 ep->stop_cmd_timer.data = (unsigned long) ep;
685 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686 ep->xhci = xhci;
687 }
688
689 /* All the xhci_tds in the ring's TD list should be freed at this point */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)690 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691 {
692 struct xhci_virt_device *dev;
693 int i;
694
695 /* Slot ID 0 is reserved */
696 if (slot_id == 0 || !xhci->devs[slot_id])
697 return;
698
699 dev = xhci->devs[slot_id];
700 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701 if (!dev)
702 return;
703
704 for (i = 0; i < 31; ++i) {
705 if (dev->eps[i].ring)
706 xhci_ring_free(xhci, dev->eps[i].ring);
707 if (dev->eps[i].stream_info)
708 xhci_free_stream_info(xhci,
709 dev->eps[i].stream_info);
710 }
711
712 if (dev->ring_cache) {
713 for (i = 0; i < dev->num_rings_cached; i++)
714 xhci_ring_free(xhci, dev->ring_cache[i]);
715 kfree(dev->ring_cache);
716 }
717
718 if (dev->in_ctx)
719 xhci_free_container_ctx(xhci, dev->in_ctx);
720 if (dev->out_ctx)
721 xhci_free_container_ctx(xhci, dev->out_ctx);
722
723 kfree(xhci->devs[slot_id]);
724 xhci->devs[slot_id] = NULL;
725 }
726
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)727 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728 struct usb_device *udev, gfp_t flags)
729 {
730 struct xhci_virt_device *dev;
731 int i;
732
733 /* Slot ID 0 is reserved */
734 if (slot_id == 0 || xhci->devs[slot_id]) {
735 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736 return 0;
737 }
738
739 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740 if (!xhci->devs[slot_id])
741 return 0;
742 dev = xhci->devs[slot_id];
743
744 /* Allocate the (output) device context that will be used in the HC. */
745 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746 if (!dev->out_ctx)
747 goto fail;
748
749 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750 (unsigned long long)dev->out_ctx->dma);
751
752 /* Allocate the (input) device context for address device command */
753 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754 if (!dev->in_ctx)
755 goto fail;
756
757 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758 (unsigned long long)dev->in_ctx->dma);
759
760 /* Initialize the cancellation list and watchdog timers for each ep */
761 for (i = 0; i < 31; i++) {
762 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764 }
765
766 /* Allocate endpoint 0 ring */
767 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768 if (!dev->eps[0].ring)
769 goto fail;
770
771 /* Allocate pointers to the ring cache */
772 dev->ring_cache = kzalloc(
773 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774 flags);
775 if (!dev->ring_cache)
776 goto fail;
777 dev->num_rings_cached = 0;
778
779 init_completion(&dev->cmd_completion);
780 INIT_LIST_HEAD(&dev->cmd_list);
781 dev->udev = udev;
782
783 /* Point to output device context in dcbaa. */
784 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786 slot_id,
787 &xhci->dcbaa->dev_context_ptrs[slot_id],
788 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789
790 return 1;
791 fail:
792 xhci_free_virt_device(xhci, slot_id);
793 return 0;
794 }
795
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)796 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797 struct usb_device *udev)
798 {
799 struct xhci_virt_device *virt_dev;
800 struct xhci_ep_ctx *ep0_ctx;
801 struct xhci_ring *ep_ring;
802
803 virt_dev = xhci->devs[udev->slot_id];
804 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805 ep_ring = virt_dev->eps[0].ring;
806 /*
807 * FIXME we don't keep track of the dequeue pointer very well after a
808 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809 * host to our enqueue pointer. This should only be called after a
810 * configured device has reset, so all control transfers should have
811 * been completed or cancelled before the reset.
812 */
813 ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814 ep0_ctx->deq |= ep_ring->cycle_state;
815 }
816
817 /*
818 * The xHCI roothub may have ports of differing speeds in any order in the port
819 * status registers. xhci->port_array provides an array of the port speed for
820 * each offset into the port status registers.
821 *
822 * The xHCI hardware wants to know the roothub port number that the USB device
823 * is attached to (or the roothub port its ancestor hub is attached to). All we
824 * know is the index of that port under either the USB 2.0 or the USB 3.0
825 * roothub, but that doesn't give us the real index into the HW port status
826 * registers. Scan through the xHCI roothub port array, looking for the Nth
827 * entry of the correct port speed. Return the port number of that entry.
828 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)829 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
830 struct usb_device *udev)
831 {
832 struct usb_device *top_dev;
833 unsigned int num_similar_speed_ports;
834 unsigned int faked_port_num;
835 int i;
836
837 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
838 top_dev = top_dev->parent)
839 /* Found device below root hub */;
840 faked_port_num = top_dev->portnum;
841 for (i = 0, num_similar_speed_ports = 0;
842 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
843 u8 port_speed = xhci->port_array[i];
844
845 /*
846 * Skip ports that don't have known speeds, or have duplicate
847 * Extended Capabilities port speed entries.
848 */
849 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
850 continue;
851
852 /*
853 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
854 * 1.1 ports are under the USB 2.0 hub. If the port speed
855 * matches the device speed, it's a similar speed port.
856 */
857 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
858 num_similar_speed_ports++;
859 if (num_similar_speed_ports == faked_port_num)
860 /* Roothub ports are numbered from 1 to N */
861 return i+1;
862 }
863 return 0;
864 }
865
866 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)867 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
868 {
869 struct xhci_virt_device *dev;
870 struct xhci_ep_ctx *ep0_ctx;
871 struct xhci_slot_ctx *slot_ctx;
872 struct xhci_input_control_ctx *ctrl_ctx;
873 u32 port_num;
874 struct usb_device *top_dev;
875
876 dev = xhci->devs[udev->slot_id];
877 /* Slot ID 0 is reserved */
878 if (udev->slot_id == 0 || !dev) {
879 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
880 udev->slot_id);
881 return -EINVAL;
882 }
883 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
884 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
885 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
886
887 /* 2) New slot context and endpoint 0 context are valid*/
888 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
889
890 /* 3) Only the control endpoint is valid - one endpoint context */
891 slot_ctx->dev_info |= LAST_CTX(1);
892
893 slot_ctx->dev_info |= (u32) udev->route;
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
896 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
897 break;
898 case USB_SPEED_HIGH:
899 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
900 break;
901 case USB_SPEED_FULL:
902 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
903 break;
904 case USB_SPEED_LOW:
905 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
906 break;
907 case USB_SPEED_WIRELESS:
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
914 }
915 /* Find the root hub port this device is under */
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
919 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(port_num);
920 /* Set the port number in the virtual_device to the faked port number */
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
924 dev->port = top_dev->portnum;
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
927
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
930 slot_ctx->tt_info = udev->tt->hub->slot_id;
931 slot_ctx->tt_info |= udev->ttport << 8;
932 if (udev->tt->multi)
933 slot_ctx->dev_info |= DEV_MTT;
934 }
935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
940 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
941 /*
942 * XXX: Not sure about wireless USB devices.
943 */
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
946 ep0_ctx->ep_info2 |= MAX_PACKET(512);
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
951 ep0_ctx->ep_info2 |= MAX_PACKET(64);
952 break;
953 case USB_SPEED_LOW:
954 ep0_ctx->ep_info2 |= MAX_PACKET(8);
955 break;
956 case USB_SPEED_WIRELESS:
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
963 }
964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
965 ep0_ctx->ep_info2 |= MAX_BURST(0);
966 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
967
968 ep0_ctx->deq =
969 dev->eps[0].ring->first_seg->dma;
970 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
971
972 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
973
974 return 0;
975 }
976
977 /*
978 * Convert interval expressed as 2^(bInterval - 1) == interval into
979 * straight exponent value 2^n == interval.
980 *
981 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)982 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
983 struct usb_host_endpoint *ep)
984 {
985 unsigned int interval;
986
987 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
988 if (interval != ep->desc.bInterval - 1)
989 dev_warn(&udev->dev,
990 "ep %#x - rounding interval to %d microframes\n",
991 ep->desc.bEndpointAddress,
992 1 << interval);
993
994 return interval;
995 }
996
997 /*
998 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
999 * microframes, rounded down to nearest power of 2.
1000 */
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1001 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1002 struct usb_host_endpoint *ep)
1003 {
1004 unsigned int interval;
1005
1006 interval = fls(8 * ep->desc.bInterval) - 1;
1007 interval = clamp_val(interval, 3, 10);
1008 if ((1 << interval) != 8 * ep->desc.bInterval)
1009 dev_warn(&udev->dev,
1010 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1011 ep->desc.bEndpointAddress,
1012 1 << interval,
1013 8 * ep->desc.bInterval);
1014
1015 return interval;
1016 }
1017
1018 /* Return the polling or NAK interval.
1019 *
1020 * The polling interval is expressed in "microframes". If xHCI's Interval field
1021 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1022 *
1023 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1024 * is set to 0.
1025 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1026 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1027 struct usb_host_endpoint *ep)
1028 {
1029 unsigned int interval = 0;
1030
1031 switch (udev->speed) {
1032 case USB_SPEED_HIGH:
1033 /* Max NAK rate */
1034 if (usb_endpoint_xfer_control(&ep->desc) ||
1035 usb_endpoint_xfer_bulk(&ep->desc)) {
1036 interval = ep->desc.bInterval;
1037 break;
1038 }
1039 /* Fall through - SS and HS isoc/int have same decoding */
1040
1041 case USB_SPEED_SUPER:
1042 if (usb_endpoint_xfer_int(&ep->desc) ||
1043 usb_endpoint_xfer_isoc(&ep->desc)) {
1044 interval = xhci_parse_exponent_interval(udev, ep);
1045 }
1046 break;
1047
1048 case USB_SPEED_FULL:
1049 if (usb_endpoint_xfer_int(&ep->desc)) {
1050 interval = xhci_parse_exponent_interval(udev, ep);
1051 break;
1052 }
1053 /*
1054 * Fall through for isochronous endpoint interval decoding
1055 * since it uses the same rules as low speed interrupt
1056 * endpoints.
1057 */
1058
1059 case USB_SPEED_LOW:
1060 if (usb_endpoint_xfer_int(&ep->desc) ||
1061 usb_endpoint_xfer_isoc(&ep->desc)) {
1062
1063 interval = xhci_parse_frame_interval(udev, ep);
1064 }
1065 break;
1066
1067 default:
1068 BUG();
1069 }
1070 return EP_INTERVAL(interval);
1071 }
1072
1073 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1074 * High speed endpoint descriptors can define "the number of additional
1075 * transaction opportunities per microframe", but that goes in the Max Burst
1076 * endpoint context field.
1077 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1078 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1079 struct usb_host_endpoint *ep)
1080 {
1081 if (udev->speed != USB_SPEED_SUPER ||
1082 !usb_endpoint_xfer_isoc(&ep->desc))
1083 return 0;
1084 return ep->ss_ep_comp.bmAttributes;
1085 }
1086
xhci_get_endpoint_type(struct usb_device * udev,struct usb_host_endpoint * ep)1087 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1088 struct usb_host_endpoint *ep)
1089 {
1090 int in;
1091 u32 type;
1092
1093 in = usb_endpoint_dir_in(&ep->desc);
1094 if (usb_endpoint_xfer_control(&ep->desc)) {
1095 type = EP_TYPE(CTRL_EP);
1096 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1097 if (in)
1098 type = EP_TYPE(BULK_IN_EP);
1099 else
1100 type = EP_TYPE(BULK_OUT_EP);
1101 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1102 if (in)
1103 type = EP_TYPE(ISOC_IN_EP);
1104 else
1105 type = EP_TYPE(ISOC_OUT_EP);
1106 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1107 if (in)
1108 type = EP_TYPE(INT_IN_EP);
1109 else
1110 type = EP_TYPE(INT_OUT_EP);
1111 } else {
1112 BUG();
1113 }
1114 return type;
1115 }
1116
1117 /* Return the maximum endpoint service interval time (ESIT) payload.
1118 * Basically, this is the maxpacket size, multiplied by the burst size
1119 * and mult size.
1120 */
xhci_get_max_esit_payload(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep)1121 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1122 struct usb_device *udev,
1123 struct usb_host_endpoint *ep)
1124 {
1125 int max_burst;
1126 int max_packet;
1127
1128 /* Only applies for interrupt or isochronous endpoints */
1129 if (usb_endpoint_xfer_control(&ep->desc) ||
1130 usb_endpoint_xfer_bulk(&ep->desc))
1131 return 0;
1132
1133 if (udev->speed == USB_SPEED_SUPER)
1134 return ep->ss_ep_comp.wBytesPerInterval;
1135
1136 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1137 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1138 /* A 0 in max burst means 1 transfer per ESIT */
1139 return max_packet * (max_burst + 1);
1140 }
1141
1142 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1143 * Drivers will have to call usb_alloc_streams() to do that.
1144 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1145 int xhci_endpoint_init(struct xhci_hcd *xhci,
1146 struct xhci_virt_device *virt_dev,
1147 struct usb_device *udev,
1148 struct usb_host_endpoint *ep,
1149 gfp_t mem_flags)
1150 {
1151 unsigned int ep_index;
1152 struct xhci_ep_ctx *ep_ctx;
1153 struct xhci_ring *ep_ring;
1154 unsigned int max_packet;
1155 unsigned int max_burst;
1156 u32 max_esit_payload;
1157
1158 ep_index = xhci_get_endpoint_index(&ep->desc);
1159 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1160
1161 /* Set up the endpoint ring */
1162 /*
1163 * Isochronous endpoint ring needs bigger size because one isoc URB
1164 * carries multiple packets and it will insert multiple tds to the
1165 * ring.
1166 * This should be replaced with dynamic ring resizing in the future.
1167 */
1168 if (usb_endpoint_xfer_isoc(&ep->desc))
1169 virt_dev->eps[ep_index].new_ring =
1170 xhci_ring_alloc(xhci, 8, true, mem_flags);
1171 else
1172 virt_dev->eps[ep_index].new_ring =
1173 xhci_ring_alloc(xhci, 1, true, mem_flags);
1174 if (!virt_dev->eps[ep_index].new_ring) {
1175 /* Attempt to use the ring cache */
1176 if (virt_dev->num_rings_cached == 0)
1177 return -ENOMEM;
1178 virt_dev->eps[ep_index].new_ring =
1179 virt_dev->ring_cache[virt_dev->num_rings_cached];
1180 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1181 virt_dev->num_rings_cached--;
1182 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1183 }
1184 virt_dev->eps[ep_index].skip = false;
1185 ep_ring = virt_dev->eps[ep_index].new_ring;
1186 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1187
1188 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1189 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1190
1191 /* FIXME dig Mult and streams info out of ep companion desc */
1192
1193 /* Allow 3 retries for everything but isoc;
1194 * error count = 0 means infinite retries.
1195 */
1196 if (!usb_endpoint_xfer_isoc(&ep->desc))
1197 ep_ctx->ep_info2 = ERROR_COUNT(3);
1198 else
1199 ep_ctx->ep_info2 = ERROR_COUNT(1);
1200
1201 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1202
1203 /* Set the max packet size and max burst */
1204 switch (udev->speed) {
1205 case USB_SPEED_SUPER:
1206 max_packet = ep->desc.wMaxPacketSize;
1207 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1208 /* dig out max burst from ep companion desc */
1209 max_packet = ep->ss_ep_comp.bMaxBurst;
1210 if (!max_packet)
1211 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1212 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1213 break;
1214 case USB_SPEED_HIGH:
1215 /* bits 11:12 specify the number of additional transaction
1216 * opportunities per microframe (USB 2.0, section 9.6.6)
1217 */
1218 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1219 usb_endpoint_xfer_int(&ep->desc)) {
1220 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1221 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1222 }
1223 /* Fall through */
1224 case USB_SPEED_FULL:
1225 case USB_SPEED_LOW:
1226 max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1227 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1228 break;
1229 default:
1230 BUG();
1231 }
1232 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1233 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1234
1235 /*
1236 * XXX no idea how to calculate the average TRB buffer length for bulk
1237 * endpoints, as the driver gives us no clue how big each scatter gather
1238 * list entry (or buffer) is going to be.
1239 *
1240 * For isochronous and interrupt endpoints, we set it to the max
1241 * available, until we have new API in the USB core to allow drivers to
1242 * declare how much bandwidth they actually need.
1243 *
1244 * Normally, it would be calculated by taking the total of the buffer
1245 * lengths in the TD and then dividing by the number of TRBs in a TD,
1246 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1247 * use Event Data TRBs, and we don't chain in a link TRB on short
1248 * transfers, we're basically dividing by 1.
1249 */
1250 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1251
1252 /* FIXME Debug endpoint context */
1253 return 0;
1254 }
1255
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1256 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1257 struct xhci_virt_device *virt_dev,
1258 struct usb_host_endpoint *ep)
1259 {
1260 unsigned int ep_index;
1261 struct xhci_ep_ctx *ep_ctx;
1262
1263 ep_index = xhci_get_endpoint_index(&ep->desc);
1264 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1265
1266 ep_ctx->ep_info = 0;
1267 ep_ctx->ep_info2 = 0;
1268 ep_ctx->deq = 0;
1269 ep_ctx->tx_info = 0;
1270 /* Don't free the endpoint ring until the set interface or configuration
1271 * request succeeds.
1272 */
1273 }
1274
1275 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1276 * Useful when you want to change one particular aspect of the endpoint and then
1277 * issue a configure endpoint command.
1278 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1279 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1280 struct xhci_container_ctx *in_ctx,
1281 struct xhci_container_ctx *out_ctx,
1282 unsigned int ep_index)
1283 {
1284 struct xhci_ep_ctx *out_ep_ctx;
1285 struct xhci_ep_ctx *in_ep_ctx;
1286
1287 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1288 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1289
1290 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1291 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1292 in_ep_ctx->deq = out_ep_ctx->deq;
1293 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1294 }
1295
1296 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1297 * Useful when you want to change one particular aspect of the endpoint and then
1298 * issue a configure endpoint command. Only the context entries field matters,
1299 * but we'll copy the whole thing anyway.
1300 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1301 void xhci_slot_copy(struct xhci_hcd *xhci,
1302 struct xhci_container_ctx *in_ctx,
1303 struct xhci_container_ctx *out_ctx)
1304 {
1305 struct xhci_slot_ctx *in_slot_ctx;
1306 struct xhci_slot_ctx *out_slot_ctx;
1307
1308 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1309 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1310
1311 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1312 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1313 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1314 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1315 }
1316
1317 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1318 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1319 {
1320 int i;
1321 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1322 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1323
1324 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1325
1326 if (!num_sp)
1327 return 0;
1328
1329 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1330 if (!xhci->scratchpad)
1331 goto fail_sp;
1332
1333 xhci->scratchpad->sp_array =
1334 pci_alloc_consistent(to_pci_dev(dev),
1335 num_sp * sizeof(u64),
1336 &xhci->scratchpad->sp_dma);
1337 if (!xhci->scratchpad->sp_array)
1338 goto fail_sp2;
1339
1340 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1341 if (!xhci->scratchpad->sp_buffers)
1342 goto fail_sp3;
1343
1344 xhci->scratchpad->sp_dma_buffers =
1345 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1346
1347 if (!xhci->scratchpad->sp_dma_buffers)
1348 goto fail_sp4;
1349
1350 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1351 for (i = 0; i < num_sp; i++) {
1352 dma_addr_t dma;
1353 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1354 xhci->page_size, &dma);
1355 if (!buf)
1356 goto fail_sp5;
1357
1358 xhci->scratchpad->sp_array[i] = dma;
1359 xhci->scratchpad->sp_buffers[i] = buf;
1360 xhci->scratchpad->sp_dma_buffers[i] = dma;
1361 }
1362
1363 return 0;
1364
1365 fail_sp5:
1366 for (i = i - 1; i >= 0; i--) {
1367 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1368 xhci->scratchpad->sp_buffers[i],
1369 xhci->scratchpad->sp_dma_buffers[i]);
1370 }
1371 kfree(xhci->scratchpad->sp_dma_buffers);
1372
1373 fail_sp4:
1374 kfree(xhci->scratchpad->sp_buffers);
1375
1376 fail_sp3:
1377 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1378 xhci->scratchpad->sp_array,
1379 xhci->scratchpad->sp_dma);
1380
1381 fail_sp2:
1382 kfree(xhci->scratchpad);
1383 xhci->scratchpad = NULL;
1384
1385 fail_sp:
1386 return -ENOMEM;
1387 }
1388
scratchpad_free(struct xhci_hcd * xhci)1389 static void scratchpad_free(struct xhci_hcd *xhci)
1390 {
1391 int num_sp;
1392 int i;
1393 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1394
1395 if (!xhci->scratchpad)
1396 return;
1397
1398 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1399
1400 for (i = 0; i < num_sp; i++) {
1401 pci_free_consistent(pdev, xhci->page_size,
1402 xhci->scratchpad->sp_buffers[i],
1403 xhci->scratchpad->sp_dma_buffers[i]);
1404 }
1405 kfree(xhci->scratchpad->sp_dma_buffers);
1406 kfree(xhci->scratchpad->sp_buffers);
1407 pci_free_consistent(pdev, num_sp * sizeof(u64),
1408 xhci->scratchpad->sp_array,
1409 xhci->scratchpad->sp_dma);
1410 kfree(xhci->scratchpad);
1411 xhci->scratchpad = NULL;
1412 }
1413
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1414 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1415 bool allocate_in_ctx, bool allocate_completion,
1416 gfp_t mem_flags)
1417 {
1418 struct xhci_command *command;
1419
1420 command = kzalloc(sizeof(*command), mem_flags);
1421 if (!command)
1422 return NULL;
1423
1424 if (allocate_in_ctx) {
1425 command->in_ctx =
1426 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1427 mem_flags);
1428 if (!command->in_ctx) {
1429 kfree(command);
1430 return NULL;
1431 }
1432 }
1433
1434 if (allocate_completion) {
1435 command->completion =
1436 kzalloc(sizeof(struct completion), mem_flags);
1437 if (!command->completion) {
1438 xhci_free_container_ctx(xhci, command->in_ctx);
1439 kfree(command);
1440 return NULL;
1441 }
1442 init_completion(command->completion);
1443 }
1444
1445 command->status = 0;
1446 INIT_LIST_HEAD(&command->cmd_list);
1447 return command;
1448 }
1449
xhci_urb_free_priv(struct xhci_hcd * xhci,struct urb_priv * urb_priv)1450 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1451 {
1452 int last;
1453
1454 if (!urb_priv)
1455 return;
1456
1457 last = urb_priv->length - 1;
1458 if (last >= 0) {
1459 int i;
1460 for (i = 0; i <= last; i++)
1461 kfree(urb_priv->td[i]);
1462 }
1463 kfree(urb_priv);
1464 }
1465
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1466 void xhci_free_command(struct xhci_hcd *xhci,
1467 struct xhci_command *command)
1468 {
1469 xhci_free_container_ctx(xhci,
1470 command->in_ctx);
1471 kfree(command->completion);
1472 kfree(command);
1473 }
1474
xhci_mem_cleanup(struct xhci_hcd * xhci)1475 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1476 {
1477 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1478 int size;
1479 int i;
1480
1481 /* Free the Event Ring Segment Table and the actual Event Ring */
1482 if (xhci->ir_set) {
1483 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1484 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1485 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1486 }
1487 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1488 if (xhci->erst.entries)
1489 pci_free_consistent(pdev, size,
1490 xhci->erst.entries, xhci->erst.erst_dma_addr);
1491 xhci->erst.entries = NULL;
1492 xhci_dbg(xhci, "Freed ERST\n");
1493 if (xhci->event_ring)
1494 xhci_ring_free(xhci, xhci->event_ring);
1495 xhci->event_ring = NULL;
1496 xhci_dbg(xhci, "Freed event ring\n");
1497
1498 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1499 if (xhci->cmd_ring)
1500 xhci_ring_free(xhci, xhci->cmd_ring);
1501 xhci->cmd_ring = NULL;
1502 xhci_dbg(xhci, "Freed command ring\n");
1503
1504 for (i = 1; i < MAX_HC_SLOTS; ++i)
1505 xhci_free_virt_device(xhci, i);
1506
1507 if (xhci->segment_pool)
1508 dma_pool_destroy(xhci->segment_pool);
1509 xhci->segment_pool = NULL;
1510 xhci_dbg(xhci, "Freed segment pool\n");
1511
1512 if (xhci->device_pool)
1513 dma_pool_destroy(xhci->device_pool);
1514 xhci->device_pool = NULL;
1515 xhci_dbg(xhci, "Freed device context pool\n");
1516
1517 if (xhci->small_streams_pool)
1518 dma_pool_destroy(xhci->small_streams_pool);
1519 xhci->small_streams_pool = NULL;
1520 xhci_dbg(xhci, "Freed small stream array pool\n");
1521
1522 if (xhci->medium_streams_pool)
1523 dma_pool_destroy(xhci->medium_streams_pool);
1524 xhci->medium_streams_pool = NULL;
1525 xhci_dbg(xhci, "Freed medium stream array pool\n");
1526
1527 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1528 if (xhci->dcbaa)
1529 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1530 xhci->dcbaa, xhci->dcbaa->dma);
1531 xhci->dcbaa = NULL;
1532
1533 scratchpad_free(xhci);
1534
1535 xhci->num_usb2_ports = 0;
1536 xhci->num_usb3_ports = 0;
1537 kfree(xhci->usb2_ports);
1538 kfree(xhci->usb3_ports);
1539 kfree(xhci->port_array);
1540
1541 xhci->page_size = 0;
1542 xhci->page_shift = 0;
1543 xhci->bus_state[0].bus_suspended = 0;
1544 xhci->bus_state[1].bus_suspended = 0;
1545 }
1546
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1547 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1548 struct xhci_segment *input_seg,
1549 union xhci_trb *start_trb,
1550 union xhci_trb *end_trb,
1551 dma_addr_t input_dma,
1552 struct xhci_segment *result_seg,
1553 char *test_name, int test_number)
1554 {
1555 unsigned long long start_dma;
1556 unsigned long long end_dma;
1557 struct xhci_segment *seg;
1558
1559 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1560 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1561
1562 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1563 if (seg != result_seg) {
1564 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1565 test_name, test_number);
1566 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1567 "input DMA 0x%llx\n",
1568 input_seg,
1569 (unsigned long long) input_dma);
1570 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1571 "ending TRB %p (0x%llx DMA)\n",
1572 start_trb, start_dma,
1573 end_trb, end_dma);
1574 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1575 result_seg, seg);
1576 return -1;
1577 }
1578 return 0;
1579 }
1580
1581 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci,gfp_t mem_flags)1582 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1583 {
1584 struct {
1585 dma_addr_t input_dma;
1586 struct xhci_segment *result_seg;
1587 } simple_test_vector [] = {
1588 /* A zeroed DMA field should fail */
1589 { 0, NULL },
1590 /* One TRB before the ring start should fail */
1591 { xhci->event_ring->first_seg->dma - 16, NULL },
1592 /* One byte before the ring start should fail */
1593 { xhci->event_ring->first_seg->dma - 1, NULL },
1594 /* Starting TRB should succeed */
1595 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1596 /* Ending TRB should succeed */
1597 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1598 xhci->event_ring->first_seg },
1599 /* One byte after the ring end should fail */
1600 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1601 /* One TRB after the ring end should fail */
1602 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1603 /* An address of all ones should fail */
1604 { (dma_addr_t) (~0), NULL },
1605 };
1606 struct {
1607 struct xhci_segment *input_seg;
1608 union xhci_trb *start_trb;
1609 union xhci_trb *end_trb;
1610 dma_addr_t input_dma;
1611 struct xhci_segment *result_seg;
1612 } complex_test_vector [] = {
1613 /* Test feeding a valid DMA address from a different ring */
1614 { .input_seg = xhci->event_ring->first_seg,
1615 .start_trb = xhci->event_ring->first_seg->trbs,
1616 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1617 .input_dma = xhci->cmd_ring->first_seg->dma,
1618 .result_seg = NULL,
1619 },
1620 /* Test feeding a valid end TRB from a different ring */
1621 { .input_seg = xhci->event_ring->first_seg,
1622 .start_trb = xhci->event_ring->first_seg->trbs,
1623 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1624 .input_dma = xhci->cmd_ring->first_seg->dma,
1625 .result_seg = NULL,
1626 },
1627 /* Test feeding a valid start and end TRB from a different ring */
1628 { .input_seg = xhci->event_ring->first_seg,
1629 .start_trb = xhci->cmd_ring->first_seg->trbs,
1630 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1631 .input_dma = xhci->cmd_ring->first_seg->dma,
1632 .result_seg = NULL,
1633 },
1634 /* TRB in this ring, but after this TD */
1635 { .input_seg = xhci->event_ring->first_seg,
1636 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1637 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1638 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1639 .result_seg = NULL,
1640 },
1641 /* TRB in this ring, but before this TD */
1642 { .input_seg = xhci->event_ring->first_seg,
1643 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1644 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1645 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1646 .result_seg = NULL,
1647 },
1648 /* TRB in this ring, but after this wrapped TD */
1649 { .input_seg = xhci->event_ring->first_seg,
1650 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1651 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1652 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1653 .result_seg = NULL,
1654 },
1655 /* TRB in this ring, but before this wrapped TD */
1656 { .input_seg = xhci->event_ring->first_seg,
1657 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1658 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1659 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1660 .result_seg = NULL,
1661 },
1662 /* TRB not in this ring, and we have a wrapped TD */
1663 { .input_seg = xhci->event_ring->first_seg,
1664 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1665 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1666 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1667 .result_seg = NULL,
1668 },
1669 };
1670
1671 unsigned int num_tests;
1672 int i, ret;
1673
1674 num_tests = ARRAY_SIZE(simple_test_vector);
1675 for (i = 0; i < num_tests; i++) {
1676 ret = xhci_test_trb_in_td(xhci,
1677 xhci->event_ring->first_seg,
1678 xhci->event_ring->first_seg->trbs,
1679 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1680 simple_test_vector[i].input_dma,
1681 simple_test_vector[i].result_seg,
1682 "Simple", i);
1683 if (ret < 0)
1684 return ret;
1685 }
1686
1687 num_tests = ARRAY_SIZE(complex_test_vector);
1688 for (i = 0; i < num_tests; i++) {
1689 ret = xhci_test_trb_in_td(xhci,
1690 complex_test_vector[i].input_seg,
1691 complex_test_vector[i].start_trb,
1692 complex_test_vector[i].end_trb,
1693 complex_test_vector[i].input_dma,
1694 complex_test_vector[i].result_seg,
1695 "Complex", i);
1696 if (ret < 0)
1697 return ret;
1698 }
1699 xhci_dbg(xhci, "TRB math tests passed.\n");
1700 return 0;
1701 }
1702
xhci_set_hc_event_deq(struct xhci_hcd * xhci)1703 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1704 {
1705 u64 temp;
1706 dma_addr_t deq;
1707
1708 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1709 xhci->event_ring->dequeue);
1710 if (deq == 0 && !in_interrupt())
1711 xhci_warn(xhci, "WARN something wrong with SW event ring "
1712 "dequeue ptr.\n");
1713 /* Update HC event ring dequeue pointer */
1714 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1715 temp &= ERST_PTR_MASK;
1716 /* Don't clear the EHB bit (which is RW1C) because
1717 * there might be more events to service.
1718 */
1719 temp &= ~ERST_EHB;
1720 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1721 "preserving EHB bit\n");
1722 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1723 &xhci->ir_set->erst_dequeue);
1724 }
1725
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,u32 __iomem * addr,u8 major_revision)1726 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1727 u32 __iomem *addr, u8 major_revision)
1728 {
1729 u32 temp, port_offset, port_count;
1730 int i;
1731
1732 if (major_revision > 0x03) {
1733 xhci_warn(xhci, "Ignoring unknown port speed, "
1734 "Ext Cap %p, revision = 0x%x\n",
1735 addr, major_revision);
1736 /* Ignoring port protocol we can't understand. FIXME */
1737 return;
1738 }
1739
1740 /* Port offset and count in the third dword, see section 7.2 */
1741 temp = xhci_readl(xhci, addr + 2);
1742 port_offset = XHCI_EXT_PORT_OFF(temp);
1743 port_count = XHCI_EXT_PORT_COUNT(temp);
1744 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1745 "count = %u, revision = 0x%x\n",
1746 addr, port_offset, port_count, major_revision);
1747 /* Port count includes the current port offset */
1748 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1749 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1750 return;
1751 port_offset--;
1752 for (i = port_offset; i < (port_offset + port_count); i++) {
1753 /* Duplicate entry. Ignore the port if the revisions differ. */
1754 if (xhci->port_array[i] != 0) {
1755 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1756 " port %u\n", addr, i);
1757 xhci_warn(xhci, "Port was marked as USB %u, "
1758 "duplicated as USB %u\n",
1759 xhci->port_array[i], major_revision);
1760 /* Only adjust the roothub port counts if we haven't
1761 * found a similar duplicate.
1762 */
1763 if (xhci->port_array[i] != major_revision &&
1764 xhci->port_array[i] != DUPLICATE_ENTRY) {
1765 if (xhci->port_array[i] == 0x03)
1766 xhci->num_usb3_ports--;
1767 else
1768 xhci->num_usb2_ports--;
1769 xhci->port_array[i] = DUPLICATE_ENTRY;
1770 }
1771 /* FIXME: Should we disable the port? */
1772 continue;
1773 }
1774 xhci->port_array[i] = major_revision;
1775 if (major_revision == 0x03)
1776 xhci->num_usb3_ports++;
1777 else
1778 xhci->num_usb2_ports++;
1779 }
1780 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1781 }
1782
1783 /*
1784 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1785 * specify what speeds each port is supposed to be. We can't count on the port
1786 * speed bits in the PORTSC register being correct until a device is connected,
1787 * but we need to set up the two fake roothubs with the correct number of USB
1788 * 3.0 and USB 2.0 ports at host controller initialization time.
1789 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)1790 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1791 {
1792 u32 __iomem *addr;
1793 u32 offset;
1794 unsigned int num_ports;
1795 int i, port_index;
1796
1797 addr = &xhci->cap_regs->hcc_params;
1798 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1799 if (offset == 0) {
1800 xhci_err(xhci, "No Extended Capability registers, "
1801 "unable to set up roothub.\n");
1802 return -ENODEV;
1803 }
1804
1805 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1806 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1807 if (!xhci->port_array)
1808 return -ENOMEM;
1809
1810 /*
1811 * For whatever reason, the first capability offset is from the
1812 * capability register base, not from the HCCPARAMS register.
1813 * See section 5.3.6 for offset calculation.
1814 */
1815 addr = &xhci->cap_regs->hc_capbase + offset;
1816 while (1) {
1817 u32 cap_id;
1818
1819 cap_id = xhci_readl(xhci, addr);
1820 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1821 xhci_add_in_port(xhci, num_ports, addr,
1822 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1823 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1824 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1825 == num_ports)
1826 break;
1827 /*
1828 * Once you're into the Extended Capabilities, the offset is
1829 * always relative to the register holding the offset.
1830 */
1831 addr += offset;
1832 }
1833
1834 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1835 xhci_warn(xhci, "No ports on the roothubs?\n");
1836 return -ENODEV;
1837 }
1838 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1839 xhci->num_usb2_ports, xhci->num_usb3_ports);
1840
1841 /* Place limits on the number of roothub ports so that the hub
1842 * descriptors aren't longer than the USB core will allocate.
1843 */
1844 if (xhci->num_usb3_ports > 15) {
1845 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1846 xhci->num_usb3_ports = 15;
1847 }
1848 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1849 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1850 USB_MAXCHILDREN);
1851 xhci->num_usb2_ports = USB_MAXCHILDREN;
1852 }
1853
1854 /*
1855 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1856 * Not sure how the USB core will handle a hub with no ports...
1857 */
1858 if (xhci->num_usb2_ports) {
1859 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1860 xhci->num_usb2_ports, flags);
1861 if (!xhci->usb2_ports)
1862 return -ENOMEM;
1863
1864 port_index = 0;
1865 for (i = 0; i < num_ports; i++) {
1866 if (xhci->port_array[i] == 0x03 ||
1867 xhci->port_array[i] == 0 ||
1868 xhci->port_array[i] == DUPLICATE_ENTRY)
1869 continue;
1870
1871 xhci->usb2_ports[port_index] =
1872 &xhci->op_regs->port_status_base +
1873 NUM_PORT_REGS*i;
1874 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1875 "addr = %p\n", i,
1876 xhci->usb2_ports[port_index]);
1877 port_index++;
1878 if (port_index == xhci->num_usb2_ports)
1879 break;
1880 }
1881 }
1882 if (xhci->num_usb3_ports) {
1883 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1884 xhci->num_usb3_ports, flags);
1885 if (!xhci->usb3_ports)
1886 return -ENOMEM;
1887
1888 port_index = 0;
1889 for (i = 0; i < num_ports; i++)
1890 if (xhci->port_array[i] == 0x03) {
1891 xhci->usb3_ports[port_index] =
1892 &xhci->op_regs->port_status_base +
1893 NUM_PORT_REGS*i;
1894 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1895 "addr = %p\n", i,
1896 xhci->usb3_ports[port_index]);
1897 port_index++;
1898 if (port_index == xhci->num_usb3_ports)
1899 break;
1900 }
1901 }
1902 return 0;
1903 }
1904
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)1905 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1906 {
1907 dma_addr_t dma;
1908 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1909 unsigned int val, val2;
1910 u64 val_64;
1911 struct xhci_segment *seg;
1912 u32 page_size;
1913 int i;
1914
1915 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1916 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1917 for (i = 0; i < 16; i++) {
1918 if ((0x1 & page_size) != 0)
1919 break;
1920 page_size = page_size >> 1;
1921 }
1922 if (i < 16)
1923 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1924 else
1925 xhci_warn(xhci, "WARN: no supported page size\n");
1926 /* Use 4K pages, since that's common and the minimum the HC supports */
1927 xhci->page_shift = 12;
1928 xhci->page_size = 1 << xhci->page_shift;
1929 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1930
1931 /*
1932 * Program the Number of Device Slots Enabled field in the CONFIG
1933 * register with the max value of slots the HC can handle.
1934 */
1935 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1936 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1937 (unsigned int) val);
1938 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1939 val |= (val2 & ~HCS_SLOTS_MASK);
1940 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1941 (unsigned int) val);
1942 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1943
1944 /*
1945 * Section 5.4.8 - doorbell array must be
1946 * "physically contiguous and 64-byte (cache line) aligned".
1947 */
1948 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1949 sizeof(*xhci->dcbaa), &dma);
1950 if (!xhci->dcbaa)
1951 goto fail;
1952 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1953 xhci->dcbaa->dma = dma;
1954 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1955 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1956 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1957
1958 /*
1959 * Initialize the ring segment pool. The ring must be a contiguous
1960 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1961 * however, the command ring segment needs 64-byte aligned segments,
1962 * so we pick the greater alignment need.
1963 */
1964 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1965 SEGMENT_SIZE, 64, xhci->page_size);
1966
1967 /* See Table 46 and Note on Figure 55 */
1968 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1969 2112, 64, xhci->page_size);
1970 if (!xhci->segment_pool || !xhci->device_pool)
1971 goto fail;
1972
1973 /* Linear stream context arrays don't have any boundary restrictions,
1974 * and only need to be 16-byte aligned.
1975 */
1976 xhci->small_streams_pool =
1977 dma_pool_create("xHCI 256 byte stream ctx arrays",
1978 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1979 xhci->medium_streams_pool =
1980 dma_pool_create("xHCI 1KB stream ctx arrays",
1981 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1982 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1983 * will be allocated with pci_alloc_consistent()
1984 */
1985
1986 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1987 goto fail;
1988
1989 /* Set up the command ring to have one segments for now. */
1990 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1991 if (!xhci->cmd_ring)
1992 goto fail;
1993 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1994 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1995 (unsigned long long)xhci->cmd_ring->first_seg->dma);
1996
1997 /* Set the address in the Command Ring Control register */
1998 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1999 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2000 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2001 xhci->cmd_ring->cycle_state;
2002 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2003 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2004 xhci_dbg_cmd_ptrs(xhci);
2005
2006 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2007 val &= DBOFF_MASK;
2008 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2009 " from cap regs base addr\n", val);
2010 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2011 xhci_dbg_regs(xhci);
2012 xhci_print_run_regs(xhci);
2013 /* Set ir_set to interrupt register set 0 */
2014 xhci->ir_set = &xhci->run_regs->ir_set[0];
2015
2016 /*
2017 * Event ring setup: Allocate a normal ring, but also setup
2018 * the event ring segment table (ERST). Section 4.9.3.
2019 */
2020 xhci_dbg(xhci, "// Allocating event ring\n");
2021 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2022 if (!xhci->event_ring)
2023 goto fail;
2024 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2025 goto fail;
2026
2027 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2028 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2029 if (!xhci->erst.entries)
2030 goto fail;
2031 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2032 (unsigned long long)dma);
2033
2034 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2035 xhci->erst.num_entries = ERST_NUM_SEGS;
2036 xhci->erst.erst_dma_addr = dma;
2037 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2038 xhci->erst.num_entries,
2039 xhci->erst.entries,
2040 (unsigned long long)xhci->erst.erst_dma_addr);
2041
2042 /* set ring base address and size for each segment table entry */
2043 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2044 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2045 entry->seg_addr = seg->dma;
2046 entry->seg_size = TRBS_PER_SEGMENT;
2047 entry->rsvd = 0;
2048 seg = seg->next;
2049 }
2050
2051 /* set ERST count with the number of entries in the segment table */
2052 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2053 val &= ERST_SIZE_MASK;
2054 val |= ERST_NUM_SEGS;
2055 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2056 val);
2057 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2058
2059 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2060 /* set the segment table base address */
2061 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2062 (unsigned long long)xhci->erst.erst_dma_addr);
2063 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2064 val_64 &= ERST_PTR_MASK;
2065 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2066 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2067
2068 /* Set the event ring dequeue address */
2069 xhci_set_hc_event_deq(xhci);
2070 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2071 xhci_print_ir_set(xhci, 0);
2072
2073 /*
2074 * XXX: Might need to set the Interrupter Moderation Register to
2075 * something other than the default (~1ms minimum between interrupts).
2076 * See section 5.5.1.2.
2077 */
2078 init_completion(&xhci->addr_dev);
2079 for (i = 0; i < MAX_HC_SLOTS; ++i)
2080 xhci->devs[i] = NULL;
2081 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2082 xhci->bus_state[0].resume_done[i] = 0;
2083 xhci->bus_state[1].resume_done[i] = 0;
2084 }
2085
2086 if (scratchpad_alloc(xhci, flags))
2087 goto fail;
2088 if (xhci_setup_port_arrays(xhci, flags))
2089 goto fail;
2090
2091 return 0;
2092
2093 fail:
2094 xhci_warn(xhci, "Couldn't initialize memory\n");
2095 xhci_mem_cleanup(xhci);
2096 return -ENOMEM;
2097 }
2098