1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43 * handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
handshake(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec)55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57 {
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71 }
72
73 /*
74 * Disable interrupts and begin the xHCI halting process.
75 */
xhci_quiesce(struct xhci_hcd * xhci)76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
xhci_halt(struct xhci_hcd * xhci)100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115 }
116
117 /*
118 * Set the run bit and wait for the host to be running.
119 */
xhci_start(struct xhci_hcd * xhci)120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
xhci_reset(struct xhci_hcd * xhci)153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190 }
191
192 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205 }
206
207 /*
208 * Set up MSI
209 */
xhci_setup_msi(struct xhci_hcd * xhci)210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229 }
230
231 /*
232 * Free IRQs
233 * free all IRQs request
234 */
xhci_free_irq(struct xhci_hcd * xhci)235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251 }
252
253 /*
254 * Set up MSI-X
255 */
xhci_setup_msix(struct xhci_hcd * xhci)256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302 disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306 free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 if (xhci->quirks & XHCI_PLAT)
319 return;
320
321 xhci_free_irq(xhci);
322
323 if (xhci->msix_entries) {
324 pci_disable_msix(pdev);
325 kfree(xhci->msix_entries);
326 xhci->msix_entries = NULL;
327 } else {
328 pci_disable_msi(pdev);
329 }
330
331 hcd->msix_enabled = 0;
332 return;
333 }
334
xhci_msix_sync_irqs(struct xhci_hcd * xhci)335 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
336 {
337 int i;
338
339 if (xhci->msix_entries) {
340 for (i = 0; i < xhci->msix_count; i++)
341 synchronize_irq(xhci->msix_entries[i].vector);
342 }
343 }
344
xhci_try_enable_msi(struct usb_hcd * hcd)345 static int xhci_try_enable_msi(struct usb_hcd *hcd)
346 {
347 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
348 struct pci_dev *pdev;
349 int ret;
350
351 /* The xhci platform device has set up IRQs through usb_add_hcd. */
352 if (xhci->quirks & XHCI_PLAT)
353 return 0;
354
355 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
356 /*
357 * Some Fresco Logic host controllers advertise MSI, but fail to
358 * generate interrupts. Don't even try to enable MSI.
359 */
360 if (xhci->quirks & XHCI_BROKEN_MSI)
361 goto legacy_irq;
362
363 /* unregister the legacy interrupt */
364 if (hcd->irq)
365 free_irq(hcd->irq, hcd);
366 hcd->irq = 0;
367
368 ret = xhci_setup_msix(xhci);
369 if (ret)
370 /* fall back to msi*/
371 ret = xhci_setup_msi(xhci);
372
373 if (!ret)
374 /* hcd->irq is 0, we have MSI */
375 return 0;
376
377 if (!pdev->irq) {
378 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
379 return -EINVAL;
380 }
381
382 legacy_irq:
383 /* fall back to legacy interrupt*/
384 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
385 hcd->irq_descr, hcd);
386 if (ret) {
387 xhci_err(xhci, "request interrupt %d failed\n",
388 pdev->irq);
389 return ret;
390 }
391 hcd->irq = pdev->irq;
392 return 0;
393 }
394
395 #else
396
xhci_try_enable_msi(struct usb_hcd * hcd)397 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
398 {
399 return 0;
400 }
401
xhci_cleanup_msix(struct xhci_hcd * xhci)402 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
403 {
404 }
405
xhci_msix_sync_irqs(struct xhci_hcd * xhci)406 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
407 {
408 }
409
410 #endif
411
compliance_mode_recovery(unsigned long arg)412 static void compliance_mode_recovery(unsigned long arg)
413 {
414 struct xhci_hcd *xhci;
415 struct usb_hcd *hcd;
416 u32 temp;
417 int i;
418
419 xhci = (struct xhci_hcd *)arg;
420
421 for (i = 0; i < xhci->num_usb3_ports; i++) {
422 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
423 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
424 /*
425 * Compliance Mode Detected. Letting USB Core
426 * handle the Warm Reset
427 */
428 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
429 i + 1);
430 xhci_dbg(xhci, "Attempting Recovery routine!\n");
431 hcd = xhci->shared_hcd;
432
433 if (hcd->state == HC_STATE_SUSPENDED)
434 usb_hcd_resume_root_hub(hcd);
435
436 usb_hcd_poll_rh_status(hcd);
437 }
438 }
439
440 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
441 mod_timer(&xhci->comp_mode_recovery_timer,
442 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 }
444
445 /*
446 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
447 * that causes ports behind that hardware to enter compliance mode sometimes.
448 * The quirk creates a timer that polls every 2 seconds the link state of
449 * each host controller's port and recovers it by issuing a Warm reset
450 * if Compliance mode is detected, otherwise the port will become "dead" (no
451 * device connections or disconnections will be detected anymore). Becasue no
452 * status event is generated when entering compliance mode (per xhci spec),
453 * this quirk is needed on systems that have the failing hardware installed.
454 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)455 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 {
457 xhci->port_status_u0 = 0;
458 init_timer(&xhci->comp_mode_recovery_timer);
459
460 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
461 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
462 xhci->comp_mode_recovery_timer.expires = jiffies +
463 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
464
465 set_timer_slack(&xhci->comp_mode_recovery_timer,
466 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
467 add_timer(&xhci->comp_mode_recovery_timer);
468 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
469 }
470
471 /*
472 * This function identifies the systems that have installed the SN65LVPE502CP
473 * USB3.0 re-driver and that need the Compliance Mode Quirk.
474 * Systems:
475 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
476 */
compliance_mode_recovery_timer_quirk_check(void)477 static bool compliance_mode_recovery_timer_quirk_check(void)
478 {
479 const char *dmi_product_name, *dmi_sys_vendor;
480
481 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
482 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
483 if (!dmi_product_name || !dmi_sys_vendor)
484 return false;
485
486 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
487 return false;
488
489 if (strstr(dmi_product_name, "Z420") ||
490 strstr(dmi_product_name, "Z620") ||
491 strstr(dmi_product_name, "Z820") ||
492 strstr(dmi_product_name, "Z1 Workstation"))
493 return true;
494
495 return false;
496 }
497
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)498 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
499 {
500 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
501 }
502
503
504 /*
505 * Initialize memory for HCD and xHC (one-time init).
506 *
507 * Program the PAGESIZE register, initialize the device context array, create
508 * device contexts (?), set up a command ring segment (or two?), create event
509 * ring (one for now).
510 */
xhci_init(struct usb_hcd * hcd)511 int xhci_init(struct usb_hcd *hcd)
512 {
513 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 int retval = 0;
515
516 xhci_dbg(xhci, "xhci_init\n");
517 spin_lock_init(&xhci->lock);
518 if (xhci->hci_version == 0x95 && link_quirk) {
519 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
520 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
521 } else {
522 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
523 }
524 retval = xhci_mem_init(xhci, GFP_KERNEL);
525 xhci_dbg(xhci, "Finished xhci_init\n");
526
527 /* Initializing Compliance Mode Recovery Data If Needed */
528 if (compliance_mode_recovery_timer_quirk_check()) {
529 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
530 compliance_mode_recovery_timer_init(xhci);
531 }
532
533 return retval;
534 }
535
536 /*-------------------------------------------------------------------------*/
537
538
539 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_event_ring_work(unsigned long arg)540 static void xhci_event_ring_work(unsigned long arg)
541 {
542 unsigned long flags;
543 int temp;
544 u64 temp_64;
545 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
546 int i, j;
547
548 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
549
550 spin_lock_irqsave(&xhci->lock, flags);
551 temp = xhci_readl(xhci, &xhci->op_regs->status);
552 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
553 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
554 (xhci->xhc_state & XHCI_STATE_HALTED)) {
555 xhci_dbg(xhci, "HW died, polling stopped.\n");
556 spin_unlock_irqrestore(&xhci->lock, flags);
557 return;
558 }
559
560 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
561 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
562 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
563 xhci->error_bitmask = 0;
564 xhci_dbg(xhci, "Event ring:\n");
565 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
566 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
567 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
568 temp_64 &= ~ERST_PTR_MASK;
569 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
570 xhci_dbg(xhci, "Command ring:\n");
571 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
572 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
573 xhci_dbg_cmd_ptrs(xhci);
574 for (i = 0; i < MAX_HC_SLOTS; ++i) {
575 if (!xhci->devs[i])
576 continue;
577 for (j = 0; j < 31; ++j) {
578 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
579 }
580 }
581 spin_unlock_irqrestore(&xhci->lock, flags);
582
583 if (!xhci->zombie)
584 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
585 else
586 xhci_dbg(xhci, "Quit polling the event ring.\n");
587 }
588 #endif
589
xhci_run_finished(struct xhci_hcd * xhci)590 static int xhci_run_finished(struct xhci_hcd *xhci)
591 {
592 if (xhci_start(xhci)) {
593 xhci_halt(xhci);
594 return -ENODEV;
595 }
596 xhci->shared_hcd->state = HC_STATE_RUNNING;
597 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
598
599 if (xhci->quirks & XHCI_NEC_HOST)
600 xhci_ring_cmd_db(xhci);
601
602 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
603 return 0;
604 }
605
606 /*
607 * Start the HC after it was halted.
608 *
609 * This function is called by the USB core when the HC driver is added.
610 * Its opposite is xhci_stop().
611 *
612 * xhci_init() must be called once before this function can be called.
613 * Reset the HC, enable device slot contexts, program DCBAAP, and
614 * set command ring pointer and event ring pointer.
615 *
616 * Setup MSI-X vectors and enable interrupts.
617 */
xhci_run(struct usb_hcd * hcd)618 int xhci_run(struct usb_hcd *hcd)
619 {
620 u32 temp;
621 u64 temp_64;
622 int ret;
623 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
624
625 /* Start the xHCI host controller running only after the USB 2.0 roothub
626 * is setup.
627 */
628
629 hcd->uses_new_polling = 1;
630 if (!usb_hcd_is_primary_hcd(hcd))
631 return xhci_run_finished(xhci);
632
633 xhci_dbg(xhci, "xhci_run\n");
634
635 ret = xhci_try_enable_msi(hcd);
636 if (ret)
637 return ret;
638
639 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
640 init_timer(&xhci->event_ring_timer);
641 xhci->event_ring_timer.data = (unsigned long) xhci;
642 xhci->event_ring_timer.function = xhci_event_ring_work;
643 /* Poll the event ring */
644 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
645 xhci->zombie = 0;
646 xhci_dbg(xhci, "Setting event ring polling timer\n");
647 add_timer(&xhci->event_ring_timer);
648 #endif
649
650 xhci_dbg(xhci, "Command ring memory map follows:\n");
651 xhci_debug_ring(xhci, xhci->cmd_ring);
652 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
653 xhci_dbg_cmd_ptrs(xhci);
654
655 xhci_dbg(xhci, "ERST memory map follows:\n");
656 xhci_dbg_erst(xhci, &xhci->erst);
657 xhci_dbg(xhci, "Event ring:\n");
658 xhci_debug_ring(xhci, xhci->event_ring);
659 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
660 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
661 temp_64 &= ~ERST_PTR_MASK;
662 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
663
664 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
665 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
666 temp &= ~ER_IRQ_INTERVAL_MASK;
667 temp |= (u32) 160;
668 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
669
670 /* Set the HCD state before we enable the irqs */
671 temp = xhci_readl(xhci, &xhci->op_regs->command);
672 temp |= (CMD_EIE);
673 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
674 temp);
675 xhci_writel(xhci, temp, &xhci->op_regs->command);
676
677 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
678 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
679 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
681 &xhci->ir_set->irq_pending);
682 xhci_print_ir_set(xhci, 0);
683
684 if (xhci->quirks & XHCI_NEC_HOST)
685 xhci_queue_vendor_command(xhci, 0, 0, 0,
686 TRB_TYPE(TRB_NEC_GET_FW));
687
688 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
689 return 0;
690 }
691
xhci_only_stop_hcd(struct usb_hcd * hcd)692 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
693 {
694 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
695
696 spin_lock_irq(&xhci->lock);
697 xhci_halt(xhci);
698
699 /* The shared_hcd is going to be deallocated shortly (the USB core only
700 * calls this function when allocation fails in usb_add_hcd(), or
701 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
702 */
703 xhci->shared_hcd = NULL;
704 spin_unlock_irq(&xhci->lock);
705 }
706
707 /*
708 * Stop xHCI driver.
709 *
710 * This function is called by the USB core when the HC driver is removed.
711 * Its opposite is xhci_run().
712 *
713 * Disable device contexts, disable IRQs, and quiesce the HC.
714 * Reset the HC, finish any completed transactions, and cleanup memory.
715 */
xhci_stop(struct usb_hcd * hcd)716 void xhci_stop(struct usb_hcd *hcd)
717 {
718 u32 temp;
719 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
720
721 if (!usb_hcd_is_primary_hcd(hcd)) {
722 xhci_only_stop_hcd(xhci->shared_hcd);
723 return;
724 }
725
726 spin_lock_irq(&xhci->lock);
727 /* Make sure the xHC is halted for a USB3 roothub
728 * (xhci_stop() could be called as part of failed init).
729 */
730 xhci_halt(xhci);
731 xhci_reset(xhci);
732 spin_unlock_irq(&xhci->lock);
733
734 xhci_cleanup_msix(xhci);
735
736 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
737 /* Tell the event ring poll function not to reschedule */
738 xhci->zombie = 1;
739 del_timer_sync(&xhci->event_ring_timer);
740 #endif
741
742 /* Deleting Compliance Mode Recovery Timer */
743 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
744 (!(xhci_all_ports_seen_u0(xhci))))
745 del_timer_sync(&xhci->comp_mode_recovery_timer);
746
747 if (xhci->quirks & XHCI_AMD_PLL_FIX)
748 usb_amd_dev_put();
749
750 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
751 temp = xhci_readl(xhci, &xhci->op_regs->status);
752 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
753 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
754 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
755 &xhci->ir_set->irq_pending);
756 xhci_print_ir_set(xhci, 0);
757
758 xhci_dbg(xhci, "cleaning up memory\n");
759 xhci_mem_cleanup(xhci);
760 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
761 xhci_readl(xhci, &xhci->op_regs->status));
762 }
763
764 /*
765 * Shutdown HC (not bus-specific)
766 *
767 * This is called when the machine is rebooting or halting. We assume that the
768 * machine will be powered off, and the HC's internal state will be reset.
769 * Don't bother to free memory.
770 *
771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
772 */
xhci_shutdown(struct usb_hcd * hcd)773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
779
780 spin_lock_irq(&xhci->lock);
781 xhci_halt(xhci);
782 /* Workaround for spurious wakeups at shutdown with HSW */
783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 xhci_reset(xhci);
785 spin_unlock_irq(&xhci->lock);
786
787 xhci_cleanup_msix(xhci);
788
789 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
790 xhci_readl(xhci, &xhci->op_regs->status));
791
792 /* Yet another workaround for spurious wakeups at shutdown with HSW */
793 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
794 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
795 }
796
797 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)798 static void xhci_save_registers(struct xhci_hcd *xhci)
799 {
800 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
801 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
802 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
803 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
804 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
805 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
806 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
807 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
808 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
809 }
810
xhci_restore_registers(struct xhci_hcd * xhci)811 static void xhci_restore_registers(struct xhci_hcd *xhci)
812 {
813 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
814 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
815 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
816 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
817 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
818 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
819 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
820 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
821 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
822 }
823
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)824 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
825 {
826 u64 val_64;
827
828 /* step 2: initialize command ring buffer */
829 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
830 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
831 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
832 xhci->cmd_ring->dequeue) &
833 (u64) ~CMD_RING_RSVD_BITS) |
834 xhci->cmd_ring->cycle_state;
835 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
836 (long unsigned long) val_64);
837 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
838 }
839
840 /*
841 * The whole command ring must be cleared to zero when we suspend the host.
842 *
843 * The host doesn't save the command ring pointer in the suspend well, so we
844 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
845 * aligned, because of the reserved bits in the command ring dequeue pointer
846 * register. Therefore, we can't just set the dequeue pointer back in the
847 * middle of the ring (TRBs are 16-byte aligned).
848 */
xhci_clear_command_ring(struct xhci_hcd * xhci)849 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
850 {
851 struct xhci_ring *ring;
852 struct xhci_segment *seg;
853
854 ring = xhci->cmd_ring;
855 seg = ring->deq_seg;
856 do {
857 memset(seg->trbs, 0,
858 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
859 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
860 cpu_to_le32(~TRB_CYCLE);
861 seg = seg->next;
862 } while (seg != ring->deq_seg);
863
864 /* Reset the software enqueue and dequeue pointers */
865 ring->deq_seg = ring->first_seg;
866 ring->dequeue = ring->first_seg->trbs;
867 ring->enq_seg = ring->deq_seg;
868 ring->enqueue = ring->dequeue;
869
870 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
871 /*
872 * Ring is now zeroed, so the HW should look for change of ownership
873 * when the cycle bit is set to 1.
874 */
875 ring->cycle_state = 1;
876
877 /*
878 * Reset the hardware dequeue pointer.
879 * Yes, this will need to be re-written after resume, but we're paranoid
880 * and want to make sure the hardware doesn't access bogus memory
881 * because, say, the BIOS or an SMI started the host without changing
882 * the command ring pointers.
883 */
884 xhci_set_cmd_ring_deq(xhci);
885 }
886
887 /*
888 * Stop HC (not bus-specific)
889 *
890 * This is called when the machine transition into S3/S4 mode.
891 *
892 */
xhci_suspend(struct xhci_hcd * xhci)893 int xhci_suspend(struct xhci_hcd *xhci)
894 {
895 int rc = 0;
896 unsigned int delay = XHCI_MAX_HALT_USEC;
897 struct usb_hcd *hcd = xhci_to_hcd(xhci);
898 u32 command;
899
900 /* Don't poll the roothubs on bus suspend. */
901 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
902 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
903 del_timer_sync(&hcd->rh_timer);
904
905 spin_lock_irq(&xhci->lock);
906 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
907 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
908 /* step 1: stop endpoint */
909 /* skipped assuming that port suspend has done */
910
911 /* step 2: clear Run/Stop bit */
912 command = xhci_readl(xhci, &xhci->op_regs->command);
913 command &= ~CMD_RUN;
914 xhci_writel(xhci, command, &xhci->op_regs->command);
915
916 /* Some chips from Fresco Logic need an extraordinary delay */
917 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
918
919 if (handshake(xhci, &xhci->op_regs->status,
920 STS_HALT, STS_HALT, delay)) {
921 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
922 spin_unlock_irq(&xhci->lock);
923 return -ETIMEDOUT;
924 }
925 xhci_clear_command_ring(xhci);
926
927 /* step 3: save registers */
928 xhci_save_registers(xhci);
929
930 /* step 4: set CSS flag */
931 command = xhci_readl(xhci, &xhci->op_regs->command);
932 command |= CMD_CSS;
933 xhci_writel(xhci, command, &xhci->op_regs->command);
934 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
935 xhci_warn(xhci, "WARN: xHC save state timeout\n");
936 spin_unlock_irq(&xhci->lock);
937 return -ETIMEDOUT;
938 }
939 spin_unlock_irq(&xhci->lock);
940
941 /*
942 * Deleting Compliance Mode Recovery Timer because the xHCI Host
943 * is about to be suspended.
944 */
945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
946 (!(xhci_all_ports_seen_u0(xhci)))) {
947 del_timer_sync(&xhci->comp_mode_recovery_timer);
948 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
949 }
950
951 /* step 5: remove core well power */
952 /* synchronize irq when using MSI-X */
953 xhci_msix_sync_irqs(xhci);
954
955 return rc;
956 }
957
958 /*
959 * start xHC (not bus-specific)
960 *
961 * This is called when the machine transition from S3/S4 mode.
962 *
963 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)964 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
965 {
966 u32 command, temp = 0, status;
967 struct usb_hcd *hcd = xhci_to_hcd(xhci);
968 struct usb_hcd *secondary_hcd;
969 int retval = 0;
970 bool comp_timer_running = false;
971
972 /* Wait a bit if either of the roothubs need to settle from the
973 * transition into bus suspend.
974 */
975 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
976 time_before(jiffies,
977 xhci->bus_state[1].next_statechange))
978 msleep(100);
979
980 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
981 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
982
983 spin_lock_irq(&xhci->lock);
984 if (xhci->quirks & XHCI_RESET_ON_RESUME)
985 hibernated = true;
986
987 if (!hibernated) {
988 /* step 1: restore register */
989 xhci_restore_registers(xhci);
990 /* step 2: initialize command ring buffer */
991 xhci_set_cmd_ring_deq(xhci);
992 /* step 3: restore state and start state*/
993 /* step 3: set CRS flag */
994 command = xhci_readl(xhci, &xhci->op_regs->command);
995 command |= CMD_CRS;
996 xhci_writel(xhci, command, &xhci->op_regs->command);
997 if (handshake(xhci, &xhci->op_regs->status,
998 STS_RESTORE, 0, 10 * 1000)) {
999 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1000 spin_unlock_irq(&xhci->lock);
1001 return -ETIMEDOUT;
1002 }
1003 temp = xhci_readl(xhci, &xhci->op_regs->status);
1004 }
1005
1006 /* If restore operation fails, re-initialize the HC during resume */
1007 if ((temp & STS_SRE) || hibernated) {
1008
1009 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1010 !(xhci_all_ports_seen_u0(xhci))) {
1011 del_timer_sync(&xhci->comp_mode_recovery_timer);
1012 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1013 }
1014
1015 /* Let the USB core know _both_ roothubs lost power. */
1016 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1017 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1018
1019 xhci_dbg(xhci, "Stop HCD\n");
1020 xhci_halt(xhci);
1021 xhci_reset(xhci);
1022 spin_unlock_irq(&xhci->lock);
1023 xhci_cleanup_msix(xhci);
1024
1025 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1026 /* Tell the event ring poll function not to reschedule */
1027 xhci->zombie = 1;
1028 del_timer_sync(&xhci->event_ring_timer);
1029 #endif
1030
1031 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1032 temp = xhci_readl(xhci, &xhci->op_regs->status);
1033 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1034 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1035 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1036 &xhci->ir_set->irq_pending);
1037 xhci_print_ir_set(xhci, 0);
1038
1039 xhci_dbg(xhci, "cleaning up memory\n");
1040 xhci_mem_cleanup(xhci);
1041 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1042 xhci_readl(xhci, &xhci->op_regs->status));
1043
1044 /* USB core calls the PCI reinit and start functions twice:
1045 * first with the primary HCD, and then with the secondary HCD.
1046 * If we don't do the same, the host will never be started.
1047 */
1048 if (!usb_hcd_is_primary_hcd(hcd))
1049 secondary_hcd = hcd;
1050 else
1051 secondary_hcd = xhci->shared_hcd;
1052
1053 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1054 retval = xhci_init(hcd->primary_hcd);
1055 if (retval)
1056 return retval;
1057 comp_timer_running = true;
1058
1059 xhci_dbg(xhci, "Start the primary HCD\n");
1060 retval = xhci_run(hcd->primary_hcd);
1061 if (!retval) {
1062 xhci_dbg(xhci, "Start the secondary HCD\n");
1063 retval = xhci_run(secondary_hcd);
1064 }
1065 hcd->state = HC_STATE_SUSPENDED;
1066 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1067 goto done;
1068 }
1069
1070 /* step 4: set Run/Stop bit */
1071 command = xhci_readl(xhci, &xhci->op_regs->command);
1072 command |= CMD_RUN;
1073 xhci_writel(xhci, command, &xhci->op_regs->command);
1074 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1075 0, 250 * 1000);
1076
1077 /* step 5: walk topology and initialize portsc,
1078 * portpmsc and portli
1079 */
1080 /* this is done in bus_resume */
1081
1082 /* step 6: restart each of the previously
1083 * Running endpoints by ringing their doorbells
1084 */
1085
1086 spin_unlock_irq(&xhci->lock);
1087
1088 done:
1089 if (retval == 0) {
1090 /* Resume root hubs only when have pending events. */
1091 status = readl(&xhci->op_regs->status);
1092 if (status & STS_EINT) {
1093 usb_hcd_resume_root_hub(hcd);
1094 usb_hcd_resume_root_hub(xhci->shared_hcd);
1095 }
1096 }
1097
1098 /*
1099 * If system is subject to the Quirk, Compliance Mode Timer needs to
1100 * be re-initialized Always after a system resume. Ports are subject
1101 * to suffer the Compliance Mode issue again. It doesn't matter if
1102 * ports have entered previously to U0 before system's suspension.
1103 */
1104 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1105 compliance_mode_recovery_timer_init(xhci);
1106
1107 /* Re-enable port polling. */
1108 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1109 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1110 usb_hcd_poll_rh_status(hcd);
1111
1112 return retval;
1113 }
1114 #endif /* CONFIG_PM */
1115
1116 /*-------------------------------------------------------------------------*/
1117
1118 /**
1119 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1120 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1121 * value to right shift 1 for the bitmask.
1122 *
1123 * Index = (epnum * 2) + direction - 1,
1124 * where direction = 0 for OUT, 1 for IN.
1125 * For control endpoints, the IN index is used (OUT index is unused), so
1126 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1127 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1128 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1129 {
1130 unsigned int index;
1131 if (usb_endpoint_xfer_control(desc))
1132 index = (unsigned int) (usb_endpoint_num(desc)*2);
1133 else
1134 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1135 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1136 return index;
1137 }
1138
1139 /* Find the flag for this endpoint (for use in the control context). Use the
1140 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1141 * bit 1, etc.
1142 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1143 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1144 {
1145 return 1 << (xhci_get_endpoint_index(desc) + 1);
1146 }
1147
1148 /* Find the flag for this endpoint (for use in the control context). Use the
1149 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1150 * bit 1, etc.
1151 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1152 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1153 {
1154 return 1 << (ep_index + 1);
1155 }
1156
1157 /* Compute the last valid endpoint context index. Basically, this is the
1158 * endpoint index plus one. For slot contexts with more than valid endpoint,
1159 * we find the most significant bit set in the added contexts flags.
1160 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1161 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1162 */
xhci_last_valid_endpoint(u32 added_ctxs)1163 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1164 {
1165 return fls(added_ctxs) - 1;
1166 }
1167
1168 /* Returns 1 if the arguments are OK;
1169 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1170 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1171 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1172 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1173 const char *func) {
1174 struct xhci_hcd *xhci;
1175 struct xhci_virt_device *virt_dev;
1176
1177 if (!hcd || (check_ep && !ep) || !udev) {
1178 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1179 func);
1180 return -EINVAL;
1181 }
1182 if (!udev->parent) {
1183 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1184 func);
1185 return 0;
1186 }
1187
1188 xhci = hcd_to_xhci(hcd);
1189 if (check_virt_dev) {
1190 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1191 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1192 "device\n", func);
1193 return -EINVAL;
1194 }
1195
1196 virt_dev = xhci->devs[udev->slot_id];
1197 if (virt_dev->udev != udev) {
1198 printk(KERN_DEBUG "xHCI %s called with udev and "
1199 "virt_dev does not match\n", func);
1200 return -EINVAL;
1201 }
1202 }
1203
1204 if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 return -ENODEV;
1206
1207 return 1;
1208 }
1209
1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1211 struct usb_device *udev, struct xhci_command *command,
1212 bool ctx_change, bool must_succeed);
1213
1214 /*
1215 * Full speed devices may have a max packet size greater than 8 bytes, but the
1216 * USB core doesn't know that until it reads the first 8 bytes of the
1217 * descriptor. If the usb_device's max packet size changes after that point,
1218 * we need to issue an evaluate context command and wait on it.
1219 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1221 unsigned int ep_index, struct urb *urb)
1222 {
1223 struct xhci_container_ctx *in_ctx;
1224 struct xhci_container_ctx *out_ctx;
1225 struct xhci_input_control_ctx *ctrl_ctx;
1226 struct xhci_ep_ctx *ep_ctx;
1227 int max_packet_size;
1228 int hw_max_packet_size;
1229 int ret = 0;
1230
1231 out_ctx = xhci->devs[slot_id]->out_ctx;
1232 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1233 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1234 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1235 if (hw_max_packet_size != max_packet_size) {
1236 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1237 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1238 max_packet_size);
1239 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1240 hw_max_packet_size);
1241 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1242
1243 /* Set up the modified control endpoint 0 */
1244 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1245 xhci->devs[slot_id]->out_ctx, ep_index);
1246 in_ctx = xhci->devs[slot_id]->in_ctx;
1247 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1248 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1249 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1250
1251 /* Set up the input context flags for the command */
1252 /* FIXME: This won't work if a non-default control endpoint
1253 * changes max packet sizes.
1254 */
1255 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1256 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1257 ctrl_ctx->drop_flags = 0;
1258
1259 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1260 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1261 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1262 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1263
1264 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1265 true, false);
1266
1267 /* Clean up the input context for later use by bandwidth
1268 * functions.
1269 */
1270 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1271 }
1272 return ret;
1273 }
1274
1275 /*
1276 * non-error returns are a promise to giveback() the urb later
1277 * we drop ownership so next owner (or urb unlink) can get it
1278 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1279 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1280 {
1281 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1282 struct xhci_td *buffer;
1283 unsigned long flags;
1284 int ret = 0;
1285 unsigned int slot_id, ep_index;
1286 struct urb_priv *urb_priv;
1287 int size, i;
1288
1289 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1290 true, true, __func__) <= 0)
1291 return -EINVAL;
1292
1293 slot_id = urb->dev->slot_id;
1294 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1295
1296 if (!HCD_HW_ACCESSIBLE(hcd)) {
1297 if (!in_interrupt())
1298 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1299 ret = -ESHUTDOWN;
1300 goto exit;
1301 }
1302
1303 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1304 size = urb->number_of_packets;
1305 else
1306 size = 1;
1307
1308 urb_priv = kzalloc(sizeof(struct urb_priv) +
1309 size * sizeof(struct xhci_td *), mem_flags);
1310 if (!urb_priv)
1311 return -ENOMEM;
1312
1313 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1314 if (!buffer) {
1315 kfree(urb_priv);
1316 return -ENOMEM;
1317 }
1318
1319 for (i = 0; i < size; i++) {
1320 urb_priv->td[i] = buffer;
1321 buffer++;
1322 }
1323
1324 urb_priv->length = size;
1325 urb_priv->td_cnt = 0;
1326 urb->hcpriv = urb_priv;
1327
1328 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329 /* Check to see if the max packet size for the default control
1330 * endpoint changed during FS device enumeration
1331 */
1332 if (urb->dev->speed == USB_SPEED_FULL) {
1333 ret = xhci_check_maxpacket(xhci, slot_id,
1334 ep_index, urb);
1335 if (ret < 0) {
1336 xhci_urb_free_priv(xhci, urb_priv);
1337 urb->hcpriv = NULL;
1338 return ret;
1339 }
1340 }
1341
1342 /* We have a spinlock and interrupts disabled, so we must pass
1343 * atomic context to this function, which may allocate memory.
1344 */
1345 spin_lock_irqsave(&xhci->lock, flags);
1346 if (xhci->xhc_state & XHCI_STATE_DYING)
1347 goto dying;
1348 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1349 slot_id, ep_index);
1350 if (ret)
1351 goto free_priv;
1352 spin_unlock_irqrestore(&xhci->lock, flags);
1353 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1354 spin_lock_irqsave(&xhci->lock, flags);
1355 if (xhci->xhc_state & XHCI_STATE_DYING)
1356 goto dying;
1357 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1358 EP_GETTING_STREAMS) {
1359 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1360 "is transitioning to using streams.\n");
1361 ret = -EINVAL;
1362 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1363 EP_GETTING_NO_STREAMS) {
1364 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1365 "is transitioning to "
1366 "not having streams.\n");
1367 ret = -EINVAL;
1368 } else {
1369 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1370 slot_id, ep_index);
1371 }
1372 if (ret)
1373 goto free_priv;
1374 spin_unlock_irqrestore(&xhci->lock, flags);
1375 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1376 spin_lock_irqsave(&xhci->lock, flags);
1377 if (xhci->xhc_state & XHCI_STATE_DYING)
1378 goto dying;
1379 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380 slot_id, ep_index);
1381 if (ret)
1382 goto free_priv;
1383 spin_unlock_irqrestore(&xhci->lock, flags);
1384 } else {
1385 spin_lock_irqsave(&xhci->lock, flags);
1386 if (xhci->xhc_state & XHCI_STATE_DYING)
1387 goto dying;
1388 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1389 slot_id, ep_index);
1390 if (ret)
1391 goto free_priv;
1392 spin_unlock_irqrestore(&xhci->lock, flags);
1393 }
1394 exit:
1395 return ret;
1396 dying:
1397 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1398 "non-responsive xHCI host.\n",
1399 urb->ep->desc.bEndpointAddress, urb);
1400 ret = -ESHUTDOWN;
1401 free_priv:
1402 xhci_urb_free_priv(xhci, urb_priv);
1403 urb->hcpriv = NULL;
1404 spin_unlock_irqrestore(&xhci->lock, flags);
1405 return ret;
1406 }
1407
1408 /* Get the right ring for the given URB.
1409 * If the endpoint supports streams, boundary check the URB's stream ID.
1410 * If the endpoint doesn't support streams, return the singular endpoint ring.
1411 */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1412 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1413 struct urb *urb)
1414 {
1415 unsigned int slot_id;
1416 unsigned int ep_index;
1417 unsigned int stream_id;
1418 struct xhci_virt_ep *ep;
1419
1420 slot_id = urb->dev->slot_id;
1421 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1422 stream_id = urb->stream_id;
1423 ep = &xhci->devs[slot_id]->eps[ep_index];
1424 /* Common case: no streams */
1425 if (!(ep->ep_state & EP_HAS_STREAMS))
1426 return ep->ring;
1427
1428 if (stream_id == 0) {
1429 xhci_warn(xhci,
1430 "WARN: Slot ID %u, ep index %u has streams, "
1431 "but URB has no stream ID.\n",
1432 slot_id, ep_index);
1433 return NULL;
1434 }
1435
1436 if (stream_id < ep->stream_info->num_streams)
1437 return ep->stream_info->stream_rings[stream_id];
1438
1439 xhci_warn(xhci,
1440 "WARN: Slot ID %u, ep index %u has "
1441 "stream IDs 1 to %u allocated, "
1442 "but stream ID %u is requested.\n",
1443 slot_id, ep_index,
1444 ep->stream_info->num_streams - 1,
1445 stream_id);
1446 return NULL;
1447 }
1448
1449 /*
1450 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1451 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1452 * should pick up where it left off in the TD, unless a Set Transfer Ring
1453 * Dequeue Pointer is issued.
1454 *
1455 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1456 * the ring. Since the ring is a contiguous structure, they can't be physically
1457 * removed. Instead, there are two options:
1458 *
1459 * 1) If the HC is in the middle of processing the URB to be canceled, we
1460 * simply move the ring's dequeue pointer past those TRBs using the Set
1461 * Transfer Ring Dequeue Pointer command. This will be the common case,
1462 * when drivers timeout on the last submitted URB and attempt to cancel.
1463 *
1464 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1465 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1466 * HC will need to invalidate the any TRBs it has cached after the stop
1467 * endpoint command, as noted in the xHCI 0.95 errata.
1468 *
1469 * 3) The TD may have completed by the time the Stop Endpoint Command
1470 * completes, so software needs to handle that case too.
1471 *
1472 * This function should protect against the TD enqueueing code ringing the
1473 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1474 * It also needs to account for multiple cancellations on happening at the same
1475 * time for the same endpoint.
1476 *
1477 * Note that this function can be called in any context, or so says
1478 * usb_hcd_unlink_urb()
1479 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1480 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1481 {
1482 unsigned long flags;
1483 int ret, i;
1484 u32 temp;
1485 struct xhci_hcd *xhci;
1486 struct urb_priv *urb_priv;
1487 struct xhci_td *td;
1488 unsigned int ep_index;
1489 struct xhci_ring *ep_ring;
1490 struct xhci_virt_ep *ep;
1491
1492 xhci = hcd_to_xhci(hcd);
1493 spin_lock_irqsave(&xhci->lock, flags);
1494 /* Make sure the URB hasn't completed or been unlinked already */
1495 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1496 if (ret || !urb->hcpriv)
1497 goto done;
1498 temp = xhci_readl(xhci, &xhci->op_regs->status);
1499 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1500 xhci_dbg(xhci, "HW died, freeing TD.\n");
1501 urb_priv = urb->hcpriv;
1502 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1503 td = urb_priv->td[i];
1504 if (!list_empty(&td->td_list))
1505 list_del_init(&td->td_list);
1506 if (!list_empty(&td->cancelled_td_list))
1507 list_del_init(&td->cancelled_td_list);
1508 }
1509
1510 usb_hcd_unlink_urb_from_ep(hcd, urb);
1511 spin_unlock_irqrestore(&xhci->lock, flags);
1512 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1513 xhci_urb_free_priv(xhci, urb_priv);
1514 return ret;
1515 }
1516 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1517 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1518 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1519 "non-responsive xHCI host.\n",
1520 urb->ep->desc.bEndpointAddress, urb);
1521 /* Let the stop endpoint command watchdog timer (which set this
1522 * state) finish cleaning up the endpoint TD lists. We must
1523 * have caught it in the middle of dropping a lock and giving
1524 * back an URB.
1525 */
1526 goto done;
1527 }
1528
1529 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1530 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1531 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1532 if (!ep_ring) {
1533 ret = -EINVAL;
1534 goto done;
1535 }
1536
1537 urb_priv = urb->hcpriv;
1538 i = urb_priv->td_cnt;
1539 if (i < urb_priv->length)
1540 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1541 "starting at offset 0x%llx\n",
1542 urb, urb->dev->devpath,
1543 urb->ep->desc.bEndpointAddress,
1544 (unsigned long long) xhci_trb_virt_to_dma(
1545 urb_priv->td[i]->start_seg,
1546 urb_priv->td[i]->first_trb));
1547
1548 for (; i < urb_priv->length; i++) {
1549 td = urb_priv->td[i];
1550 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1551 }
1552
1553 /* Queue a stop endpoint command, but only if this is
1554 * the first cancellation to be handled.
1555 */
1556 if (!(ep->ep_state & EP_HALT_PENDING)) {
1557 ep->ep_state |= EP_HALT_PENDING;
1558 ep->stop_cmds_pending++;
1559 ep->stop_cmd_timer.expires = jiffies +
1560 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1561 add_timer(&ep->stop_cmd_timer);
1562 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1563 xhci_ring_cmd_db(xhci);
1564 }
1565 done:
1566 spin_unlock_irqrestore(&xhci->lock, flags);
1567 return ret;
1568 }
1569
1570 /* Drop an endpoint from a new bandwidth configuration for this device.
1571 * Only one call to this function is allowed per endpoint before
1572 * check_bandwidth() or reset_bandwidth() must be called.
1573 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1574 * add the endpoint to the schedule with possibly new parameters denoted by a
1575 * different endpoint descriptor in usb_host_endpoint.
1576 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1577 * not allowed.
1578 *
1579 * The USB core will not allow URBs to be queued to an endpoint that is being
1580 * disabled, so there's no need for mutual exclusion to protect
1581 * the xhci->devs[slot_id] structure.
1582 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1583 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1584 struct usb_host_endpoint *ep)
1585 {
1586 struct xhci_hcd *xhci;
1587 struct xhci_container_ctx *in_ctx, *out_ctx;
1588 struct xhci_input_control_ctx *ctrl_ctx;
1589 struct xhci_slot_ctx *slot_ctx;
1590 unsigned int last_ctx;
1591 unsigned int ep_index;
1592 struct xhci_ep_ctx *ep_ctx;
1593 u32 drop_flag;
1594 u32 new_add_flags, new_drop_flags, new_slot_info;
1595 int ret;
1596
1597 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1598 if (ret <= 0)
1599 return ret;
1600 xhci = hcd_to_xhci(hcd);
1601 if (xhci->xhc_state & XHCI_STATE_DYING)
1602 return -ENODEV;
1603
1604 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1605 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1606 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1607 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1608 __func__, drop_flag);
1609 return 0;
1610 }
1611
1612 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1613 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1614 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1615 ep_index = xhci_get_endpoint_index(&ep->desc);
1616 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1617 /* If the HC already knows the endpoint is disabled,
1618 * or the HCD has noted it is disabled, ignore this request
1619 */
1620 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1621 cpu_to_le32(EP_STATE_DISABLED)) ||
1622 le32_to_cpu(ctrl_ctx->drop_flags) &
1623 xhci_get_endpoint_flag(&ep->desc)) {
1624 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1625 __func__, ep);
1626 return 0;
1627 }
1628
1629 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1630 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1631
1632 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1633 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1634
1635 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1636 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1637 /* Update the last valid endpoint context, if we deleted the last one */
1638 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1639 LAST_CTX(last_ctx)) {
1640 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1641 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1642 }
1643 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1644
1645 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1646
1647 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1648 (unsigned int) ep->desc.bEndpointAddress,
1649 udev->slot_id,
1650 (unsigned int) new_drop_flags,
1651 (unsigned int) new_add_flags,
1652 (unsigned int) new_slot_info);
1653 return 0;
1654 }
1655
1656 /* Add an endpoint to a new possible bandwidth configuration for this device.
1657 * Only one call to this function is allowed per endpoint before
1658 * check_bandwidth() or reset_bandwidth() must be called.
1659 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1660 * add the endpoint to the schedule with possibly new parameters denoted by a
1661 * different endpoint descriptor in usb_host_endpoint.
1662 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1663 * not allowed.
1664 *
1665 * The USB core will not allow URBs to be queued to an endpoint until the
1666 * configuration or alt setting is installed in the device, so there's no need
1667 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1668 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1669 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1670 struct usb_host_endpoint *ep)
1671 {
1672 struct xhci_hcd *xhci;
1673 struct xhci_container_ctx *in_ctx, *out_ctx;
1674 unsigned int ep_index;
1675 struct xhci_ep_ctx *ep_ctx;
1676 struct xhci_slot_ctx *slot_ctx;
1677 struct xhci_input_control_ctx *ctrl_ctx;
1678 u32 added_ctxs;
1679 unsigned int last_ctx;
1680 u32 new_add_flags, new_drop_flags, new_slot_info;
1681 struct xhci_virt_device *virt_dev;
1682 int ret = 0;
1683
1684 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1685 if (ret <= 0) {
1686 /* So we won't queue a reset ep command for a root hub */
1687 ep->hcpriv = NULL;
1688 return ret;
1689 }
1690 xhci = hcd_to_xhci(hcd);
1691 if (xhci->xhc_state & XHCI_STATE_DYING)
1692 return -ENODEV;
1693
1694 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1695 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1696 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1697 /* FIXME when we have to issue an evaluate endpoint command to
1698 * deal with ep0 max packet size changing once we get the
1699 * descriptors
1700 */
1701 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1702 __func__, added_ctxs);
1703 return 0;
1704 }
1705
1706 virt_dev = xhci->devs[udev->slot_id];
1707 in_ctx = virt_dev->in_ctx;
1708 out_ctx = virt_dev->out_ctx;
1709 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1710 ep_index = xhci_get_endpoint_index(&ep->desc);
1711 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1712
1713 /* If this endpoint is already in use, and the upper layers are trying
1714 * to add it again without dropping it, reject the addition.
1715 */
1716 if (virt_dev->eps[ep_index].ring &&
1717 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1718 xhci_get_endpoint_flag(&ep->desc))) {
1719 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1720 "without dropping it.\n",
1721 (unsigned int) ep->desc.bEndpointAddress);
1722 return -EINVAL;
1723 }
1724
1725 /* If the HCD has already noted the endpoint is enabled,
1726 * ignore this request.
1727 */
1728 if (le32_to_cpu(ctrl_ctx->add_flags) &
1729 xhci_get_endpoint_flag(&ep->desc)) {
1730 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1731 __func__, ep);
1732 return 0;
1733 }
1734
1735 /*
1736 * Configuration and alternate setting changes must be done in
1737 * process context, not interrupt context (or so documenation
1738 * for usb_set_interface() and usb_set_configuration() claim).
1739 */
1740 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1741 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1742 __func__, ep->desc.bEndpointAddress);
1743 return -ENOMEM;
1744 }
1745
1746 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1747 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1748
1749 /* If xhci_endpoint_disable() was called for this endpoint, but the
1750 * xHC hasn't been notified yet through the check_bandwidth() call,
1751 * this re-adds a new state for the endpoint from the new endpoint
1752 * descriptors. We must drop and re-add this endpoint, so we leave the
1753 * drop flags alone.
1754 */
1755 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1756
1757 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1758 /* Update the last valid endpoint context, if we just added one past */
1759 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1760 LAST_CTX(last_ctx)) {
1761 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1762 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1763 }
1764 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1765
1766 /* Store the usb_device pointer for later use */
1767 ep->hcpriv = udev;
1768
1769 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1770 (unsigned int) ep->desc.bEndpointAddress,
1771 udev->slot_id,
1772 (unsigned int) new_drop_flags,
1773 (unsigned int) new_add_flags,
1774 (unsigned int) new_slot_info);
1775 return 0;
1776 }
1777
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1778 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1779 {
1780 struct xhci_input_control_ctx *ctrl_ctx;
1781 struct xhci_ep_ctx *ep_ctx;
1782 struct xhci_slot_ctx *slot_ctx;
1783 int i;
1784
1785 /* When a device's add flag and drop flag are zero, any subsequent
1786 * configure endpoint command will leave that endpoint's state
1787 * untouched. Make sure we don't leave any old state in the input
1788 * endpoint contexts.
1789 */
1790 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1791 ctrl_ctx->drop_flags = 0;
1792 ctrl_ctx->add_flags = 0;
1793 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1794 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1795 /* Endpoint 0 is always valid */
1796 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1797 for (i = 1; i < 31; ++i) {
1798 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1799 ep_ctx->ep_info = 0;
1800 ep_ctx->ep_info2 = 0;
1801 ep_ctx->deq = 0;
1802 ep_ctx->tx_info = 0;
1803 }
1804 }
1805
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1806 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1807 struct usb_device *udev, u32 *cmd_status)
1808 {
1809 int ret;
1810
1811 switch (*cmd_status) {
1812 case COMP_ENOMEM:
1813 dev_warn(&udev->dev, "Not enough host controller resources "
1814 "for new device state.\n");
1815 ret = -ENOMEM;
1816 /* FIXME: can we allocate more resources for the HC? */
1817 break;
1818 case COMP_BW_ERR:
1819 case COMP_2ND_BW_ERR:
1820 dev_warn(&udev->dev, "Not enough bandwidth "
1821 "for new device state.\n");
1822 ret = -ENOSPC;
1823 /* FIXME: can we go back to the old state? */
1824 break;
1825 case COMP_TRB_ERR:
1826 /* the HCD set up something wrong */
1827 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1828 "add flag = 1, "
1829 "and endpoint is not disabled.\n");
1830 ret = -EINVAL;
1831 break;
1832 case COMP_DEV_ERR:
1833 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1834 "configure command.\n");
1835 ret = -ENODEV;
1836 break;
1837 case COMP_SUCCESS:
1838 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1839 ret = 0;
1840 break;
1841 default:
1842 xhci_err(xhci, "ERROR: unexpected command completion "
1843 "code 0x%x.\n", *cmd_status);
1844 ret = -EINVAL;
1845 break;
1846 }
1847 return ret;
1848 }
1849
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1850 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1851 struct usb_device *udev, u32 *cmd_status)
1852 {
1853 int ret;
1854 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1855
1856 switch (*cmd_status) {
1857 case COMP_EINVAL:
1858 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1859 "context command.\n");
1860 ret = -EINVAL;
1861 break;
1862 case COMP_EBADSLT:
1863 dev_warn(&udev->dev, "WARN: slot not enabled for"
1864 "evaluate context command.\n");
1865 case COMP_CTX_STATE:
1866 dev_warn(&udev->dev, "WARN: invalid context state for "
1867 "evaluate context command.\n");
1868 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1869 ret = -EINVAL;
1870 break;
1871 case COMP_DEV_ERR:
1872 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1873 "context command.\n");
1874 ret = -ENODEV;
1875 break;
1876 case COMP_MEL_ERR:
1877 /* Max Exit Latency too large error */
1878 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1879 ret = -EINVAL;
1880 break;
1881 case COMP_SUCCESS:
1882 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1883 ret = 0;
1884 break;
1885 default:
1886 xhci_err(xhci, "ERROR: unexpected command completion "
1887 "code 0x%x.\n", *cmd_status);
1888 ret = -EINVAL;
1889 break;
1890 }
1891 return ret;
1892 }
1893
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1894 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1895 struct xhci_container_ctx *in_ctx)
1896 {
1897 struct xhci_input_control_ctx *ctrl_ctx;
1898 u32 valid_add_flags;
1899 u32 valid_drop_flags;
1900
1901 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1902 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1903 * (bit 1). The default control endpoint is added during the Address
1904 * Device command and is never removed until the slot is disabled.
1905 */
1906 valid_add_flags = ctrl_ctx->add_flags >> 2;
1907 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1908
1909 /* Use hweight32 to count the number of ones in the add flags, or
1910 * number of endpoints added. Don't count endpoints that are changed
1911 * (both added and dropped).
1912 */
1913 return hweight32(valid_add_flags) -
1914 hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1917 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1918 struct xhci_container_ctx *in_ctx)
1919 {
1920 struct xhci_input_control_ctx *ctrl_ctx;
1921 u32 valid_add_flags;
1922 u32 valid_drop_flags;
1923
1924 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1925 valid_add_flags = ctrl_ctx->add_flags >> 2;
1926 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1927
1928 return hweight32(valid_drop_flags) -
1929 hweight32(valid_add_flags & valid_drop_flags);
1930 }
1931
1932 /*
1933 * We need to reserve the new number of endpoints before the configure endpoint
1934 * command completes. We can't subtract the dropped endpoints from the number
1935 * of active endpoints until the command completes because we can oversubscribe
1936 * the host in this case:
1937 *
1938 * - the first configure endpoint command drops more endpoints than it adds
1939 * - a second configure endpoint command that adds more endpoints is queued
1940 * - the first configure endpoint command fails, so the config is unchanged
1941 * - the second command may succeed, even though there isn't enough resources
1942 *
1943 * Must be called with xhci->lock held.
1944 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1945 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1946 struct xhci_container_ctx *in_ctx)
1947 {
1948 u32 added_eps;
1949
1950 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1951 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1952 xhci_dbg(xhci, "Not enough ep ctxs: "
1953 "%u active, need to add %u, limit is %u.\n",
1954 xhci->num_active_eps, added_eps,
1955 xhci->limit_active_eps);
1956 return -ENOMEM;
1957 }
1958 xhci->num_active_eps += added_eps;
1959 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1960 xhci->num_active_eps);
1961 return 0;
1962 }
1963
1964 /*
1965 * The configure endpoint was failed by the xHC for some other reason, so we
1966 * need to revert the resources that failed configuration would have used.
1967 *
1968 * Must be called with xhci->lock held.
1969 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1970 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1971 struct xhci_container_ctx *in_ctx)
1972 {
1973 u32 num_failed_eps;
1974
1975 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1976 xhci->num_active_eps -= num_failed_eps;
1977 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1978 num_failed_eps,
1979 xhci->num_active_eps);
1980 }
1981
1982 /*
1983 * Now that the command has completed, clean up the active endpoint count by
1984 * subtracting out the endpoints that were dropped (but not changed).
1985 *
1986 * Must be called with xhci->lock held.
1987 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1988 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1989 struct xhci_container_ctx *in_ctx)
1990 {
1991 u32 num_dropped_eps;
1992
1993 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1994 xhci->num_active_eps -= num_dropped_eps;
1995 if (num_dropped_eps)
1996 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1997 num_dropped_eps,
1998 xhci->num_active_eps);
1999 }
2000
xhci_get_block_size(struct usb_device * udev)2001 unsigned int xhci_get_block_size(struct usb_device *udev)
2002 {
2003 switch (udev->speed) {
2004 case USB_SPEED_LOW:
2005 case USB_SPEED_FULL:
2006 return FS_BLOCK;
2007 case USB_SPEED_HIGH:
2008 return HS_BLOCK;
2009 case USB_SPEED_SUPER:
2010 return SS_BLOCK;
2011 case USB_SPEED_UNKNOWN:
2012 case USB_SPEED_WIRELESS:
2013 default:
2014 /* Should never happen */
2015 return 1;
2016 }
2017 }
2018
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2019 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020 {
2021 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022 return LS_OVERHEAD;
2023 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024 return FS_OVERHEAD;
2025 return HS_OVERHEAD;
2026 }
2027
2028 /* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033 struct xhci_virt_device *virt_dev,
2034 int old_active_eps)
2035 {
2036 struct xhci_interval_bw_table *bw_table;
2037 struct xhci_tt_bw_info *tt_info;
2038
2039 /* Find the bandwidth table for the root port this TT is attached to. */
2040 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041 tt_info = virt_dev->tt_info;
2042 /* If this TT already had active endpoints, the bandwidth for this TT
2043 * has already been added. Removing all periodic endpoints (and thus
2044 * making the TT enactive) will only decrease the bandwidth used.
2045 */
2046 if (old_active_eps)
2047 return 0;
2048 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050 return -ENOMEM;
2051 return 0;
2052 }
2053 /* Not sure why we would have no new active endpoints...
2054 *
2055 * Maybe because of an Evaluate Context change for a hub update or a
2056 * control endpoint 0 max packet size change?
2057 * FIXME: skip the bandwidth calculation in that case.
2058 */
2059 return 0;
2060 }
2061
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063 struct xhci_virt_device *virt_dev)
2064 {
2065 unsigned int bw_reserved;
2066
2067 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069 return -ENOMEM;
2070
2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073 return -ENOMEM;
2074
2075 return 0;
2076 }
2077
2078 /*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval. The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling. This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario. Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval. In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in. For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so. The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit. This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval. We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval. Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2119 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120 struct xhci_virt_device *virt_dev,
2121 int old_active_eps)
2122 {
2123 unsigned int bw_reserved;
2124 unsigned int max_bandwidth;
2125 unsigned int bw_used;
2126 unsigned int block_size;
2127 struct xhci_interval_bw_table *bw_table;
2128 unsigned int packet_size = 0;
2129 unsigned int overhead = 0;
2130 unsigned int packets_transmitted = 0;
2131 unsigned int packets_remaining = 0;
2132 unsigned int i;
2133
2134 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135 return xhci_check_ss_bw(xhci, virt_dev);
2136
2137 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138 max_bandwidth = HS_BW_LIMIT;
2139 /* Convert percent of bus BW reserved to blocks reserved */
2140 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141 } else {
2142 max_bandwidth = FS_BW_LIMIT;
2143 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144 }
2145
2146 bw_table = virt_dev->bw_table;
2147 /* We need to translate the max packet size and max ESIT payloads into
2148 * the units the hardware uses.
2149 */
2150 block_size = xhci_get_block_size(virt_dev->udev);
2151
2152 /* If we are manipulating a LS/FS device under a HS hub, double check
2153 * that the HS bus has enough bandwidth if we are activing a new TT.
2154 */
2155 if (virt_dev->tt_info) {
2156 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2157 virt_dev->real_port);
2158 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2159 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2160 "newly activated TT.\n");
2161 return -ENOMEM;
2162 }
2163 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2164 virt_dev->tt_info->slot_id,
2165 virt_dev->tt_info->ttport);
2166 } else {
2167 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2168 virt_dev->real_port);
2169 }
2170
2171 /* Add in how much bandwidth will be used for interval zero, or the
2172 * rounded max ESIT payload + number of packets * largest overhead.
2173 */
2174 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2175 bw_table->interval_bw[0].num_packets *
2176 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2177
2178 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2179 unsigned int bw_added;
2180 unsigned int largest_mps;
2181 unsigned int interval_overhead;
2182
2183 /*
2184 * How many packets could we transmit in this interval?
2185 * If packets didn't fit in the previous interval, we will need
2186 * to transmit that many packets twice within this interval.
2187 */
2188 packets_remaining = 2 * packets_remaining +
2189 bw_table->interval_bw[i].num_packets;
2190
2191 /* Find the largest max packet size of this or the previous
2192 * interval.
2193 */
2194 if (list_empty(&bw_table->interval_bw[i].endpoints))
2195 largest_mps = 0;
2196 else {
2197 struct xhci_virt_ep *virt_ep;
2198 struct list_head *ep_entry;
2199
2200 ep_entry = bw_table->interval_bw[i].endpoints.next;
2201 virt_ep = list_entry(ep_entry,
2202 struct xhci_virt_ep, bw_endpoint_list);
2203 /* Convert to blocks, rounding up */
2204 largest_mps = DIV_ROUND_UP(
2205 virt_ep->bw_info.max_packet_size,
2206 block_size);
2207 }
2208 if (largest_mps > packet_size)
2209 packet_size = largest_mps;
2210
2211 /* Use the larger overhead of this or the previous interval. */
2212 interval_overhead = xhci_get_largest_overhead(
2213 &bw_table->interval_bw[i]);
2214 if (interval_overhead > overhead)
2215 overhead = interval_overhead;
2216
2217 /* How many packets can we evenly distribute across
2218 * (1 << (i + 1)) possible scheduling opportunities?
2219 */
2220 packets_transmitted = packets_remaining >> (i + 1);
2221
2222 /* Add in the bandwidth used for those scheduled packets */
2223 bw_added = packets_transmitted * (overhead + packet_size);
2224
2225 /* How many packets do we have remaining to transmit? */
2226 packets_remaining = packets_remaining % (1 << (i + 1));
2227
2228 /* What largest max packet size should those packets have? */
2229 /* If we've transmitted all packets, don't carry over the
2230 * largest packet size.
2231 */
2232 if (packets_remaining == 0) {
2233 packet_size = 0;
2234 overhead = 0;
2235 } else if (packets_transmitted > 0) {
2236 /* Otherwise if we do have remaining packets, and we've
2237 * scheduled some packets in this interval, take the
2238 * largest max packet size from endpoints with this
2239 * interval.
2240 */
2241 packet_size = largest_mps;
2242 overhead = interval_overhead;
2243 }
2244 /* Otherwise carry over packet_size and overhead from the last
2245 * time we had a remainder.
2246 */
2247 bw_used += bw_added;
2248 if (bw_used > max_bandwidth) {
2249 xhci_warn(xhci, "Not enough bandwidth. "
2250 "Proposed: %u, Max: %u\n",
2251 bw_used, max_bandwidth);
2252 return -ENOMEM;
2253 }
2254 }
2255 /*
2256 * Ok, we know we have some packets left over after even-handedly
2257 * scheduling interval 15. We don't know which microframes they will
2258 * fit into, so we over-schedule and say they will be scheduled every
2259 * microframe.
2260 */
2261 if (packets_remaining > 0)
2262 bw_used += overhead + packet_size;
2263
2264 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2265 unsigned int port_index = virt_dev->real_port - 1;
2266
2267 /* OK, we're manipulating a HS device attached to a
2268 * root port bandwidth domain. Include the number of active TTs
2269 * in the bandwidth used.
2270 */
2271 bw_used += TT_HS_OVERHEAD *
2272 xhci->rh_bw[port_index].num_active_tts;
2273 }
2274
2275 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2276 "Available: %u " "percent\n",
2277 bw_used, max_bandwidth, bw_reserved,
2278 (max_bandwidth - bw_used - bw_reserved) * 100 /
2279 max_bandwidth);
2280
2281 bw_used += bw_reserved;
2282 if (bw_used > max_bandwidth) {
2283 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2284 bw_used, max_bandwidth);
2285 return -ENOMEM;
2286 }
2287
2288 bw_table->bw_used = bw_used;
2289 return 0;
2290 }
2291
xhci_is_async_ep(unsigned int ep_type)2292 static bool xhci_is_async_ep(unsigned int ep_type)
2293 {
2294 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2295 ep_type != ISOC_IN_EP &&
2296 ep_type != INT_IN_EP);
2297 }
2298
xhci_is_sync_in_ep(unsigned int ep_type)2299 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2300 {
2301 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2302 }
2303
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2304 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2305 {
2306 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2307
2308 if (ep_bw->ep_interval == 0)
2309 return SS_OVERHEAD_BURST +
2310 (ep_bw->mult * ep_bw->num_packets *
2311 (SS_OVERHEAD + mps));
2312 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2313 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2314 1 << ep_bw->ep_interval);
2315
2316 }
2317
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2318 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2319 struct xhci_bw_info *ep_bw,
2320 struct xhci_interval_bw_table *bw_table,
2321 struct usb_device *udev,
2322 struct xhci_virt_ep *virt_ep,
2323 struct xhci_tt_bw_info *tt_info)
2324 {
2325 struct xhci_interval_bw *interval_bw;
2326 int normalized_interval;
2327
2328 if (xhci_is_async_ep(ep_bw->type))
2329 return;
2330
2331 if (udev->speed == USB_SPEED_SUPER) {
2332 if (xhci_is_sync_in_ep(ep_bw->type))
2333 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2334 xhci_get_ss_bw_consumed(ep_bw);
2335 else
2336 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2337 xhci_get_ss_bw_consumed(ep_bw);
2338 return;
2339 }
2340
2341 /* SuperSpeed endpoints never get added to intervals in the table, so
2342 * this check is only valid for HS/FS/LS devices.
2343 */
2344 if (list_empty(&virt_ep->bw_endpoint_list))
2345 return;
2346 /* For LS/FS devices, we need to translate the interval expressed in
2347 * microframes to frames.
2348 */
2349 if (udev->speed == USB_SPEED_HIGH)
2350 normalized_interval = ep_bw->ep_interval;
2351 else
2352 normalized_interval = ep_bw->ep_interval - 3;
2353
2354 if (normalized_interval == 0)
2355 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2356 interval_bw = &bw_table->interval_bw[normalized_interval];
2357 interval_bw->num_packets -= ep_bw->num_packets;
2358 switch (udev->speed) {
2359 case USB_SPEED_LOW:
2360 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2361 break;
2362 case USB_SPEED_FULL:
2363 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2364 break;
2365 case USB_SPEED_HIGH:
2366 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2367 break;
2368 case USB_SPEED_SUPER:
2369 case USB_SPEED_UNKNOWN:
2370 case USB_SPEED_WIRELESS:
2371 /* Should never happen because only LS/FS/HS endpoints will get
2372 * added to the endpoint list.
2373 */
2374 return;
2375 }
2376 if (tt_info)
2377 tt_info->active_eps -= 1;
2378 list_del_init(&virt_ep->bw_endpoint_list);
2379 }
2380
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2381 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2382 struct xhci_bw_info *ep_bw,
2383 struct xhci_interval_bw_table *bw_table,
2384 struct usb_device *udev,
2385 struct xhci_virt_ep *virt_ep,
2386 struct xhci_tt_bw_info *tt_info)
2387 {
2388 struct xhci_interval_bw *interval_bw;
2389 struct xhci_virt_ep *smaller_ep;
2390 int normalized_interval;
2391
2392 if (xhci_is_async_ep(ep_bw->type))
2393 return;
2394
2395 if (udev->speed == USB_SPEED_SUPER) {
2396 if (xhci_is_sync_in_ep(ep_bw->type))
2397 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2398 xhci_get_ss_bw_consumed(ep_bw);
2399 else
2400 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2401 xhci_get_ss_bw_consumed(ep_bw);
2402 return;
2403 }
2404
2405 /* For LS/FS devices, we need to translate the interval expressed in
2406 * microframes to frames.
2407 */
2408 if (udev->speed == USB_SPEED_HIGH)
2409 normalized_interval = ep_bw->ep_interval;
2410 else
2411 normalized_interval = ep_bw->ep_interval - 3;
2412
2413 if (normalized_interval == 0)
2414 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2415 interval_bw = &bw_table->interval_bw[normalized_interval];
2416 interval_bw->num_packets += ep_bw->num_packets;
2417 switch (udev->speed) {
2418 case USB_SPEED_LOW:
2419 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2420 break;
2421 case USB_SPEED_FULL:
2422 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2423 break;
2424 case USB_SPEED_HIGH:
2425 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2426 break;
2427 case USB_SPEED_SUPER:
2428 case USB_SPEED_UNKNOWN:
2429 case USB_SPEED_WIRELESS:
2430 /* Should never happen because only LS/FS/HS endpoints will get
2431 * added to the endpoint list.
2432 */
2433 return;
2434 }
2435
2436 if (tt_info)
2437 tt_info->active_eps += 1;
2438 /* Insert the endpoint into the list, largest max packet size first. */
2439 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2440 bw_endpoint_list) {
2441 if (ep_bw->max_packet_size >=
2442 smaller_ep->bw_info.max_packet_size) {
2443 /* Add the new ep before the smaller endpoint */
2444 list_add_tail(&virt_ep->bw_endpoint_list,
2445 &smaller_ep->bw_endpoint_list);
2446 return;
2447 }
2448 }
2449 /* Add the new endpoint at the end of the list. */
2450 list_add_tail(&virt_ep->bw_endpoint_list,
2451 &interval_bw->endpoints);
2452 }
2453
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2454 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2455 struct xhci_virt_device *virt_dev,
2456 int old_active_eps)
2457 {
2458 struct xhci_root_port_bw_info *rh_bw_info;
2459 if (!virt_dev->tt_info)
2460 return;
2461
2462 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2463 if (old_active_eps == 0 &&
2464 virt_dev->tt_info->active_eps != 0) {
2465 rh_bw_info->num_active_tts += 1;
2466 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2467 } else if (old_active_eps != 0 &&
2468 virt_dev->tt_info->active_eps == 0) {
2469 rh_bw_info->num_active_tts -= 1;
2470 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2471 }
2472 }
2473
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2474 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2475 struct xhci_virt_device *virt_dev,
2476 struct xhci_container_ctx *in_ctx)
2477 {
2478 struct xhci_bw_info ep_bw_info[31];
2479 int i;
2480 struct xhci_input_control_ctx *ctrl_ctx;
2481 int old_active_eps = 0;
2482
2483 if (virt_dev->tt_info)
2484 old_active_eps = virt_dev->tt_info->active_eps;
2485
2486 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2487
2488 for (i = 0; i < 31; i++) {
2489 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2490 continue;
2491
2492 /* Make a copy of the BW info in case we need to revert this */
2493 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2494 sizeof(ep_bw_info[i]));
2495 /* Drop the endpoint from the interval table if the endpoint is
2496 * being dropped or changed.
2497 */
2498 if (EP_IS_DROPPED(ctrl_ctx, i))
2499 xhci_drop_ep_from_interval_table(xhci,
2500 &virt_dev->eps[i].bw_info,
2501 virt_dev->bw_table,
2502 virt_dev->udev,
2503 &virt_dev->eps[i],
2504 virt_dev->tt_info);
2505 }
2506 /* Overwrite the information stored in the endpoints' bw_info */
2507 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2508 for (i = 0; i < 31; i++) {
2509 /* Add any changed or added endpoints to the interval table */
2510 if (EP_IS_ADDED(ctrl_ctx, i))
2511 xhci_add_ep_to_interval_table(xhci,
2512 &virt_dev->eps[i].bw_info,
2513 virt_dev->bw_table,
2514 virt_dev->udev,
2515 &virt_dev->eps[i],
2516 virt_dev->tt_info);
2517 }
2518
2519 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2520 /* Ok, this fits in the bandwidth we have.
2521 * Update the number of active TTs.
2522 */
2523 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2524 return 0;
2525 }
2526
2527 /* We don't have enough bandwidth for this, revert the stored info. */
2528 for (i = 0; i < 31; i++) {
2529 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2530 continue;
2531
2532 /* Drop the new copies of any added or changed endpoints from
2533 * the interval table.
2534 */
2535 if (EP_IS_ADDED(ctrl_ctx, i)) {
2536 xhci_drop_ep_from_interval_table(xhci,
2537 &virt_dev->eps[i].bw_info,
2538 virt_dev->bw_table,
2539 virt_dev->udev,
2540 &virt_dev->eps[i],
2541 virt_dev->tt_info);
2542 }
2543 /* Revert the endpoint back to its old information */
2544 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2545 sizeof(ep_bw_info[i]));
2546 /* Add any changed or dropped endpoints back into the table */
2547 if (EP_IS_DROPPED(ctrl_ctx, i))
2548 xhci_add_ep_to_interval_table(xhci,
2549 &virt_dev->eps[i].bw_info,
2550 virt_dev->bw_table,
2551 virt_dev->udev,
2552 &virt_dev->eps[i],
2553 virt_dev->tt_info);
2554 }
2555 return -ENOMEM;
2556 }
2557
2558
2559 /* Issue a configure endpoint command or evaluate context command
2560 * and wait for it to finish.
2561 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2562 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2563 struct usb_device *udev,
2564 struct xhci_command *command,
2565 bool ctx_change, bool must_succeed)
2566 {
2567 int ret;
2568 int timeleft;
2569 unsigned long flags;
2570 struct xhci_container_ctx *in_ctx;
2571 struct completion *cmd_completion;
2572 u32 *cmd_status;
2573 struct xhci_virt_device *virt_dev;
2574 union xhci_trb *cmd_trb;
2575
2576 spin_lock_irqsave(&xhci->lock, flags);
2577 virt_dev = xhci->devs[udev->slot_id];
2578
2579 if (command)
2580 in_ctx = command->in_ctx;
2581 else
2582 in_ctx = virt_dev->in_ctx;
2583
2584 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2585 xhci_reserve_host_resources(xhci, in_ctx)) {
2586 spin_unlock_irqrestore(&xhci->lock, flags);
2587 xhci_warn(xhci, "Not enough host resources, "
2588 "active endpoint contexts = %u\n",
2589 xhci->num_active_eps);
2590 return -ENOMEM;
2591 }
2592 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2593 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2594 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2595 xhci_free_host_resources(xhci, in_ctx);
2596 spin_unlock_irqrestore(&xhci->lock, flags);
2597 xhci_warn(xhci, "Not enough bandwidth\n");
2598 return -ENOMEM;
2599 }
2600
2601 if (command) {
2602 cmd_completion = command->completion;
2603 cmd_status = &command->status;
2604 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2605 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2606 } else {
2607 cmd_completion = &virt_dev->cmd_completion;
2608 cmd_status = &virt_dev->cmd_status;
2609 }
2610 init_completion(cmd_completion);
2611
2612 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2613 if (!ctx_change)
2614 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2615 udev->slot_id, must_succeed);
2616 else
2617 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2618 udev->slot_id);
2619 if (ret < 0) {
2620 if (command)
2621 list_del(&command->cmd_list);
2622 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2623 xhci_free_host_resources(xhci, in_ctx);
2624 spin_unlock_irqrestore(&xhci->lock, flags);
2625 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2626 return -ENOMEM;
2627 }
2628 xhci_ring_cmd_db(xhci);
2629 spin_unlock_irqrestore(&xhci->lock, flags);
2630
2631 /* Wait for the configure endpoint command to complete */
2632 timeleft = wait_for_completion_interruptible_timeout(
2633 cmd_completion,
2634 XHCI_CMD_DEFAULT_TIMEOUT);
2635 if (timeleft <= 0) {
2636 xhci_warn(xhci, "%s while waiting for %s command\n",
2637 timeleft == 0 ? "Timeout" : "Signal",
2638 ctx_change == 0 ?
2639 "configure endpoint" :
2640 "evaluate context");
2641 /* cancel the configure endpoint command */
2642 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2643 if (ret < 0)
2644 return ret;
2645 return -ETIME;
2646 }
2647
2648 if (!ctx_change)
2649 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2650 else
2651 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2652
2653 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2654 spin_lock_irqsave(&xhci->lock, flags);
2655 /* If the command failed, remove the reserved resources.
2656 * Otherwise, clean up the estimate to include dropped eps.
2657 */
2658 if (ret)
2659 xhci_free_host_resources(xhci, in_ctx);
2660 else
2661 xhci_finish_resource_reservation(xhci, in_ctx);
2662 spin_unlock_irqrestore(&xhci->lock, flags);
2663 }
2664 return ret;
2665 }
2666
2667 /* Called after one or more calls to xhci_add_endpoint() or
2668 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2669 * to call xhci_reset_bandwidth().
2670 *
2671 * Since we are in the middle of changing either configuration or
2672 * installing a new alt setting, the USB core won't allow URBs to be
2673 * enqueued for any endpoint on the old config or interface. Nothing
2674 * else should be touching the xhci->devs[slot_id] structure, so we
2675 * don't need to take the xhci->lock for manipulating that.
2676 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2677 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2678 {
2679 int i;
2680 int ret = 0;
2681 struct xhci_hcd *xhci;
2682 struct xhci_virt_device *virt_dev;
2683 struct xhci_input_control_ctx *ctrl_ctx;
2684 struct xhci_slot_ctx *slot_ctx;
2685
2686 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2687 if (ret <= 0)
2688 return ret;
2689 xhci = hcd_to_xhci(hcd);
2690 if (xhci->xhc_state & XHCI_STATE_DYING)
2691 return -ENODEV;
2692
2693 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2694 virt_dev = xhci->devs[udev->slot_id];
2695
2696 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2699 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2700 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2701
2702 /* Don't issue the command if there's no endpoints to update. */
2703 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2704 ctrl_ctx->drop_flags == 0)
2705 return 0;
2706
2707 xhci_dbg(xhci, "New Input Control Context:\n");
2708 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2709 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2710 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2711
2712 ret = xhci_configure_endpoint(xhci, udev, NULL,
2713 false, false);
2714 if (ret) {
2715 /* Callee should call reset_bandwidth() */
2716 return ret;
2717 }
2718
2719 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2720 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2721 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2722
2723 /* Free any rings that were dropped, but not changed. */
2724 for (i = 1; i < 31; ++i) {
2725 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2726 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2727 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2728 }
2729 xhci_zero_in_ctx(xhci, virt_dev);
2730 /*
2731 * Install any rings for completely new endpoints or changed endpoints,
2732 * and free or cache any old rings from changed endpoints.
2733 */
2734 for (i = 1; i < 31; ++i) {
2735 if (!virt_dev->eps[i].new_ring)
2736 continue;
2737 /* Only cache or free the old ring if it exists.
2738 * It may not if this is the first add of an endpoint.
2739 */
2740 if (virt_dev->eps[i].ring) {
2741 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2742 }
2743 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2744 virt_dev->eps[i].new_ring = NULL;
2745 }
2746
2747 return ret;
2748 }
2749
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2750 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2751 {
2752 struct xhci_hcd *xhci;
2753 struct xhci_virt_device *virt_dev;
2754 int i, ret;
2755
2756 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2757 if (ret <= 0)
2758 return;
2759 xhci = hcd_to_xhci(hcd);
2760
2761 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2762 virt_dev = xhci->devs[udev->slot_id];
2763 /* Free any rings allocated for added endpoints */
2764 for (i = 0; i < 31; ++i) {
2765 if (virt_dev->eps[i].new_ring) {
2766 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2767 virt_dev->eps[i].new_ring = NULL;
2768 }
2769 }
2770 xhci_zero_in_ctx(xhci, virt_dev);
2771 }
2772
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,u32 add_flags,u32 drop_flags)2773 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2774 struct xhci_container_ctx *in_ctx,
2775 struct xhci_container_ctx *out_ctx,
2776 u32 add_flags, u32 drop_flags)
2777 {
2778 struct xhci_input_control_ctx *ctrl_ctx;
2779 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2780 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2781 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2782 xhci_slot_copy(xhci, in_ctx, out_ctx);
2783 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2784
2785 xhci_dbg(xhci, "Input Context:\n");
2786 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2787 }
2788
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2789 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2790 unsigned int slot_id, unsigned int ep_index,
2791 struct xhci_dequeue_state *deq_state)
2792 {
2793 struct xhci_container_ctx *in_ctx;
2794 struct xhci_ep_ctx *ep_ctx;
2795 u32 added_ctxs;
2796 dma_addr_t addr;
2797
2798 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2799 xhci->devs[slot_id]->out_ctx, ep_index);
2800 in_ctx = xhci->devs[slot_id]->in_ctx;
2801 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2802 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2803 deq_state->new_deq_ptr);
2804 if (addr == 0) {
2805 xhci_warn(xhci, "WARN Cannot submit config ep after "
2806 "reset ep command\n");
2807 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2808 deq_state->new_deq_seg,
2809 deq_state->new_deq_ptr);
2810 return;
2811 }
2812 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2813
2814 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2815 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2816 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2817 }
2818
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,struct usb_device * udev,unsigned int ep_index)2819 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2820 struct usb_device *udev, unsigned int ep_index)
2821 {
2822 struct xhci_dequeue_state deq_state;
2823 struct xhci_virt_ep *ep;
2824
2825 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2826 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2827 /* We need to move the HW's dequeue pointer past this TD,
2828 * or it will attempt to resend it on the next doorbell ring.
2829 */
2830 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2831 ep_index, ep->stopped_stream, ep->stopped_td,
2832 &deq_state);
2833
2834 /* HW with the reset endpoint quirk will use the saved dequeue state to
2835 * issue a configure endpoint command later.
2836 */
2837 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2838 xhci_dbg(xhci, "Queueing new dequeue state\n");
2839 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2840 ep_index, ep->stopped_stream, &deq_state);
2841 } else {
2842 /* Better hope no one uses the input context between now and the
2843 * reset endpoint completion!
2844 * XXX: No idea how this hardware will react when stream rings
2845 * are enabled.
2846 */
2847 xhci_dbg(xhci, "Setting up input context for "
2848 "configure endpoint command\n");
2849 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2850 ep_index, &deq_state);
2851 }
2852 }
2853
2854 /* Deal with stalled endpoints. The core should have sent the control message
2855 * to clear the halt condition. However, we need to make the xHCI hardware
2856 * reset its sequence number, since a device will expect a sequence number of
2857 * zero after the halt condition is cleared.
2858 * Context: in_interrupt
2859 */
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2860 void xhci_endpoint_reset(struct usb_hcd *hcd,
2861 struct usb_host_endpoint *ep)
2862 {
2863 struct xhci_hcd *xhci;
2864 struct usb_device *udev;
2865 unsigned int ep_index;
2866 unsigned long flags;
2867 int ret;
2868 struct xhci_virt_ep *virt_ep;
2869
2870 xhci = hcd_to_xhci(hcd);
2871 udev = (struct usb_device *) ep->hcpriv;
2872 /* Called with a root hub endpoint (or an endpoint that wasn't added
2873 * with xhci_add_endpoint()
2874 */
2875 if (!ep->hcpriv)
2876 return;
2877 ep_index = xhci_get_endpoint_index(&ep->desc);
2878 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2879 if (!virt_ep->stopped_td) {
2880 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2881 ep->desc.bEndpointAddress);
2882 return;
2883 }
2884 if (usb_endpoint_xfer_control(&ep->desc)) {
2885 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2886 return;
2887 }
2888
2889 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2890 spin_lock_irqsave(&xhci->lock, flags);
2891 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2892 /*
2893 * Can't change the ring dequeue pointer until it's transitioned to the
2894 * stopped state, which is only upon a successful reset endpoint
2895 * command. Better hope that last command worked!
2896 */
2897 if (!ret) {
2898 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2899 kfree(virt_ep->stopped_td);
2900 xhci_ring_cmd_db(xhci);
2901 }
2902 virt_ep->stopped_td = NULL;
2903 virt_ep->stopped_trb = NULL;
2904 virt_ep->stopped_stream = 0;
2905 spin_unlock_irqrestore(&xhci->lock, flags);
2906
2907 if (ret)
2908 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2909 }
2910
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)2911 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2912 struct usb_device *udev, struct usb_host_endpoint *ep,
2913 unsigned int slot_id)
2914 {
2915 int ret;
2916 unsigned int ep_index;
2917 unsigned int ep_state;
2918
2919 if (!ep)
2920 return -EINVAL;
2921 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2922 if (ret <= 0)
2923 return -EINVAL;
2924 if (ep->ss_ep_comp.bmAttributes == 0) {
2925 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2926 " descriptor for ep 0x%x does not support streams\n",
2927 ep->desc.bEndpointAddress);
2928 return -EINVAL;
2929 }
2930
2931 ep_index = xhci_get_endpoint_index(&ep->desc);
2932 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2933 if (ep_state & EP_HAS_STREAMS ||
2934 ep_state & EP_GETTING_STREAMS) {
2935 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2936 "already has streams set up.\n",
2937 ep->desc.bEndpointAddress);
2938 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2939 "dynamic stream context array reallocation.\n");
2940 return -EINVAL;
2941 }
2942 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2943 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2944 "endpoint 0x%x; URBs are pending.\n",
2945 ep->desc.bEndpointAddress);
2946 return -EINVAL;
2947 }
2948 return 0;
2949 }
2950
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)2951 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2952 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2953 {
2954 unsigned int max_streams;
2955
2956 /* The stream context array size must be a power of two */
2957 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2958 /*
2959 * Find out how many primary stream array entries the host controller
2960 * supports. Later we may use secondary stream arrays (similar to 2nd
2961 * level page entries), but that's an optional feature for xHCI host
2962 * controllers. xHCs must support at least 4 stream IDs.
2963 */
2964 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2965 if (*num_stream_ctxs > max_streams) {
2966 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2967 max_streams);
2968 *num_stream_ctxs = max_streams;
2969 *num_streams = max_streams;
2970 }
2971 }
2972
2973 /* Returns an error code if one of the endpoint already has streams.
2974 * This does not change any data structures, it only checks and gathers
2975 * information.
2976 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)2977 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2978 struct usb_device *udev,
2979 struct usb_host_endpoint **eps, unsigned int num_eps,
2980 unsigned int *num_streams, u32 *changed_ep_bitmask)
2981 {
2982 unsigned int max_streams;
2983 unsigned int endpoint_flag;
2984 int i;
2985 int ret;
2986
2987 for (i = 0; i < num_eps; i++) {
2988 ret = xhci_check_streams_endpoint(xhci, udev,
2989 eps[i], udev->slot_id);
2990 if (ret < 0)
2991 return ret;
2992
2993 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2994 if (max_streams < (*num_streams - 1)) {
2995 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2996 eps[i]->desc.bEndpointAddress,
2997 max_streams);
2998 *num_streams = max_streams+1;
2999 }
3000
3001 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3002 if (*changed_ep_bitmask & endpoint_flag)
3003 return -EINVAL;
3004 *changed_ep_bitmask |= endpoint_flag;
3005 }
3006 return 0;
3007 }
3008
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3009 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3010 struct usb_device *udev,
3011 struct usb_host_endpoint **eps, unsigned int num_eps)
3012 {
3013 u32 changed_ep_bitmask = 0;
3014 unsigned int slot_id;
3015 unsigned int ep_index;
3016 unsigned int ep_state;
3017 int i;
3018
3019 slot_id = udev->slot_id;
3020 if (!xhci->devs[slot_id])
3021 return 0;
3022
3023 for (i = 0; i < num_eps; i++) {
3024 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3025 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3026 /* Are streams already being freed for the endpoint? */
3027 if (ep_state & EP_GETTING_NO_STREAMS) {
3028 xhci_warn(xhci, "WARN Can't disable streams for "
3029 "endpoint 0x%x\n, "
3030 "streams are being disabled already.",
3031 eps[i]->desc.bEndpointAddress);
3032 return 0;
3033 }
3034 /* Are there actually any streams to free? */
3035 if (!(ep_state & EP_HAS_STREAMS) &&
3036 !(ep_state & EP_GETTING_STREAMS)) {
3037 xhci_warn(xhci, "WARN Can't disable streams for "
3038 "endpoint 0x%x\n, "
3039 "streams are already disabled!",
3040 eps[i]->desc.bEndpointAddress);
3041 xhci_warn(xhci, "WARN xhci_free_streams() called "
3042 "with non-streams endpoint\n");
3043 return 0;
3044 }
3045 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3046 }
3047 return changed_ep_bitmask;
3048 }
3049
3050 /*
3051 * The USB device drivers use this function (though the HCD interface in USB
3052 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3053 * coordinate mass storage command queueing across multiple endpoints (basically
3054 * a stream ID == a task ID).
3055 *
3056 * Setting up streams involves allocating the same size stream context array
3057 * for each endpoint and issuing a configure endpoint command for all endpoints.
3058 *
3059 * Don't allow the call to succeed if one endpoint only supports one stream
3060 * (which means it doesn't support streams at all).
3061 *
3062 * Drivers may get less stream IDs than they asked for, if the host controller
3063 * hardware or endpoints claim they can't support the number of requested
3064 * stream IDs.
3065 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3066 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3067 struct usb_host_endpoint **eps, unsigned int num_eps,
3068 unsigned int num_streams, gfp_t mem_flags)
3069 {
3070 int i, ret;
3071 struct xhci_hcd *xhci;
3072 struct xhci_virt_device *vdev;
3073 struct xhci_command *config_cmd;
3074 unsigned int ep_index;
3075 unsigned int num_stream_ctxs;
3076 unsigned long flags;
3077 u32 changed_ep_bitmask = 0;
3078
3079 if (!eps)
3080 return -EINVAL;
3081
3082 /* Add one to the number of streams requested to account for
3083 * stream 0 that is reserved for xHCI usage.
3084 */
3085 num_streams += 1;
3086 xhci = hcd_to_xhci(hcd);
3087 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3088 num_streams);
3089
3090 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3091 if (!config_cmd) {
3092 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3093 return -ENOMEM;
3094 }
3095
3096 /* Check to make sure all endpoints are not already configured for
3097 * streams. While we're at it, find the maximum number of streams that
3098 * all the endpoints will support and check for duplicate endpoints.
3099 */
3100 spin_lock_irqsave(&xhci->lock, flags);
3101 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3102 num_eps, &num_streams, &changed_ep_bitmask);
3103 if (ret < 0) {
3104 xhci_free_command(xhci, config_cmd);
3105 spin_unlock_irqrestore(&xhci->lock, flags);
3106 return ret;
3107 }
3108 if (num_streams <= 1) {
3109 xhci_warn(xhci, "WARN: endpoints can't handle "
3110 "more than one stream.\n");
3111 xhci_free_command(xhci, config_cmd);
3112 spin_unlock_irqrestore(&xhci->lock, flags);
3113 return -EINVAL;
3114 }
3115 vdev = xhci->devs[udev->slot_id];
3116 /* Mark each endpoint as being in transition, so
3117 * xhci_urb_enqueue() will reject all URBs.
3118 */
3119 for (i = 0; i < num_eps; i++) {
3120 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3122 }
3123 spin_unlock_irqrestore(&xhci->lock, flags);
3124
3125 /* Setup internal data structures and allocate HW data structures for
3126 * streams (but don't install the HW structures in the input context
3127 * until we're sure all memory allocation succeeded).
3128 */
3129 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3130 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3131 num_stream_ctxs, num_streams);
3132
3133 for (i = 0; i < num_eps; i++) {
3134 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3136 num_stream_ctxs,
3137 num_streams, mem_flags);
3138 if (!vdev->eps[ep_index].stream_info)
3139 goto cleanup;
3140 /* Set maxPstreams in endpoint context and update deq ptr to
3141 * point to stream context array. FIXME
3142 */
3143 }
3144
3145 /* Set up the input context for a configure endpoint command. */
3146 for (i = 0; i < num_eps; i++) {
3147 struct xhci_ep_ctx *ep_ctx;
3148
3149 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3150 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3151
3152 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3153 vdev->out_ctx, ep_index);
3154 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3155 vdev->eps[ep_index].stream_info);
3156 }
3157 /* Tell the HW to drop its old copy of the endpoint context info
3158 * and add the updated copy from the input context.
3159 */
3160 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3161 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3162
3163 /* Issue and wait for the configure endpoint command */
3164 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3165 false, false);
3166
3167 /* xHC rejected the configure endpoint command for some reason, so we
3168 * leave the old ring intact and free our internal streams data
3169 * structure.
3170 */
3171 if (ret < 0)
3172 goto cleanup;
3173
3174 spin_lock_irqsave(&xhci->lock, flags);
3175 for (i = 0; i < num_eps; i++) {
3176 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3177 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3178 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3179 udev->slot_id, ep_index);
3180 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3181 }
3182 xhci_free_command(xhci, config_cmd);
3183 spin_unlock_irqrestore(&xhci->lock, flags);
3184
3185 /* Subtract 1 for stream 0, which drivers can't use */
3186 return num_streams - 1;
3187
3188 cleanup:
3189 /* If it didn't work, free the streams! */
3190 for (i = 0; i < num_eps; i++) {
3191 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3192 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3193 vdev->eps[ep_index].stream_info = NULL;
3194 /* FIXME Unset maxPstreams in endpoint context and
3195 * update deq ptr to point to normal string ring.
3196 */
3197 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3198 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3199 xhci_endpoint_zero(xhci, vdev, eps[i]);
3200 }
3201 xhci_free_command(xhci, config_cmd);
3202 return -ENOMEM;
3203 }
3204
3205 /* Transition the endpoint from using streams to being a "normal" endpoint
3206 * without streams.
3207 *
3208 * Modify the endpoint context state, submit a configure endpoint command,
3209 * and free all endpoint rings for streams if that completes successfully.
3210 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3211 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3212 struct usb_host_endpoint **eps, unsigned int num_eps,
3213 gfp_t mem_flags)
3214 {
3215 int i, ret;
3216 struct xhci_hcd *xhci;
3217 struct xhci_virt_device *vdev;
3218 struct xhci_command *command;
3219 unsigned int ep_index;
3220 unsigned long flags;
3221 u32 changed_ep_bitmask;
3222
3223 xhci = hcd_to_xhci(hcd);
3224 vdev = xhci->devs[udev->slot_id];
3225
3226 /* Set up a configure endpoint command to remove the streams rings */
3227 spin_lock_irqsave(&xhci->lock, flags);
3228 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3229 udev, eps, num_eps);
3230 if (changed_ep_bitmask == 0) {
3231 spin_unlock_irqrestore(&xhci->lock, flags);
3232 return -EINVAL;
3233 }
3234
3235 /* Use the xhci_command structure from the first endpoint. We may have
3236 * allocated too many, but the driver may call xhci_free_streams() for
3237 * each endpoint it grouped into one call to xhci_alloc_streams().
3238 */
3239 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3240 command = vdev->eps[ep_index].stream_info->free_streams_command;
3241 for (i = 0; i < num_eps; i++) {
3242 struct xhci_ep_ctx *ep_ctx;
3243
3244 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3246 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3247 EP_GETTING_NO_STREAMS;
3248
3249 xhci_endpoint_copy(xhci, command->in_ctx,
3250 vdev->out_ctx, ep_index);
3251 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3252 &vdev->eps[ep_index]);
3253 }
3254 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3255 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3256 spin_unlock_irqrestore(&xhci->lock, flags);
3257
3258 /* Issue and wait for the configure endpoint command,
3259 * which must succeed.
3260 */
3261 ret = xhci_configure_endpoint(xhci, udev, command,
3262 false, true);
3263
3264 /* xHC rejected the configure endpoint command for some reason, so we
3265 * leave the streams rings intact.
3266 */
3267 if (ret < 0)
3268 return ret;
3269
3270 spin_lock_irqsave(&xhci->lock, flags);
3271 for (i = 0; i < num_eps; i++) {
3272 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3273 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3274 vdev->eps[ep_index].stream_info = NULL;
3275 /* FIXME Unset maxPstreams in endpoint context and
3276 * update deq ptr to point to normal string ring.
3277 */
3278 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3279 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3280 }
3281 spin_unlock_irqrestore(&xhci->lock, flags);
3282
3283 return 0;
3284 }
3285
3286 /*
3287 * Deletes endpoint resources for endpoints that were active before a Reset
3288 * Device command, or a Disable Slot command. The Reset Device command leaves
3289 * the control endpoint intact, whereas the Disable Slot command deletes it.
3290 *
3291 * Must be called with xhci->lock held.
3292 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3293 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3294 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3295 {
3296 int i;
3297 unsigned int num_dropped_eps = 0;
3298 unsigned int drop_flags = 0;
3299
3300 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3301 if (virt_dev->eps[i].ring) {
3302 drop_flags |= 1 << i;
3303 num_dropped_eps++;
3304 }
3305 }
3306 xhci->num_active_eps -= num_dropped_eps;
3307 if (num_dropped_eps)
3308 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3309 "%u now active.\n",
3310 num_dropped_eps, drop_flags,
3311 xhci->num_active_eps);
3312 }
3313
3314 /*
3315 * This submits a Reset Device Command, which will set the device state to 0,
3316 * set the device address to 0, and disable all the endpoints except the default
3317 * control endpoint. The USB core should come back and call
3318 * xhci_address_device(), and then re-set up the configuration. If this is
3319 * called because of a usb_reset_and_verify_device(), then the old alternate
3320 * settings will be re-installed through the normal bandwidth allocation
3321 * functions.
3322 *
3323 * Wait for the Reset Device command to finish. Remove all structures
3324 * associated with the endpoints that were disabled. Clear the input device
3325 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3326 *
3327 * If the virt_dev to be reset does not exist or does not match the udev,
3328 * it means the device is lost, possibly due to the xHC restore error and
3329 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3330 * re-allocate the device.
3331 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3332 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3333 {
3334 int ret, i;
3335 unsigned long flags;
3336 struct xhci_hcd *xhci;
3337 unsigned int slot_id;
3338 struct xhci_virt_device *virt_dev;
3339 struct xhci_command *reset_device_cmd;
3340 int timeleft;
3341 int last_freed_endpoint;
3342 struct xhci_slot_ctx *slot_ctx;
3343 int old_active_eps = 0;
3344
3345 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3346 if (ret <= 0)
3347 return ret;
3348 xhci = hcd_to_xhci(hcd);
3349 slot_id = udev->slot_id;
3350 virt_dev = xhci->devs[slot_id];
3351 if (!virt_dev) {
3352 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3353 "not exist. Re-allocate the device\n", slot_id);
3354 ret = xhci_alloc_dev(hcd, udev);
3355 if (ret == 1)
3356 return 0;
3357 else
3358 return -EINVAL;
3359 }
3360
3361 if (virt_dev->udev != udev) {
3362 /* If the virt_dev and the udev does not match, this virt_dev
3363 * may belong to another udev.
3364 * Re-allocate the device.
3365 */
3366 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3367 "not match the udev. Re-allocate the device\n",
3368 slot_id);
3369 ret = xhci_alloc_dev(hcd, udev);
3370 if (ret == 1)
3371 return 0;
3372 else
3373 return -EINVAL;
3374 }
3375
3376 /* If device is not setup, there is no point in resetting it */
3377 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3378 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3379 SLOT_STATE_DISABLED)
3380 return 0;
3381
3382 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3383 /* Allocate the command structure that holds the struct completion.
3384 * Assume we're in process context, since the normal device reset
3385 * process has to wait for the device anyway. Storage devices are
3386 * reset as part of error handling, so use GFP_NOIO instead of
3387 * GFP_KERNEL.
3388 */
3389 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3390 if (!reset_device_cmd) {
3391 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3392 return -ENOMEM;
3393 }
3394
3395 /* Attempt to submit the Reset Device command to the command ring */
3396 spin_lock_irqsave(&xhci->lock, flags);
3397 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3398
3399 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3400 ret = xhci_queue_reset_device(xhci, slot_id);
3401 if (ret) {
3402 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3403 list_del(&reset_device_cmd->cmd_list);
3404 spin_unlock_irqrestore(&xhci->lock, flags);
3405 goto command_cleanup;
3406 }
3407 xhci_ring_cmd_db(xhci);
3408 spin_unlock_irqrestore(&xhci->lock, flags);
3409
3410 /* Wait for the Reset Device command to finish */
3411 timeleft = wait_for_completion_interruptible_timeout(
3412 reset_device_cmd->completion,
3413 USB_CTRL_SET_TIMEOUT);
3414 if (timeleft <= 0) {
3415 xhci_warn(xhci, "%s while waiting for reset device command\n",
3416 timeleft == 0 ? "Timeout" : "Signal");
3417 spin_lock_irqsave(&xhci->lock, flags);
3418 /* The timeout might have raced with the event ring handler, so
3419 * only delete from the list if the item isn't poisoned.
3420 */
3421 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3422 list_del(&reset_device_cmd->cmd_list);
3423 spin_unlock_irqrestore(&xhci->lock, flags);
3424 ret = -ETIME;
3425 goto command_cleanup;
3426 }
3427
3428 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3429 * unless we tried to reset a slot ID that wasn't enabled,
3430 * or the device wasn't in the addressed or configured state.
3431 */
3432 ret = reset_device_cmd->status;
3433 switch (ret) {
3434 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3435 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3436 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3437 slot_id,
3438 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3439 xhci_info(xhci, "Not freeing device rings.\n");
3440 /* Don't treat this as an error. May change my mind later. */
3441 ret = 0;
3442 goto command_cleanup;
3443 case COMP_SUCCESS:
3444 xhci_dbg(xhci, "Successful reset device command.\n");
3445 break;
3446 default:
3447 if (xhci_is_vendor_info_code(xhci, ret))
3448 break;
3449 xhci_warn(xhci, "Unknown completion code %u for "
3450 "reset device command.\n", ret);
3451 ret = -EINVAL;
3452 goto command_cleanup;
3453 }
3454
3455 /* Free up host controller endpoint resources */
3456 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3457 spin_lock_irqsave(&xhci->lock, flags);
3458 /* Don't delete the default control endpoint resources */
3459 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3460 spin_unlock_irqrestore(&xhci->lock, flags);
3461 }
3462
3463 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3464 last_freed_endpoint = 1;
3465 for (i = 1; i < 31; ++i) {
3466 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3467
3468 if (ep->ep_state & EP_HAS_STREAMS) {
3469 xhci_free_stream_info(xhci, ep->stream_info);
3470 ep->stream_info = NULL;
3471 ep->ep_state &= ~EP_HAS_STREAMS;
3472 }
3473
3474 if (ep->ring) {
3475 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3476 last_freed_endpoint = i;
3477 }
3478 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3479 xhci_drop_ep_from_interval_table(xhci,
3480 &virt_dev->eps[i].bw_info,
3481 virt_dev->bw_table,
3482 udev,
3483 &virt_dev->eps[i],
3484 virt_dev->tt_info);
3485 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3486 }
3487 /* If necessary, update the number of active TTs on this root port */
3488 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3489
3490 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3491 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3492 ret = 0;
3493
3494 command_cleanup:
3495 xhci_free_command(xhci, reset_device_cmd);
3496 return ret;
3497 }
3498
3499 /*
3500 * At this point, the struct usb_device is about to go away, the device has
3501 * disconnected, and all traffic has been stopped and the endpoints have been
3502 * disabled. Free any HC data structures associated with that device.
3503 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3504 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3505 {
3506 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3507 struct xhci_virt_device *virt_dev;
3508 struct device *dev = hcd->self.controller;
3509 unsigned long flags;
3510 u32 state;
3511 int i, ret;
3512
3513 #ifndef CONFIG_USB_DEFAULT_PERSIST
3514 /*
3515 * We called pm_runtime_get_noresume when the device was attached.
3516 * Decrement the counter here to allow controller to runtime suspend
3517 * if no devices remain.
3518 */
3519 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3520 pm_runtime_put_noidle(dev);
3521 #endif
3522
3523 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3524 /* If the host is halted due to driver unload, we still need to free the
3525 * device.
3526 */
3527 if (ret <= 0 && ret != -ENODEV)
3528 return;
3529
3530 virt_dev = xhci->devs[udev->slot_id];
3531
3532 /* Stop any wayward timer functions (which may grab the lock) */
3533 for (i = 0; i < 31; ++i) {
3534 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3535 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3536 }
3537
3538 if (udev->usb2_hw_lpm_enabled) {
3539 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3540 udev->usb2_hw_lpm_enabled = 0;
3541 }
3542
3543 spin_lock_irqsave(&xhci->lock, flags);
3544 /* Don't disable the slot if the host controller is dead. */
3545 state = xhci_readl(xhci, &xhci->op_regs->status);
3546 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3547 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3548 xhci_free_virt_device(xhci, udev->slot_id);
3549 spin_unlock_irqrestore(&xhci->lock, flags);
3550 return;
3551 }
3552
3553 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3554 spin_unlock_irqrestore(&xhci->lock, flags);
3555 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3556 return;
3557 }
3558 xhci_ring_cmd_db(xhci);
3559 spin_unlock_irqrestore(&xhci->lock, flags);
3560 /*
3561 * Event command completion handler will free any data structures
3562 * associated with the slot. XXX Can free sleep?
3563 */
3564 }
3565
3566 /*
3567 * Checks if we have enough host controller resources for the default control
3568 * endpoint.
3569 *
3570 * Must be called with xhci->lock held.
3571 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3572 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3573 {
3574 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3575 xhci_dbg(xhci, "Not enough ep ctxs: "
3576 "%u active, need to add 1, limit is %u.\n",
3577 xhci->num_active_eps, xhci->limit_active_eps);
3578 return -ENOMEM;
3579 }
3580 xhci->num_active_eps += 1;
3581 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3582 xhci->num_active_eps);
3583 return 0;
3584 }
3585
3586
3587 /*
3588 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3589 * timed out, or allocating memory failed. Returns 1 on success.
3590 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3591 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3592 {
3593 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3594 struct device *dev = hcd->self.controller;
3595 unsigned long flags;
3596 int timeleft;
3597 int ret;
3598 union xhci_trb *cmd_trb;
3599
3600 spin_lock_irqsave(&xhci->lock, flags);
3601 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3602 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3603 if (ret) {
3604 spin_unlock_irqrestore(&xhci->lock, flags);
3605 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3606 return 0;
3607 }
3608 xhci_ring_cmd_db(xhci);
3609 spin_unlock_irqrestore(&xhci->lock, flags);
3610
3611 /* XXX: how much time for xHC slot assignment? */
3612 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3613 XHCI_CMD_DEFAULT_TIMEOUT);
3614 if (timeleft <= 0) {
3615 xhci_warn(xhci, "%s while waiting for a slot\n",
3616 timeleft == 0 ? "Timeout" : "Signal");
3617 /* cancel the enable slot request */
3618 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3619 }
3620
3621 if (!xhci->slot_id) {
3622 xhci_err(xhci, "Error while assigning device slot ID\n");
3623 return 0;
3624 }
3625
3626 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3627 spin_lock_irqsave(&xhci->lock, flags);
3628 ret = xhci_reserve_host_control_ep_resources(xhci);
3629 if (ret) {
3630 spin_unlock_irqrestore(&xhci->lock, flags);
3631 xhci_warn(xhci, "Not enough host resources, "
3632 "active endpoint contexts = %u\n",
3633 xhci->num_active_eps);
3634 goto disable_slot;
3635 }
3636 spin_unlock_irqrestore(&xhci->lock, flags);
3637 }
3638 /* Use GFP_NOIO, since this function can be called from
3639 * xhci_discover_or_reset_device(), which may be called as part of
3640 * mass storage driver error handling.
3641 */
3642 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3643 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3644 goto disable_slot;
3645 }
3646 udev->slot_id = xhci->slot_id;
3647
3648 #ifndef CONFIG_USB_DEFAULT_PERSIST
3649 /*
3650 * If resetting upon resume, we can't put the controller into runtime
3651 * suspend if there is a device attached.
3652 */
3653 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3654 pm_runtime_get_noresume(dev);
3655 #endif
3656
3657 /* Is this a LS or FS device under a HS hub? */
3658 /* Hub or peripherial? */
3659 return 1;
3660
3661 disable_slot:
3662 /* Disable slot, if we can do it without mem alloc */
3663 spin_lock_irqsave(&xhci->lock, flags);
3664 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3665 xhci_ring_cmd_db(xhci);
3666 spin_unlock_irqrestore(&xhci->lock, flags);
3667 return 0;
3668 }
3669
3670 /*
3671 * Issue an Address Device command (which will issue a SetAddress request to
3672 * the device).
3673 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3674 * we should only issue and wait on one address command at the same time.
3675 *
3676 * We add one to the device address issued by the hardware because the USB core
3677 * uses address 1 for the root hubs (even though they're not really devices).
3678 */
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3679 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3680 {
3681 unsigned long flags;
3682 int timeleft;
3683 struct xhci_virt_device *virt_dev;
3684 int ret = 0;
3685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686 struct xhci_slot_ctx *slot_ctx;
3687 struct xhci_input_control_ctx *ctrl_ctx;
3688 u64 temp_64;
3689 union xhci_trb *cmd_trb;
3690
3691 if (!udev->slot_id) {
3692 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3693 return -EINVAL;
3694 }
3695
3696 virt_dev = xhci->devs[udev->slot_id];
3697
3698 if (WARN_ON(!virt_dev)) {
3699 /*
3700 * In plug/unplug torture test with an NEC controller,
3701 * a zero-dereference was observed once due to virt_dev = 0.
3702 * Print useful debug rather than crash if it is observed again!
3703 */
3704 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3705 udev->slot_id);
3706 return -EINVAL;
3707 }
3708
3709 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3710 /*
3711 * If this is the first Set Address since device plug-in or
3712 * virt_device realloaction after a resume with an xHCI power loss,
3713 * then set up the slot context.
3714 */
3715 if (!slot_ctx->dev_info)
3716 xhci_setup_addressable_virt_dev(xhci, udev);
3717 /* Otherwise, update the control endpoint ring enqueue pointer. */
3718 else
3719 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3720 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3721 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3722 ctrl_ctx->drop_flags = 0;
3723
3724 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3725 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3726
3727 spin_lock_irqsave(&xhci->lock, flags);
3728 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3729 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3730 udev->slot_id);
3731 if (ret) {
3732 spin_unlock_irqrestore(&xhci->lock, flags);
3733 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3734 return ret;
3735 }
3736 xhci_ring_cmd_db(xhci);
3737 spin_unlock_irqrestore(&xhci->lock, flags);
3738
3739 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3740 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3741 XHCI_CMD_DEFAULT_TIMEOUT);
3742 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3743 * the SetAddress() "recovery interval" required by USB and aborting the
3744 * command on a timeout.
3745 */
3746 if (timeleft <= 0) {
3747 xhci_warn(xhci, "%s while waiting for address device command\n",
3748 timeleft == 0 ? "Timeout" : "Signal");
3749 /* cancel the address device command */
3750 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3751 if (ret < 0)
3752 return ret;
3753 return -ETIME;
3754 }
3755
3756 switch (virt_dev->cmd_status) {
3757 case COMP_CTX_STATE:
3758 case COMP_EBADSLT:
3759 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3760 udev->slot_id);
3761 ret = -EINVAL;
3762 break;
3763 case COMP_TX_ERR:
3764 dev_warn(&udev->dev, "Device not responding to set address.\n");
3765 ret = -EPROTO;
3766 break;
3767 case COMP_DEV_ERR:
3768 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3769 "device command.\n");
3770 ret = -ENODEV;
3771 break;
3772 case COMP_SUCCESS:
3773 xhci_dbg(xhci, "Successful Address Device command\n");
3774 break;
3775 default:
3776 xhci_err(xhci, "ERROR: unexpected command completion "
3777 "code 0x%x.\n", virt_dev->cmd_status);
3778 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3779 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3780 ret = -EINVAL;
3781 break;
3782 }
3783 if (ret) {
3784 return ret;
3785 }
3786 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3787 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3788 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3789 udev->slot_id,
3790 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3791 (unsigned long long)
3792 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3793 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3794 (unsigned long long)virt_dev->out_ctx->dma);
3795 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3796 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3797 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3798 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3799 /*
3800 * USB core uses address 1 for the roothubs, so we add one to the
3801 * address given back to us by the HC.
3802 */
3803 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3804 /* Use kernel assigned address for devices; store xHC assigned
3805 * address locally. */
3806 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3807 + 1;
3808 /* Zero the input context control for later use */
3809 ctrl_ctx->add_flags = 0;
3810 ctrl_ctx->drop_flags = 0;
3811
3812 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3813
3814 return 0;
3815 }
3816
3817 #ifdef CONFIG_USB_SUSPEND
3818
3819 /* BESL to HIRD Encoding array for USB2 LPM */
3820 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3821 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3822
3823 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)3824 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3825 struct usb_device *udev)
3826 {
3827 int u2del, besl, besl_host;
3828 int besl_device = 0;
3829 u32 field;
3830
3831 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3832 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3833
3834 if (field & USB_BESL_SUPPORT) {
3835 for (besl_host = 0; besl_host < 16; besl_host++) {
3836 if (xhci_besl_encoding[besl_host] >= u2del)
3837 break;
3838 }
3839 /* Use baseline BESL value as default */
3840 if (field & USB_BESL_BASELINE_VALID)
3841 besl_device = USB_GET_BESL_BASELINE(field);
3842 else if (field & USB_BESL_DEEP_VALID)
3843 besl_device = USB_GET_BESL_DEEP(field);
3844 } else {
3845 if (u2del <= 50)
3846 besl_host = 0;
3847 else
3848 besl_host = (u2del - 51) / 75 + 1;
3849 }
3850
3851 besl = besl_host + besl_device;
3852 if (besl > 15)
3853 besl = 15;
3854
3855 return besl;
3856 }
3857
xhci_usb2_software_lpm_test(struct usb_hcd * hcd,struct usb_device * udev)3858 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3859 struct usb_device *udev)
3860 {
3861 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3862 struct dev_info *dev_info;
3863 __le32 __iomem **port_array;
3864 __le32 __iomem *addr, *pm_addr;
3865 u32 temp, dev_id;
3866 unsigned int port_num;
3867 unsigned long flags;
3868 int hird;
3869 int ret;
3870
3871 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3872 !udev->lpm_capable)
3873 return -EINVAL;
3874
3875 /* we only support lpm for non-hub device connected to root hub yet */
3876 if (!udev->parent || udev->parent->parent ||
3877 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3878 return -EINVAL;
3879
3880 spin_lock_irqsave(&xhci->lock, flags);
3881
3882 /* Look for devices in lpm_failed_devs list */
3883 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3884 le16_to_cpu(udev->descriptor.idProduct);
3885 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3886 if (dev_info->dev_id == dev_id) {
3887 ret = -EINVAL;
3888 goto finish;
3889 }
3890 }
3891
3892 port_array = xhci->usb2_ports;
3893 port_num = udev->portnum - 1;
3894
3895 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3896 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3897 ret = -EINVAL;
3898 goto finish;
3899 }
3900
3901 /*
3902 * Test USB 2.0 software LPM.
3903 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3904 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3905 * in the June 2011 errata release.
3906 */
3907 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3908 /*
3909 * Set L1 Device Slot and HIRD/BESL.
3910 * Check device's USB 2.0 extension descriptor to determine whether
3911 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3912 */
3913 pm_addr = port_array[port_num] + 1;
3914 hird = xhci_calculate_hird_besl(xhci, udev);
3915 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3916 xhci_writel(xhci, temp, pm_addr);
3917
3918 /* Set port link state to U2(L1) */
3919 addr = port_array[port_num];
3920 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3921
3922 /* wait for ACK */
3923 spin_unlock_irqrestore(&xhci->lock, flags);
3924 msleep(10);
3925 spin_lock_irqsave(&xhci->lock, flags);
3926
3927 /* Check L1 Status */
3928 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3929 if (ret != -ETIMEDOUT) {
3930 /* enter L1 successfully */
3931 temp = xhci_readl(xhci, addr);
3932 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3933 port_num, temp);
3934 ret = 0;
3935 } else {
3936 temp = xhci_readl(xhci, pm_addr);
3937 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3938 port_num, temp & PORT_L1S_MASK);
3939 ret = -EINVAL;
3940 }
3941
3942 /* Resume the port */
3943 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3944
3945 spin_unlock_irqrestore(&xhci->lock, flags);
3946 msleep(10);
3947 spin_lock_irqsave(&xhci->lock, flags);
3948
3949 /* Clear PLC */
3950 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3951
3952 /* Check PORTSC to make sure the device is in the right state */
3953 if (!ret) {
3954 temp = xhci_readl(xhci, addr);
3955 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3956 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3957 (temp & PORT_PLS_MASK) != XDEV_U0) {
3958 xhci_dbg(xhci, "port L1 resume fail\n");
3959 ret = -EINVAL;
3960 }
3961 }
3962
3963 if (ret) {
3964 /* Insert dev to lpm_failed_devs list */
3965 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3966 "re-enumerate\n");
3967 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3968 if (!dev_info) {
3969 ret = -ENOMEM;
3970 goto finish;
3971 }
3972 dev_info->dev_id = dev_id;
3973 INIT_LIST_HEAD(&dev_info->list);
3974 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3975 } else {
3976 xhci_ring_device(xhci, udev->slot_id);
3977 }
3978
3979 finish:
3980 spin_unlock_irqrestore(&xhci->lock, flags);
3981 return ret;
3982 }
3983
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)3984 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3985 struct usb_device *udev, int enable)
3986 {
3987 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3988 __le32 __iomem **port_array;
3989 __le32 __iomem *pm_addr;
3990 u32 temp;
3991 unsigned int port_num;
3992 unsigned long flags;
3993 int hird;
3994
3995 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3996 !udev->lpm_capable)
3997 return -EPERM;
3998
3999 if (!udev->parent || udev->parent->parent ||
4000 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4001 return -EPERM;
4002
4003 if (udev->usb2_hw_lpm_capable != 1)
4004 return -EPERM;
4005
4006 spin_lock_irqsave(&xhci->lock, flags);
4007
4008 port_array = xhci->usb2_ports;
4009 port_num = udev->portnum - 1;
4010 pm_addr = port_array[port_num] + 1;
4011 temp = xhci_readl(xhci, pm_addr);
4012
4013 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4014 enable ? "enable" : "disable", port_num);
4015
4016 hird = xhci_calculate_hird_besl(xhci, udev);
4017
4018 if (enable) {
4019 temp &= ~PORT_HIRD_MASK;
4020 temp |= PORT_HIRD(hird) | PORT_RWE;
4021 xhci_writel(xhci, temp, pm_addr);
4022 temp = xhci_readl(xhci, pm_addr);
4023 temp |= PORT_HLE;
4024 xhci_writel(xhci, temp, pm_addr);
4025 } else {
4026 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4027 xhci_writel(xhci, temp, pm_addr);
4028 }
4029
4030 spin_unlock_irqrestore(&xhci->lock, flags);
4031 return 0;
4032 }
4033
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4034 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4035 {
4036 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4037 int ret;
4038
4039 ret = xhci_usb2_software_lpm_test(hcd, udev);
4040 if (!ret) {
4041 xhci_dbg(xhci, "software LPM test succeed\n");
4042 if (xhci->hw_lpm_support == 1) {
4043 udev->usb2_hw_lpm_capable = 1;
4044 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4045 if (!ret)
4046 udev->usb2_hw_lpm_enabled = 1;
4047 }
4048 }
4049
4050 return 0;
4051 }
4052
4053 #else
4054
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4055 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4056 struct usb_device *udev, int enable)
4057 {
4058 return 0;
4059 }
4060
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4061 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4062 {
4063 return 0;
4064 }
4065
4066 #endif /* CONFIG_USB_SUSPEND */
4067
4068 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4069 * internal data structures for the device.
4070 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4071 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4072 struct usb_tt *tt, gfp_t mem_flags)
4073 {
4074 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4075 struct xhci_virt_device *vdev;
4076 struct xhci_command *config_cmd;
4077 struct xhci_input_control_ctx *ctrl_ctx;
4078 struct xhci_slot_ctx *slot_ctx;
4079 unsigned long flags;
4080 unsigned think_time;
4081 int ret;
4082
4083 /* Ignore root hubs */
4084 if (!hdev->parent)
4085 return 0;
4086
4087 vdev = xhci->devs[hdev->slot_id];
4088 if (!vdev) {
4089 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4090 return -EINVAL;
4091 }
4092 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4093 if (!config_cmd) {
4094 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4095 return -ENOMEM;
4096 }
4097
4098 spin_lock_irqsave(&xhci->lock, flags);
4099 if (hdev->speed == USB_SPEED_HIGH &&
4100 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4101 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4102 xhci_free_command(xhci, config_cmd);
4103 spin_unlock_irqrestore(&xhci->lock, flags);
4104 return -ENOMEM;
4105 }
4106
4107 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4108 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4109 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4110 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4111 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4112 if (tt->multi)
4113 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4114 if (xhci->hci_version > 0x95) {
4115 xhci_dbg(xhci, "xHCI version %x needs hub "
4116 "TT think time and number of ports\n",
4117 (unsigned int) xhci->hci_version);
4118 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4119 /* Set TT think time - convert from ns to FS bit times.
4120 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4121 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4122 *
4123 * xHCI 1.0: this field shall be 0 if the device is not a
4124 * High-spped hub.
4125 */
4126 think_time = tt->think_time;
4127 if (think_time != 0)
4128 think_time = (think_time / 666) - 1;
4129 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4130 slot_ctx->tt_info |=
4131 cpu_to_le32(TT_THINK_TIME(think_time));
4132 } else {
4133 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4134 "TT think time or number of ports\n",
4135 (unsigned int) xhci->hci_version);
4136 }
4137 slot_ctx->dev_state = 0;
4138 spin_unlock_irqrestore(&xhci->lock, flags);
4139
4140 xhci_dbg(xhci, "Set up %s for hub device.\n",
4141 (xhci->hci_version > 0x95) ?
4142 "configure endpoint" : "evaluate context");
4143 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4144 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4145
4146 /* Issue and wait for the configure endpoint or
4147 * evaluate context command.
4148 */
4149 if (xhci->hci_version > 0x95)
4150 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4151 false, false);
4152 else
4153 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4154 true, false);
4155
4156 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4157 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4158
4159 xhci_free_command(xhci, config_cmd);
4160 return ret;
4161 }
4162
xhci_get_frame(struct usb_hcd * hcd)4163 int xhci_get_frame(struct usb_hcd *hcd)
4164 {
4165 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4166 /* EHCI mods by the periodic size. Why? */
4167 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4168 }
4169
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4170 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4171 {
4172 struct xhci_hcd *xhci;
4173 struct device *dev = hcd->self.controller;
4174 int retval;
4175 u32 temp;
4176
4177 /* Accept arbitrarily long scatter-gather lists */
4178 hcd->self.sg_tablesize = ~0;
4179
4180 if (usb_hcd_is_primary_hcd(hcd)) {
4181 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4182 if (!xhci)
4183 return -ENOMEM;
4184 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4185 xhci->main_hcd = hcd;
4186 /* Mark the first roothub as being USB 2.0.
4187 * The xHCI driver will register the USB 3.0 roothub.
4188 */
4189 hcd->speed = HCD_USB2;
4190 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4191 /*
4192 * USB 2.0 roothub under xHCI has an integrated TT,
4193 * (rate matching hub) as opposed to having an OHCI/UHCI
4194 * companion controller.
4195 */
4196 hcd->has_tt = 1;
4197 } else {
4198 /* xHCI private pointer was set in xhci_pci_probe for the second
4199 * registered roothub.
4200 */
4201 xhci = hcd_to_xhci(hcd);
4202 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4203 if (HCC_64BIT_ADDR(temp)) {
4204 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4205 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4206 } else {
4207 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4208 }
4209 return 0;
4210 }
4211
4212 xhci->cap_regs = hcd->regs;
4213 xhci->op_regs = hcd->regs +
4214 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4215 xhci->run_regs = hcd->regs +
4216 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4217 /* Cache read-only capability registers */
4218 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4219 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4220 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4221 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4222 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4223 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4224 xhci_print_registers(xhci);
4225
4226 get_quirks(dev, xhci);
4227
4228 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4229 * success event after a short transfer. This quirk will ignore such
4230 * spurious event.
4231 */
4232 if (xhci->hci_version > 0x96)
4233 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4234
4235 /* Make sure the HC is halted. */
4236 retval = xhci_halt(xhci);
4237 if (retval)
4238 goto error;
4239
4240 xhci_dbg(xhci, "Resetting HCD\n");
4241 /* Reset the internal HC memory state and registers. */
4242 retval = xhci_reset(xhci);
4243 if (retval)
4244 goto error;
4245 xhci_dbg(xhci, "Reset complete\n");
4246
4247 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4248 if (HCC_64BIT_ADDR(temp)) {
4249 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4250 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4251 } else {
4252 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4253 }
4254
4255 xhci_dbg(xhci, "Calling HCD init\n");
4256 /* Initialize HCD and host controller data structures. */
4257 retval = xhci_init(hcd);
4258 if (retval)
4259 goto error;
4260 xhci_dbg(xhci, "Called HCD init\n");
4261 return 0;
4262 error:
4263 kfree(xhci);
4264 return retval;
4265 }
4266
4267 MODULE_DESCRIPTION(DRIVER_DESC);
4268 MODULE_AUTHOR(DRIVER_AUTHOR);
4269 MODULE_LICENSE("GPL");
4270
xhci_hcd_init(void)4271 static int __init xhci_hcd_init(void)
4272 {
4273 int retval;
4274
4275 retval = xhci_register_pci();
4276 if (retval < 0) {
4277 printk(KERN_DEBUG "Problem registering PCI driver.");
4278 return retval;
4279 }
4280 retval = xhci_register_plat();
4281 if (retval < 0) {
4282 printk(KERN_DEBUG "Problem registering platform driver.");
4283 goto unreg_pci;
4284 }
4285 /*
4286 * Check the compiler generated sizes of structures that must be laid
4287 * out in specific ways for hardware access.
4288 */
4289 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4290 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4291 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4292 /* xhci_device_control has eight fields, and also
4293 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4294 */
4295 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4296 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4297 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4298 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4299 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4300 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4301 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4302 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4303 return 0;
4304 unreg_pci:
4305 xhci_unregister_pci();
4306 return retval;
4307 }
4308 module_init(xhci_hcd_init);
4309
xhci_hcd_cleanup(void)4310 static void __exit xhci_hcd_cleanup(void)
4311 {
4312 xhci_unregister_pci();
4313 xhci_unregister_plat();
4314 }
4315 module_exit(xhci_hcd_cleanup);
4316