1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp) do { } while (0)
59 # define XB_CLEAR_OWNER(bp) do { } while (0)
60 # define XB_GET_OWNER(bp) do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)76 xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78 {
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)90 xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92 {
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97 * xfs_buf_lru_add - add a buffer to the LRU.
98 *
99 * The LRU takes a new reference to the buffer so that it will only be freed
100 * once the shrinker takes the buffer off the LRU.
101 */
102 STATIC void
xfs_buf_lru_add(struct xfs_buf * bp)103 xfs_buf_lru_add(
104 struct xfs_buf *bp)
105 {
106 struct xfs_buftarg *btp = bp->b_target;
107
108 spin_lock(&btp->bt_lru_lock);
109 if (list_empty(&bp->b_lru)) {
110 atomic_inc(&bp->b_hold);
111 list_add_tail(&bp->b_lru, &btp->bt_lru);
112 btp->bt_lru_nr++;
113 }
114 spin_unlock(&btp->bt_lru_lock);
115 }
116
117 /*
118 * xfs_buf_lru_del - remove a buffer from the LRU
119 *
120 * The unlocked check is safe here because it only occurs when there are not
121 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122 * to optimise the shrinker removing the buffer from the LRU and calling
123 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
124 * bt_lru_lock.
125 */
126 STATIC void
xfs_buf_lru_del(struct xfs_buf * bp)127 xfs_buf_lru_del(
128 struct xfs_buf *bp)
129 {
130 struct xfs_buftarg *btp = bp->b_target;
131
132 if (list_empty(&bp->b_lru))
133 return;
134
135 spin_lock(&btp->bt_lru_lock);
136 if (!list_empty(&bp->b_lru)) {
137 list_del_init(&bp->b_lru);
138 btp->bt_lru_nr--;
139 }
140 spin_unlock(&btp->bt_lru_lock);
141 }
142
143 /*
144 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145 * b_lru_ref count so that the buffer is freed immediately when the buffer
146 * reference count falls to zero. If the buffer is already on the LRU, we need
147 * to remove the reference that LRU holds on the buffer.
148 *
149 * This prevents build-up of stale buffers on the LRU.
150 */
151 void
xfs_buf_stale(struct xfs_buf * bp)152 xfs_buf_stale(
153 struct xfs_buf *bp)
154 {
155 bp->b_flags |= XBF_STALE;
156 atomic_set(&(bp)->b_lru_ref, 0);
157 if (!list_empty(&bp->b_lru)) {
158 struct xfs_buftarg *btp = bp->b_target;
159
160 spin_lock(&btp->bt_lru_lock);
161 if (!list_empty(&bp->b_lru)) {
162 list_del_init(&bp->b_lru);
163 btp->bt_lru_nr--;
164 atomic_dec(&bp->b_hold);
165 }
166 spin_unlock(&btp->bt_lru_lock);
167 }
168 ASSERT(atomic_read(&bp->b_hold) >= 1);
169 }
170
171 STATIC void
_xfs_buf_initialize(xfs_buf_t * bp,xfs_buftarg_t * target,xfs_off_t range_base,size_t range_length,xfs_buf_flags_t flags)172 _xfs_buf_initialize(
173 xfs_buf_t *bp,
174 xfs_buftarg_t *target,
175 xfs_off_t range_base,
176 size_t range_length,
177 xfs_buf_flags_t flags)
178 {
179 /*
180 * We don't want certain flags to appear in b_flags.
181 */
182 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184 memset(bp, 0, sizeof(xfs_buf_t));
185 atomic_set(&bp->b_hold, 1);
186 atomic_set(&bp->b_lru_ref, 1);
187 init_completion(&bp->b_iowait);
188 INIT_LIST_HEAD(&bp->b_lru);
189 INIT_LIST_HEAD(&bp->b_list);
190 RB_CLEAR_NODE(&bp->b_rbnode);
191 sema_init(&bp->b_sema, 0); /* held, no waiters */
192 XB_SET_OWNER(bp);
193 bp->b_target = target;
194 bp->b_file_offset = range_base;
195 /*
196 * Set buffer_length and count_desired to the same value initially.
197 * I/O routines should use count_desired, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
199 */
200 bp->b_buffer_length = bp->b_count_desired = range_length;
201 bp->b_flags = flags;
202 bp->b_bn = XFS_BUF_DADDR_NULL;
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
207
208 trace_xfs_buf_init(bp, _RET_IP_);
209 }
210
211 /*
212 * Allocate a page array capable of holding a specified number
213 * of pages, and point the page buf at it.
214 */
215 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count,xfs_buf_flags_t flags)216 _xfs_buf_get_pages(
217 xfs_buf_t *bp,
218 int page_count,
219 xfs_buf_flags_t flags)
220 {
221 /* Make sure that we have a page list */
222 if (bp->b_pages == NULL) {
223 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
227 } else {
228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 page_count, xb_to_km(flags));
230 if (bp->b_pages == NULL)
231 return -ENOMEM;
232 }
233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234 }
235 return 0;
236 }
237
238 /*
239 * Frees b_pages if it was allocated.
240 */
241 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)242 _xfs_buf_free_pages(
243 xfs_buf_t *bp)
244 {
245 if (bp->b_pages != bp->b_page_array) {
246 kmem_free(bp->b_pages);
247 bp->b_pages = NULL;
248 }
249 }
250
251 /*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
255 * The buffer most not be on any hash - use xfs_buf_rele instead for
256 * hashed and refcounted buffers
257 */
258 void
xfs_buf_free(xfs_buf_t * bp)259 xfs_buf_free(
260 xfs_buf_t *bp)
261 {
262 trace_xfs_buf_free(bp, _RET_IP_);
263
264 ASSERT(list_empty(&bp->b_lru));
265
266 if (bp->b_flags & _XBF_PAGES) {
267 uint i;
268
269 if (xfs_buf_is_vmapped(bp))
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
272
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
276 __free_page(page);
277 }
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
280 _xfs_buf_free_pages(bp);
281 xfs_buf_deallocate(bp);
282 }
283
284 /*
285 * Allocates all the pages for buffer in question and builds it's page list.
286 */
287 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)288 xfs_buf_allocate_memory(
289 xfs_buf_t *bp,
290 uint flags)
291 {
292 size_t size = bp->b_count_desired;
293 size_t nbytes, offset;
294 gfp_t gfp_mask = xb_to_gfp(flags);
295 unsigned short page_count, i;
296 xfs_off_t end;
297 int error;
298
299 /*
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
303 */
304 if (bp->b_buffer_length < PAGE_SIZE) {
305 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
306 if (!bp->b_addr) {
307 /* low memory - use alloc_page loop instead */
308 goto use_alloc_page;
309 }
310
311 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
312 PAGE_MASK) !=
313 ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp->b_addr);
316 bp->b_addr = NULL;
317 goto use_alloc_page;
318 }
319 bp->b_offset = offset_in_page(bp->b_addr);
320 bp->b_pages = bp->b_page_array;
321 bp->b_pages[0] = virt_to_page(bp->b_addr);
322 bp->b_page_count = 1;
323 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
324 return 0;
325 }
326
327 use_alloc_page:
328 end = bp->b_file_offset + bp->b_buffer_length;
329 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
330 error = _xfs_buf_get_pages(bp, page_count, flags);
331 if (unlikely(error))
332 return error;
333
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = ENOMEM;
346 goto out_free_pages;
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "possible memory allocation deadlock in %s (mode:0x%x)",
358 __func__, gfp_mask);
359
360 XFS_STATS_INC(xb_page_retries);
361 congestion_wait(BLK_RW_ASYNC, HZ/50);
362 goto retry;
363 }
364
365 XFS_STATS_INC(xb_page_found);
366
367 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
368 size -= nbytes;
369 bp->b_pages[i] = page;
370 offset = 0;
371 }
372 return 0;
373
374 out_free_pages:
375 for (i = 0; i < bp->b_page_count; i++)
376 __free_page(bp->b_pages[i]);
377 return error;
378 }
379
380 /*
381 * Map buffer into kernel address-space if necessary.
382 */
383 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)384 _xfs_buf_map_pages(
385 xfs_buf_t *bp,
386 uint flags)
387 {
388 ASSERT(bp->b_flags & _XBF_PAGES);
389 if (bp->b_page_count == 1) {
390 /* A single page buffer is always mappable */
391 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392 bp->b_flags |= XBF_MAPPED;
393 } else if (flags & XBF_MAPPED) {
394 int retried = 0;
395
396 do {
397 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
398 -1, PAGE_KERNEL);
399 if (bp->b_addr)
400 break;
401 vm_unmap_aliases();
402 } while (retried++ <= 1);
403
404 if (!bp->b_addr)
405 return -ENOMEM;
406 bp->b_addr += bp->b_offset;
407 bp->b_flags |= XBF_MAPPED;
408 }
409
410 return 0;
411 }
412
413 /*
414 * Finding and Reading Buffers
415 */
416
417 /*
418 * Look up, and creates if absent, a lockable buffer for
419 * a given range of an inode. The buffer is returned
420 * locked. If other overlapping buffers exist, they are
421 * released before the new buffer is created and locked,
422 * which may imply that this call will block until those buffers
423 * are unlocked. No I/O is implied by this call.
424 */
425 xfs_buf_t *
_xfs_buf_find(xfs_buftarg_t * btp,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags,xfs_buf_t * new_bp)426 _xfs_buf_find(
427 xfs_buftarg_t *btp, /* block device target */
428 xfs_off_t ioff, /* starting offset of range */
429 size_t isize, /* length of range */
430 xfs_buf_flags_t flags,
431 xfs_buf_t *new_bp)
432 {
433 xfs_off_t range_base;
434 size_t range_length;
435 struct xfs_perag *pag;
436 struct rb_node **rbp;
437 struct rb_node *parent;
438 xfs_buf_t *bp;
439
440 range_base = (ioff << BBSHIFT);
441 range_length = (isize << BBSHIFT);
442
443 /* Check for IOs smaller than the sector size / not sector aligned */
444 ASSERT(!(range_length < (1 << btp->bt_sshift)));
445 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
446
447 /* get tree root */
448 pag = xfs_perag_get(btp->bt_mount,
449 xfs_daddr_to_agno(btp->bt_mount, ioff));
450
451 /* walk tree */
452 spin_lock(&pag->pag_buf_lock);
453 rbp = &pag->pag_buf_tree.rb_node;
454 parent = NULL;
455 bp = NULL;
456 while (*rbp) {
457 parent = *rbp;
458 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
459
460 if (range_base < bp->b_file_offset)
461 rbp = &(*rbp)->rb_left;
462 else if (range_base > bp->b_file_offset)
463 rbp = &(*rbp)->rb_right;
464 else {
465 /*
466 * found a block offset match. If the range doesn't
467 * match, the only way this is allowed is if the buffer
468 * in the cache is stale and the transaction that made
469 * it stale has not yet committed. i.e. we are
470 * reallocating a busy extent. Skip this buffer and
471 * continue searching to the right for an exact match.
472 */
473 if (bp->b_buffer_length != range_length) {
474 ASSERT(bp->b_flags & XBF_STALE);
475 rbp = &(*rbp)->rb_right;
476 continue;
477 }
478 atomic_inc(&bp->b_hold);
479 goto found;
480 }
481 }
482
483 /* No match found */
484 if (new_bp) {
485 _xfs_buf_initialize(new_bp, btp, range_base,
486 range_length, flags);
487 rb_link_node(&new_bp->b_rbnode, parent, rbp);
488 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
489 /* the buffer keeps the perag reference until it is freed */
490 new_bp->b_pag = pag;
491 spin_unlock(&pag->pag_buf_lock);
492 } else {
493 XFS_STATS_INC(xb_miss_locked);
494 spin_unlock(&pag->pag_buf_lock);
495 xfs_perag_put(pag);
496 }
497 return new_bp;
498
499 found:
500 spin_unlock(&pag->pag_buf_lock);
501 xfs_perag_put(pag);
502
503 if (xfs_buf_cond_lock(bp)) {
504 /* failed, so wait for the lock if requested. */
505 if (!(flags & XBF_TRYLOCK)) {
506 xfs_buf_lock(bp);
507 XFS_STATS_INC(xb_get_locked_waited);
508 } else {
509 xfs_buf_rele(bp);
510 XFS_STATS_INC(xb_busy_locked);
511 return NULL;
512 }
513 }
514
515 /*
516 * if the buffer is stale, clear all the external state associated with
517 * it. We need to keep flags such as how we allocated the buffer memory
518 * intact here.
519 */
520 if (bp->b_flags & XBF_STALE) {
521 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
522 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
523 }
524
525 trace_xfs_buf_find(bp, flags, _RET_IP_);
526 XFS_STATS_INC(xb_get_locked);
527 return bp;
528 }
529
530 /*
531 * Assembles a buffer covering the specified range.
532 * Storage in memory for all portions of the buffer will be allocated,
533 * although backing storage may not be.
534 */
535 xfs_buf_t *
xfs_buf_get(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)536 xfs_buf_get(
537 xfs_buftarg_t *target,/* target for buffer */
538 xfs_off_t ioff, /* starting offset of range */
539 size_t isize, /* length of range */
540 xfs_buf_flags_t flags)
541 {
542 xfs_buf_t *bp, *new_bp;
543 int error = 0;
544
545 new_bp = xfs_buf_allocate(flags);
546 if (unlikely(!new_bp))
547 return NULL;
548
549 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
550 if (bp == new_bp) {
551 error = xfs_buf_allocate_memory(bp, flags);
552 if (error)
553 goto no_buffer;
554 } else {
555 xfs_buf_deallocate(new_bp);
556 if (unlikely(bp == NULL))
557 return NULL;
558 }
559
560 if (!(bp->b_flags & XBF_MAPPED)) {
561 error = _xfs_buf_map_pages(bp, flags);
562 if (unlikely(error)) {
563 xfs_warn(target->bt_mount,
564 "%s: failed to map pages\n", __func__);
565 goto no_buffer;
566 }
567 }
568
569 XFS_STATS_INC(xb_get);
570
571 /*
572 * Always fill in the block number now, the mapped cases can do
573 * their own overlay of this later.
574 */
575 bp->b_bn = ioff;
576 bp->b_count_desired = bp->b_buffer_length;
577
578 trace_xfs_buf_get(bp, flags, _RET_IP_);
579 return bp;
580
581 no_buffer:
582 if (flags & (XBF_LOCK | XBF_TRYLOCK))
583 xfs_buf_unlock(bp);
584 xfs_buf_rele(bp);
585 return NULL;
586 }
587
588 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)589 _xfs_buf_read(
590 xfs_buf_t *bp,
591 xfs_buf_flags_t flags)
592 {
593 int status;
594
595 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
596 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
597
598 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
599 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
600 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
601 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602
603 status = xfs_buf_iorequest(bp);
604 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
605 return status;
606 return xfs_buf_iowait(bp);
607 }
608
609 xfs_buf_t *
xfs_buf_read(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)610 xfs_buf_read(
611 xfs_buftarg_t *target,
612 xfs_off_t ioff,
613 size_t isize,
614 xfs_buf_flags_t flags)
615 {
616 xfs_buf_t *bp;
617
618 flags |= XBF_READ;
619
620 bp = xfs_buf_get(target, ioff, isize, flags);
621 if (bp) {
622 trace_xfs_buf_read(bp, flags, _RET_IP_);
623
624 if (!XFS_BUF_ISDONE(bp)) {
625 XFS_STATS_INC(xb_get_read);
626 _xfs_buf_read(bp, flags);
627 } else if (flags & XBF_ASYNC) {
628 /*
629 * Read ahead call which is already satisfied,
630 * drop the buffer
631 */
632 goto no_buffer;
633 } else {
634 /* We do not want read in the flags */
635 bp->b_flags &= ~XBF_READ;
636 }
637 }
638
639 return bp;
640
641 no_buffer:
642 if (flags & (XBF_LOCK | XBF_TRYLOCK))
643 xfs_buf_unlock(bp);
644 xfs_buf_rele(bp);
645 return NULL;
646 }
647
648 /*
649 * If we are not low on memory then do the readahead in a deadlock
650 * safe manner.
651 */
652 void
xfs_buf_readahead(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize)653 xfs_buf_readahead(
654 xfs_buftarg_t *target,
655 xfs_off_t ioff,
656 size_t isize)
657 {
658 if (bdi_read_congested(target->bt_bdi))
659 return;
660
661 xfs_buf_read(target, ioff, isize,
662 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
663 }
664
665 /*
666 * Read an uncached buffer from disk. Allocates and returns a locked
667 * buffer containing the disk contents or nothing.
668 */
669 struct xfs_buf *
xfs_buf_read_uncached(struct xfs_mount * mp,struct xfs_buftarg * target,xfs_daddr_t daddr,size_t length,int flags)670 xfs_buf_read_uncached(
671 struct xfs_mount *mp,
672 struct xfs_buftarg *target,
673 xfs_daddr_t daddr,
674 size_t length,
675 int flags)
676 {
677 xfs_buf_t *bp;
678 int error;
679
680 bp = xfs_buf_get_uncached(target, length, flags);
681 if (!bp)
682 return NULL;
683
684 /* set up the buffer for a read IO */
685 xfs_buf_lock(bp);
686 XFS_BUF_SET_ADDR(bp, daddr);
687 XFS_BUF_READ(bp);
688 XFS_BUF_BUSY(bp);
689
690 xfsbdstrat(mp, bp);
691 error = xfs_buf_iowait(bp);
692 if (error || bp->b_error) {
693 xfs_buf_relse(bp);
694 return NULL;
695 }
696 return bp;
697 }
698
699 xfs_buf_t *
xfs_buf_get_empty(size_t len,xfs_buftarg_t * target)700 xfs_buf_get_empty(
701 size_t len,
702 xfs_buftarg_t *target)
703 {
704 xfs_buf_t *bp;
705
706 bp = xfs_buf_allocate(0);
707 if (bp)
708 _xfs_buf_initialize(bp, target, 0, len, 0);
709 return bp;
710 }
711
712 static inline struct page *
mem_to_page(void * addr)713 mem_to_page(
714 void *addr)
715 {
716 if ((!is_vmalloc_addr(addr))) {
717 return virt_to_page(addr);
718 } else {
719 return vmalloc_to_page(addr);
720 }
721 }
722
723 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)724 xfs_buf_associate_memory(
725 xfs_buf_t *bp,
726 void *mem,
727 size_t len)
728 {
729 int rval;
730 int i = 0;
731 unsigned long pageaddr;
732 unsigned long offset;
733 size_t buflen;
734 int page_count;
735
736 pageaddr = (unsigned long)mem & PAGE_MASK;
737 offset = (unsigned long)mem - pageaddr;
738 buflen = PAGE_ALIGN(len + offset);
739 page_count = buflen >> PAGE_SHIFT;
740
741 /* Free any previous set of page pointers */
742 if (bp->b_pages)
743 _xfs_buf_free_pages(bp);
744
745 bp->b_pages = NULL;
746 bp->b_addr = mem;
747
748 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
749 if (rval)
750 return rval;
751
752 bp->b_offset = offset;
753
754 for (i = 0; i < bp->b_page_count; i++) {
755 bp->b_pages[i] = mem_to_page((void *)pageaddr);
756 pageaddr += PAGE_SIZE;
757 }
758
759 bp->b_count_desired = len;
760 bp->b_buffer_length = buflen;
761 bp->b_flags |= XBF_MAPPED;
762
763 return 0;
764 }
765
766 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t len,int flags)767 xfs_buf_get_uncached(
768 struct xfs_buftarg *target,
769 size_t len,
770 int flags)
771 {
772 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
773 int error, i;
774 xfs_buf_t *bp;
775
776 bp = xfs_buf_allocate(0);
777 if (unlikely(bp == NULL))
778 goto fail;
779 _xfs_buf_initialize(bp, target, 0, len, 0);
780
781 error = _xfs_buf_get_pages(bp, page_count, 0);
782 if (error)
783 goto fail_free_buf;
784
785 for (i = 0; i < page_count; i++) {
786 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
787 if (!bp->b_pages[i])
788 goto fail_free_mem;
789 }
790 bp->b_flags |= _XBF_PAGES;
791
792 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
793 if (unlikely(error)) {
794 xfs_warn(target->bt_mount,
795 "%s: failed to map pages\n", __func__);
796 goto fail_free_mem;
797 }
798
799 xfs_buf_unlock(bp);
800
801 trace_xfs_buf_get_uncached(bp, _RET_IP_);
802 return bp;
803
804 fail_free_mem:
805 while (--i >= 0)
806 __free_page(bp->b_pages[i]);
807 _xfs_buf_free_pages(bp);
808 fail_free_buf:
809 xfs_buf_deallocate(bp);
810 fail:
811 return NULL;
812 }
813
814 /*
815 * Increment reference count on buffer, to hold the buffer concurrently
816 * with another thread which may release (free) the buffer asynchronously.
817 * Must hold the buffer already to call this function.
818 */
819 void
xfs_buf_hold(xfs_buf_t * bp)820 xfs_buf_hold(
821 xfs_buf_t *bp)
822 {
823 trace_xfs_buf_hold(bp, _RET_IP_);
824 atomic_inc(&bp->b_hold);
825 }
826
827 /*
828 * Releases a hold on the specified buffer. If the
829 * the hold count is 1, calls xfs_buf_free.
830 */
831 void
xfs_buf_rele(xfs_buf_t * bp)832 xfs_buf_rele(
833 xfs_buf_t *bp)
834 {
835 struct xfs_perag *pag = bp->b_pag;
836
837 trace_xfs_buf_rele(bp, _RET_IP_);
838
839 if (!pag) {
840 ASSERT(list_empty(&bp->b_lru));
841 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
842 if (atomic_dec_and_test(&bp->b_hold))
843 xfs_buf_free(bp);
844 return;
845 }
846
847 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
848
849 ASSERT(atomic_read(&bp->b_hold) > 0);
850 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
851 if (!(bp->b_flags & XBF_STALE) &&
852 atomic_read(&bp->b_lru_ref)) {
853 xfs_buf_lru_add(bp);
854 spin_unlock(&pag->pag_buf_lock);
855 } else {
856 xfs_buf_lru_del(bp);
857 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
858 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
859 spin_unlock(&pag->pag_buf_lock);
860 xfs_perag_put(pag);
861 xfs_buf_free(bp);
862 }
863 }
864 }
865
866
867 /*
868 * Lock a buffer object, if it is not already locked.
869 *
870 * If we come across a stale, pinned, locked buffer, we know that we are
871 * being asked to lock a buffer that has been reallocated. Because it is
872 * pinned, we know that the log has not been pushed to disk and hence it
873 * will still be locked. Rather than continuing to have trylock attempts
874 * fail until someone else pushes the log, push it ourselves before
875 * returning. This means that the xfsaild will not get stuck trying
876 * to push on stale inode buffers.
877 */
878 int
xfs_buf_cond_lock(xfs_buf_t * bp)879 xfs_buf_cond_lock(
880 xfs_buf_t *bp)
881 {
882 int locked;
883
884 locked = down_trylock(&bp->b_sema) == 0;
885 if (locked)
886 XB_SET_OWNER(bp);
887 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
888 xfs_log_force(bp->b_target->bt_mount, 0);
889
890 trace_xfs_buf_cond_lock(bp, _RET_IP_);
891 return locked ? 0 : -EBUSY;
892 }
893
894 int
xfs_buf_lock_value(xfs_buf_t * bp)895 xfs_buf_lock_value(
896 xfs_buf_t *bp)
897 {
898 return bp->b_sema.count;
899 }
900
901 /*
902 * Lock a buffer object.
903 *
904 * If we come across a stale, pinned, locked buffer, we know that we
905 * are being asked to lock a buffer that has been reallocated. Because
906 * it is pinned, we know that the log has not been pushed to disk and
907 * hence it will still be locked. Rather than sleeping until someone
908 * else pushes the log, push it ourselves before trying to get the lock.
909 */
910 void
xfs_buf_lock(xfs_buf_t * bp)911 xfs_buf_lock(
912 xfs_buf_t *bp)
913 {
914 trace_xfs_buf_lock(bp, _RET_IP_);
915
916 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
917 xfs_log_force(bp->b_target->bt_mount, 0);
918 down(&bp->b_sema);
919 XB_SET_OWNER(bp);
920
921 trace_xfs_buf_lock_done(bp, _RET_IP_);
922 }
923
924 /*
925 * Releases the lock on the buffer object.
926 * If the buffer is marked delwri but is not queued, do so before we
927 * unlock the buffer as we need to set flags correctly. We also need to
928 * take a reference for the delwri queue because the unlocker is going to
929 * drop their's and they don't know we just queued it.
930 */
931 void
xfs_buf_unlock(xfs_buf_t * bp)932 xfs_buf_unlock(
933 xfs_buf_t *bp)
934 {
935 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
936 atomic_inc(&bp->b_hold);
937 bp->b_flags |= XBF_ASYNC;
938 xfs_buf_delwri_queue(bp, 0);
939 }
940
941 XB_CLEAR_OWNER(bp);
942 up(&bp->b_sema);
943
944 trace_xfs_buf_unlock(bp, _RET_IP_);
945 }
946
947 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)948 xfs_buf_wait_unpin(
949 xfs_buf_t *bp)
950 {
951 DECLARE_WAITQUEUE (wait, current);
952
953 if (atomic_read(&bp->b_pin_count) == 0)
954 return;
955
956 add_wait_queue(&bp->b_waiters, &wait);
957 for (;;) {
958 set_current_state(TASK_UNINTERRUPTIBLE);
959 if (atomic_read(&bp->b_pin_count) == 0)
960 break;
961 io_schedule();
962 }
963 remove_wait_queue(&bp->b_waiters, &wait);
964 set_current_state(TASK_RUNNING);
965 }
966
967 /*
968 * Buffer Utility Routines
969 */
970
971 STATIC void
xfs_buf_iodone_work(struct work_struct * work)972 xfs_buf_iodone_work(
973 struct work_struct *work)
974 {
975 xfs_buf_t *bp =
976 container_of(work, xfs_buf_t, b_iodone_work);
977
978 if (bp->b_iodone)
979 (*(bp->b_iodone))(bp);
980 else if (bp->b_flags & XBF_ASYNC)
981 xfs_buf_relse(bp);
982 }
983
984 void
xfs_buf_ioend(xfs_buf_t * bp,int schedule)985 xfs_buf_ioend(
986 xfs_buf_t *bp,
987 int schedule)
988 {
989 trace_xfs_buf_iodone(bp, _RET_IP_);
990
991 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
992 if (bp->b_error == 0)
993 bp->b_flags |= XBF_DONE;
994
995 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
996 if (schedule) {
997 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
998 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
999 } else {
1000 xfs_buf_iodone_work(&bp->b_iodone_work);
1001 }
1002 } else {
1003 complete(&bp->b_iowait);
1004 }
1005 }
1006
1007 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1008 xfs_buf_ioerror(
1009 xfs_buf_t *bp,
1010 int error)
1011 {
1012 ASSERT(error >= 0 && error <= 0xffff);
1013 bp->b_error = (unsigned short)error;
1014 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1015 }
1016
1017 int
xfs_bwrite(struct xfs_mount * mp,struct xfs_buf * bp)1018 xfs_bwrite(
1019 struct xfs_mount *mp,
1020 struct xfs_buf *bp)
1021 {
1022 int error;
1023
1024 bp->b_flags |= XBF_WRITE;
1025 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1026
1027 xfs_buf_delwri_dequeue(bp);
1028 xfs_bdstrat_cb(bp);
1029
1030 error = xfs_buf_iowait(bp);
1031 if (error)
1032 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1033 xfs_buf_relse(bp);
1034 return error;
1035 }
1036
1037 void
xfs_bdwrite(void * mp,struct xfs_buf * bp)1038 xfs_bdwrite(
1039 void *mp,
1040 struct xfs_buf *bp)
1041 {
1042 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1043
1044 bp->b_flags &= ~XBF_READ;
1045 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1046
1047 xfs_buf_delwri_queue(bp, 1);
1048 }
1049
1050 /*
1051 * Called when we want to stop a buffer from getting written or read.
1052 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1053 * so that the proper iodone callbacks get called.
1054 */
1055 STATIC int
xfs_bioerror(xfs_buf_t * bp)1056 xfs_bioerror(
1057 xfs_buf_t *bp)
1058 {
1059 #ifdef XFSERRORDEBUG
1060 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1061 #endif
1062
1063 /*
1064 * No need to wait until the buffer is unpinned, we aren't flushing it.
1065 */
1066 XFS_BUF_ERROR(bp, EIO);
1067
1068 /*
1069 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1070 */
1071 XFS_BUF_UNREAD(bp);
1072 XFS_BUF_UNDELAYWRITE(bp);
1073 XFS_BUF_UNDONE(bp);
1074 XFS_BUF_STALE(bp);
1075
1076 xfs_buf_ioend(bp, 0);
1077
1078 return EIO;
1079 }
1080
1081 /*
1082 * Same as xfs_bioerror, except that we are releasing the buffer
1083 * here ourselves, and avoiding the xfs_buf_ioend call.
1084 * This is meant for userdata errors; metadata bufs come with
1085 * iodone functions attached, so that we can track down errors.
1086 */
1087 STATIC int
xfs_bioerror_relse(struct xfs_buf * bp)1088 xfs_bioerror_relse(
1089 struct xfs_buf *bp)
1090 {
1091 int64_t fl = XFS_BUF_BFLAGS(bp);
1092 /*
1093 * No need to wait until the buffer is unpinned.
1094 * We aren't flushing it.
1095 *
1096 * chunkhold expects B_DONE to be set, whether
1097 * we actually finish the I/O or not. We don't want to
1098 * change that interface.
1099 */
1100 XFS_BUF_UNREAD(bp);
1101 XFS_BUF_UNDELAYWRITE(bp);
1102 XFS_BUF_DONE(bp);
1103 XFS_BUF_STALE(bp);
1104 XFS_BUF_CLR_IODONE_FUNC(bp);
1105 if (!(fl & XBF_ASYNC)) {
1106 /*
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1110 * ASYNC buffers.
1111 */
1112 XFS_BUF_ERROR(bp, EIO);
1113 XFS_BUF_FINISH_IOWAIT(bp);
1114 } else {
1115 xfs_buf_relse(bp);
1116 }
1117
1118 return EIO;
1119 }
1120
1121
1122 /*
1123 * All xfs metadata buffers except log state machine buffers
1124 * get this attached as their b_bdstrat callback function.
1125 * This is so that we can catch a buffer
1126 * after prematurely unpinning it to forcibly shutdown the filesystem.
1127 */
1128 int
xfs_bdstrat_cb(struct xfs_buf * bp)1129 xfs_bdstrat_cb(
1130 struct xfs_buf *bp)
1131 {
1132 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1133 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1134 /*
1135 * Metadata write that didn't get logged but
1136 * written delayed anyway. These aren't associated
1137 * with a transaction, and can be ignored.
1138 */
1139 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1140 return xfs_bioerror_relse(bp);
1141 else
1142 return xfs_bioerror(bp);
1143 }
1144
1145 xfs_buf_iorequest(bp);
1146 return 0;
1147 }
1148
1149 /*
1150 * Wrapper around bdstrat so that we can stop data from going to disk in case
1151 * we are shutting down the filesystem. Typically user data goes thru this
1152 * path; one of the exceptions is the superblock.
1153 */
1154 void
xfsbdstrat(struct xfs_mount * mp,struct xfs_buf * bp)1155 xfsbdstrat(
1156 struct xfs_mount *mp,
1157 struct xfs_buf *bp)
1158 {
1159 if (XFS_FORCED_SHUTDOWN(mp)) {
1160 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161 xfs_bioerror_relse(bp);
1162 return;
1163 }
1164
1165 xfs_buf_iorequest(bp);
1166 }
1167
1168 STATIC void
_xfs_buf_ioend(xfs_buf_t * bp,int schedule)1169 _xfs_buf_ioend(
1170 xfs_buf_t *bp,
1171 int schedule)
1172 {
1173 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1174 xfs_buf_ioend(bp, schedule);
1175 }
1176
1177 STATIC void
xfs_buf_bio_end_io(struct bio * bio,int error)1178 xfs_buf_bio_end_io(
1179 struct bio *bio,
1180 int error)
1181 {
1182 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1183
1184 xfs_buf_ioerror(bp, -error);
1185
1186 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1187 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1188
1189 _xfs_buf_ioend(bp, 1);
1190 bio_put(bio);
1191 }
1192
1193 STATIC void
_xfs_buf_ioapply(xfs_buf_t * bp)1194 _xfs_buf_ioapply(
1195 xfs_buf_t *bp)
1196 {
1197 int rw, map_i, total_nr_pages, nr_pages;
1198 struct bio *bio;
1199 int offset = bp->b_offset;
1200 int size = bp->b_count_desired;
1201 sector_t sector = bp->b_bn;
1202
1203 total_nr_pages = bp->b_page_count;
1204 map_i = 0;
1205
1206 if (bp->b_flags & XBF_ORDERED) {
1207 ASSERT(!(bp->b_flags & XBF_READ));
1208 rw = WRITE_FLUSH_FUA;
1209 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1210 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1211 bp->b_flags &= ~_XBF_RUN_QUEUES;
1212 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1213 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1214 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1215 bp->b_flags &= ~_XBF_RUN_QUEUES;
1216 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1217 } else {
1218 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1219 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1220 }
1221
1222
1223 next_chunk:
1224 atomic_inc(&bp->b_io_remaining);
1225 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1226 if (nr_pages > total_nr_pages)
1227 nr_pages = total_nr_pages;
1228
1229 bio = bio_alloc(GFP_NOIO, nr_pages);
1230 bio->bi_bdev = bp->b_target->bt_bdev;
1231 bio->bi_sector = sector;
1232 bio->bi_end_io = xfs_buf_bio_end_io;
1233 bio->bi_private = bp;
1234
1235
1236 for (; size && nr_pages; nr_pages--, map_i++) {
1237 int rbytes, nbytes = PAGE_SIZE - offset;
1238
1239 if (nbytes > size)
1240 nbytes = size;
1241
1242 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1243 if (rbytes < nbytes)
1244 break;
1245
1246 offset = 0;
1247 sector += nbytes >> BBSHIFT;
1248 size -= nbytes;
1249 total_nr_pages--;
1250 }
1251
1252 if (likely(bio->bi_size)) {
1253 if (xfs_buf_is_vmapped(bp)) {
1254 flush_kernel_vmap_range(bp->b_addr,
1255 xfs_buf_vmap_len(bp));
1256 }
1257 submit_bio(rw, bio);
1258 if (size)
1259 goto next_chunk;
1260 } else {
1261 xfs_buf_ioerror(bp, EIO);
1262 bio_put(bio);
1263 }
1264 }
1265
1266 int
xfs_buf_iorequest(xfs_buf_t * bp)1267 xfs_buf_iorequest(
1268 xfs_buf_t *bp)
1269 {
1270 trace_xfs_buf_iorequest(bp, _RET_IP_);
1271
1272 if (bp->b_flags & XBF_DELWRI) {
1273 xfs_buf_delwri_queue(bp, 1);
1274 return 0;
1275 }
1276
1277 if (bp->b_flags & XBF_WRITE) {
1278 xfs_buf_wait_unpin(bp);
1279 }
1280
1281 xfs_buf_hold(bp);
1282
1283 /* Set the count to 1 initially, this will stop an I/O
1284 * completion callout which happens before we have started
1285 * all the I/O from calling xfs_buf_ioend too early.
1286 */
1287 atomic_set(&bp->b_io_remaining, 1);
1288 _xfs_buf_ioapply(bp);
1289 _xfs_buf_ioend(bp, 0);
1290
1291 xfs_buf_rele(bp);
1292 return 0;
1293 }
1294
1295 /*
1296 * Waits for I/O to complete on the buffer supplied.
1297 * It returns immediately if no I/O is pending.
1298 * It returns the I/O error code, if any, or 0 if there was no error.
1299 */
1300 int
xfs_buf_iowait(xfs_buf_t * bp)1301 xfs_buf_iowait(
1302 xfs_buf_t *bp)
1303 {
1304 trace_xfs_buf_iowait(bp, _RET_IP_);
1305
1306 wait_for_completion(&bp->b_iowait);
1307
1308 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1309 return bp->b_error;
1310 }
1311
1312 xfs_caddr_t
xfs_buf_offset(xfs_buf_t * bp,size_t offset)1313 xfs_buf_offset(
1314 xfs_buf_t *bp,
1315 size_t offset)
1316 {
1317 struct page *page;
1318
1319 if (bp->b_flags & XBF_MAPPED)
1320 return XFS_BUF_PTR(bp) + offset;
1321
1322 offset += bp->b_offset;
1323 page = bp->b_pages[offset >> PAGE_SHIFT];
1324 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1325 }
1326
1327 /*
1328 * Move data into or out of a buffer.
1329 */
1330 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1331 xfs_buf_iomove(
1332 xfs_buf_t *bp, /* buffer to process */
1333 size_t boff, /* starting buffer offset */
1334 size_t bsize, /* length to copy */
1335 void *data, /* data address */
1336 xfs_buf_rw_t mode) /* read/write/zero flag */
1337 {
1338 size_t bend, cpoff, csize;
1339 struct page *page;
1340
1341 bend = boff + bsize;
1342 while (boff < bend) {
1343 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1344 cpoff = xfs_buf_poff(boff + bp->b_offset);
1345 csize = min_t(size_t,
1346 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1347
1348 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1349
1350 switch (mode) {
1351 case XBRW_ZERO:
1352 memset(page_address(page) + cpoff, 0, csize);
1353 break;
1354 case XBRW_READ:
1355 memcpy(data, page_address(page) + cpoff, csize);
1356 break;
1357 case XBRW_WRITE:
1358 memcpy(page_address(page) + cpoff, data, csize);
1359 }
1360
1361 boff += csize;
1362 data += csize;
1363 }
1364 }
1365
1366 /*
1367 * Handling of buffer targets (buftargs).
1368 */
1369
1370 /*
1371 * Wait for any bufs with callbacks that have been submitted but have not yet
1372 * returned. These buffers will have an elevated hold count, so wait on those
1373 * while freeing all the buffers only held by the LRU.
1374 */
1375 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1376 xfs_wait_buftarg(
1377 struct xfs_buftarg *btp)
1378 {
1379 struct xfs_buf *bp;
1380
1381 restart:
1382 spin_lock(&btp->bt_lru_lock);
1383 while (!list_empty(&btp->bt_lru)) {
1384 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1385 if (atomic_read(&bp->b_hold) > 1) {
1386 spin_unlock(&btp->bt_lru_lock);
1387 delay(100);
1388 goto restart;
1389 }
1390 /*
1391 * clear the LRU reference count so the bufer doesn't get
1392 * ignored in xfs_buf_rele().
1393 */
1394 atomic_set(&bp->b_lru_ref, 0);
1395 spin_unlock(&btp->bt_lru_lock);
1396 xfs_buf_rele(bp);
1397 spin_lock(&btp->bt_lru_lock);
1398 }
1399 spin_unlock(&btp->bt_lru_lock);
1400 }
1401
1402 int
xfs_buftarg_shrink(struct shrinker * shrink,int nr_to_scan,gfp_t mask)1403 xfs_buftarg_shrink(
1404 struct shrinker *shrink,
1405 int nr_to_scan,
1406 gfp_t mask)
1407 {
1408 struct xfs_buftarg *btp = container_of(shrink,
1409 struct xfs_buftarg, bt_shrinker);
1410 struct xfs_buf *bp;
1411 LIST_HEAD(dispose);
1412
1413 if (!nr_to_scan)
1414 return btp->bt_lru_nr;
1415
1416 spin_lock(&btp->bt_lru_lock);
1417 while (!list_empty(&btp->bt_lru)) {
1418 if (nr_to_scan-- <= 0)
1419 break;
1420
1421 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1422
1423 /*
1424 * Decrement the b_lru_ref count unless the value is already
1425 * zero. If the value is already zero, we need to reclaim the
1426 * buffer, otherwise it gets another trip through the LRU.
1427 */
1428 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1429 list_move_tail(&bp->b_lru, &btp->bt_lru);
1430 continue;
1431 }
1432
1433 /*
1434 * remove the buffer from the LRU now to avoid needing another
1435 * lock round trip inside xfs_buf_rele().
1436 */
1437 list_move(&bp->b_lru, &dispose);
1438 btp->bt_lru_nr--;
1439 }
1440 spin_unlock(&btp->bt_lru_lock);
1441
1442 while (!list_empty(&dispose)) {
1443 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1444 list_del_init(&bp->b_lru);
1445 xfs_buf_rele(bp);
1446 }
1447
1448 return btp->bt_lru_nr;
1449 }
1450
1451 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1452 xfs_free_buftarg(
1453 struct xfs_mount *mp,
1454 struct xfs_buftarg *btp)
1455 {
1456 unregister_shrinker(&btp->bt_shrinker);
1457
1458 xfs_flush_buftarg(btp, 1);
1459 if (mp->m_flags & XFS_MOUNT_BARRIER)
1460 xfs_blkdev_issue_flush(btp);
1461
1462 kthread_stop(btp->bt_task);
1463 kmem_free(btp);
1464 }
1465
1466 STATIC int
xfs_setsize_buftarg_flags(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize,int verbose)1467 xfs_setsize_buftarg_flags(
1468 xfs_buftarg_t *btp,
1469 unsigned int blocksize,
1470 unsigned int sectorsize,
1471 int verbose)
1472 {
1473 btp->bt_bsize = blocksize;
1474 btp->bt_sshift = ffs(sectorsize) - 1;
1475 btp->bt_smask = sectorsize - 1;
1476
1477 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1478 xfs_warn(btp->bt_mount,
1479 "Cannot set_blocksize to %u on device %s\n",
1480 sectorsize, XFS_BUFTARG_NAME(btp));
1481 return EINVAL;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /*
1488 * When allocating the initial buffer target we have not yet
1489 * read in the superblock, so don't know what sized sectors
1490 * are being used is at this early stage. Play safe.
1491 */
1492 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1493 xfs_setsize_buftarg_early(
1494 xfs_buftarg_t *btp,
1495 struct block_device *bdev)
1496 {
1497 return xfs_setsize_buftarg_flags(btp,
1498 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1499 }
1500
1501 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize)1502 xfs_setsize_buftarg(
1503 xfs_buftarg_t *btp,
1504 unsigned int blocksize,
1505 unsigned int sectorsize)
1506 {
1507 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1508 }
1509
1510 STATIC int
xfs_alloc_delwrite_queue(xfs_buftarg_t * btp,const char * fsname)1511 xfs_alloc_delwrite_queue(
1512 xfs_buftarg_t *btp,
1513 const char *fsname)
1514 {
1515 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1516 spin_lock_init(&btp->bt_delwrite_lock);
1517 btp->bt_flags = 0;
1518 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1519 if (IS_ERR(btp->bt_task))
1520 return PTR_ERR(btp->bt_task);
1521 return 0;
1522 }
1523
1524 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,int external,const char * fsname)1525 xfs_alloc_buftarg(
1526 struct xfs_mount *mp,
1527 struct block_device *bdev,
1528 int external,
1529 const char *fsname)
1530 {
1531 xfs_buftarg_t *btp;
1532
1533 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1534
1535 btp->bt_mount = mp;
1536 btp->bt_dev = bdev->bd_dev;
1537 btp->bt_bdev = bdev;
1538 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1539 if (!btp->bt_bdi)
1540 goto error;
1541
1542 INIT_LIST_HEAD(&btp->bt_lru);
1543 spin_lock_init(&btp->bt_lru_lock);
1544 if (xfs_setsize_buftarg_early(btp, bdev))
1545 goto error;
1546 if (xfs_alloc_delwrite_queue(btp, fsname))
1547 goto error;
1548 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1549 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1550 register_shrinker(&btp->bt_shrinker);
1551 return btp;
1552
1553 error:
1554 kmem_free(btp);
1555 return NULL;
1556 }
1557
1558
1559 /*
1560 * Delayed write buffer handling
1561 */
1562 STATIC void
xfs_buf_delwri_queue(xfs_buf_t * bp,int unlock)1563 xfs_buf_delwri_queue(
1564 xfs_buf_t *bp,
1565 int unlock)
1566 {
1567 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1568 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1569
1570 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1571
1572 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1573
1574 spin_lock(dwlk);
1575 /* If already in the queue, dequeue and place at tail */
1576 if (!list_empty(&bp->b_list)) {
1577 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1578 if (unlock)
1579 atomic_dec(&bp->b_hold);
1580 list_del(&bp->b_list);
1581 }
1582
1583 if (list_empty(dwq)) {
1584 /* start xfsbufd as it is about to have something to do */
1585 wake_up_process(bp->b_target->bt_task);
1586 }
1587
1588 bp->b_flags |= _XBF_DELWRI_Q;
1589 list_add_tail(&bp->b_list, dwq);
1590 bp->b_queuetime = jiffies;
1591 spin_unlock(dwlk);
1592
1593 if (unlock)
1594 xfs_buf_unlock(bp);
1595 }
1596
1597 void
xfs_buf_delwri_dequeue(xfs_buf_t * bp)1598 xfs_buf_delwri_dequeue(
1599 xfs_buf_t *bp)
1600 {
1601 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1602 int dequeued = 0;
1603
1604 spin_lock(dwlk);
1605 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1606 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1607 list_del_init(&bp->b_list);
1608 dequeued = 1;
1609 }
1610 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1611 spin_unlock(dwlk);
1612
1613 if (dequeued)
1614 xfs_buf_rele(bp);
1615
1616 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1617 }
1618
1619 /*
1620 * If a delwri buffer needs to be pushed before it has aged out, then promote
1621 * it to the head of the delwri queue so that it will be flushed on the next
1622 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1623 * than the age currently needed to flush the buffer. Hence the next time the
1624 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1625 */
1626 void
xfs_buf_delwri_promote(struct xfs_buf * bp)1627 xfs_buf_delwri_promote(
1628 struct xfs_buf *bp)
1629 {
1630 struct xfs_buftarg *btp = bp->b_target;
1631 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1632
1633 ASSERT(bp->b_flags & XBF_DELWRI);
1634 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1635
1636 /*
1637 * Check the buffer age before locking the delayed write queue as we
1638 * don't need to promote buffers that are already past the flush age.
1639 */
1640 if (bp->b_queuetime < jiffies - age)
1641 return;
1642 bp->b_queuetime = jiffies - age;
1643 spin_lock(&btp->bt_delwrite_lock);
1644 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1645 spin_unlock(&btp->bt_delwrite_lock);
1646 }
1647
1648 STATIC void
xfs_buf_runall_queues(struct workqueue_struct * queue)1649 xfs_buf_runall_queues(
1650 struct workqueue_struct *queue)
1651 {
1652 flush_workqueue(queue);
1653 }
1654
1655 /*
1656 * Move as many buffers as specified to the supplied list
1657 * idicating if we skipped any buffers to prevent deadlocks.
1658 */
1659 STATIC int
xfs_buf_delwri_split(xfs_buftarg_t * target,struct list_head * list,unsigned long age)1660 xfs_buf_delwri_split(
1661 xfs_buftarg_t *target,
1662 struct list_head *list,
1663 unsigned long age)
1664 {
1665 xfs_buf_t *bp, *n;
1666 struct list_head *dwq = &target->bt_delwrite_queue;
1667 spinlock_t *dwlk = &target->bt_delwrite_lock;
1668 int skipped = 0;
1669 int force;
1670
1671 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1672 INIT_LIST_HEAD(list);
1673 spin_lock(dwlk);
1674 list_for_each_entry_safe(bp, n, dwq, b_list) {
1675 ASSERT(bp->b_flags & XBF_DELWRI);
1676
1677 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1678 if (!force &&
1679 time_before(jiffies, bp->b_queuetime + age)) {
1680 xfs_buf_unlock(bp);
1681 break;
1682 }
1683
1684 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1685 _XBF_RUN_QUEUES);
1686 bp->b_flags |= XBF_WRITE;
1687 list_move_tail(&bp->b_list, list);
1688 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1689 } else
1690 skipped++;
1691 }
1692 spin_unlock(dwlk);
1693
1694 return skipped;
1695
1696 }
1697
1698 /*
1699 * Compare function is more complex than it needs to be because
1700 * the return value is only 32 bits and we are doing comparisons
1701 * on 64 bit values
1702 */
1703 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1704 xfs_buf_cmp(
1705 void *priv,
1706 struct list_head *a,
1707 struct list_head *b)
1708 {
1709 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1710 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1711 xfs_daddr_t diff;
1712
1713 diff = ap->b_bn - bp->b_bn;
1714 if (diff < 0)
1715 return -1;
1716 if (diff > 0)
1717 return 1;
1718 return 0;
1719 }
1720
1721 void
xfs_buf_delwri_sort(xfs_buftarg_t * target,struct list_head * list)1722 xfs_buf_delwri_sort(
1723 xfs_buftarg_t *target,
1724 struct list_head *list)
1725 {
1726 list_sort(NULL, list, xfs_buf_cmp);
1727 }
1728
1729 STATIC int
xfsbufd(void * data)1730 xfsbufd(
1731 void *data)
1732 {
1733 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1734
1735 current->flags |= PF_MEMALLOC;
1736
1737 set_freezable();
1738
1739 do {
1740 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1741 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1742 struct list_head tmp;
1743 struct blk_plug plug;
1744
1745 if (unlikely(freezing(current))) {
1746 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1747 refrigerator();
1748 } else {
1749 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1750 }
1751
1752 /* sleep for a long time if there is nothing to do. */
1753 if (list_empty(&target->bt_delwrite_queue))
1754 tout = MAX_SCHEDULE_TIMEOUT;
1755 schedule_timeout_interruptible(tout);
1756
1757 xfs_buf_delwri_split(target, &tmp, age);
1758 list_sort(NULL, &tmp, xfs_buf_cmp);
1759
1760 blk_start_plug(&plug);
1761 while (!list_empty(&tmp)) {
1762 struct xfs_buf *bp;
1763 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1764 list_del_init(&bp->b_list);
1765 xfs_bdstrat_cb(bp);
1766 }
1767 blk_finish_plug(&plug);
1768 } while (!kthread_should_stop());
1769
1770 return 0;
1771 }
1772
1773 /*
1774 * Go through all incore buffers, and release buffers if they belong to
1775 * the given device. This is used in filesystem error handling to
1776 * preserve the consistency of its metadata.
1777 */
1778 int
xfs_flush_buftarg(xfs_buftarg_t * target,int wait)1779 xfs_flush_buftarg(
1780 xfs_buftarg_t *target,
1781 int wait)
1782 {
1783 xfs_buf_t *bp;
1784 int pincount = 0;
1785 LIST_HEAD(tmp_list);
1786 LIST_HEAD(wait_list);
1787 struct blk_plug plug;
1788
1789 xfs_buf_runall_queues(xfsconvertd_workqueue);
1790 xfs_buf_runall_queues(xfsdatad_workqueue);
1791 xfs_buf_runall_queues(xfslogd_workqueue);
1792
1793 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1794 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1795
1796 /*
1797 * Dropped the delayed write list lock, now walk the temporary list.
1798 * All I/O is issued async and then if we need to wait for completion
1799 * we do that after issuing all the IO.
1800 */
1801 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1802
1803 blk_start_plug(&plug);
1804 while (!list_empty(&tmp_list)) {
1805 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1806 ASSERT(target == bp->b_target);
1807 list_del_init(&bp->b_list);
1808 if (wait) {
1809 bp->b_flags &= ~XBF_ASYNC;
1810 list_add(&bp->b_list, &wait_list);
1811 }
1812 xfs_bdstrat_cb(bp);
1813 }
1814 blk_finish_plug(&plug);
1815
1816 if (wait) {
1817 /* Wait for IO to complete. */
1818 while (!list_empty(&wait_list)) {
1819 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1820
1821 list_del_init(&bp->b_list);
1822 xfs_buf_iowait(bp);
1823 xfs_buf_relse(bp);
1824 }
1825 }
1826
1827 return pincount;
1828 }
1829
1830 int __init
xfs_buf_init(void)1831 xfs_buf_init(void)
1832 {
1833 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1834 KM_ZONE_HWALIGN, NULL);
1835 if (!xfs_buf_zone)
1836 goto out;
1837
1838 xfslogd_workqueue = alloc_workqueue("xfslogd",
1839 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1840 if (!xfslogd_workqueue)
1841 goto out_free_buf_zone;
1842
1843 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1844 if (!xfsdatad_workqueue)
1845 goto out_destroy_xfslogd_workqueue;
1846
1847 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1848 WQ_MEM_RECLAIM, 1);
1849 if (!xfsconvertd_workqueue)
1850 goto out_destroy_xfsdatad_workqueue;
1851
1852 return 0;
1853
1854 out_destroy_xfsdatad_workqueue:
1855 destroy_workqueue(xfsdatad_workqueue);
1856 out_destroy_xfslogd_workqueue:
1857 destroy_workqueue(xfslogd_workqueue);
1858 out_free_buf_zone:
1859 kmem_zone_destroy(xfs_buf_zone);
1860 out:
1861 return -ENOMEM;
1862 }
1863
1864 void
xfs_buf_terminate(void)1865 xfs_buf_terminate(void)
1866 {
1867 destroy_workqueue(xfsconvertd_workqueue);
1868 destroy_workqueue(xfsdatad_workqueue);
1869 destroy_workqueue(xfslogd_workqueue);
1870 kmem_zone_destroy(xfs_buf_zone);
1871 }
1872
1873 #ifdef CONFIG_KDB_MODULES
1874 struct list_head *
xfs_get_buftarg_list(void)1875 xfs_get_buftarg_list(void)
1876 {
1877 return &xfs_buftarg_list;
1878 }
1879 #endif
1880