1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp) do { } while (0)
55 # define XB_CLEAR_OWNER(bp) do { } while (0)
56 # define XB_GET_OWNER(bp) do { } while (0)
57 #endif
58
59 #define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
61 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
62
63 #define xb_to_km(flags) \
64 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
65
66
67 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)68 xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
70 {
71 /*
72 * Return true if the buffer is vmapped.
73 *
74 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
75 * code is clever enough to know it doesn't have to map a single page,
76 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
77 */
78 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
79 }
80
81 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)82 xfs_buf_vmap_len(
83 struct xfs_buf *bp)
84 {
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87
88 /*
89 * xfs_buf_lru_add - add a buffer to the LRU.
90 *
91 * The LRU takes a new reference to the buffer so that it will only be freed
92 * once the shrinker takes the buffer off the LRU.
93 */
94 STATIC void
xfs_buf_lru_add(struct xfs_buf * bp)95 xfs_buf_lru_add(
96 struct xfs_buf *bp)
97 {
98 struct xfs_buftarg *btp = bp->b_target;
99
100 spin_lock(&btp->bt_lru_lock);
101 if (list_empty(&bp->b_lru)) {
102 atomic_inc(&bp->b_hold);
103 list_add_tail(&bp->b_lru, &btp->bt_lru);
104 btp->bt_lru_nr++;
105 }
106 spin_unlock(&btp->bt_lru_lock);
107 }
108
109 /*
110 * xfs_buf_lru_del - remove a buffer from the LRU
111 *
112 * The unlocked check is safe here because it only occurs when there are not
113 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
114 * to optimise the shrinker removing the buffer from the LRU and calling
115 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
116 * bt_lru_lock.
117 */
118 STATIC void
xfs_buf_lru_del(struct xfs_buf * bp)119 xfs_buf_lru_del(
120 struct xfs_buf *bp)
121 {
122 struct xfs_buftarg *btp = bp->b_target;
123
124 if (list_empty(&bp->b_lru))
125 return;
126
127 spin_lock(&btp->bt_lru_lock);
128 if (!list_empty(&bp->b_lru)) {
129 list_del_init(&bp->b_lru);
130 btp->bt_lru_nr--;
131 }
132 spin_unlock(&btp->bt_lru_lock);
133 }
134
135 /*
136 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
137 * b_lru_ref count so that the buffer is freed immediately when the buffer
138 * reference count falls to zero. If the buffer is already on the LRU, we need
139 * to remove the reference that LRU holds on the buffer.
140 *
141 * This prevents build-up of stale buffers on the LRU.
142 */
143 void
xfs_buf_stale(struct xfs_buf * bp)144 xfs_buf_stale(
145 struct xfs_buf *bp)
146 {
147 bp->b_flags |= XBF_STALE;
148 xfs_buf_delwri_dequeue(bp);
149 atomic_set(&(bp)->b_lru_ref, 0);
150 if (!list_empty(&bp->b_lru)) {
151 struct xfs_buftarg *btp = bp->b_target;
152
153 spin_lock(&btp->bt_lru_lock);
154 if (!list_empty(&bp->b_lru)) {
155 list_del_init(&bp->b_lru);
156 btp->bt_lru_nr--;
157 atomic_dec(&bp->b_hold);
158 }
159 spin_unlock(&btp->bt_lru_lock);
160 }
161 ASSERT(atomic_read(&bp->b_hold) >= 1);
162 }
163
164 struct xfs_buf *
xfs_buf_alloc(struct xfs_buftarg * target,xfs_off_t range_base,size_t range_length,xfs_buf_flags_t flags)165 xfs_buf_alloc(
166 struct xfs_buftarg *target,
167 xfs_off_t range_base,
168 size_t range_length,
169 xfs_buf_flags_t flags)
170 {
171 struct xfs_buf *bp;
172
173 bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
174 if (unlikely(!bp))
175 return NULL;
176
177 /*
178 * We don't want certain flags to appear in b_flags.
179 */
180 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182 memset(bp, 0, sizeof(xfs_buf_t));
183 atomic_set(&bp->b_hold, 1);
184 atomic_set(&bp->b_lru_ref, 1);
185 init_completion(&bp->b_iowait);
186 INIT_LIST_HEAD(&bp->b_lru);
187 INIT_LIST_HEAD(&bp->b_list);
188 RB_CLEAR_NODE(&bp->b_rbnode);
189 sema_init(&bp->b_sema, 0); /* held, no waiters */
190 XB_SET_OWNER(bp);
191 bp->b_target = target;
192 bp->b_file_offset = range_base;
193 /*
194 * Set buffer_length and count_desired to the same value initially.
195 * I/O routines should use count_desired, which will be the same in
196 * most cases but may be reset (e.g. XFS recovery).
197 */
198 bp->b_buffer_length = bp->b_count_desired = range_length;
199 bp->b_flags = flags;
200 bp->b_bn = XFS_BUF_DADDR_NULL;
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
206
207 return bp;
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count,xfs_buf_flags_t flags)215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count,
218 xfs_buf_flags_t flags)
219 {
220 /* Make sure that we have a page list */
221 if (bp->b_pages == NULL) {
222 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
226 } else {
227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 page_count, xb_to_km(flags));
229 if (bp->b_pages == NULL)
230 return -ENOMEM;
231 }
232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 }
234 return 0;
235 }
236
237 /*
238 * Frees b_pages if it was allocated.
239 */
240 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)241 _xfs_buf_free_pages(
242 xfs_buf_t *bp)
243 {
244 if (bp->b_pages != bp->b_page_array) {
245 kmem_free(bp->b_pages);
246 bp->b_pages = NULL;
247 }
248 }
249
250 /*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
256 */
257 void
xfs_buf_free(xfs_buf_t * bp)258 xfs_buf_free(
259 xfs_buf_t *bp)
260 {
261 trace_xfs_buf_free(bp, _RET_IP_);
262
263 ASSERT(list_empty(&bp->b_lru));
264
265 if (bp->b_flags & _XBF_PAGES) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 __free_page(page);
276 }
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
279 _xfs_buf_free_pages(bp);
280 kmem_zone_free(xfs_buf_zone, bp);
281 }
282
283 /*
284 * Allocates all the pages for buffer in question and builds it's page list.
285 */
286 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)287 xfs_buf_allocate_memory(
288 xfs_buf_t *bp,
289 uint flags)
290 {
291 size_t size = bp->b_count_desired;
292 size_t nbytes, offset;
293 gfp_t gfp_mask = xb_to_gfp(flags);
294 unsigned short page_count, i;
295 xfs_off_t end;
296 int error;
297
298 /*
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
302 */
303 if (bp->b_buffer_length < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 PAGE_MASK) !=
312 ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp->b_addr);
315 bp->b_addr = NULL;
316 goto use_alloc_page;
317 }
318 bp->b_offset = offset_in_page(bp->b_addr);
319 bp->b_pages = bp->b_page_array;
320 bp->b_pages[0] = virt_to_page(bp->b_addr);
321 bp->b_page_count = 1;
322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 return 0;
324 }
325
326 use_alloc_page:
327 end = bp->b_file_offset + bp->b_buffer_length;
328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 error = _xfs_buf_get_pages(bp, page_count, flags);
330 if (unlikely(error))
331 return error;
332
333 offset = bp->b_offset;
334 bp->b_flags |= _XBF_PAGES;
335
336 for (i = 0; i < bp->b_page_count; i++) {
337 struct page *page;
338 uint retries = 0;
339 retry:
340 page = alloc_page(gfp_mask);
341 if (unlikely(page == NULL)) {
342 if (flags & XBF_READ_AHEAD) {
343 bp->b_page_count = i;
344 error = ENOMEM;
345 goto out_free_pages;
346 }
347
348 /*
349 * This could deadlock.
350 *
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
353 */
354 if (!(++retries % 100))
355 xfs_err(NULL,
356 "possible memory allocation deadlock in %s (mode:0x%x)",
357 __func__, gfp_mask);
358
359 XFS_STATS_INC(xb_page_retries);
360 congestion_wait(BLK_RW_ASYNC, HZ/50);
361 goto retry;
362 }
363
364 XFS_STATS_INC(xb_page_found);
365
366 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 size -= nbytes;
368 bp->b_pages[i] = page;
369 offset = 0;
370 }
371 return 0;
372
373 out_free_pages:
374 for (i = 0; i < bp->b_page_count; i++)
375 __free_page(bp->b_pages[i]);
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if necessary.
381 */
382 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 ASSERT(bp->b_flags & _XBF_PAGES);
388 if (bp->b_page_count == 1) {
389 /* A single page buffer is always mappable */
390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 bp->b_flags |= XBF_MAPPED;
392 } else if (flags & XBF_MAPPED) {
393 int retried = 0;
394
395 do {
396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 -1, PAGE_KERNEL);
398 if (bp->b_addr)
399 break;
400 vm_unmap_aliases();
401 } while (retried++ <= 1);
402
403 if (!bp->b_addr)
404 return -ENOMEM;
405 bp->b_addr += bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 }
408
409 return 0;
410 }
411
412 /*
413 * Finding and Reading Buffers
414 */
415
416 /*
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. No I/O is implied by this call.
420 */
421 xfs_buf_t *
_xfs_buf_find(xfs_buftarg_t * btp,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags,xfs_buf_t * new_bp)422 _xfs_buf_find(
423 xfs_buftarg_t *btp, /* block device target */
424 xfs_off_t ioff, /* starting offset of range */
425 size_t isize, /* length of range */
426 xfs_buf_flags_t flags,
427 xfs_buf_t *new_bp)
428 {
429 xfs_off_t range_base;
430 size_t range_length;
431 struct xfs_perag *pag;
432 struct rb_node **rbp;
433 struct rb_node *parent;
434 xfs_buf_t *bp;
435
436 range_base = (ioff << BBSHIFT);
437 range_length = (isize << BBSHIFT);
438
439 /* Check for IOs smaller than the sector size / not sector aligned */
440 ASSERT(!(range_length < (1 << btp->bt_sshift)));
441 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
442
443 /* get tree root */
444 pag = xfs_perag_get(btp->bt_mount,
445 xfs_daddr_to_agno(btp->bt_mount, ioff));
446
447 /* walk tree */
448 spin_lock(&pag->pag_buf_lock);
449 rbp = &pag->pag_buf_tree.rb_node;
450 parent = NULL;
451 bp = NULL;
452 while (*rbp) {
453 parent = *rbp;
454 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
455
456 if (range_base < bp->b_file_offset)
457 rbp = &(*rbp)->rb_left;
458 else if (range_base > bp->b_file_offset)
459 rbp = &(*rbp)->rb_right;
460 else {
461 /*
462 * found a block offset match. If the range doesn't
463 * match, the only way this is allowed is if the buffer
464 * in the cache is stale and the transaction that made
465 * it stale has not yet committed. i.e. we are
466 * reallocating a busy extent. Skip this buffer and
467 * continue searching to the right for an exact match.
468 */
469 if (bp->b_buffer_length != range_length) {
470 ASSERT(bp->b_flags & XBF_STALE);
471 rbp = &(*rbp)->rb_right;
472 continue;
473 }
474 atomic_inc(&bp->b_hold);
475 goto found;
476 }
477 }
478
479 /* No match found */
480 if (new_bp) {
481 rb_link_node(&new_bp->b_rbnode, parent, rbp);
482 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
483 /* the buffer keeps the perag reference until it is freed */
484 new_bp->b_pag = pag;
485 spin_unlock(&pag->pag_buf_lock);
486 } else {
487 XFS_STATS_INC(xb_miss_locked);
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
490 }
491 return new_bp;
492
493 found:
494 spin_unlock(&pag->pag_buf_lock);
495 xfs_perag_put(pag);
496
497 if (!xfs_buf_trylock(bp)) {
498 if (flags & XBF_TRYLOCK) {
499 xfs_buf_rele(bp);
500 XFS_STATS_INC(xb_busy_locked);
501 return NULL;
502 }
503 xfs_buf_lock(bp);
504 XFS_STATS_INC(xb_get_locked_waited);
505 }
506
507 /*
508 * if the buffer is stale, clear all the external state associated with
509 * it. We need to keep flags such as how we allocated the buffer memory
510 * intact here.
511 */
512 if (bp->b_flags & XBF_STALE) {
513 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
514 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
515 }
516
517 trace_xfs_buf_find(bp, flags, _RET_IP_);
518 XFS_STATS_INC(xb_get_locked);
519 return bp;
520 }
521
522 /*
523 * Assembles a buffer covering the specified range. The code is optimised for
524 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
525 * more hits than misses.
526 */
527 struct xfs_buf *
xfs_buf_get(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)528 xfs_buf_get(
529 xfs_buftarg_t *target,/* target for buffer */
530 xfs_off_t ioff, /* starting offset of range */
531 size_t isize, /* length of range */
532 xfs_buf_flags_t flags)
533 {
534 struct xfs_buf *bp;
535 struct xfs_buf *new_bp;
536 int error = 0;
537
538 bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
539 if (likely(bp))
540 goto found;
541
542 new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
543 flags);
544 if (unlikely(!new_bp))
545 return NULL;
546
547 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
548 if (!bp) {
549 kmem_zone_free(xfs_buf_zone, new_bp);
550 return NULL;
551 }
552
553 if (bp == new_bp) {
554 error = xfs_buf_allocate_memory(bp, flags);
555 if (error)
556 goto no_buffer;
557 } else
558 kmem_zone_free(xfs_buf_zone, new_bp);
559
560 /*
561 * Now we have a workable buffer, fill in the block number so
562 * that we can do IO on it.
563 */
564 bp->b_bn = ioff;
565 bp->b_count_desired = bp->b_buffer_length;
566
567 found:
568 if (!(bp->b_flags & XBF_MAPPED)) {
569 error = _xfs_buf_map_pages(bp, flags);
570 if (unlikely(error)) {
571 xfs_warn(target->bt_mount,
572 "%s: failed to map pages\n", __func__);
573 goto no_buffer;
574 }
575 }
576
577 XFS_STATS_INC(xb_get);
578 trace_xfs_buf_get(bp, flags, _RET_IP_);
579 return bp;
580
581 no_buffer:
582 if (flags & (XBF_LOCK | XBF_TRYLOCK))
583 xfs_buf_unlock(bp);
584 xfs_buf_rele(bp);
585 return NULL;
586 }
587
588 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)589 _xfs_buf_read(
590 xfs_buf_t *bp,
591 xfs_buf_flags_t flags)
592 {
593 int status;
594
595 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
596 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
597
598 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
600
601 status = xfs_buf_iorequest(bp);
602 if (status || bp->b_error || (flags & XBF_ASYNC))
603 return status;
604 return xfs_buf_iowait(bp);
605 }
606
607 xfs_buf_t *
xfs_buf_read(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)608 xfs_buf_read(
609 xfs_buftarg_t *target,
610 xfs_off_t ioff,
611 size_t isize,
612 xfs_buf_flags_t flags)
613 {
614 xfs_buf_t *bp;
615
616 flags |= XBF_READ;
617
618 bp = xfs_buf_get(target, ioff, isize, flags);
619 if (bp) {
620 trace_xfs_buf_read(bp, flags, _RET_IP_);
621
622 if (!XFS_BUF_ISDONE(bp)) {
623 XFS_STATS_INC(xb_get_read);
624 _xfs_buf_read(bp, flags);
625 } else if (flags & XBF_ASYNC) {
626 /*
627 * Read ahead call which is already satisfied,
628 * drop the buffer
629 */
630 goto no_buffer;
631 } else {
632 /* We do not want read in the flags */
633 bp->b_flags &= ~XBF_READ;
634 }
635 }
636
637 return bp;
638
639 no_buffer:
640 if (flags & (XBF_LOCK | XBF_TRYLOCK))
641 xfs_buf_unlock(bp);
642 xfs_buf_rele(bp);
643 return NULL;
644 }
645
646 /*
647 * If we are not low on memory then do the readahead in a deadlock
648 * safe manner.
649 */
650 void
xfs_buf_readahead(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize)651 xfs_buf_readahead(
652 xfs_buftarg_t *target,
653 xfs_off_t ioff,
654 size_t isize)
655 {
656 if (bdi_read_congested(target->bt_bdi))
657 return;
658
659 xfs_buf_read(target, ioff, isize,
660 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
661 }
662
663 /*
664 * Read an uncached buffer from disk. Allocates and returns a locked
665 * buffer containing the disk contents or nothing.
666 */
667 struct xfs_buf *
xfs_buf_read_uncached(struct xfs_mount * mp,struct xfs_buftarg * target,xfs_daddr_t daddr,size_t length,int flags)668 xfs_buf_read_uncached(
669 struct xfs_mount *mp,
670 struct xfs_buftarg *target,
671 xfs_daddr_t daddr,
672 size_t length,
673 int flags)
674 {
675 xfs_buf_t *bp;
676 int error;
677
678 bp = xfs_buf_get_uncached(target, length, flags);
679 if (!bp)
680 return NULL;
681
682 /* set up the buffer for a read IO */
683 XFS_BUF_SET_ADDR(bp, daddr);
684 XFS_BUF_READ(bp);
685
686 xfsbdstrat(mp, bp);
687 error = xfs_buf_iowait(bp);
688 if (error || bp->b_error) {
689 xfs_buf_relse(bp);
690 return NULL;
691 }
692 return bp;
693 }
694
695 /*
696 * Return a buffer allocated as an empty buffer and associated to external
697 * memory via xfs_buf_associate_memory() back to it's empty state.
698 */
699 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t len)700 xfs_buf_set_empty(
701 struct xfs_buf *bp,
702 size_t len)
703 {
704 if (bp->b_pages)
705 _xfs_buf_free_pages(bp);
706
707 bp->b_pages = NULL;
708 bp->b_page_count = 0;
709 bp->b_addr = NULL;
710 bp->b_file_offset = 0;
711 bp->b_buffer_length = bp->b_count_desired = len;
712 bp->b_bn = XFS_BUF_DADDR_NULL;
713 bp->b_flags &= ~XBF_MAPPED;
714 }
715
716 static inline struct page *
mem_to_page(void * addr)717 mem_to_page(
718 void *addr)
719 {
720 if ((!is_vmalloc_addr(addr))) {
721 return virt_to_page(addr);
722 } else {
723 return vmalloc_to_page(addr);
724 }
725 }
726
727 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)728 xfs_buf_associate_memory(
729 xfs_buf_t *bp,
730 void *mem,
731 size_t len)
732 {
733 int rval;
734 int i = 0;
735 unsigned long pageaddr;
736 unsigned long offset;
737 size_t buflen;
738 int page_count;
739
740 pageaddr = (unsigned long)mem & PAGE_MASK;
741 offset = (unsigned long)mem - pageaddr;
742 buflen = PAGE_ALIGN(len + offset);
743 page_count = buflen >> PAGE_SHIFT;
744
745 /* Free any previous set of page pointers */
746 if (bp->b_pages)
747 _xfs_buf_free_pages(bp);
748
749 bp->b_pages = NULL;
750 bp->b_addr = mem;
751
752 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
753 if (rval)
754 return rval;
755
756 bp->b_offset = offset;
757
758 for (i = 0; i < bp->b_page_count; i++) {
759 bp->b_pages[i] = mem_to_page((void *)pageaddr);
760 pageaddr += PAGE_SIZE;
761 }
762
763 bp->b_count_desired = len;
764 bp->b_buffer_length = buflen;
765 bp->b_flags |= XBF_MAPPED;
766
767 return 0;
768 }
769
770 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t len,int flags)771 xfs_buf_get_uncached(
772 struct xfs_buftarg *target,
773 size_t len,
774 int flags)
775 {
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
778 xfs_buf_t *bp;
779
780 bp = xfs_buf_alloc(target, 0, len, 0);
781 if (unlikely(bp == NULL))
782 goto fail;
783
784 error = _xfs_buf_get_pages(bp, page_count, 0);
785 if (error)
786 goto fail_free_buf;
787
788 for (i = 0; i < page_count; i++) {
789 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
790 if (!bp->b_pages[i])
791 goto fail_free_mem;
792 }
793 bp->b_flags |= _XBF_PAGES;
794
795 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
796 if (unlikely(error)) {
797 xfs_warn(target->bt_mount,
798 "%s: failed to map pages\n", __func__);
799 goto fail_free_mem;
800 }
801
802 trace_xfs_buf_get_uncached(bp, _RET_IP_);
803 return bp;
804
805 fail_free_mem:
806 while (--i >= 0)
807 __free_page(bp->b_pages[i]);
808 _xfs_buf_free_pages(bp);
809 fail_free_buf:
810 kmem_zone_free(xfs_buf_zone, bp);
811 fail:
812 return NULL;
813 }
814
815 /*
816 * Increment reference count on buffer, to hold the buffer concurrently
817 * with another thread which may release (free) the buffer asynchronously.
818 * Must hold the buffer already to call this function.
819 */
820 void
xfs_buf_hold(xfs_buf_t * bp)821 xfs_buf_hold(
822 xfs_buf_t *bp)
823 {
824 trace_xfs_buf_hold(bp, _RET_IP_);
825 atomic_inc(&bp->b_hold);
826 }
827
828 /*
829 * Releases a hold on the specified buffer. If the
830 * the hold count is 1, calls xfs_buf_free.
831 */
832 void
xfs_buf_rele(xfs_buf_t * bp)833 xfs_buf_rele(
834 xfs_buf_t *bp)
835 {
836 struct xfs_perag *pag = bp->b_pag;
837
838 trace_xfs_buf_rele(bp, _RET_IP_);
839
840 if (!pag) {
841 ASSERT(list_empty(&bp->b_lru));
842 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
843 if (atomic_dec_and_test(&bp->b_hold))
844 xfs_buf_free(bp);
845 return;
846 }
847
848 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
849
850 ASSERT(atomic_read(&bp->b_hold) > 0);
851 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
852 if (!(bp->b_flags & XBF_STALE) &&
853 atomic_read(&bp->b_lru_ref)) {
854 xfs_buf_lru_add(bp);
855 spin_unlock(&pag->pag_buf_lock);
856 } else {
857 xfs_buf_lru_del(bp);
858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
859 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
860 spin_unlock(&pag->pag_buf_lock);
861 xfs_perag_put(pag);
862 xfs_buf_free(bp);
863 }
864 }
865 }
866
867
868 /*
869 * Lock a buffer object, if it is not already locked.
870 *
871 * If we come across a stale, pinned, locked buffer, we know that we are
872 * being asked to lock a buffer that has been reallocated. Because it is
873 * pinned, we know that the log has not been pushed to disk and hence it
874 * will still be locked. Rather than continuing to have trylock attempts
875 * fail until someone else pushes the log, push it ourselves before
876 * returning. This means that the xfsaild will not get stuck trying
877 * to push on stale inode buffers.
878 */
879 int
xfs_buf_trylock(struct xfs_buf * bp)880 xfs_buf_trylock(
881 struct xfs_buf *bp)
882 {
883 int locked;
884
885 locked = down_trylock(&bp->b_sema) == 0;
886 if (locked)
887 XB_SET_OWNER(bp);
888 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
889 xfs_log_force(bp->b_target->bt_mount, 0);
890
891 trace_xfs_buf_trylock(bp, _RET_IP_);
892 return locked;
893 }
894
895 /*
896 * Lock a buffer object.
897 *
898 * If we come across a stale, pinned, locked buffer, we know that we
899 * are being asked to lock a buffer that has been reallocated. Because
900 * it is pinned, we know that the log has not been pushed to disk and
901 * hence it will still be locked. Rather than sleeping until someone
902 * else pushes the log, push it ourselves before trying to get the lock.
903 */
904 void
xfs_buf_lock(struct xfs_buf * bp)905 xfs_buf_lock(
906 struct xfs_buf *bp)
907 {
908 trace_xfs_buf_lock(bp, _RET_IP_);
909
910 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
911 xfs_log_force(bp->b_target->bt_mount, 0);
912 down(&bp->b_sema);
913 XB_SET_OWNER(bp);
914
915 trace_xfs_buf_lock_done(bp, _RET_IP_);
916 }
917
918 /*
919 * Releases the lock on the buffer object.
920 * If the buffer is marked delwri but is not queued, do so before we
921 * unlock the buffer as we need to set flags correctly. We also need to
922 * take a reference for the delwri queue because the unlocker is going to
923 * drop their's and they don't know we just queued it.
924 */
925 void
xfs_buf_unlock(struct xfs_buf * bp)926 xfs_buf_unlock(
927 struct xfs_buf *bp)
928 {
929 XB_CLEAR_OWNER(bp);
930 up(&bp->b_sema);
931
932 trace_xfs_buf_unlock(bp, _RET_IP_);
933 }
934
935 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)936 xfs_buf_wait_unpin(
937 xfs_buf_t *bp)
938 {
939 DECLARE_WAITQUEUE (wait, current);
940
941 if (atomic_read(&bp->b_pin_count) == 0)
942 return;
943
944 add_wait_queue(&bp->b_waiters, &wait);
945 for (;;) {
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 if (atomic_read(&bp->b_pin_count) == 0)
948 break;
949 io_schedule();
950 }
951 remove_wait_queue(&bp->b_waiters, &wait);
952 set_current_state(TASK_RUNNING);
953 }
954
955 /*
956 * Buffer Utility Routines
957 */
958
959 STATIC void
xfs_buf_iodone_work(struct work_struct * work)960 xfs_buf_iodone_work(
961 struct work_struct *work)
962 {
963 xfs_buf_t *bp =
964 container_of(work, xfs_buf_t, b_iodone_work);
965
966 if (bp->b_iodone)
967 (*(bp->b_iodone))(bp);
968 else if (bp->b_flags & XBF_ASYNC)
969 xfs_buf_relse(bp);
970 }
971
972 void
xfs_buf_ioend(xfs_buf_t * bp,int schedule)973 xfs_buf_ioend(
974 xfs_buf_t *bp,
975 int schedule)
976 {
977 trace_xfs_buf_iodone(bp, _RET_IP_);
978
979 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
980 if (bp->b_error == 0)
981 bp->b_flags |= XBF_DONE;
982
983 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
984 if (schedule) {
985 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
986 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
987 } else {
988 xfs_buf_iodone_work(&bp->b_iodone_work);
989 }
990 } else {
991 complete(&bp->b_iowait);
992 }
993 }
994
995 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)996 xfs_buf_ioerror(
997 xfs_buf_t *bp,
998 int error)
999 {
1000 ASSERT(error >= 0 && error <= 0xffff);
1001 bp->b_error = (unsigned short)error;
1002 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1003 }
1004
1005 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1006 xfs_buf_ioerror_alert(
1007 struct xfs_buf *bp,
1008 const char *func)
1009 {
1010 xfs_alert(bp->b_target->bt_mount,
1011 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1012 (__uint64_t)XFS_BUF_ADDR(bp), func,
1013 bp->b_error, XFS_BUF_COUNT(bp));
1014 }
1015
1016 int
xfs_bwrite(struct xfs_buf * bp)1017 xfs_bwrite(
1018 struct xfs_buf *bp)
1019 {
1020 int error;
1021
1022 bp->b_flags |= XBF_WRITE;
1023 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1024
1025 xfs_buf_delwri_dequeue(bp);
1026 xfs_bdstrat_cb(bp);
1027
1028 error = xfs_buf_iowait(bp);
1029 if (error) {
1030 xfs_force_shutdown(bp->b_target->bt_mount,
1031 SHUTDOWN_META_IO_ERROR);
1032 }
1033 return error;
1034 }
1035
1036 /*
1037 * Called when we want to stop a buffer from getting written or read.
1038 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1039 * so that the proper iodone callbacks get called.
1040 */
1041 STATIC int
xfs_bioerror(xfs_buf_t * bp)1042 xfs_bioerror(
1043 xfs_buf_t *bp)
1044 {
1045 #ifdef XFSERRORDEBUG
1046 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1047 #endif
1048
1049 /*
1050 * No need to wait until the buffer is unpinned, we aren't flushing it.
1051 */
1052 xfs_buf_ioerror(bp, EIO);
1053
1054 /*
1055 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1056 */
1057 XFS_BUF_UNREAD(bp);
1058 XFS_BUF_UNDONE(bp);
1059 xfs_buf_stale(bp);
1060
1061 xfs_buf_ioend(bp, 0);
1062
1063 return EIO;
1064 }
1065
1066 /*
1067 * Same as xfs_bioerror, except that we are releasing the buffer
1068 * here ourselves, and avoiding the xfs_buf_ioend call.
1069 * This is meant for userdata errors; metadata bufs come with
1070 * iodone functions attached, so that we can track down errors.
1071 */
1072 STATIC int
xfs_bioerror_relse(struct xfs_buf * bp)1073 xfs_bioerror_relse(
1074 struct xfs_buf *bp)
1075 {
1076 int64_t fl = bp->b_flags;
1077 /*
1078 * No need to wait until the buffer is unpinned.
1079 * We aren't flushing it.
1080 *
1081 * chunkhold expects B_DONE to be set, whether
1082 * we actually finish the I/O or not. We don't want to
1083 * change that interface.
1084 */
1085 XFS_BUF_UNREAD(bp);
1086 XFS_BUF_DONE(bp);
1087 xfs_buf_stale(bp);
1088 bp->b_iodone = NULL;
1089 if (!(fl & XBF_ASYNC)) {
1090 /*
1091 * Mark b_error and B_ERROR _both_.
1092 * Lot's of chunkcache code assumes that.
1093 * There's no reason to mark error for
1094 * ASYNC buffers.
1095 */
1096 xfs_buf_ioerror(bp, EIO);
1097 complete(&bp->b_iowait);
1098 } else {
1099 xfs_buf_relse(bp);
1100 }
1101
1102 return EIO;
1103 }
1104
1105
1106 /*
1107 * All xfs metadata buffers except log state machine buffers
1108 * get this attached as their b_bdstrat callback function.
1109 * This is so that we can catch a buffer
1110 * after prematurely unpinning it to forcibly shutdown the filesystem.
1111 */
1112 int
xfs_bdstrat_cb(struct xfs_buf * bp)1113 xfs_bdstrat_cb(
1114 struct xfs_buf *bp)
1115 {
1116 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1117 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1118 /*
1119 * Metadata write that didn't get logged but
1120 * written delayed anyway. These aren't associated
1121 * with a transaction, and can be ignored.
1122 */
1123 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1124 return xfs_bioerror_relse(bp);
1125 else
1126 return xfs_bioerror(bp);
1127 }
1128
1129 xfs_buf_iorequest(bp);
1130 return 0;
1131 }
1132
1133 /*
1134 * Wrapper around bdstrat so that we can stop data from going to disk in case
1135 * we are shutting down the filesystem. Typically user data goes thru this
1136 * path; one of the exceptions is the superblock.
1137 */
1138 void
xfsbdstrat(struct xfs_mount * mp,struct xfs_buf * bp)1139 xfsbdstrat(
1140 struct xfs_mount *mp,
1141 struct xfs_buf *bp)
1142 {
1143 if (XFS_FORCED_SHUTDOWN(mp)) {
1144 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145 xfs_bioerror_relse(bp);
1146 return;
1147 }
1148
1149 xfs_buf_iorequest(bp);
1150 }
1151
1152 STATIC void
_xfs_buf_ioend(xfs_buf_t * bp,int schedule)1153 _xfs_buf_ioend(
1154 xfs_buf_t *bp,
1155 int schedule)
1156 {
1157 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1158 xfs_buf_ioend(bp, schedule);
1159 }
1160
1161 STATIC void
xfs_buf_bio_end_io(struct bio * bio,int error)1162 xfs_buf_bio_end_io(
1163 struct bio *bio,
1164 int error)
1165 {
1166 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1167
1168 /*
1169 * don't overwrite existing errors - otherwise we can lose errors on
1170 * buffers that require multiple bios to complete.
1171 */
1172 if (!bp->b_error)
1173 xfs_buf_ioerror(bp, -error);
1174
1175 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1176 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1177
1178 _xfs_buf_ioend(bp, 1);
1179 bio_put(bio);
1180 }
1181
1182 STATIC void
_xfs_buf_ioapply(xfs_buf_t * bp)1183 _xfs_buf_ioapply(
1184 xfs_buf_t *bp)
1185 {
1186 int rw, map_i, total_nr_pages, nr_pages;
1187 struct bio *bio;
1188 int offset = bp->b_offset;
1189 int size = bp->b_count_desired;
1190 sector_t sector = bp->b_bn;
1191
1192 total_nr_pages = bp->b_page_count;
1193 map_i = 0;
1194
1195 if (bp->b_flags & XBF_WRITE) {
1196 if (bp->b_flags & XBF_SYNCIO)
1197 rw = WRITE_SYNC;
1198 else
1199 rw = WRITE;
1200 if (bp->b_flags & XBF_FUA)
1201 rw |= REQ_FUA;
1202 if (bp->b_flags & XBF_FLUSH)
1203 rw |= REQ_FLUSH;
1204 } else if (bp->b_flags & XBF_READ_AHEAD) {
1205 rw = READA;
1206 } else {
1207 rw = READ;
1208 }
1209
1210 /* we only use the buffer cache for meta-data */
1211 rw |= REQ_META;
1212
1213 next_chunk:
1214 atomic_inc(&bp->b_io_remaining);
1215 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216 if (nr_pages > total_nr_pages)
1217 nr_pages = total_nr_pages;
1218
1219 bio = bio_alloc(GFP_NOIO, nr_pages);
1220 bio->bi_bdev = bp->b_target->bt_bdev;
1221 bio->bi_sector = sector;
1222 bio->bi_end_io = xfs_buf_bio_end_io;
1223 bio->bi_private = bp;
1224
1225
1226 for (; size && nr_pages; nr_pages--, map_i++) {
1227 int rbytes, nbytes = PAGE_SIZE - offset;
1228
1229 if (nbytes > size)
1230 nbytes = size;
1231
1232 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1233 if (rbytes < nbytes)
1234 break;
1235
1236 offset = 0;
1237 sector += nbytes >> BBSHIFT;
1238 size -= nbytes;
1239 total_nr_pages--;
1240 }
1241
1242 if (likely(bio->bi_size)) {
1243 if (xfs_buf_is_vmapped(bp)) {
1244 flush_kernel_vmap_range(bp->b_addr,
1245 xfs_buf_vmap_len(bp));
1246 }
1247 submit_bio(rw, bio);
1248 if (size)
1249 goto next_chunk;
1250 } else {
1251 /*
1252 * This is guaranteed not to be the last io reference count
1253 * because the caller (xfs_buf_iorequest) holds a count itself.
1254 */
1255 atomic_dec(&bp->b_io_remaining);
1256 xfs_buf_ioerror(bp, EIO);
1257 bio_put(bio);
1258 }
1259 }
1260
1261 int
xfs_buf_iorequest(xfs_buf_t * bp)1262 xfs_buf_iorequest(
1263 xfs_buf_t *bp)
1264 {
1265 trace_xfs_buf_iorequest(bp, _RET_IP_);
1266
1267 ASSERT(!(bp->b_flags & XBF_DELWRI));
1268
1269 if (bp->b_flags & XBF_WRITE)
1270 xfs_buf_wait_unpin(bp);
1271 xfs_buf_hold(bp);
1272
1273 /* Set the count to 1 initially, this will stop an I/O
1274 * completion callout which happens before we have started
1275 * all the I/O from calling xfs_buf_ioend too early.
1276 */
1277 atomic_set(&bp->b_io_remaining, 1);
1278 _xfs_buf_ioapply(bp);
1279 _xfs_buf_ioend(bp, 0);
1280
1281 xfs_buf_rele(bp);
1282 return 0;
1283 }
1284
1285 /*
1286 * Waits for I/O to complete on the buffer supplied.
1287 * It returns immediately if no I/O is pending.
1288 * It returns the I/O error code, if any, or 0 if there was no error.
1289 */
1290 int
xfs_buf_iowait(xfs_buf_t * bp)1291 xfs_buf_iowait(
1292 xfs_buf_t *bp)
1293 {
1294 trace_xfs_buf_iowait(bp, _RET_IP_);
1295
1296 wait_for_completion(&bp->b_iowait);
1297
1298 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1299 return bp->b_error;
1300 }
1301
1302 xfs_caddr_t
xfs_buf_offset(xfs_buf_t * bp,size_t offset)1303 xfs_buf_offset(
1304 xfs_buf_t *bp,
1305 size_t offset)
1306 {
1307 struct page *page;
1308
1309 if (bp->b_flags & XBF_MAPPED)
1310 return bp->b_addr + offset;
1311
1312 offset += bp->b_offset;
1313 page = bp->b_pages[offset >> PAGE_SHIFT];
1314 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1315 }
1316
1317 /*
1318 * Move data into or out of a buffer.
1319 */
1320 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1321 xfs_buf_iomove(
1322 xfs_buf_t *bp, /* buffer to process */
1323 size_t boff, /* starting buffer offset */
1324 size_t bsize, /* length to copy */
1325 void *data, /* data address */
1326 xfs_buf_rw_t mode) /* read/write/zero flag */
1327 {
1328 size_t bend, cpoff, csize;
1329 struct page *page;
1330
1331 bend = boff + bsize;
1332 while (boff < bend) {
1333 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1334 cpoff = xfs_buf_poff(boff + bp->b_offset);
1335 csize = min_t(size_t,
1336 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1337
1338 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1339
1340 switch (mode) {
1341 case XBRW_ZERO:
1342 memset(page_address(page) + cpoff, 0, csize);
1343 break;
1344 case XBRW_READ:
1345 memcpy(data, page_address(page) + cpoff, csize);
1346 break;
1347 case XBRW_WRITE:
1348 memcpy(page_address(page) + cpoff, data, csize);
1349 }
1350
1351 boff += csize;
1352 data += csize;
1353 }
1354 }
1355
1356 /*
1357 * Handling of buffer targets (buftargs).
1358 */
1359
1360 /*
1361 * Wait for any bufs with callbacks that have been submitted but have not yet
1362 * returned. These buffers will have an elevated hold count, so wait on those
1363 * while freeing all the buffers only held by the LRU.
1364 */
1365 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1366 xfs_wait_buftarg(
1367 struct xfs_buftarg *btp)
1368 {
1369 struct xfs_buf *bp;
1370
1371 restart:
1372 spin_lock(&btp->bt_lru_lock);
1373 while (!list_empty(&btp->bt_lru)) {
1374 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1375 if (atomic_read(&bp->b_hold) > 1) {
1376 spin_unlock(&btp->bt_lru_lock);
1377 delay(100);
1378 goto restart;
1379 }
1380 /*
1381 * clear the LRU reference count so the buffer doesn't get
1382 * ignored in xfs_buf_rele().
1383 */
1384 atomic_set(&bp->b_lru_ref, 0);
1385 spin_unlock(&btp->bt_lru_lock);
1386 xfs_buf_rele(bp);
1387 spin_lock(&btp->bt_lru_lock);
1388 }
1389 spin_unlock(&btp->bt_lru_lock);
1390 }
1391
1392 int
xfs_buftarg_shrink(struct shrinker * shrink,struct shrink_control * sc)1393 xfs_buftarg_shrink(
1394 struct shrinker *shrink,
1395 struct shrink_control *sc)
1396 {
1397 struct xfs_buftarg *btp = container_of(shrink,
1398 struct xfs_buftarg, bt_shrinker);
1399 struct xfs_buf *bp;
1400 int nr_to_scan = sc->nr_to_scan;
1401 LIST_HEAD(dispose);
1402
1403 if (!nr_to_scan)
1404 return btp->bt_lru_nr;
1405
1406 spin_lock(&btp->bt_lru_lock);
1407 while (!list_empty(&btp->bt_lru)) {
1408 if (nr_to_scan-- <= 0)
1409 break;
1410
1411 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1412
1413 /*
1414 * Decrement the b_lru_ref count unless the value is already
1415 * zero. If the value is already zero, we need to reclaim the
1416 * buffer, otherwise it gets another trip through the LRU.
1417 */
1418 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1419 list_move_tail(&bp->b_lru, &btp->bt_lru);
1420 continue;
1421 }
1422
1423 /*
1424 * remove the buffer from the LRU now to avoid needing another
1425 * lock round trip inside xfs_buf_rele().
1426 */
1427 list_move(&bp->b_lru, &dispose);
1428 btp->bt_lru_nr--;
1429 }
1430 spin_unlock(&btp->bt_lru_lock);
1431
1432 while (!list_empty(&dispose)) {
1433 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1434 list_del_init(&bp->b_lru);
1435 xfs_buf_rele(bp);
1436 }
1437
1438 return btp->bt_lru_nr;
1439 }
1440
1441 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1442 xfs_free_buftarg(
1443 struct xfs_mount *mp,
1444 struct xfs_buftarg *btp)
1445 {
1446 unregister_shrinker(&btp->bt_shrinker);
1447
1448 xfs_flush_buftarg(btp, 1);
1449 if (mp->m_flags & XFS_MOUNT_BARRIER)
1450 xfs_blkdev_issue_flush(btp);
1451
1452 kthread_stop(btp->bt_task);
1453 kmem_free(btp);
1454 }
1455
1456 STATIC int
xfs_setsize_buftarg_flags(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize,int verbose)1457 xfs_setsize_buftarg_flags(
1458 xfs_buftarg_t *btp,
1459 unsigned int blocksize,
1460 unsigned int sectorsize,
1461 int verbose)
1462 {
1463 btp->bt_bsize = blocksize;
1464 btp->bt_sshift = ffs(sectorsize) - 1;
1465 btp->bt_smask = sectorsize - 1;
1466
1467 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1468 char name[BDEVNAME_SIZE];
1469
1470 bdevname(btp->bt_bdev, name);
1471
1472 xfs_warn(btp->bt_mount,
1473 "Cannot set_blocksize to %u on device %s\n",
1474 sectorsize, name);
1475 return EINVAL;
1476 }
1477
1478 return 0;
1479 }
1480
1481 /*
1482 * When allocating the initial buffer target we have not yet
1483 * read in the superblock, so don't know what sized sectors
1484 * are being used is at this early stage. Play safe.
1485 */
1486 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1487 xfs_setsize_buftarg_early(
1488 xfs_buftarg_t *btp,
1489 struct block_device *bdev)
1490 {
1491 return xfs_setsize_buftarg_flags(btp,
1492 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1493 }
1494
1495 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize)1496 xfs_setsize_buftarg(
1497 xfs_buftarg_t *btp,
1498 unsigned int blocksize,
1499 unsigned int sectorsize)
1500 {
1501 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1502 }
1503
1504 STATIC int
xfs_alloc_delwri_queue(xfs_buftarg_t * btp,const char * fsname)1505 xfs_alloc_delwri_queue(
1506 xfs_buftarg_t *btp,
1507 const char *fsname)
1508 {
1509 INIT_LIST_HEAD(&btp->bt_delwri_queue);
1510 spin_lock_init(&btp->bt_delwri_lock);
1511 btp->bt_flags = 0;
1512 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1513 if (IS_ERR(btp->bt_task))
1514 return PTR_ERR(btp->bt_task);
1515 return 0;
1516 }
1517
1518 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,int external,const char * fsname)1519 xfs_alloc_buftarg(
1520 struct xfs_mount *mp,
1521 struct block_device *bdev,
1522 int external,
1523 const char *fsname)
1524 {
1525 xfs_buftarg_t *btp;
1526
1527 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1528
1529 btp->bt_mount = mp;
1530 btp->bt_dev = bdev->bd_dev;
1531 btp->bt_bdev = bdev;
1532 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1533 if (!btp->bt_bdi)
1534 goto error;
1535
1536 INIT_LIST_HEAD(&btp->bt_lru);
1537 spin_lock_init(&btp->bt_lru_lock);
1538 if (xfs_setsize_buftarg_early(btp, bdev))
1539 goto error;
1540 if (xfs_alloc_delwri_queue(btp, fsname))
1541 goto error;
1542 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1543 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1544 register_shrinker(&btp->bt_shrinker);
1545 return btp;
1546
1547 error:
1548 kmem_free(btp);
1549 return NULL;
1550 }
1551
1552
1553 /*
1554 * Delayed write buffer handling
1555 */
1556 void
xfs_buf_delwri_queue(xfs_buf_t * bp)1557 xfs_buf_delwri_queue(
1558 xfs_buf_t *bp)
1559 {
1560 struct xfs_buftarg *btp = bp->b_target;
1561
1562 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1563
1564 ASSERT(!(bp->b_flags & XBF_READ));
1565
1566 spin_lock(&btp->bt_delwri_lock);
1567 if (!list_empty(&bp->b_list)) {
1568 /* if already in the queue, move it to the tail */
1569 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1570 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1571 } else {
1572 /* start xfsbufd as it is about to have something to do */
1573 if (list_empty(&btp->bt_delwri_queue))
1574 wake_up_process(bp->b_target->bt_task);
1575
1576 atomic_inc(&bp->b_hold);
1577 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1578 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1579 }
1580 bp->b_queuetime = jiffies;
1581 spin_unlock(&btp->bt_delwri_lock);
1582 }
1583
1584 void
xfs_buf_delwri_dequeue(xfs_buf_t * bp)1585 xfs_buf_delwri_dequeue(
1586 xfs_buf_t *bp)
1587 {
1588 int dequeued = 0;
1589
1590 spin_lock(&bp->b_target->bt_delwri_lock);
1591 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1592 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1593 list_del_init(&bp->b_list);
1594 dequeued = 1;
1595 }
1596 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1597 spin_unlock(&bp->b_target->bt_delwri_lock);
1598
1599 if (dequeued)
1600 xfs_buf_rele(bp);
1601
1602 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1603 }
1604
1605 /*
1606 * If a delwri buffer needs to be pushed before it has aged out, then promote
1607 * it to the head of the delwri queue so that it will be flushed on the next
1608 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1609 * than the age currently needed to flush the buffer. Hence the next time the
1610 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1611 */
1612 void
xfs_buf_delwri_promote(struct xfs_buf * bp)1613 xfs_buf_delwri_promote(
1614 struct xfs_buf *bp)
1615 {
1616 struct xfs_buftarg *btp = bp->b_target;
1617 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1618
1619 ASSERT(bp->b_flags & XBF_DELWRI);
1620 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1621
1622 /*
1623 * Check the buffer age before locking the delayed write queue as we
1624 * don't need to promote buffers that are already past the flush age.
1625 */
1626 if (bp->b_queuetime < jiffies - age)
1627 return;
1628 bp->b_queuetime = jiffies - age;
1629 spin_lock(&btp->bt_delwri_lock);
1630 list_move(&bp->b_list, &btp->bt_delwri_queue);
1631 spin_unlock(&btp->bt_delwri_lock);
1632 }
1633
1634 /*
1635 * Move as many buffers as specified to the supplied list
1636 * idicating if we skipped any buffers to prevent deadlocks.
1637 */
1638 STATIC int
xfs_buf_delwri_split(xfs_buftarg_t * target,struct list_head * list,unsigned long age)1639 xfs_buf_delwri_split(
1640 xfs_buftarg_t *target,
1641 struct list_head *list,
1642 unsigned long age)
1643 {
1644 xfs_buf_t *bp, *n;
1645 int skipped = 0;
1646 int force;
1647
1648 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1649 INIT_LIST_HEAD(list);
1650 spin_lock(&target->bt_delwri_lock);
1651 list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1652 ASSERT(bp->b_flags & XBF_DELWRI);
1653
1654 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1655 if (!force &&
1656 time_before(jiffies, bp->b_queuetime + age)) {
1657 xfs_buf_unlock(bp);
1658 break;
1659 }
1660
1661 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1662 bp->b_flags |= XBF_WRITE;
1663 list_move_tail(&bp->b_list, list);
1664 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1665 } else
1666 skipped++;
1667 }
1668
1669 spin_unlock(&target->bt_delwri_lock);
1670 return skipped;
1671 }
1672
1673 /*
1674 * Compare function is more complex than it needs to be because
1675 * the return value is only 32 bits and we are doing comparisons
1676 * on 64 bit values
1677 */
1678 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1679 xfs_buf_cmp(
1680 void *priv,
1681 struct list_head *a,
1682 struct list_head *b)
1683 {
1684 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1685 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1686 xfs_daddr_t diff;
1687
1688 diff = ap->b_bn - bp->b_bn;
1689 if (diff < 0)
1690 return -1;
1691 if (diff > 0)
1692 return 1;
1693 return 0;
1694 }
1695
1696 STATIC int
xfsbufd(void * data)1697 xfsbufd(
1698 void *data)
1699 {
1700 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1701
1702 current->flags |= PF_MEMALLOC;
1703
1704 set_freezable();
1705
1706 do {
1707 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1708 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1709 struct list_head tmp;
1710 struct blk_plug plug;
1711
1712 if (unlikely(freezing(current)))
1713 try_to_freeze();
1714
1715 /* sleep for a long time if there is nothing to do. */
1716 if (list_empty(&target->bt_delwri_queue))
1717 tout = MAX_SCHEDULE_TIMEOUT;
1718 schedule_timeout_interruptible(tout);
1719
1720 xfs_buf_delwri_split(target, &tmp, age);
1721 list_sort(NULL, &tmp, xfs_buf_cmp);
1722
1723 blk_start_plug(&plug);
1724 while (!list_empty(&tmp)) {
1725 struct xfs_buf *bp;
1726 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1727 list_del_init(&bp->b_list);
1728 xfs_bdstrat_cb(bp);
1729 }
1730 blk_finish_plug(&plug);
1731 } while (!kthread_should_stop());
1732
1733 return 0;
1734 }
1735
1736 /*
1737 * Go through all incore buffers, and release buffers if they belong to
1738 * the given device. This is used in filesystem error handling to
1739 * preserve the consistency of its metadata.
1740 */
1741 int
xfs_flush_buftarg(xfs_buftarg_t * target,int wait)1742 xfs_flush_buftarg(
1743 xfs_buftarg_t *target,
1744 int wait)
1745 {
1746 xfs_buf_t *bp;
1747 int pincount = 0;
1748 LIST_HEAD(tmp_list);
1749 LIST_HEAD(wait_list);
1750 struct blk_plug plug;
1751
1752 flush_workqueue(xfslogd_workqueue);
1753
1754 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1755 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1756
1757 /*
1758 * Dropped the delayed write list lock, now walk the temporary list.
1759 * All I/O is issued async and then if we need to wait for completion
1760 * we do that after issuing all the IO.
1761 */
1762 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1763
1764 blk_start_plug(&plug);
1765 while (!list_empty(&tmp_list)) {
1766 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1767 ASSERT(target == bp->b_target);
1768 list_del_init(&bp->b_list);
1769 if (wait) {
1770 bp->b_flags &= ~XBF_ASYNC;
1771 list_add(&bp->b_list, &wait_list);
1772 }
1773 xfs_bdstrat_cb(bp);
1774 }
1775 blk_finish_plug(&plug);
1776
1777 if (wait) {
1778 /* Wait for IO to complete. */
1779 while (!list_empty(&wait_list)) {
1780 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1781
1782 list_del_init(&bp->b_list);
1783 xfs_buf_iowait(bp);
1784 xfs_buf_relse(bp);
1785 }
1786 }
1787
1788 return pincount;
1789 }
1790
1791 int __init
xfs_buf_init(void)1792 xfs_buf_init(void)
1793 {
1794 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1795 KM_ZONE_HWALIGN, NULL);
1796 if (!xfs_buf_zone)
1797 goto out;
1798
1799 xfslogd_workqueue = alloc_workqueue("xfslogd",
1800 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1801 if (!xfslogd_workqueue)
1802 goto out_free_buf_zone;
1803
1804 return 0;
1805
1806 out_free_buf_zone:
1807 kmem_zone_destroy(xfs_buf_zone);
1808 out:
1809 return -ENOMEM;
1810 }
1811
1812 void
xfs_buf_terminate(void)1813 xfs_buf_terminate(void)
1814 {
1815 destroy_workqueue(xfslogd_workqueue);
1816 kmem_zone_destroy(xfs_buf_zone);
1817 }
1818