1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
38 
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 
42 static const struct vm_operations_struct xfs_file_vm_ops;
43 
44 /*
45  * Locking primitives for read and write IO paths to ensure we consistently use
46  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47  */
48 static inline void
xfs_rw_ilock(struct xfs_inode * ip,int type)49 xfs_rw_ilock(
50 	struct xfs_inode	*ip,
51 	int			type)
52 {
53 	if (type & XFS_IOLOCK_EXCL)
54 		mutex_lock(&VFS_I(ip)->i_mutex);
55 	xfs_ilock(ip, type);
56 }
57 
58 static inline void
xfs_rw_iunlock(struct xfs_inode * ip,int type)59 xfs_rw_iunlock(
60 	struct xfs_inode	*ip,
61 	int			type)
62 {
63 	xfs_iunlock(ip, type);
64 	if (type & XFS_IOLOCK_EXCL)
65 		mutex_unlock(&VFS_I(ip)->i_mutex);
66 }
67 
68 static inline void
xfs_rw_ilock_demote(struct xfs_inode * ip,int type)69 xfs_rw_ilock_demote(
70 	struct xfs_inode	*ip,
71 	int			type)
72 {
73 	xfs_ilock_demote(ip, type);
74 	if (type & XFS_IOLOCK_EXCL)
75 		mutex_unlock(&VFS_I(ip)->i_mutex);
76 }
77 
78 /*
79  *	xfs_iozero
80  *
81  *	xfs_iozero clears the specified range of buffer supplied,
82  *	and marks all the affected blocks as valid and modified.  If
83  *	an affected block is not allocated, it will be allocated.  If
84  *	an affected block is not completely overwritten, and is not
85  *	valid before the operation, it will be read from disk before
86  *	being partially zeroed.
87  */
88 STATIC int
xfs_iozero(struct xfs_inode * ip,loff_t pos,size_t count)89 xfs_iozero(
90 	struct xfs_inode	*ip,	/* inode			*/
91 	loff_t			pos,	/* offset in file		*/
92 	size_t			count)	/* size of data to zero		*/
93 {
94 	struct page		*page;
95 	struct address_space	*mapping;
96 	int			status;
97 
98 	mapping = VFS_I(ip)->i_mapping;
99 	do {
100 		unsigned offset, bytes;
101 		void *fsdata;
102 
103 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 		bytes = PAGE_CACHE_SIZE - offset;
105 		if (bytes > count)
106 			bytes = count;
107 
108 		status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 					AOP_FLAG_UNINTERRUPTIBLE,
110 					&page, &fsdata);
111 		if (status)
112 			break;
113 
114 		zero_user(page, offset, bytes);
115 
116 		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 					page, fsdata);
118 		WARN_ON(status <= 0); /* can't return less than zero! */
119 		pos += bytes;
120 		count -= bytes;
121 		status = 0;
122 	} while (count);
123 
124 	return (-status);
125 }
126 
127 STATIC int
xfs_file_fsync(struct file * file,int datasync)128 xfs_file_fsync(
129 	struct file		*file,
130 	int			datasync)
131 {
132 	struct inode		*inode = file->f_mapping->host;
133 	struct xfs_inode	*ip = XFS_I(inode);
134 	struct xfs_trans	*tp;
135 	int			error = 0;
136 	int			log_flushed = 0;
137 
138 	trace_xfs_file_fsync(ip);
139 
140 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
141 		return -XFS_ERROR(EIO);
142 
143 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
144 
145 	xfs_ioend_wait(ip);
146 
147 	/*
148 	 * We always need to make sure that the required inode state is safe on
149 	 * disk.  The inode might be clean but we still might need to force the
150 	 * log because of committed transactions that haven't hit the disk yet.
151 	 * Likewise, there could be unflushed non-transactional changes to the
152 	 * inode core that have to go to disk and this requires us to issue
153 	 * a synchronous transaction to capture these changes correctly.
154 	 *
155 	 * This code relies on the assumption that if the i_update_core field
156 	 * of the inode is clear and the inode is unpinned then it is clean
157 	 * and no action is required.
158 	 */
159 	xfs_ilock(ip, XFS_ILOCK_SHARED);
160 
161 	/*
162 	 * First check if the VFS inode is marked dirty.  All the dirtying
163 	 * of non-transactional updates no goes through mark_inode_dirty*,
164 	 * which allows us to distinguish beteeen pure timestamp updates
165 	 * and i_size updates which need to be caught for fdatasync.
166 	 * After that also theck for the dirty state in the XFS inode, which
167 	 * might gets cleared when the inode gets written out via the AIL
168 	 * or xfs_iflush_cluster.
169 	 */
170 	if (((inode->i_state & I_DIRTY_DATASYNC) ||
171 	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
172 	    ip->i_update_core) {
173 		/*
174 		 * Kick off a transaction to log the inode core to get the
175 		 * updates.  The sync transaction will also force the log.
176 		 */
177 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
178 		tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
179 		error = xfs_trans_reserve(tp, 0,
180 				XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
181 		if (error) {
182 			xfs_trans_cancel(tp, 0);
183 			return -error;
184 		}
185 		xfs_ilock(ip, XFS_ILOCK_EXCL);
186 
187 		/*
188 		 * Note - it's possible that we might have pushed ourselves out
189 		 * of the way during trans_reserve which would flush the inode.
190 		 * But there's no guarantee that the inode buffer has actually
191 		 * gone out yet (it's delwri).	Plus the buffer could be pinned
192 		 * anyway if it's part of an inode in another recent
193 		 * transaction.	 So we play it safe and fire off the
194 		 * transaction anyway.
195 		 */
196 		xfs_trans_ijoin(tp, ip);
197 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
198 		xfs_trans_set_sync(tp);
199 		error = _xfs_trans_commit(tp, 0, &log_flushed);
200 
201 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
202 	} else {
203 		/*
204 		 * Timestamps/size haven't changed since last inode flush or
205 		 * inode transaction commit.  That means either nothing got
206 		 * written or a transaction committed which caught the updates.
207 		 * If the latter happened and the transaction hasn't hit the
208 		 * disk yet, the inode will be still be pinned.  If it is,
209 		 * force the log.
210 		 */
211 		if (xfs_ipincount(ip)) {
212 			error = _xfs_log_force_lsn(ip->i_mount,
213 					ip->i_itemp->ili_last_lsn,
214 					XFS_LOG_SYNC, &log_flushed);
215 		}
216 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
217 	}
218 
219 	if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
220 		/*
221 		 * If the log write didn't issue an ordered tag we need
222 		 * to flush the disk cache for the data device now.
223 		 */
224 		if (!log_flushed)
225 			xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
226 
227 		/*
228 		 * If this inode is on the RT dev we need to flush that
229 		 * cache as well.
230 		 */
231 		if (XFS_IS_REALTIME_INODE(ip))
232 			xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
233 	}
234 
235 	return -error;
236 }
237 
238 STATIC ssize_t
xfs_file_aio_read(struct kiocb * iocb,const struct iovec * iovp,unsigned long nr_segs,loff_t pos)239 xfs_file_aio_read(
240 	struct kiocb		*iocb,
241 	const struct iovec	*iovp,
242 	unsigned long		nr_segs,
243 	loff_t			pos)
244 {
245 	struct file		*file = iocb->ki_filp;
246 	struct inode		*inode = file->f_mapping->host;
247 	struct xfs_inode	*ip = XFS_I(inode);
248 	struct xfs_mount	*mp = ip->i_mount;
249 	size_t			size = 0;
250 	ssize_t			ret = 0;
251 	int			ioflags = 0;
252 	xfs_fsize_t		n;
253 	unsigned long		seg;
254 
255 	XFS_STATS_INC(xs_read_calls);
256 
257 	BUG_ON(iocb->ki_pos != pos);
258 
259 	if (unlikely(file->f_flags & O_DIRECT))
260 		ioflags |= IO_ISDIRECT;
261 	if (file->f_mode & FMODE_NOCMTIME)
262 		ioflags |= IO_INVIS;
263 
264 	/* START copy & waste from filemap.c */
265 	for (seg = 0; seg < nr_segs; seg++) {
266 		const struct iovec *iv = &iovp[seg];
267 
268 		/*
269 		 * If any segment has a negative length, or the cumulative
270 		 * length ever wraps negative then return -EINVAL.
271 		 */
272 		size += iv->iov_len;
273 		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
274 			return XFS_ERROR(-EINVAL);
275 	}
276 	/* END copy & waste from filemap.c */
277 
278 	if (unlikely(ioflags & IO_ISDIRECT)) {
279 		xfs_buftarg_t	*target =
280 			XFS_IS_REALTIME_INODE(ip) ?
281 				mp->m_rtdev_targp : mp->m_ddev_targp;
282 		if ((iocb->ki_pos & target->bt_smask) ||
283 		    (size & target->bt_smask)) {
284 			if (iocb->ki_pos == ip->i_size)
285 				return 0;
286 			return -XFS_ERROR(EINVAL);
287 		}
288 	}
289 
290 	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
291 	if (n <= 0 || size == 0)
292 		return 0;
293 
294 	if (n < size)
295 		size = n;
296 
297 	if (XFS_FORCED_SHUTDOWN(mp))
298 		return -EIO;
299 
300 	if (unlikely(ioflags & IO_ISDIRECT)) {
301 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
302 
303 		if (inode->i_mapping->nrpages) {
304 			ret = -xfs_flushinval_pages(ip,
305 					(iocb->ki_pos & PAGE_CACHE_MASK),
306 					-1, FI_REMAPF_LOCKED);
307 			if (ret) {
308 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
309 				return ret;
310 			}
311 		}
312 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
313 	} else
314 		xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
315 
316 	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
317 
318 	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
319 	if (ret > 0)
320 		XFS_STATS_ADD(xs_read_bytes, ret);
321 
322 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 	return ret;
324 }
325 
326 STATIC ssize_t
xfs_file_splice_read(struct file * infilp,loff_t * ppos,struct pipe_inode_info * pipe,size_t count,unsigned int flags)327 xfs_file_splice_read(
328 	struct file		*infilp,
329 	loff_t			*ppos,
330 	struct pipe_inode_info	*pipe,
331 	size_t			count,
332 	unsigned int		flags)
333 {
334 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
335 	int			ioflags = 0;
336 	ssize_t			ret;
337 
338 	XFS_STATS_INC(xs_read_calls);
339 
340 	if (infilp->f_mode & FMODE_NOCMTIME)
341 		ioflags |= IO_INVIS;
342 
343 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
344 		return -EIO;
345 
346 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
347 
348 	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
349 
350 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
351 	if (ret > 0)
352 		XFS_STATS_ADD(xs_read_bytes, ret);
353 
354 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
355 	return ret;
356 }
357 
358 STATIC void
xfs_aio_write_isize_update(struct inode * inode,loff_t * ppos,ssize_t bytes_written)359 xfs_aio_write_isize_update(
360 	struct inode	*inode,
361 	loff_t		*ppos,
362 	ssize_t		bytes_written)
363 {
364 	struct xfs_inode	*ip = XFS_I(inode);
365 	xfs_fsize_t		isize = i_size_read(inode);
366 
367 	if (bytes_written > 0)
368 		XFS_STATS_ADD(xs_write_bytes, bytes_written);
369 
370 	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
371 					*ppos > isize))
372 		*ppos = isize;
373 
374 	if (*ppos > ip->i_size) {
375 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
376 		if (*ppos > ip->i_size)
377 			ip->i_size = *ppos;
378 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
379 	}
380 }
381 
382 /*
383  * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
384  * part of the I/O may have been written to disk before the error occurred.  In
385  * this case the on-disk file size may have been adjusted beyond the in-memory
386  * file size and now needs to be truncated back.
387  */
388 STATIC void
xfs_aio_write_newsize_update(struct xfs_inode * ip)389 xfs_aio_write_newsize_update(
390 	struct xfs_inode	*ip)
391 {
392 	if (ip->i_new_size) {
393 		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
394 		ip->i_new_size = 0;
395 		if (ip->i_d.di_size > ip->i_size)
396 			ip->i_d.di_size = ip->i_size;
397 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
398 	}
399 }
400 
401 /*
402  * xfs_file_splice_write() does not use xfs_rw_ilock() because
403  * generic_file_splice_write() takes the i_mutex itself. This, in theory,
404  * couuld cause lock inversions between the aio_write path and the splice path
405  * if someone is doing concurrent splice(2) based writes and write(2) based
406  * writes to the same inode. The only real way to fix this is to re-implement
407  * the generic code here with correct locking orders.
408  */
409 STATIC ssize_t
xfs_file_splice_write(struct pipe_inode_info * pipe,struct file * outfilp,loff_t * ppos,size_t count,unsigned int flags)410 xfs_file_splice_write(
411 	struct pipe_inode_info	*pipe,
412 	struct file		*outfilp,
413 	loff_t			*ppos,
414 	size_t			count,
415 	unsigned int		flags)
416 {
417 	struct inode		*inode = outfilp->f_mapping->host;
418 	struct xfs_inode	*ip = XFS_I(inode);
419 	xfs_fsize_t		new_size;
420 	int			ioflags = 0;
421 	ssize_t			ret;
422 
423 	XFS_STATS_INC(xs_write_calls);
424 
425 	if (outfilp->f_mode & FMODE_NOCMTIME)
426 		ioflags |= IO_INVIS;
427 
428 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
429 		return -EIO;
430 
431 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
432 
433 	new_size = *ppos + count;
434 
435 	xfs_ilock(ip, XFS_ILOCK_EXCL);
436 	if (new_size > ip->i_size)
437 		ip->i_new_size = new_size;
438 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
439 
440 	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
441 
442 	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
443 
444 	xfs_aio_write_isize_update(inode, ppos, ret);
445 	xfs_aio_write_newsize_update(ip);
446 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
447 	return ret;
448 }
449 
450 /*
451  * This routine is called to handle zeroing any space in the last
452  * block of the file that is beyond the EOF.  We do this since the
453  * size is being increased without writing anything to that block
454  * and we don't want anyone to read the garbage on the disk.
455  */
456 STATIC int				/* error (positive) */
xfs_zero_last_block(xfs_inode_t * ip,xfs_fsize_t offset,xfs_fsize_t isize)457 xfs_zero_last_block(
458 	xfs_inode_t	*ip,
459 	xfs_fsize_t	offset,
460 	xfs_fsize_t	isize)
461 {
462 	xfs_fileoff_t	last_fsb;
463 	xfs_mount_t	*mp = ip->i_mount;
464 	int		nimaps;
465 	int		zero_offset;
466 	int		zero_len;
467 	int		error = 0;
468 	xfs_bmbt_irec_t	imap;
469 
470 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
471 
472 	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
473 	if (zero_offset == 0) {
474 		/*
475 		 * There are no extra bytes in the last block on disk to
476 		 * zero, so return.
477 		 */
478 		return 0;
479 	}
480 
481 	last_fsb = XFS_B_TO_FSBT(mp, isize);
482 	nimaps = 1;
483 	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
484 			  &nimaps, NULL);
485 	if (error) {
486 		return error;
487 	}
488 	ASSERT(nimaps > 0);
489 	/*
490 	 * If the block underlying isize is just a hole, then there
491 	 * is nothing to zero.
492 	 */
493 	if (imap.br_startblock == HOLESTARTBLOCK) {
494 		return 0;
495 	}
496 	/*
497 	 * Zero the part of the last block beyond the EOF, and write it
498 	 * out sync.  We need to drop the ilock while we do this so we
499 	 * don't deadlock when the buffer cache calls back to us.
500 	 */
501 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
502 
503 	zero_len = mp->m_sb.sb_blocksize - zero_offset;
504 	if (isize + zero_len > offset)
505 		zero_len = offset - isize;
506 	error = xfs_iozero(ip, isize, zero_len);
507 
508 	xfs_ilock(ip, XFS_ILOCK_EXCL);
509 	ASSERT(error >= 0);
510 	return error;
511 }
512 
513 /*
514  * Zero any on disk space between the current EOF and the new,
515  * larger EOF.  This handles the normal case of zeroing the remainder
516  * of the last block in the file and the unusual case of zeroing blocks
517  * out beyond the size of the file.  This second case only happens
518  * with fixed size extents and when the system crashes before the inode
519  * size was updated but after blocks were allocated.  If fill is set,
520  * then any holes in the range are filled and zeroed.  If not, the holes
521  * are left alone as holes.
522  */
523 
524 int					/* error (positive) */
xfs_zero_eof(xfs_inode_t * ip,xfs_off_t offset,xfs_fsize_t isize)525 xfs_zero_eof(
526 	xfs_inode_t	*ip,
527 	xfs_off_t	offset,		/* starting I/O offset */
528 	xfs_fsize_t	isize)		/* current inode size */
529 {
530 	xfs_mount_t	*mp = ip->i_mount;
531 	xfs_fileoff_t	start_zero_fsb;
532 	xfs_fileoff_t	end_zero_fsb;
533 	xfs_fileoff_t	zero_count_fsb;
534 	xfs_fileoff_t	last_fsb;
535 	xfs_fileoff_t	zero_off;
536 	xfs_fsize_t	zero_len;
537 	int		nimaps;
538 	int		error = 0;
539 	xfs_bmbt_irec_t	imap;
540 
541 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
542 	ASSERT(offset > isize);
543 
544 	/*
545 	 * First handle zeroing the block on which isize resides.
546 	 * We only zero a part of that block so it is handled specially.
547 	 */
548 	error = xfs_zero_last_block(ip, offset, isize);
549 	if (error) {
550 		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
551 		return error;
552 	}
553 
554 	/*
555 	 * Calculate the range between the new size and the old
556 	 * where blocks needing to be zeroed may exist.  To get the
557 	 * block where the last byte in the file currently resides,
558 	 * we need to subtract one from the size and truncate back
559 	 * to a block boundary.  We subtract 1 in case the size is
560 	 * exactly on a block boundary.
561 	 */
562 	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
563 	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
564 	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
565 	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
566 	if (last_fsb == end_zero_fsb) {
567 		/*
568 		 * The size was only incremented on its last block.
569 		 * We took care of that above, so just return.
570 		 */
571 		return 0;
572 	}
573 
574 	ASSERT(start_zero_fsb <= end_zero_fsb);
575 	while (start_zero_fsb <= end_zero_fsb) {
576 		nimaps = 1;
577 		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
578 		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
579 				  0, NULL, 0, &imap, &nimaps, NULL);
580 		if (error) {
581 			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
582 			return error;
583 		}
584 		ASSERT(nimaps > 0);
585 
586 		if (imap.br_state == XFS_EXT_UNWRITTEN ||
587 		    imap.br_startblock == HOLESTARTBLOCK) {
588 			/*
589 			 * This loop handles initializing pages that were
590 			 * partially initialized by the code below this
591 			 * loop. It basically zeroes the part of the page
592 			 * that sits on a hole and sets the page as P_HOLE
593 			 * and calls remapf if it is a mapped file.
594 			 */
595 			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
596 			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
597 			continue;
598 		}
599 
600 		/*
601 		 * There are blocks we need to zero.
602 		 * Drop the inode lock while we're doing the I/O.
603 		 * We'll still have the iolock to protect us.
604 		 */
605 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
606 
607 		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
608 		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
609 
610 		if ((zero_off + zero_len) > offset)
611 			zero_len = offset - zero_off;
612 
613 		error = xfs_iozero(ip, zero_off, zero_len);
614 		if (error) {
615 			goto out_lock;
616 		}
617 
618 		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
619 		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
620 
621 		xfs_ilock(ip, XFS_ILOCK_EXCL);
622 	}
623 
624 	return 0;
625 
626 out_lock:
627 	xfs_ilock(ip, XFS_ILOCK_EXCL);
628 	ASSERT(error >= 0);
629 	return error;
630 }
631 
632 /*
633  * Common pre-write limit and setup checks.
634  *
635  * Returns with iolock held according to @iolock.
636  */
637 STATIC ssize_t
xfs_file_aio_write_checks(struct file * file,loff_t * pos,size_t * count,int * iolock)638 xfs_file_aio_write_checks(
639 	struct file		*file,
640 	loff_t			*pos,
641 	size_t			*count,
642 	int			*iolock)
643 {
644 	struct inode		*inode = file->f_mapping->host;
645 	struct xfs_inode	*ip = XFS_I(inode);
646 	xfs_fsize_t		new_size;
647 	int			error = 0;
648 
649 	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
650 	if (error) {
651 		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
652 		*iolock = 0;
653 		return error;
654 	}
655 
656 	new_size = *pos + *count;
657 	if (new_size > ip->i_size)
658 		ip->i_new_size = new_size;
659 
660 	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
661 		file_update_time(file);
662 
663 	/*
664 	 * If the offset is beyond the size of the file, we need to zero any
665 	 * blocks that fall between the existing EOF and the start of this
666 	 * write.
667 	 */
668 	if (*pos > ip->i_size)
669 		error = -xfs_zero_eof(ip, *pos, ip->i_size);
670 
671 	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
672 	if (error)
673 		return error;
674 
675 	/*
676 	 * If we're writing the file then make sure to clear the setuid and
677 	 * setgid bits if the process is not being run by root.  This keeps
678 	 * people from modifying setuid and setgid binaries.
679 	 */
680 	return file_remove_suid(file);
681 
682 }
683 
684 /*
685  * xfs_file_dio_aio_write - handle direct IO writes
686  *
687  * Lock the inode appropriately to prepare for and issue a direct IO write.
688  * By separating it from the buffered write path we remove all the tricky to
689  * follow locking changes and looping.
690  *
691  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
692  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
693  * pages are flushed out.
694  *
695  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
696  * allowing them to be done in parallel with reads and other direct IO writes.
697  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
698  * needs to do sub-block zeroing and that requires serialisation against other
699  * direct IOs to the same block. In this case we need to serialise the
700  * submission of the unaligned IOs so that we don't get racing block zeroing in
701  * the dio layer.  To avoid the problem with aio, we also need to wait for
702  * outstanding IOs to complete so that unwritten extent conversion is completed
703  * before we try to map the overlapping block. This is currently implemented by
704  * hitting it with a big hammer (i.e. xfs_ioend_wait()).
705  *
706  * Returns with locks held indicated by @iolock and errors indicated by
707  * negative return values.
708  */
709 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,const struct iovec * iovp,unsigned long nr_segs,loff_t pos,size_t ocount,int * iolock)710 xfs_file_dio_aio_write(
711 	struct kiocb		*iocb,
712 	const struct iovec	*iovp,
713 	unsigned long		nr_segs,
714 	loff_t			pos,
715 	size_t			ocount,
716 	int			*iolock)
717 {
718 	struct file		*file = iocb->ki_filp;
719 	struct address_space	*mapping = file->f_mapping;
720 	struct inode		*inode = mapping->host;
721 	struct xfs_inode	*ip = XFS_I(inode);
722 	struct xfs_mount	*mp = ip->i_mount;
723 	ssize_t			ret = 0;
724 	size_t			count = ocount;
725 	int			unaligned_io = 0;
726 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
727 					mp->m_rtdev_targp : mp->m_ddev_targp;
728 
729 	*iolock = 0;
730 	if ((pos & target->bt_smask) || (count & target->bt_smask))
731 		return -XFS_ERROR(EINVAL);
732 
733 	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
734 		unaligned_io = 1;
735 
736 	if (unaligned_io || mapping->nrpages || pos > ip->i_size)
737 		*iolock = XFS_IOLOCK_EXCL;
738 	else
739 		*iolock = XFS_IOLOCK_SHARED;
740 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
741 
742 	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
743 	if (ret)
744 		return ret;
745 
746 	if (mapping->nrpages) {
747 		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
748 		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
749 							FI_REMAPF_LOCKED);
750 		if (ret)
751 			return ret;
752 	}
753 
754 	/*
755 	 * If we are doing unaligned IO, wait for all other IO to drain,
756 	 * otherwise demote the lock if we had to flush cached pages
757 	 */
758 	if (unaligned_io)
759 		xfs_ioend_wait(ip);
760 	else if (*iolock == XFS_IOLOCK_EXCL) {
761 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
762 		*iolock = XFS_IOLOCK_SHARED;
763 	}
764 
765 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
766 	ret = generic_file_direct_write(iocb, iovp,
767 			&nr_segs, pos, &iocb->ki_pos, count, ocount);
768 
769 	/* No fallback to buffered IO on errors for XFS. */
770 	ASSERT(ret < 0 || ret == count);
771 	return ret;
772 }
773 
774 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,const struct iovec * iovp,unsigned long nr_segs,loff_t pos,size_t ocount,int * iolock)775 xfs_file_buffered_aio_write(
776 	struct kiocb		*iocb,
777 	const struct iovec	*iovp,
778 	unsigned long		nr_segs,
779 	loff_t			pos,
780 	size_t			ocount,
781 	int			*iolock)
782 {
783 	struct file		*file = iocb->ki_filp;
784 	struct address_space	*mapping = file->f_mapping;
785 	struct inode		*inode = mapping->host;
786 	struct xfs_inode	*ip = XFS_I(inode);
787 	ssize_t			ret;
788 	int			enospc = 0;
789 	size_t			count = ocount;
790 
791 	*iolock = XFS_IOLOCK_EXCL;
792 	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
793 
794 	ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
795 	if (ret)
796 		return ret;
797 
798 	/* We can write back this queue in page reclaim */
799 	current->backing_dev_info = mapping->backing_dev_info;
800 
801 write_retry:
802 	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
803 	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
804 			pos, &iocb->ki_pos, count, ret);
805 	/*
806 	 * if we just got an ENOSPC, flush the inode now we aren't holding any
807 	 * page locks and retry *once*
808 	 */
809 	if (ret == -ENOSPC && !enospc) {
810 		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
811 		if (ret)
812 			return ret;
813 		enospc = 1;
814 		goto write_retry;
815 	}
816 	current->backing_dev_info = NULL;
817 	return ret;
818 }
819 
820 STATIC ssize_t
xfs_file_aio_write(struct kiocb * iocb,const struct iovec * iovp,unsigned long nr_segs,loff_t pos)821 xfs_file_aio_write(
822 	struct kiocb		*iocb,
823 	const struct iovec	*iovp,
824 	unsigned long		nr_segs,
825 	loff_t			pos)
826 {
827 	struct file		*file = iocb->ki_filp;
828 	struct address_space	*mapping = file->f_mapping;
829 	struct inode		*inode = mapping->host;
830 	struct xfs_inode	*ip = XFS_I(inode);
831 	ssize_t			ret;
832 	int			iolock;
833 	size_t			ocount = 0;
834 
835 	XFS_STATS_INC(xs_write_calls);
836 
837 	BUG_ON(iocb->ki_pos != pos);
838 
839 	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
840 	if (ret)
841 		return ret;
842 
843 	if (ocount == 0)
844 		return 0;
845 
846 	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
847 
848 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
849 		return -EIO;
850 
851 	if (unlikely(file->f_flags & O_DIRECT))
852 		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
853 						ocount, &iolock);
854 	else
855 		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
856 						ocount, &iolock);
857 
858 	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
859 
860 	if (ret <= 0)
861 		goto out_unlock;
862 
863 	/* Handle various SYNC-type writes */
864 	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
865 		loff_t end = pos + ret - 1;
866 		int error, error2;
867 
868 		xfs_rw_iunlock(ip, iolock);
869 		error = filemap_write_and_wait_range(mapping, pos, end);
870 		xfs_rw_ilock(ip, iolock);
871 
872 		error2 = -xfs_file_fsync(file,
873 					 (file->f_flags & __O_SYNC) ? 0 : 1);
874 		if (error)
875 			ret = error;
876 		else if (error2)
877 			ret = error2;
878 	}
879 
880 out_unlock:
881 	xfs_aio_write_newsize_update(ip);
882 	xfs_rw_iunlock(ip, iolock);
883 	return ret;
884 }
885 
886 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)887 xfs_file_fallocate(
888 	struct file	*file,
889 	int		mode,
890 	loff_t		offset,
891 	loff_t		len)
892 {
893 	struct inode	*inode = file->f_path.dentry->d_inode;
894 	long		error;
895 	loff_t		new_size = 0;
896 	xfs_flock64_t	bf;
897 	xfs_inode_t	*ip = XFS_I(inode);
898 	int		cmd = XFS_IOC_RESVSP;
899 	int		attr_flags = XFS_ATTR_NOLOCK;
900 
901 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
902 		return -EOPNOTSUPP;
903 
904 	bf.l_whence = 0;
905 	bf.l_start = offset;
906 	bf.l_len = len;
907 
908 	xfs_ilock(ip, XFS_IOLOCK_EXCL);
909 
910 	if (mode & FALLOC_FL_PUNCH_HOLE)
911 		cmd = XFS_IOC_UNRESVSP;
912 
913 	/* check the new inode size is valid before allocating */
914 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
915 	    offset + len > i_size_read(inode)) {
916 		new_size = offset + len;
917 		error = inode_newsize_ok(inode, new_size);
918 		if (error)
919 			goto out_unlock;
920 	}
921 
922 	if (file->f_flags & O_DSYNC)
923 		attr_flags |= XFS_ATTR_SYNC;
924 
925 	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
926 	if (error)
927 		goto out_unlock;
928 
929 	/* Change file size if needed */
930 	if (new_size) {
931 		struct iattr iattr;
932 
933 		iattr.ia_valid = ATTR_SIZE;
934 		iattr.ia_size = new_size;
935 		error = -xfs_setattr(ip, &iattr, XFS_ATTR_NOLOCK);
936 	}
937 
938 out_unlock:
939 	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
940 	return error;
941 }
942 
943 
944 STATIC int
xfs_file_open(struct inode * inode,struct file * file)945 xfs_file_open(
946 	struct inode	*inode,
947 	struct file	*file)
948 {
949 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
950 		return -EFBIG;
951 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
952 		return -EIO;
953 	return 0;
954 }
955 
956 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)957 xfs_dir_open(
958 	struct inode	*inode,
959 	struct file	*file)
960 {
961 	struct xfs_inode *ip = XFS_I(inode);
962 	int		mode;
963 	int		error;
964 
965 	error = xfs_file_open(inode, file);
966 	if (error)
967 		return error;
968 
969 	/*
970 	 * If there are any blocks, read-ahead block 0 as we're almost
971 	 * certain to have the next operation be a read there.
972 	 */
973 	mode = xfs_ilock_map_shared(ip);
974 	if (ip->i_d.di_nextents > 0)
975 		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
976 	xfs_iunlock(ip, mode);
977 	return 0;
978 }
979 
980 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)981 xfs_file_release(
982 	struct inode	*inode,
983 	struct file	*filp)
984 {
985 	return -xfs_release(XFS_I(inode));
986 }
987 
988 STATIC int
xfs_file_readdir(struct file * filp,void * dirent,filldir_t filldir)989 xfs_file_readdir(
990 	struct file	*filp,
991 	void		*dirent,
992 	filldir_t	filldir)
993 {
994 	struct inode	*inode = filp->f_path.dentry->d_inode;
995 	xfs_inode_t	*ip = XFS_I(inode);
996 	int		error;
997 	size_t		bufsize;
998 
999 	/*
1000 	 * The Linux API doesn't pass down the total size of the buffer
1001 	 * we read into down to the filesystem.  With the filldir concept
1002 	 * it's not needed for correct information, but the XFS dir2 leaf
1003 	 * code wants an estimate of the buffer size to calculate it's
1004 	 * readahead window and size the buffers used for mapping to
1005 	 * physical blocks.
1006 	 *
1007 	 * Try to give it an estimate that's good enough, maybe at some
1008 	 * point we can change the ->readdir prototype to include the
1009 	 * buffer size.  For now we use the current glibc buffer size.
1010 	 */
1011 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1012 
1013 	error = xfs_readdir(ip, dirent, bufsize,
1014 				(xfs_off_t *)&filp->f_pos, filldir);
1015 	if (error)
1016 		return -error;
1017 	return 0;
1018 }
1019 
1020 STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1021 xfs_file_mmap(
1022 	struct file	*filp,
1023 	struct vm_area_struct *vma)
1024 {
1025 	vma->vm_ops = &xfs_file_vm_ops;
1026 	vma->vm_flags |= VM_CAN_NONLINEAR;
1027 
1028 	file_accessed(filp);
1029 	return 0;
1030 }
1031 
1032 /*
1033  * mmap()d file has taken write protection fault and is being made
1034  * writable. We can set the page state up correctly for a writable
1035  * page, which means we can do correct delalloc accounting (ENOSPC
1036  * checking!) and unwritten extent mapping.
1037  */
1038 STATIC int
xfs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1039 xfs_vm_page_mkwrite(
1040 	struct vm_area_struct	*vma,
1041 	struct vm_fault		*vmf)
1042 {
1043 	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1044 }
1045 
1046 const struct file_operations xfs_file_operations = {
1047 	.llseek		= generic_file_llseek,
1048 	.read		= do_sync_read,
1049 	.write		= do_sync_write,
1050 	.aio_read	= xfs_file_aio_read,
1051 	.aio_write	= xfs_file_aio_write,
1052 	.splice_read	= xfs_file_splice_read,
1053 	.splice_write	= xfs_file_splice_write,
1054 	.unlocked_ioctl	= xfs_file_ioctl,
1055 #ifdef CONFIG_COMPAT
1056 	.compat_ioctl	= xfs_file_compat_ioctl,
1057 #endif
1058 	.mmap		= xfs_file_mmap,
1059 	.open		= xfs_file_open,
1060 	.release	= xfs_file_release,
1061 	.fsync		= xfs_file_fsync,
1062 	.fallocate	= xfs_file_fallocate,
1063 };
1064 
1065 const struct file_operations xfs_dir_file_operations = {
1066 	.open		= xfs_dir_open,
1067 	.read		= generic_read_dir,
1068 	.readdir	= xfs_file_readdir,
1069 	.llseek		= generic_file_llseek,
1070 	.unlocked_ioctl	= xfs_file_ioctl,
1071 #ifdef CONFIG_COMPAT
1072 	.compat_ioctl	= xfs_file_compat_ioctl,
1073 #endif
1074 	.fsync		= xfs_file_fsync,
1075 };
1076 
1077 static const struct vm_operations_struct xfs_file_vm_ops = {
1078 	.fault		= filemap_fault,
1079 	.page_mkwrite	= xfs_vm_page_mkwrite,
1080 };
1081