1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static const struct {
60 	short offset;
61 	short type;	/* 0 = integer
62 			 * 1 = binary / string (no translation)
63 			 */
64 } xfs_sb_info[] = {
65     { offsetof(xfs_sb_t, sb_magicnum),   0 },
66     { offsetof(xfs_sb_t, sb_blocksize),  0 },
67     { offsetof(xfs_sb_t, sb_dblocks),    0 },
68     { offsetof(xfs_sb_t, sb_rblocks),    0 },
69     { offsetof(xfs_sb_t, sb_rextents),   0 },
70     { offsetof(xfs_sb_t, sb_uuid),       1 },
71     { offsetof(xfs_sb_t, sb_logstart),   0 },
72     { offsetof(xfs_sb_t, sb_rootino),    0 },
73     { offsetof(xfs_sb_t, sb_rbmino),     0 },
74     { offsetof(xfs_sb_t, sb_rsumino),    0 },
75     { offsetof(xfs_sb_t, sb_rextsize),   0 },
76     { offsetof(xfs_sb_t, sb_agblocks),   0 },
77     { offsetof(xfs_sb_t, sb_agcount),    0 },
78     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
79     { offsetof(xfs_sb_t, sb_logblocks),  0 },
80     { offsetof(xfs_sb_t, sb_versionnum), 0 },
81     { offsetof(xfs_sb_t, sb_sectsize),   0 },
82     { offsetof(xfs_sb_t, sb_inodesize),  0 },
83     { offsetof(xfs_sb_t, sb_inopblock),  0 },
84     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
85     { offsetof(xfs_sb_t, sb_blocklog),   0 },
86     { offsetof(xfs_sb_t, sb_sectlog),    0 },
87     { offsetof(xfs_sb_t, sb_inodelog),   0 },
88     { offsetof(xfs_sb_t, sb_inopblog),   0 },
89     { offsetof(xfs_sb_t, sb_agblklog),   0 },
90     { offsetof(xfs_sb_t, sb_rextslog),   0 },
91     { offsetof(xfs_sb_t, sb_inprogress), 0 },
92     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
93     { offsetof(xfs_sb_t, sb_icount),     0 },
94     { offsetof(xfs_sb_t, sb_ifree),      0 },
95     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
96     { offsetof(xfs_sb_t, sb_frextents),  0 },
97     { offsetof(xfs_sb_t, sb_uquotino),   0 },
98     { offsetof(xfs_sb_t, sb_gquotino),   0 },
99     { offsetof(xfs_sb_t, sb_qflags),     0 },
100     { offsetof(xfs_sb_t, sb_flags),      0 },
101     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
102     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
103     { offsetof(xfs_sb_t, sb_unit),	 0 },
104     { offsetof(xfs_sb_t, sb_width),	 0 },
105     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
106     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
107     { offsetof(xfs_sb_t, sb_logsectsize),0 },
108     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
109     { offsetof(xfs_sb_t, sb_features2),	 0 },
110     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
111     { sizeof(xfs_sb_t),			 0 }
112 };
113 
114 static DEFINE_MUTEX(xfs_uuid_table_mutex);
115 static int xfs_uuid_table_size;
116 static uuid_t *xfs_uuid_table;
117 
118 /*
119  * See if the UUID is unique among mounted XFS filesystems.
120  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
121  */
122 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)123 xfs_uuid_mount(
124 	struct xfs_mount	*mp)
125 {
126 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
127 	int			hole, i;
128 
129 	if (mp->m_flags & XFS_MOUNT_NOUUID)
130 		return 0;
131 
132 	if (uuid_is_nil(uuid)) {
133 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
134 		return XFS_ERROR(EINVAL);
135 	}
136 
137 	mutex_lock(&xfs_uuid_table_mutex);
138 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
139 		if (uuid_is_nil(&xfs_uuid_table[i])) {
140 			hole = i;
141 			continue;
142 		}
143 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
144 			goto out_duplicate;
145 	}
146 
147 	if (hole < 0) {
148 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
149 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
150 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
151 			KM_SLEEP);
152 		hole = xfs_uuid_table_size++;
153 	}
154 	xfs_uuid_table[hole] = *uuid;
155 	mutex_unlock(&xfs_uuid_table_mutex);
156 
157 	return 0;
158 
159  out_duplicate:
160 	mutex_unlock(&xfs_uuid_table_mutex);
161 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
162 	return XFS_ERROR(EINVAL);
163 }
164 
165 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)166 xfs_uuid_unmount(
167 	struct xfs_mount	*mp)
168 {
169 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
170 	int			i;
171 
172 	if (mp->m_flags & XFS_MOUNT_NOUUID)
173 		return;
174 
175 	mutex_lock(&xfs_uuid_table_mutex);
176 	for (i = 0; i < xfs_uuid_table_size; i++) {
177 		if (uuid_is_nil(&xfs_uuid_table[i]))
178 			continue;
179 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
180 			continue;
181 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
182 		break;
183 	}
184 	ASSERT(i < xfs_uuid_table_size);
185 	mutex_unlock(&xfs_uuid_table_mutex);
186 }
187 
188 
189 /*
190  * Reference counting access wrappers to the perag structures.
191  * Because we never free per-ag structures, the only thing we
192  * have to protect against changes is the tree structure itself.
193  */
194 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
196 {
197 	struct xfs_perag	*pag;
198 	int			ref = 0;
199 
200 	rcu_read_lock();
201 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
202 	if (pag) {
203 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
204 		ref = atomic_inc_return(&pag->pag_ref);
205 	}
206 	rcu_read_unlock();
207 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
208 	return pag;
209 }
210 
211 /*
212  * search from @first to find the next perag with the given tag set.
213  */
214 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)215 xfs_perag_get_tag(
216 	struct xfs_mount	*mp,
217 	xfs_agnumber_t		first,
218 	int			tag)
219 {
220 	struct xfs_perag	*pag;
221 	int			found;
222 	int			ref;
223 
224 	rcu_read_lock();
225 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
226 					(void **)&pag, first, 1, tag);
227 	if (found <= 0) {
228 		rcu_read_unlock();
229 		return NULL;
230 	}
231 	ref = atomic_inc_return(&pag->pag_ref);
232 	rcu_read_unlock();
233 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
234 	return pag;
235 }
236 
237 void
xfs_perag_put(struct xfs_perag * pag)238 xfs_perag_put(struct xfs_perag *pag)
239 {
240 	int	ref;
241 
242 	ASSERT(atomic_read(&pag->pag_ref) > 0);
243 	ref = atomic_dec_return(&pag->pag_ref);
244 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
245 }
246 
247 STATIC void
__xfs_free_perag(struct rcu_head * head)248 __xfs_free_perag(
249 	struct rcu_head	*head)
250 {
251 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
252 
253 	ASSERT(atomic_read(&pag->pag_ref) == 0);
254 	kmem_free(pag);
255 }
256 
257 /*
258  * Free up the per-ag resources associated with the mount structure.
259  */
260 STATIC void
xfs_free_perag(xfs_mount_t * mp)261 xfs_free_perag(
262 	xfs_mount_t	*mp)
263 {
264 	xfs_agnumber_t	agno;
265 	struct xfs_perag *pag;
266 
267 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
268 		spin_lock(&mp->m_perag_lock);
269 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
270 		spin_unlock(&mp->m_perag_lock);
271 		ASSERT(pag);
272 		ASSERT(atomic_read(&pag->pag_ref) == 0);
273 		call_rcu(&pag->rcu_head, __xfs_free_perag);
274 	}
275 }
276 
277 /*
278  * Check size of device based on the (data/realtime) block count.
279  * Note: this check is used by the growfs code as well as mount.
280  */
281 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)282 xfs_sb_validate_fsb_count(
283 	xfs_sb_t	*sbp,
284 	__uint64_t	nblocks)
285 {
286 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
287 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
288 
289 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
290 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
291 		return EFBIG;
292 #else                  /* Limited by UINT_MAX of sectors */
293 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
294 		return EFBIG;
295 #endif
296 	return 0;
297 }
298 
299 /*
300  * Check the validity of the SB found.
301  */
302 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,int flags)303 xfs_mount_validate_sb(
304 	xfs_mount_t	*mp,
305 	xfs_sb_t	*sbp,
306 	int		flags)
307 {
308 	int		loud = !(flags & XFS_MFSI_QUIET);
309 
310 	/*
311 	 * If the log device and data device have the
312 	 * same device number, the log is internal.
313 	 * Consequently, the sb_logstart should be non-zero.  If
314 	 * we have a zero sb_logstart in this case, we may be trying to mount
315 	 * a volume filesystem in a non-volume manner.
316 	 */
317 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 		if (loud)
319 			xfs_warn(mp, "bad magic number");
320 		return XFS_ERROR(EWRONGFS);
321 	}
322 
323 	if (!xfs_sb_good_version(sbp)) {
324 		if (loud)
325 			xfs_warn(mp, "bad version");
326 		return XFS_ERROR(EWRONGFS);
327 	}
328 
329 	if (unlikely(
330 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
331 		if (loud)
332 			xfs_warn(mp,
333 		"filesystem is marked as having an external log; "
334 		"specify logdev on the mount command line.");
335 		return XFS_ERROR(EINVAL);
336 	}
337 
338 	if (unlikely(
339 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
340 		if (loud)
341 			xfs_warn(mp,
342 		"filesystem is marked as having an internal log; "
343 		"do not specify logdev on the mount command line.");
344 		return XFS_ERROR(EINVAL);
345 	}
346 
347 	/*
348 	 * More sanity checking.  Most of these were stolen directly from
349 	 * xfs_repair.
350 	 */
351 	if (unlikely(
352 	    sbp->sb_agcount <= 0					||
353 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
354 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
355 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
356 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
357 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
358 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
359 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
360 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
361 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
362 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
363 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
364 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
365 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
366 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
367 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
368 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
369 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
370 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
371 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
372 	    sbp->sb_dblocks == 0					||
373 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
374 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
375 		if (loud)
376 			XFS_CORRUPTION_ERROR("SB sanity check failed",
377 				XFS_ERRLEVEL_LOW, mp, sbp);
378 		return XFS_ERROR(EFSCORRUPTED);
379 	}
380 
381 	/*
382 	 * Until this is fixed only page-sized or smaller data blocks work.
383 	 */
384 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
385 		if (loud) {
386 			xfs_warn(mp,
387 		"File system with blocksize %d bytes. "
388 		"Only pagesize (%ld) or less will currently work.",
389 				sbp->sb_blocksize, PAGE_SIZE);
390 		}
391 		return XFS_ERROR(ENOSYS);
392 	}
393 
394 	/*
395 	 * Currently only very few inode sizes are supported.
396 	 */
397 	switch (sbp->sb_inodesize) {
398 	case 256:
399 	case 512:
400 	case 1024:
401 	case 2048:
402 		break;
403 	default:
404 		if (loud)
405 			xfs_warn(mp, "inode size of %d bytes not supported",
406 				sbp->sb_inodesize);
407 		return XFS_ERROR(ENOSYS);
408 	}
409 
410 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
411 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
412 		if (loud)
413 			xfs_warn(mp,
414 		"file system too large to be mounted on this system.");
415 		return XFS_ERROR(EFBIG);
416 	}
417 
418 	if (unlikely(sbp->sb_inprogress)) {
419 		if (loud)
420 			xfs_warn(mp, "file system busy");
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 
424 	/*
425 	 * Version 1 directory format has never worked on Linux.
426 	 */
427 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
428 		if (loud)
429 			xfs_warn(mp,
430 				"file system using version 1 directory format");
431 		return XFS_ERROR(ENOSYS);
432 	}
433 
434 	return 0;
435 }
436 
437 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)438 xfs_initialize_perag(
439 	xfs_mount_t	*mp,
440 	xfs_agnumber_t	agcount,
441 	xfs_agnumber_t	*maxagi)
442 {
443 	xfs_agnumber_t	index, max_metadata;
444 	xfs_agnumber_t	first_initialised = 0;
445 	xfs_perag_t	*pag;
446 	xfs_agino_t	agino;
447 	xfs_ino_t	ino;
448 	xfs_sb_t	*sbp = &mp->m_sb;
449 	int		error = -ENOMEM;
450 
451 	/*
452 	 * Walk the current per-ag tree so we don't try to initialise AGs
453 	 * that already exist (growfs case). Allocate and insert all the
454 	 * AGs we don't find ready for initialisation.
455 	 */
456 	for (index = 0; index < agcount; index++) {
457 		pag = xfs_perag_get(mp, index);
458 		if (pag) {
459 			xfs_perag_put(pag);
460 			continue;
461 		}
462 		if (!first_initialised)
463 			first_initialised = index;
464 
465 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
466 		if (!pag)
467 			goto out_unwind;
468 		pag->pag_agno = index;
469 		pag->pag_mount = mp;
470 		spin_lock_init(&pag->pag_ici_lock);
471 		mutex_init(&pag->pag_ici_reclaim_lock);
472 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
473 		spin_lock_init(&pag->pag_buf_lock);
474 		pag->pag_buf_tree = RB_ROOT;
475 
476 		if (radix_tree_preload(GFP_NOFS))
477 			goto out_unwind;
478 
479 		spin_lock(&mp->m_perag_lock);
480 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
481 			BUG();
482 			spin_unlock(&mp->m_perag_lock);
483 			radix_tree_preload_end();
484 			error = -EEXIST;
485 			goto out_unwind;
486 		}
487 		spin_unlock(&mp->m_perag_lock);
488 		radix_tree_preload_end();
489 	}
490 
491 	/*
492 	 * If we mount with the inode64 option, or no inode overflows
493 	 * the legacy 32-bit address space clear the inode32 option.
494 	 */
495 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
496 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
497 
498 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
499 		mp->m_flags |= XFS_MOUNT_32BITINODES;
500 	else
501 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
502 
503 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
504 		/*
505 		 * Calculate how much should be reserved for inodes to meet
506 		 * the max inode percentage.
507 		 */
508 		if (mp->m_maxicount) {
509 			__uint64_t	icount;
510 
511 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
512 			do_div(icount, 100);
513 			icount += sbp->sb_agblocks - 1;
514 			do_div(icount, sbp->sb_agblocks);
515 			max_metadata = icount;
516 		} else {
517 			max_metadata = agcount;
518 		}
519 
520 		for (index = 0; index < agcount; index++) {
521 			ino = XFS_AGINO_TO_INO(mp, index, agino);
522 			if (ino > XFS_MAXINUMBER_32) {
523 				index++;
524 				break;
525 			}
526 
527 			pag = xfs_perag_get(mp, index);
528 			pag->pagi_inodeok = 1;
529 			if (index < max_metadata)
530 				pag->pagf_metadata = 1;
531 			xfs_perag_put(pag);
532 		}
533 	} else {
534 		for (index = 0; index < agcount; index++) {
535 			pag = xfs_perag_get(mp, index);
536 			pag->pagi_inodeok = 1;
537 			xfs_perag_put(pag);
538 		}
539 	}
540 
541 	if (maxagi)
542 		*maxagi = index;
543 	return 0;
544 
545 out_unwind:
546 	kmem_free(pag);
547 	for (; index > first_initialised; index--) {
548 		pag = radix_tree_delete(&mp->m_perag_tree, index);
549 		kmem_free(pag);
550 	}
551 	return error;
552 }
553 
554 void
xfs_sb_from_disk(struct xfs_mount * mp,xfs_dsb_t * from)555 xfs_sb_from_disk(
556 	struct xfs_mount	*mp,
557 	xfs_dsb_t	*from)
558 {
559 	struct xfs_sb *to = &mp->m_sb;
560 
561 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
562 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
563 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
564 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
565 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
566 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
567 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
568 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
569 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
570 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
571 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
572 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
573 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
574 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
575 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
576 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
577 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
578 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
579 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
580 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
581 	to->sb_blocklog = from->sb_blocklog;
582 	to->sb_sectlog = from->sb_sectlog;
583 	to->sb_inodelog = from->sb_inodelog;
584 	to->sb_inopblog = from->sb_inopblog;
585 	to->sb_agblklog = from->sb_agblklog;
586 	to->sb_rextslog = from->sb_rextslog;
587 	to->sb_inprogress = from->sb_inprogress;
588 	to->sb_imax_pct = from->sb_imax_pct;
589 	to->sb_icount = be64_to_cpu(from->sb_icount);
590 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
591 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
592 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
593 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
594 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
595 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
596 	to->sb_flags = from->sb_flags;
597 	to->sb_shared_vn = from->sb_shared_vn;
598 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
599 	to->sb_unit = be32_to_cpu(from->sb_unit);
600 	to->sb_width = be32_to_cpu(from->sb_width);
601 	to->sb_dirblklog = from->sb_dirblklog;
602 	to->sb_logsectlog = from->sb_logsectlog;
603 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
604 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
605 	to->sb_features2 = be32_to_cpu(from->sb_features2);
606 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
607 }
608 
609 /*
610  * Copy in core superblock to ondisk one.
611  *
612  * The fields argument is mask of superblock fields to copy.
613  */
614 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)615 xfs_sb_to_disk(
616 	xfs_dsb_t	*to,
617 	xfs_sb_t	*from,
618 	__int64_t	fields)
619 {
620 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
621 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
622 	xfs_sb_field_t	f;
623 	int		first;
624 	int		size;
625 
626 	ASSERT(fields);
627 	if (!fields)
628 		return;
629 
630 	while (fields) {
631 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
632 		first = xfs_sb_info[f].offset;
633 		size = xfs_sb_info[f + 1].offset - first;
634 
635 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
636 
637 		if (size == 1 || xfs_sb_info[f].type == 1) {
638 			memcpy(to_ptr + first, from_ptr + first, size);
639 		} else {
640 			switch (size) {
641 			case 2:
642 				*(__be16 *)(to_ptr + first) =
643 					cpu_to_be16(*(__u16 *)(from_ptr + first));
644 				break;
645 			case 4:
646 				*(__be32 *)(to_ptr + first) =
647 					cpu_to_be32(*(__u32 *)(from_ptr + first));
648 				break;
649 			case 8:
650 				*(__be64 *)(to_ptr + first) =
651 					cpu_to_be64(*(__u64 *)(from_ptr + first));
652 				break;
653 			default:
654 				ASSERT(0);
655 			}
656 		}
657 
658 		fields &= ~(1LL << f);
659 	}
660 }
661 
662 /*
663  * xfs_readsb
664  *
665  * Does the initial read of the superblock.
666  */
667 int
xfs_readsb(xfs_mount_t * mp,int flags)668 xfs_readsb(xfs_mount_t *mp, int flags)
669 {
670 	unsigned int	sector_size;
671 	xfs_buf_t	*bp;
672 	int		error;
673 	int		loud = !(flags & XFS_MFSI_QUIET);
674 
675 	ASSERT(mp->m_sb_bp == NULL);
676 	ASSERT(mp->m_ddev_targp != NULL);
677 
678 	/*
679 	 * Allocate a (locked) buffer to hold the superblock.
680 	 * This will be kept around at all times to optimize
681 	 * access to the superblock.
682 	 */
683 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
684 
685 reread:
686 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
687 					XFS_SB_DADDR, sector_size, 0);
688 	if (!bp) {
689 		if (loud)
690 			xfs_warn(mp, "SB buffer read failed");
691 		return EIO;
692 	}
693 
694 	/*
695 	 * Initialize the mount structure from the superblock.
696 	 * But first do some basic consistency checking.
697 	 */
698 	xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
699 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
700 	if (error) {
701 		if (loud)
702 			xfs_warn(mp, "SB validate failed");
703 		goto release_buf;
704 	}
705 
706 	/*
707 	 * We must be able to do sector-sized and sector-aligned IO.
708 	 */
709 	if (sector_size > mp->m_sb.sb_sectsize) {
710 		if (loud)
711 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
712 				sector_size, mp->m_sb.sb_sectsize);
713 		error = ENOSYS;
714 		goto release_buf;
715 	}
716 
717 	/*
718 	 * If device sector size is smaller than the superblock size,
719 	 * re-read the superblock so the buffer is correctly sized.
720 	 */
721 	if (sector_size < mp->m_sb.sb_sectsize) {
722 		xfs_buf_relse(bp);
723 		sector_size = mp->m_sb.sb_sectsize;
724 		goto reread;
725 	}
726 
727 	/* Initialize per-cpu counters */
728 	xfs_icsb_reinit_counters(mp);
729 
730 	mp->m_sb_bp = bp;
731 	xfs_buf_unlock(bp);
732 	return 0;
733 
734 release_buf:
735 	xfs_buf_relse(bp);
736 	return error;
737 }
738 
739 
740 /*
741  * xfs_mount_common
742  *
743  * Mount initialization code establishing various mount
744  * fields from the superblock associated with the given
745  * mount structure
746  */
747 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)748 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
749 {
750 	mp->m_agfrotor = mp->m_agirotor = 0;
751 	spin_lock_init(&mp->m_agirotor_lock);
752 	mp->m_maxagi = mp->m_sb.sb_agcount;
753 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
754 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
755 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
756 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
757 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
758 	mp->m_blockmask = sbp->sb_blocksize - 1;
759 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
760 	mp->m_blockwmask = mp->m_blockwsize - 1;
761 
762 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
763 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
764 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
765 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
766 
767 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
768 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
769 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
770 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
771 
772 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
773 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
774 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
775 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
776 
777 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
778 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
779 					sbp->sb_inopblock);
780 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
781 }
782 
783 /*
784  * xfs_initialize_perag_data
785  *
786  * Read in each per-ag structure so we can count up the number of
787  * allocated inodes, free inodes and used filesystem blocks as this
788  * information is no longer persistent in the superblock. Once we have
789  * this information, write it into the in-core superblock structure.
790  */
791 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)792 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
793 {
794 	xfs_agnumber_t	index;
795 	xfs_perag_t	*pag;
796 	xfs_sb_t	*sbp = &mp->m_sb;
797 	uint64_t	ifree = 0;
798 	uint64_t	ialloc = 0;
799 	uint64_t	bfree = 0;
800 	uint64_t	bfreelst = 0;
801 	uint64_t	btree = 0;
802 	int		error;
803 
804 	for (index = 0; index < agcount; index++) {
805 		/*
806 		 * read the agf, then the agi. This gets us
807 		 * all the information we need and populates the
808 		 * per-ag structures for us.
809 		 */
810 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
811 		if (error)
812 			return error;
813 
814 		error = xfs_ialloc_pagi_init(mp, NULL, index);
815 		if (error)
816 			return error;
817 		pag = xfs_perag_get(mp, index);
818 		ifree += pag->pagi_freecount;
819 		ialloc += pag->pagi_count;
820 		bfree += pag->pagf_freeblks;
821 		bfreelst += pag->pagf_flcount;
822 		btree += pag->pagf_btreeblks;
823 		xfs_perag_put(pag);
824 	}
825 	/*
826 	 * Overwrite incore superblock counters with just-read data
827 	 */
828 	spin_lock(&mp->m_sb_lock);
829 	sbp->sb_ifree = ifree;
830 	sbp->sb_icount = ialloc;
831 	sbp->sb_fdblocks = bfree + bfreelst + btree;
832 	spin_unlock(&mp->m_sb_lock);
833 
834 	/* Fixup the per-cpu counters as well. */
835 	xfs_icsb_reinit_counters(mp);
836 
837 	return 0;
838 }
839 
840 /*
841  * Update alignment values based on mount options and sb values
842  */
843 STATIC int
xfs_update_alignment(xfs_mount_t * mp)844 xfs_update_alignment(xfs_mount_t *mp)
845 {
846 	xfs_sb_t	*sbp = &(mp->m_sb);
847 
848 	if (mp->m_dalign) {
849 		/*
850 		 * If stripe unit and stripe width are not multiples
851 		 * of the fs blocksize turn off alignment.
852 		 */
853 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
854 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
855 			if (mp->m_flags & XFS_MOUNT_RETERR) {
856 				xfs_warn(mp, "alignment check failed: "
857 					 "(sunit/swidth vs. blocksize)");
858 				return XFS_ERROR(EINVAL);
859 			}
860 			mp->m_dalign = mp->m_swidth = 0;
861 		} else {
862 			/*
863 			 * Convert the stripe unit and width to FSBs.
864 			 */
865 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
866 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
867 				if (mp->m_flags & XFS_MOUNT_RETERR) {
868 					xfs_warn(mp, "alignment check failed: "
869 						 "(sunit/swidth vs. ag size)");
870 					return XFS_ERROR(EINVAL);
871 				}
872 				xfs_warn(mp,
873 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
874 		"incompatible with agsize(%d)",
875 					mp->m_dalign, mp->m_swidth,
876 					sbp->sb_agblocks);
877 
878 				mp->m_dalign = 0;
879 				mp->m_swidth = 0;
880 			} else if (mp->m_dalign) {
881 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
882 			} else {
883 				if (mp->m_flags & XFS_MOUNT_RETERR) {
884 					xfs_warn(mp, "alignment check failed: "
885 						"sunit(%d) less than bsize(%d)",
886 						mp->m_dalign,
887 						mp->m_blockmask +1);
888 					return XFS_ERROR(EINVAL);
889 				}
890 				mp->m_swidth = 0;
891 			}
892 		}
893 
894 		/*
895 		 * Update superblock with new values
896 		 * and log changes
897 		 */
898 		if (xfs_sb_version_hasdalign(sbp)) {
899 			if (sbp->sb_unit != mp->m_dalign) {
900 				sbp->sb_unit = mp->m_dalign;
901 				mp->m_update_flags |= XFS_SB_UNIT;
902 			}
903 			if (sbp->sb_width != mp->m_swidth) {
904 				sbp->sb_width = mp->m_swidth;
905 				mp->m_update_flags |= XFS_SB_WIDTH;
906 			}
907 		}
908 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
909 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
910 			mp->m_dalign = sbp->sb_unit;
911 			mp->m_swidth = sbp->sb_width;
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * Set the maximum inode count for this filesystem
919  */
920 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)921 xfs_set_maxicount(xfs_mount_t *mp)
922 {
923 	xfs_sb_t	*sbp = &(mp->m_sb);
924 	__uint64_t	icount;
925 
926 	if (sbp->sb_imax_pct) {
927 		/*
928 		 * Make sure the maximum inode count is a multiple
929 		 * of the units we allocate inodes in.
930 		 */
931 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
932 		do_div(icount, 100);
933 		do_div(icount, mp->m_ialloc_blks);
934 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
935 				   sbp->sb_inopblog;
936 	} else {
937 		mp->m_maxicount = 0;
938 	}
939 }
940 
941 /*
942  * Set the default minimum read and write sizes unless
943  * already specified in a mount option.
944  * We use smaller I/O sizes when the file system
945  * is being used for NFS service (wsync mount option).
946  */
947 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)948 xfs_set_rw_sizes(xfs_mount_t *mp)
949 {
950 	xfs_sb_t	*sbp = &(mp->m_sb);
951 	int		readio_log, writeio_log;
952 
953 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
954 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
955 			readio_log = XFS_WSYNC_READIO_LOG;
956 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
957 		} else {
958 			readio_log = XFS_READIO_LOG_LARGE;
959 			writeio_log = XFS_WRITEIO_LOG_LARGE;
960 		}
961 	} else {
962 		readio_log = mp->m_readio_log;
963 		writeio_log = mp->m_writeio_log;
964 	}
965 
966 	if (sbp->sb_blocklog > readio_log) {
967 		mp->m_readio_log = sbp->sb_blocklog;
968 	} else {
969 		mp->m_readio_log = readio_log;
970 	}
971 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
972 	if (sbp->sb_blocklog > writeio_log) {
973 		mp->m_writeio_log = sbp->sb_blocklog;
974 	} else {
975 		mp->m_writeio_log = writeio_log;
976 	}
977 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
978 }
979 
980 /*
981  * precalculate the low space thresholds for dynamic speculative preallocation.
982  */
983 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)984 xfs_set_low_space_thresholds(
985 	struct xfs_mount	*mp)
986 {
987 	int i;
988 
989 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
990 		__uint64_t space = mp->m_sb.sb_dblocks;
991 
992 		do_div(space, 100);
993 		mp->m_low_space[i] = space * (i + 1);
994 	}
995 }
996 
997 
998 /*
999  * Set whether we're using inode alignment.
1000  */
1001 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)1002 xfs_set_inoalignment(xfs_mount_t *mp)
1003 {
1004 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1005 	    mp->m_sb.sb_inoalignmt >=
1006 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1007 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1008 	else
1009 		mp->m_inoalign_mask = 0;
1010 	/*
1011 	 * If we are using stripe alignment, check whether
1012 	 * the stripe unit is a multiple of the inode alignment
1013 	 */
1014 	if (mp->m_dalign && mp->m_inoalign_mask &&
1015 	    !(mp->m_dalign & mp->m_inoalign_mask))
1016 		mp->m_sinoalign = mp->m_dalign;
1017 	else
1018 		mp->m_sinoalign = 0;
1019 }
1020 
1021 /*
1022  * Check that the data (and log if separate) are an ok size.
1023  */
1024 STATIC int
xfs_check_sizes(xfs_mount_t * mp)1025 xfs_check_sizes(xfs_mount_t *mp)
1026 {
1027 	xfs_buf_t	*bp;
1028 	xfs_daddr_t	d;
1029 
1030 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1031 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1032 		xfs_warn(mp, "filesystem size mismatch detected");
1033 		return XFS_ERROR(EFBIG);
1034 	}
1035 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1036 					d - XFS_FSS_TO_BB(mp, 1),
1037 					BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1038 	if (!bp) {
1039 		xfs_warn(mp, "last sector read failed");
1040 		return EIO;
1041 	}
1042 	xfs_buf_relse(bp);
1043 
1044 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1045 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1046 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1047 			xfs_warn(mp, "log size mismatch detected");
1048 			return XFS_ERROR(EFBIG);
1049 		}
1050 		bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1051 					d - XFS_FSB_TO_BB(mp, 1),
1052 					XFS_FSB_TO_B(mp, 1), 0);
1053 		if (!bp) {
1054 			xfs_warn(mp, "log device read failed");
1055 			return EIO;
1056 		}
1057 		xfs_buf_relse(bp);
1058 	}
1059 	return 0;
1060 }
1061 
1062 /*
1063  * Clear the quotaflags in memory and in the superblock.
1064  */
1065 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)1066 xfs_mount_reset_sbqflags(
1067 	struct xfs_mount	*mp)
1068 {
1069 	int			error;
1070 	struct xfs_trans	*tp;
1071 
1072 	mp->m_qflags = 0;
1073 
1074 	/*
1075 	 * It is OK to look at sb_qflags here in mount path,
1076 	 * without m_sb_lock.
1077 	 */
1078 	if (mp->m_sb.sb_qflags == 0)
1079 		return 0;
1080 	spin_lock(&mp->m_sb_lock);
1081 	mp->m_sb.sb_qflags = 0;
1082 	spin_unlock(&mp->m_sb_lock);
1083 
1084 	/*
1085 	 * If the fs is readonly, let the incore superblock run
1086 	 * with quotas off but don't flush the update out to disk
1087 	 */
1088 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1089 		return 0;
1090 
1091 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1092 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1093 				      XFS_DEFAULT_LOG_COUNT);
1094 	if (error) {
1095 		xfs_trans_cancel(tp, 0);
1096 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1097 		return error;
1098 	}
1099 
1100 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1101 	return xfs_trans_commit(tp, 0);
1102 }
1103 
1104 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)1105 xfs_default_resblks(xfs_mount_t *mp)
1106 {
1107 	__uint64_t resblks;
1108 
1109 	/*
1110 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1111 	 * smaller.  This is intended to cover concurrent allocation
1112 	 * transactions when we initially hit enospc. These each require a 4
1113 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1114 	 * allocation reservations.
1115 	 */
1116 	resblks = mp->m_sb.sb_dblocks;
1117 	do_div(resblks, 20);
1118 	resblks = min_t(__uint64_t, resblks, 8192);
1119 	return resblks;
1120 }
1121 
1122 /*
1123  * This function does the following on an initial mount of a file system:
1124  *	- reads the superblock from disk and init the mount struct
1125  *	- if we're a 32-bit kernel, do a size check on the superblock
1126  *		so we don't mount terabyte filesystems
1127  *	- init mount struct realtime fields
1128  *	- allocate inode hash table for fs
1129  *	- init directory manager
1130  *	- perform recovery and init the log manager
1131  */
1132 int
xfs_mountfs(xfs_mount_t * mp)1133 xfs_mountfs(
1134 	xfs_mount_t	*mp)
1135 {
1136 	xfs_sb_t	*sbp = &(mp->m_sb);
1137 	xfs_inode_t	*rip;
1138 	__uint64_t	resblks;
1139 	uint		quotamount = 0;
1140 	uint		quotaflags = 0;
1141 	int		error = 0;
1142 
1143 	xfs_mount_common(mp, sbp);
1144 
1145 	/*
1146 	 * Check for a mismatched features2 values.  Older kernels
1147 	 * read & wrote into the wrong sb offset for sb_features2
1148 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1149 	 * when sb_features2 was added, which made older superblock
1150 	 * reading/writing routines swap it as a 64-bit value.
1151 	 *
1152 	 * For backwards compatibility, we make both slots equal.
1153 	 *
1154 	 * If we detect a mismatched field, we OR the set bits into the
1155 	 * existing features2 field in case it has already been modified; we
1156 	 * don't want to lose any features.  We then update the bad location
1157 	 * with the ORed value so that older kernels will see any features2
1158 	 * flags, and mark the two fields as needing updates once the
1159 	 * transaction subsystem is online.
1160 	 */
1161 	if (xfs_sb_has_mismatched_features2(sbp)) {
1162 		xfs_warn(mp, "correcting sb_features alignment problem");
1163 		sbp->sb_features2 |= sbp->sb_bad_features2;
1164 		sbp->sb_bad_features2 = sbp->sb_features2;
1165 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1166 
1167 		/*
1168 		 * Re-check for ATTR2 in case it was found in bad_features2
1169 		 * slot.
1170 		 */
1171 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1172 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1173 			mp->m_flags |= XFS_MOUNT_ATTR2;
1174 	}
1175 
1176 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1177 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1178 		xfs_sb_version_removeattr2(&mp->m_sb);
1179 		mp->m_update_flags |= XFS_SB_FEATURES2;
1180 
1181 		/* update sb_versionnum for the clearing of the morebits */
1182 		if (!sbp->sb_features2)
1183 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1184 	}
1185 
1186 	/*
1187 	 * Check if sb_agblocks is aligned at stripe boundary
1188 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1189 	 * allocator alignment is within an ag, therefore ag has
1190 	 * to be aligned at stripe boundary.
1191 	 */
1192 	error = xfs_update_alignment(mp);
1193 	if (error)
1194 		goto out;
1195 
1196 	xfs_alloc_compute_maxlevels(mp);
1197 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1198 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1199 	xfs_ialloc_compute_maxlevels(mp);
1200 
1201 	xfs_set_maxicount(mp);
1202 
1203 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1204 
1205 	error = xfs_uuid_mount(mp);
1206 	if (error)
1207 		goto out;
1208 
1209 	/*
1210 	 * Set the minimum read and write sizes
1211 	 */
1212 	xfs_set_rw_sizes(mp);
1213 
1214 	/* set the low space thresholds for dynamic preallocation */
1215 	xfs_set_low_space_thresholds(mp);
1216 
1217 	/*
1218 	 * Set the inode cluster size.
1219 	 * This may still be overridden by the file system
1220 	 * block size if it is larger than the chosen cluster size.
1221 	 */
1222 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1223 
1224 	/*
1225 	 * Set inode alignment fields
1226 	 */
1227 	xfs_set_inoalignment(mp);
1228 
1229 	/*
1230 	 * Check that the data (and log if separate) are an ok size.
1231 	 */
1232 	error = xfs_check_sizes(mp);
1233 	if (error)
1234 		goto out_remove_uuid;
1235 
1236 	/*
1237 	 * Initialize realtime fields in the mount structure
1238 	 */
1239 	error = xfs_rtmount_init(mp);
1240 	if (error) {
1241 		xfs_warn(mp, "RT mount failed");
1242 		goto out_remove_uuid;
1243 	}
1244 
1245 	/*
1246 	 *  Copies the low order bits of the timestamp and the randomly
1247 	 *  set "sequence" number out of a UUID.
1248 	 */
1249 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1250 
1251 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1252 
1253 	xfs_dir_mount(mp);
1254 
1255 	/*
1256 	 * Initialize the attribute manager's entries.
1257 	 */
1258 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1259 
1260 	/*
1261 	 * Initialize the precomputed transaction reservations values.
1262 	 */
1263 	xfs_trans_init(mp);
1264 
1265 	/*
1266 	 * Allocate and initialize the per-ag data.
1267 	 */
1268 	spin_lock_init(&mp->m_perag_lock);
1269 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1270 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1271 	if (error) {
1272 		xfs_warn(mp, "Failed per-ag init: %d", error);
1273 		goto out_remove_uuid;
1274 	}
1275 
1276 	if (!sbp->sb_logblocks) {
1277 		xfs_warn(mp, "no log defined");
1278 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1279 		error = XFS_ERROR(EFSCORRUPTED);
1280 		goto out_free_perag;
1281 	}
1282 
1283 	/*
1284 	 * log's mount-time initialization. Perform 1st part recovery if needed
1285 	 */
1286 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1287 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1288 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1289 	if (error) {
1290 		xfs_warn(mp, "log mount failed");
1291 		goto out_free_perag;
1292 	}
1293 
1294 	/*
1295 	 * Now the log is mounted, we know if it was an unclean shutdown or
1296 	 * not. If it was, with the first phase of recovery has completed, we
1297 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1298 	 * but they are recovered transactionally in the second recovery phase
1299 	 * later.
1300 	 *
1301 	 * Hence we can safely re-initialise incore superblock counters from
1302 	 * the per-ag data. These may not be correct if the filesystem was not
1303 	 * cleanly unmounted, so we need to wait for recovery to finish before
1304 	 * doing this.
1305 	 *
1306 	 * If the filesystem was cleanly unmounted, then we can trust the
1307 	 * values in the superblock to be correct and we don't need to do
1308 	 * anything here.
1309 	 *
1310 	 * If we are currently making the filesystem, the initialisation will
1311 	 * fail as the perag data is in an undefined state.
1312 	 */
1313 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1314 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1315 	     !mp->m_sb.sb_inprogress) {
1316 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1317 		if (error)
1318 			goto out_free_perag;
1319 	}
1320 
1321 	/*
1322 	 * Get and sanity-check the root inode.
1323 	 * Save the pointer to it in the mount structure.
1324 	 */
1325 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1326 	if (error) {
1327 		xfs_warn(mp, "failed to read root inode");
1328 		goto out_log_dealloc;
1329 	}
1330 
1331 	ASSERT(rip != NULL);
1332 
1333 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1334 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1335 			(unsigned long long)rip->i_ino);
1336 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1337 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1338 				 mp);
1339 		error = XFS_ERROR(EFSCORRUPTED);
1340 		goto out_rele_rip;
1341 	}
1342 	mp->m_rootip = rip;	/* save it */
1343 
1344 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1345 
1346 	/*
1347 	 * Initialize realtime inode pointers in the mount structure
1348 	 */
1349 	error = xfs_rtmount_inodes(mp);
1350 	if (error) {
1351 		/*
1352 		 * Free up the root inode.
1353 		 */
1354 		xfs_warn(mp, "failed to read RT inodes");
1355 		goto out_rele_rip;
1356 	}
1357 
1358 	/*
1359 	 * If this is a read-only mount defer the superblock updates until
1360 	 * the next remount into writeable mode.  Otherwise we would never
1361 	 * perform the update e.g. for the root filesystem.
1362 	 */
1363 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1364 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1365 		if (error) {
1366 			xfs_warn(mp, "failed to write sb changes");
1367 			goto out_rtunmount;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Initialise the XFS quota management subsystem for this mount
1373 	 */
1374 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1375 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1376 		if (error)
1377 			goto out_rtunmount;
1378 	} else {
1379 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1380 
1381 		/*
1382 		 * If a file system had quotas running earlier, but decided to
1383 		 * mount without -o uquota/pquota/gquota options, revoke the
1384 		 * quotachecked license.
1385 		 */
1386 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1387 			xfs_notice(mp, "resetting quota flags");
1388 			error = xfs_mount_reset_sbqflags(mp);
1389 			if (error)
1390 				return error;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Finish recovering the file system.  This part needed to be
1396 	 * delayed until after the root and real-time bitmap inodes
1397 	 * were consistently read in.
1398 	 */
1399 	error = xfs_log_mount_finish(mp);
1400 	if (error) {
1401 		xfs_warn(mp, "log mount finish failed");
1402 		goto out_rtunmount;
1403 	}
1404 
1405 	/*
1406 	 * Complete the quota initialisation, post-log-replay component.
1407 	 */
1408 	if (quotamount) {
1409 		ASSERT(mp->m_qflags == 0);
1410 		mp->m_qflags = quotaflags;
1411 
1412 		xfs_qm_mount_quotas(mp);
1413 	}
1414 
1415 	/*
1416 	 * Now we are mounted, reserve a small amount of unused space for
1417 	 * privileged transactions. This is needed so that transaction
1418 	 * space required for critical operations can dip into this pool
1419 	 * when at ENOSPC. This is needed for operations like create with
1420 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1421 	 * are not allowed to use this reserved space.
1422 	 *
1423 	 * This may drive us straight to ENOSPC on mount, but that implies
1424 	 * we were already there on the last unmount. Warn if this occurs.
1425 	 */
1426 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1427 		resblks = xfs_default_resblks(mp);
1428 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1429 		if (error)
1430 			xfs_warn(mp,
1431 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1432 	}
1433 
1434 	return 0;
1435 
1436  out_rtunmount:
1437 	xfs_rtunmount_inodes(mp);
1438  out_rele_rip:
1439 	IRELE(rip);
1440  out_log_dealloc:
1441 	xfs_log_unmount(mp);
1442  out_free_perag:
1443 	xfs_free_perag(mp);
1444  out_remove_uuid:
1445 	xfs_uuid_unmount(mp);
1446  out:
1447 	return error;
1448 }
1449 
1450 /*
1451  * This flushes out the inodes,dquots and the superblock, unmounts the
1452  * log and makes sure that incore structures are freed.
1453  */
1454 void
xfs_unmountfs(struct xfs_mount * mp)1455 xfs_unmountfs(
1456 	struct xfs_mount	*mp)
1457 {
1458 	__uint64_t		resblks;
1459 	int			error;
1460 
1461 	xfs_qm_unmount_quotas(mp);
1462 	xfs_rtunmount_inodes(mp);
1463 	IRELE(mp->m_rootip);
1464 
1465 	/*
1466 	 * We can potentially deadlock here if we have an inode cluster
1467 	 * that has been freed has its buffer still pinned in memory because
1468 	 * the transaction is still sitting in a iclog. The stale inodes
1469 	 * on that buffer will have their flush locks held until the
1470 	 * transaction hits the disk and the callbacks run. the inode
1471 	 * flush takes the flush lock unconditionally and with nothing to
1472 	 * push out the iclog we will never get that unlocked. hence we
1473 	 * need to force the log first.
1474 	 */
1475 	xfs_log_force(mp, XFS_LOG_SYNC);
1476 
1477 	/*
1478 	 * Do a delwri reclaim pass first so that as many dirty inodes are
1479 	 * queued up for IO as possible. Then flush the buffers before making
1480 	 * a synchronous path to catch all the remaining inodes are reclaimed.
1481 	 * This makes the reclaim process as quick as possible by avoiding
1482 	 * synchronous writeout and blocking on inodes already in the delwri
1483 	 * state as much as possible.
1484 	 */
1485 	xfs_reclaim_inodes(mp, 0);
1486 	xfs_flush_buftarg(mp->m_ddev_targp, 1);
1487 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1488 
1489 	xfs_qm_unmount(mp);
1490 
1491 	/*
1492 	 * Flush out the log synchronously so that we know for sure
1493 	 * that nothing is pinned.  This is important because bflush()
1494 	 * will skip pinned buffers.
1495 	 */
1496 	xfs_log_force(mp, XFS_LOG_SYNC);
1497 
1498 	/*
1499 	 * Unreserve any blocks we have so that when we unmount we don't account
1500 	 * the reserved free space as used. This is really only necessary for
1501 	 * lazy superblock counting because it trusts the incore superblock
1502 	 * counters to be absolutely correct on clean unmount.
1503 	 *
1504 	 * We don't bother correcting this elsewhere for lazy superblock
1505 	 * counting because on mount of an unclean filesystem we reconstruct the
1506 	 * correct counter value and this is irrelevant.
1507 	 *
1508 	 * For non-lazy counter filesystems, this doesn't matter at all because
1509 	 * we only every apply deltas to the superblock and hence the incore
1510 	 * value does not matter....
1511 	 */
1512 	resblks = 0;
1513 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1514 	if (error)
1515 		xfs_warn(mp, "Unable to free reserved block pool. "
1516 				"Freespace may not be correct on next mount.");
1517 
1518 	error = xfs_log_sbcount(mp);
1519 	if (error)
1520 		xfs_warn(mp, "Unable to update superblock counters. "
1521 				"Freespace may not be correct on next mount.");
1522 	xfs_unmountfs_writesb(mp);
1523 
1524 	/*
1525 	 * Make sure all buffers have been flushed and completed before
1526 	 * unmounting the log.
1527 	 */
1528 	error = xfs_flush_buftarg(mp->m_ddev_targp, 1);
1529 	if (error)
1530 		xfs_warn(mp, "%d busy buffers during unmount.", error);
1531 	xfs_wait_buftarg(mp->m_ddev_targp);
1532 
1533 	xfs_log_unmount_write(mp);
1534 	xfs_log_unmount(mp);
1535 	xfs_uuid_unmount(mp);
1536 
1537 #if defined(DEBUG)
1538 	xfs_errortag_clearall(mp, 0);
1539 #endif
1540 	xfs_free_perag(mp);
1541 }
1542 
1543 int
xfs_fs_writable(xfs_mount_t * mp)1544 xfs_fs_writable(xfs_mount_t *mp)
1545 {
1546 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1547 		(mp->m_flags & XFS_MOUNT_RDONLY));
1548 }
1549 
1550 /*
1551  * xfs_log_sbcount
1552  *
1553  * Sync the superblock counters to disk.
1554  *
1555  * Note this code can be called during the process of freezing, so
1556  * we may need to use the transaction allocator which does not
1557  * block when the transaction subsystem is in its frozen state.
1558  */
1559 int
xfs_log_sbcount(xfs_mount_t * mp)1560 xfs_log_sbcount(xfs_mount_t *mp)
1561 {
1562 	xfs_trans_t	*tp;
1563 	int		error;
1564 
1565 	if (!xfs_fs_writable(mp))
1566 		return 0;
1567 
1568 	xfs_icsb_sync_counters(mp, 0);
1569 
1570 	/*
1571 	 * we don't need to do this if we are updating the superblock
1572 	 * counters on every modification.
1573 	 */
1574 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1575 		return 0;
1576 
1577 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1578 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1579 					XFS_DEFAULT_LOG_COUNT);
1580 	if (error) {
1581 		xfs_trans_cancel(tp, 0);
1582 		return error;
1583 	}
1584 
1585 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1586 	xfs_trans_set_sync(tp);
1587 	error = xfs_trans_commit(tp, 0);
1588 	return error;
1589 }
1590 
1591 int
xfs_unmountfs_writesb(xfs_mount_t * mp)1592 xfs_unmountfs_writesb(xfs_mount_t *mp)
1593 {
1594 	xfs_buf_t	*sbp;
1595 	int		error = 0;
1596 
1597 	/*
1598 	 * skip superblock write if fs is read-only, or
1599 	 * if we are doing a forced umount.
1600 	 */
1601 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1602 		XFS_FORCED_SHUTDOWN(mp))) {
1603 
1604 		sbp = xfs_getsb(mp, 0);
1605 
1606 		XFS_BUF_UNDONE(sbp);
1607 		XFS_BUF_UNREAD(sbp);
1608 		xfs_buf_delwri_dequeue(sbp);
1609 		XFS_BUF_WRITE(sbp);
1610 		XFS_BUF_UNASYNC(sbp);
1611 		ASSERT(sbp->b_target == mp->m_ddev_targp);
1612 		xfsbdstrat(mp, sbp);
1613 		error = xfs_buf_iowait(sbp);
1614 		if (error)
1615 			xfs_buf_ioerror_alert(sbp, __func__);
1616 		xfs_buf_relse(sbp);
1617 	}
1618 	return error;
1619 }
1620 
1621 /*
1622  * xfs_mod_sb() can be used to copy arbitrary changes to the
1623  * in-core superblock into the superblock buffer to be logged.
1624  * It does not provide the higher level of locking that is
1625  * needed to protect the in-core superblock from concurrent
1626  * access.
1627  */
1628 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1629 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1630 {
1631 	xfs_buf_t	*bp;
1632 	int		first;
1633 	int		last;
1634 	xfs_mount_t	*mp;
1635 	xfs_sb_field_t	f;
1636 
1637 	ASSERT(fields);
1638 	if (!fields)
1639 		return;
1640 	mp = tp->t_mountp;
1641 	bp = xfs_trans_getsb(tp, mp, 0);
1642 	first = sizeof(xfs_sb_t);
1643 	last = 0;
1644 
1645 	/* translate/copy */
1646 
1647 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1648 
1649 	/* find modified range */
1650 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1651 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1652 	last = xfs_sb_info[f + 1].offset - 1;
1653 
1654 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1655 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1656 	first = xfs_sb_info[f].offset;
1657 
1658 	xfs_trans_log_buf(tp, bp, first, last);
1659 }
1660 
1661 
1662 /*
1663  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1664  * a delta to a specified field in the in-core superblock.  Simply
1665  * switch on the field indicated and apply the delta to that field.
1666  * Fields are not allowed to dip below zero, so if the delta would
1667  * do this do not apply it and return EINVAL.
1668  *
1669  * The m_sb_lock must be held when this routine is called.
1670  */
1671 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1672 xfs_mod_incore_sb_unlocked(
1673 	xfs_mount_t	*mp,
1674 	xfs_sb_field_t	field,
1675 	int64_t		delta,
1676 	int		rsvd)
1677 {
1678 	int		scounter;	/* short counter for 32 bit fields */
1679 	long long	lcounter;	/* long counter for 64 bit fields */
1680 	long long	res_used, rem;
1681 
1682 	/*
1683 	 * With the in-core superblock spin lock held, switch
1684 	 * on the indicated field.  Apply the delta to the
1685 	 * proper field.  If the fields value would dip below
1686 	 * 0, then do not apply the delta and return EINVAL.
1687 	 */
1688 	switch (field) {
1689 	case XFS_SBS_ICOUNT:
1690 		lcounter = (long long)mp->m_sb.sb_icount;
1691 		lcounter += delta;
1692 		if (lcounter < 0) {
1693 			ASSERT(0);
1694 			return XFS_ERROR(EINVAL);
1695 		}
1696 		mp->m_sb.sb_icount = lcounter;
1697 		return 0;
1698 	case XFS_SBS_IFREE:
1699 		lcounter = (long long)mp->m_sb.sb_ifree;
1700 		lcounter += delta;
1701 		if (lcounter < 0) {
1702 			ASSERT(0);
1703 			return XFS_ERROR(EINVAL);
1704 		}
1705 		mp->m_sb.sb_ifree = lcounter;
1706 		return 0;
1707 	case XFS_SBS_FDBLOCKS:
1708 		lcounter = (long long)
1709 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1710 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1711 
1712 		if (delta > 0) {		/* Putting blocks back */
1713 			if (res_used > delta) {
1714 				mp->m_resblks_avail += delta;
1715 			} else {
1716 				rem = delta - res_used;
1717 				mp->m_resblks_avail = mp->m_resblks;
1718 				lcounter += rem;
1719 			}
1720 		} else {				/* Taking blocks away */
1721 			lcounter += delta;
1722 			if (lcounter >= 0) {
1723 				mp->m_sb.sb_fdblocks = lcounter +
1724 							XFS_ALLOC_SET_ASIDE(mp);
1725 				return 0;
1726 			}
1727 
1728 			/*
1729 			 * We are out of blocks, use any available reserved
1730 			 * blocks if were allowed to.
1731 			 */
1732 			if (!rsvd)
1733 				return XFS_ERROR(ENOSPC);
1734 
1735 			lcounter = (long long)mp->m_resblks_avail + delta;
1736 			if (lcounter >= 0) {
1737 				mp->m_resblks_avail = lcounter;
1738 				return 0;
1739 			}
1740 			printk_once(KERN_WARNING
1741 				"Filesystem \"%s\": reserve blocks depleted! "
1742 				"Consider increasing reserve pool size.",
1743 				mp->m_fsname);
1744 			return XFS_ERROR(ENOSPC);
1745 		}
1746 
1747 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1748 		return 0;
1749 	case XFS_SBS_FREXTENTS:
1750 		lcounter = (long long)mp->m_sb.sb_frextents;
1751 		lcounter += delta;
1752 		if (lcounter < 0) {
1753 			return XFS_ERROR(ENOSPC);
1754 		}
1755 		mp->m_sb.sb_frextents = lcounter;
1756 		return 0;
1757 	case XFS_SBS_DBLOCKS:
1758 		lcounter = (long long)mp->m_sb.sb_dblocks;
1759 		lcounter += delta;
1760 		if (lcounter < 0) {
1761 			ASSERT(0);
1762 			return XFS_ERROR(EINVAL);
1763 		}
1764 		mp->m_sb.sb_dblocks = lcounter;
1765 		return 0;
1766 	case XFS_SBS_AGCOUNT:
1767 		scounter = mp->m_sb.sb_agcount;
1768 		scounter += delta;
1769 		if (scounter < 0) {
1770 			ASSERT(0);
1771 			return XFS_ERROR(EINVAL);
1772 		}
1773 		mp->m_sb.sb_agcount = scounter;
1774 		return 0;
1775 	case XFS_SBS_IMAX_PCT:
1776 		scounter = mp->m_sb.sb_imax_pct;
1777 		scounter += delta;
1778 		if (scounter < 0) {
1779 			ASSERT(0);
1780 			return XFS_ERROR(EINVAL);
1781 		}
1782 		mp->m_sb.sb_imax_pct = scounter;
1783 		return 0;
1784 	case XFS_SBS_REXTSIZE:
1785 		scounter = mp->m_sb.sb_rextsize;
1786 		scounter += delta;
1787 		if (scounter < 0) {
1788 			ASSERT(0);
1789 			return XFS_ERROR(EINVAL);
1790 		}
1791 		mp->m_sb.sb_rextsize = scounter;
1792 		return 0;
1793 	case XFS_SBS_RBMBLOCKS:
1794 		scounter = mp->m_sb.sb_rbmblocks;
1795 		scounter += delta;
1796 		if (scounter < 0) {
1797 			ASSERT(0);
1798 			return XFS_ERROR(EINVAL);
1799 		}
1800 		mp->m_sb.sb_rbmblocks = scounter;
1801 		return 0;
1802 	case XFS_SBS_RBLOCKS:
1803 		lcounter = (long long)mp->m_sb.sb_rblocks;
1804 		lcounter += delta;
1805 		if (lcounter < 0) {
1806 			ASSERT(0);
1807 			return XFS_ERROR(EINVAL);
1808 		}
1809 		mp->m_sb.sb_rblocks = lcounter;
1810 		return 0;
1811 	case XFS_SBS_REXTENTS:
1812 		lcounter = (long long)mp->m_sb.sb_rextents;
1813 		lcounter += delta;
1814 		if (lcounter < 0) {
1815 			ASSERT(0);
1816 			return XFS_ERROR(EINVAL);
1817 		}
1818 		mp->m_sb.sb_rextents = lcounter;
1819 		return 0;
1820 	case XFS_SBS_REXTSLOG:
1821 		scounter = mp->m_sb.sb_rextslog;
1822 		scounter += delta;
1823 		if (scounter < 0) {
1824 			ASSERT(0);
1825 			return XFS_ERROR(EINVAL);
1826 		}
1827 		mp->m_sb.sb_rextslog = scounter;
1828 		return 0;
1829 	default:
1830 		ASSERT(0);
1831 		return XFS_ERROR(EINVAL);
1832 	}
1833 }
1834 
1835 /*
1836  * xfs_mod_incore_sb() is used to change a field in the in-core
1837  * superblock structure by the specified delta.  This modification
1838  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1839  * routine to do the work.
1840  */
1841 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1842 xfs_mod_incore_sb(
1843 	struct xfs_mount	*mp,
1844 	xfs_sb_field_t		field,
1845 	int64_t			delta,
1846 	int			rsvd)
1847 {
1848 	int			status;
1849 
1850 #ifdef HAVE_PERCPU_SB
1851 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1852 #endif
1853 	spin_lock(&mp->m_sb_lock);
1854 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1855 	spin_unlock(&mp->m_sb_lock);
1856 
1857 	return status;
1858 }
1859 
1860 /*
1861  * Change more than one field in the in-core superblock structure at a time.
1862  *
1863  * The fields and changes to those fields are specified in the array of
1864  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1865  * will be applied or none of them will.  If any modified field dips below 0,
1866  * then all modifications will be backed out and EINVAL will be returned.
1867  *
1868  * Note that this function may not be used for the superblock values that
1869  * are tracked with the in-memory per-cpu counters - a direct call to
1870  * xfs_icsb_modify_counters is required for these.
1871  */
1872 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1873 xfs_mod_incore_sb_batch(
1874 	struct xfs_mount	*mp,
1875 	xfs_mod_sb_t		*msb,
1876 	uint			nmsb,
1877 	int			rsvd)
1878 {
1879 	xfs_mod_sb_t		*msbp;
1880 	int			error = 0;
1881 
1882 	/*
1883 	 * Loop through the array of mod structures and apply each individually.
1884 	 * If any fail, then back out all those which have already been applied.
1885 	 * Do all of this within the scope of the m_sb_lock so that all of the
1886 	 * changes will be atomic.
1887 	 */
1888 	spin_lock(&mp->m_sb_lock);
1889 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1890 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1891 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1892 
1893 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1894 						   msbp->msb_delta, rsvd);
1895 		if (error)
1896 			goto unwind;
1897 	}
1898 	spin_unlock(&mp->m_sb_lock);
1899 	return 0;
1900 
1901 unwind:
1902 	while (--msbp >= msb) {
1903 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1904 						   -msbp->msb_delta, rsvd);
1905 		ASSERT(error == 0);
1906 	}
1907 	spin_unlock(&mp->m_sb_lock);
1908 	return error;
1909 }
1910 
1911 /*
1912  * xfs_getsb() is called to obtain the buffer for the superblock.
1913  * The buffer is returned locked and read in from disk.
1914  * The buffer should be released with a call to xfs_brelse().
1915  *
1916  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1917  * the superblock buffer if it can be locked without sleeping.
1918  * If it can't then we'll return NULL.
1919  */
1920 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1921 xfs_getsb(
1922 	struct xfs_mount	*mp,
1923 	int			flags)
1924 {
1925 	struct xfs_buf		*bp = mp->m_sb_bp;
1926 
1927 	if (!xfs_buf_trylock(bp)) {
1928 		if (flags & XBF_TRYLOCK)
1929 			return NULL;
1930 		xfs_buf_lock(bp);
1931 	}
1932 
1933 	xfs_buf_hold(bp);
1934 	ASSERT(XFS_BUF_ISDONE(bp));
1935 	return bp;
1936 }
1937 
1938 /*
1939  * Used to free the superblock along various error paths.
1940  */
1941 void
xfs_freesb(struct xfs_mount * mp)1942 xfs_freesb(
1943 	struct xfs_mount	*mp)
1944 {
1945 	struct xfs_buf		*bp = mp->m_sb_bp;
1946 
1947 	xfs_buf_lock(bp);
1948 	mp->m_sb_bp = NULL;
1949 	xfs_buf_relse(bp);
1950 }
1951 
1952 /*
1953  * Used to log changes to the superblock unit and width fields which could
1954  * be altered by the mount options, as well as any potential sb_features2
1955  * fixup. Only the first superblock is updated.
1956  */
1957 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)1958 xfs_mount_log_sb(
1959 	xfs_mount_t	*mp,
1960 	__int64_t	fields)
1961 {
1962 	xfs_trans_t	*tp;
1963 	int		error;
1964 
1965 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1966 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1967 			 XFS_SB_VERSIONNUM));
1968 
1969 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1970 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1971 				XFS_DEFAULT_LOG_COUNT);
1972 	if (error) {
1973 		xfs_trans_cancel(tp, 0);
1974 		return error;
1975 	}
1976 	xfs_mod_sb(tp, fields);
1977 	error = xfs_trans_commit(tp, 0);
1978 	return error;
1979 }
1980 
1981 /*
1982  * If the underlying (data/log/rt) device is readonly, there are some
1983  * operations that cannot proceed.
1984  */
1985 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1986 xfs_dev_is_read_only(
1987 	struct xfs_mount	*mp,
1988 	char			*message)
1989 {
1990 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1991 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1992 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1993 		xfs_notice(mp, "%s required on read-only device.", message);
1994 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1995 		return EROFS;
1996 	}
1997 	return 0;
1998 }
1999 
2000 #ifdef HAVE_PERCPU_SB
2001 /*
2002  * Per-cpu incore superblock counters
2003  *
2004  * Simple concept, difficult implementation
2005  *
2006  * Basically, replace the incore superblock counters with a distributed per cpu
2007  * counter for contended fields (e.g.  free block count).
2008  *
2009  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2010  * hence needs to be accurately read when we are running low on space. Hence
2011  * there is a method to enable and disable the per-cpu counters based on how
2012  * much "stuff" is available in them.
2013  *
2014  * Basically, a counter is enabled if there is enough free resource to justify
2015  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2016  * ENOSPC), then we disable the counters to synchronise all callers and
2017  * re-distribute the available resources.
2018  *
2019  * If, once we redistributed the available resources, we still get a failure,
2020  * we disable the per-cpu counter and go through the slow path.
2021  *
2022  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2023  * when we disable a per-cpu counter, we need to drain its resources back to
2024  * the global superblock. We do this after disabling the counter to prevent
2025  * more threads from queueing up on the counter.
2026  *
2027  * Essentially, this means that we still need a lock in the fast path to enable
2028  * synchronisation between the global counters and the per-cpu counters. This
2029  * is not a problem because the lock will be local to a CPU almost all the time
2030  * and have little contention except when we get to ENOSPC conditions.
2031  *
2032  * Basically, this lock becomes a barrier that enables us to lock out the fast
2033  * path while we do things like enabling and disabling counters and
2034  * synchronising the counters.
2035  *
2036  * Locking rules:
2037  *
2038  * 	1. m_sb_lock before picking up per-cpu locks
2039  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2040  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2041  * 	4. modifying per-cpu counters requires holding per-cpu lock
2042  * 	5. modifying global counters requires holding m_sb_lock
2043  *	6. enabling or disabling a counter requires holding the m_sb_lock
2044  *	   and _none_ of the per-cpu locks.
2045  *
2046  * Disabled counters are only ever re-enabled by a balance operation
2047  * that results in more free resources per CPU than a given threshold.
2048  * To ensure counters don't remain disabled, they are rebalanced when
2049  * the global resource goes above a higher threshold (i.e. some hysteresis
2050  * is present to prevent thrashing).
2051  */
2052 
2053 #ifdef CONFIG_HOTPLUG_CPU
2054 /*
2055  * hot-plug CPU notifier support.
2056  *
2057  * We need a notifier per filesystem as we need to be able to identify
2058  * the filesystem to balance the counters out. This is achieved by
2059  * having a notifier block embedded in the xfs_mount_t and doing pointer
2060  * magic to get the mount pointer from the notifier block address.
2061  */
2062 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)2063 xfs_icsb_cpu_notify(
2064 	struct notifier_block *nfb,
2065 	unsigned long action,
2066 	void *hcpu)
2067 {
2068 	xfs_icsb_cnts_t *cntp;
2069 	xfs_mount_t	*mp;
2070 
2071 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2072 	cntp = (xfs_icsb_cnts_t *)
2073 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2074 	switch (action) {
2075 	case CPU_UP_PREPARE:
2076 	case CPU_UP_PREPARE_FROZEN:
2077 		/* Easy Case - initialize the area and locks, and
2078 		 * then rebalance when online does everything else for us. */
2079 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2080 		break;
2081 	case CPU_ONLINE:
2082 	case CPU_ONLINE_FROZEN:
2083 		xfs_icsb_lock(mp);
2084 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2085 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2086 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2087 		xfs_icsb_unlock(mp);
2088 		break;
2089 	case CPU_DEAD:
2090 	case CPU_DEAD_FROZEN:
2091 		/* Disable all the counters, then fold the dead cpu's
2092 		 * count into the total on the global superblock and
2093 		 * re-enable the counters. */
2094 		xfs_icsb_lock(mp);
2095 		spin_lock(&mp->m_sb_lock);
2096 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2097 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2098 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2099 
2100 		mp->m_sb.sb_icount += cntp->icsb_icount;
2101 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2102 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2103 
2104 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2105 
2106 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2107 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2108 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2109 		spin_unlock(&mp->m_sb_lock);
2110 		xfs_icsb_unlock(mp);
2111 		break;
2112 	}
2113 
2114 	return NOTIFY_OK;
2115 }
2116 #endif /* CONFIG_HOTPLUG_CPU */
2117 
2118 int
xfs_icsb_init_counters(xfs_mount_t * mp)2119 xfs_icsb_init_counters(
2120 	xfs_mount_t	*mp)
2121 {
2122 	xfs_icsb_cnts_t *cntp;
2123 	int		i;
2124 
2125 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2126 	if (mp->m_sb_cnts == NULL)
2127 		return -ENOMEM;
2128 
2129 #ifdef CONFIG_HOTPLUG_CPU
2130 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2131 	mp->m_icsb_notifier.priority = 0;
2132 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2133 #endif /* CONFIG_HOTPLUG_CPU */
2134 
2135 	for_each_online_cpu(i) {
2136 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2137 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2138 	}
2139 
2140 	mutex_init(&mp->m_icsb_mutex);
2141 
2142 	/*
2143 	 * start with all counters disabled so that the
2144 	 * initial balance kicks us off correctly
2145 	 */
2146 	mp->m_icsb_counters = -1;
2147 	return 0;
2148 }
2149 
2150 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)2151 xfs_icsb_reinit_counters(
2152 	xfs_mount_t	*mp)
2153 {
2154 	xfs_icsb_lock(mp);
2155 	/*
2156 	 * start with all counters disabled so that the
2157 	 * initial balance kicks us off correctly
2158 	 */
2159 	mp->m_icsb_counters = -1;
2160 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2161 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2162 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2163 	xfs_icsb_unlock(mp);
2164 }
2165 
2166 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2167 xfs_icsb_destroy_counters(
2168 	xfs_mount_t	*mp)
2169 {
2170 	if (mp->m_sb_cnts) {
2171 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2172 		free_percpu(mp->m_sb_cnts);
2173 	}
2174 	mutex_destroy(&mp->m_icsb_mutex);
2175 }
2176 
2177 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2178 xfs_icsb_lock_cntr(
2179 	xfs_icsb_cnts_t	*icsbp)
2180 {
2181 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2182 		ndelay(1000);
2183 	}
2184 }
2185 
2186 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2187 xfs_icsb_unlock_cntr(
2188 	xfs_icsb_cnts_t	*icsbp)
2189 {
2190 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2191 }
2192 
2193 
2194 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2195 xfs_icsb_lock_all_counters(
2196 	xfs_mount_t	*mp)
2197 {
2198 	xfs_icsb_cnts_t *cntp;
2199 	int		i;
2200 
2201 	for_each_online_cpu(i) {
2202 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2203 		xfs_icsb_lock_cntr(cntp);
2204 	}
2205 }
2206 
2207 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2208 xfs_icsb_unlock_all_counters(
2209 	xfs_mount_t	*mp)
2210 {
2211 	xfs_icsb_cnts_t *cntp;
2212 	int		i;
2213 
2214 	for_each_online_cpu(i) {
2215 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2216 		xfs_icsb_unlock_cntr(cntp);
2217 	}
2218 }
2219 
2220 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2221 xfs_icsb_count(
2222 	xfs_mount_t	*mp,
2223 	xfs_icsb_cnts_t	*cnt,
2224 	int		flags)
2225 {
2226 	xfs_icsb_cnts_t *cntp;
2227 	int		i;
2228 
2229 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2230 
2231 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2232 		xfs_icsb_lock_all_counters(mp);
2233 
2234 	for_each_online_cpu(i) {
2235 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2236 		cnt->icsb_icount += cntp->icsb_icount;
2237 		cnt->icsb_ifree += cntp->icsb_ifree;
2238 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2239 	}
2240 
2241 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2242 		xfs_icsb_unlock_all_counters(mp);
2243 }
2244 
2245 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2246 xfs_icsb_counter_disabled(
2247 	xfs_mount_t	*mp,
2248 	xfs_sb_field_t	field)
2249 {
2250 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2251 	return test_bit(field, &mp->m_icsb_counters);
2252 }
2253 
2254 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2255 xfs_icsb_disable_counter(
2256 	xfs_mount_t	*mp,
2257 	xfs_sb_field_t	field)
2258 {
2259 	xfs_icsb_cnts_t	cnt;
2260 
2261 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2262 
2263 	/*
2264 	 * If we are already disabled, then there is nothing to do
2265 	 * here. We check before locking all the counters to avoid
2266 	 * the expensive lock operation when being called in the
2267 	 * slow path and the counter is already disabled. This is
2268 	 * safe because the only time we set or clear this state is under
2269 	 * the m_icsb_mutex.
2270 	 */
2271 	if (xfs_icsb_counter_disabled(mp, field))
2272 		return;
2273 
2274 	xfs_icsb_lock_all_counters(mp);
2275 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2276 		/* drain back to superblock */
2277 
2278 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2279 		switch(field) {
2280 		case XFS_SBS_ICOUNT:
2281 			mp->m_sb.sb_icount = cnt.icsb_icount;
2282 			break;
2283 		case XFS_SBS_IFREE:
2284 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2285 			break;
2286 		case XFS_SBS_FDBLOCKS:
2287 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2288 			break;
2289 		default:
2290 			BUG();
2291 		}
2292 	}
2293 
2294 	xfs_icsb_unlock_all_counters(mp);
2295 }
2296 
2297 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2298 xfs_icsb_enable_counter(
2299 	xfs_mount_t	*mp,
2300 	xfs_sb_field_t	field,
2301 	uint64_t	count,
2302 	uint64_t	resid)
2303 {
2304 	xfs_icsb_cnts_t	*cntp;
2305 	int		i;
2306 
2307 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2308 
2309 	xfs_icsb_lock_all_counters(mp);
2310 	for_each_online_cpu(i) {
2311 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2312 		switch (field) {
2313 		case XFS_SBS_ICOUNT:
2314 			cntp->icsb_icount = count + resid;
2315 			break;
2316 		case XFS_SBS_IFREE:
2317 			cntp->icsb_ifree = count + resid;
2318 			break;
2319 		case XFS_SBS_FDBLOCKS:
2320 			cntp->icsb_fdblocks = count + resid;
2321 			break;
2322 		default:
2323 			BUG();
2324 			break;
2325 		}
2326 		resid = 0;
2327 	}
2328 	clear_bit(field, &mp->m_icsb_counters);
2329 	xfs_icsb_unlock_all_counters(mp);
2330 }
2331 
2332 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2333 xfs_icsb_sync_counters_locked(
2334 	xfs_mount_t	*mp,
2335 	int		flags)
2336 {
2337 	xfs_icsb_cnts_t	cnt;
2338 
2339 	xfs_icsb_count(mp, &cnt, flags);
2340 
2341 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2342 		mp->m_sb.sb_icount = cnt.icsb_icount;
2343 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2344 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2345 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2346 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2347 }
2348 
2349 /*
2350  * Accurate update of per-cpu counters to incore superblock
2351  */
2352 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2353 xfs_icsb_sync_counters(
2354 	xfs_mount_t	*mp,
2355 	int		flags)
2356 {
2357 	spin_lock(&mp->m_sb_lock);
2358 	xfs_icsb_sync_counters_locked(mp, flags);
2359 	spin_unlock(&mp->m_sb_lock);
2360 }
2361 
2362 /*
2363  * Balance and enable/disable counters as necessary.
2364  *
2365  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2366  * chosen to be the same number as single on disk allocation chunk per CPU, and
2367  * free blocks is something far enough zero that we aren't going thrash when we
2368  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2369  * prevent looping endlessly when xfs_alloc_space asks for more than will
2370  * be distributed to a single CPU but each CPU has enough blocks to be
2371  * reenabled.
2372  *
2373  * Note that we can be called when counters are already disabled.
2374  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2375  * prevent locking every per-cpu counter needlessly.
2376  */
2377 
2378 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2379 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2380 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2381 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2382 xfs_icsb_balance_counter_locked(
2383 	xfs_mount_t	*mp,
2384 	xfs_sb_field_t  field,
2385 	int		min_per_cpu)
2386 {
2387 	uint64_t	count, resid;
2388 	int		weight = num_online_cpus();
2389 	uint64_t	min = (uint64_t)min_per_cpu;
2390 
2391 	/* disable counter and sync counter */
2392 	xfs_icsb_disable_counter(mp, field);
2393 
2394 	/* update counters  - first CPU gets residual*/
2395 	switch (field) {
2396 	case XFS_SBS_ICOUNT:
2397 		count = mp->m_sb.sb_icount;
2398 		resid = do_div(count, weight);
2399 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2400 			return;
2401 		break;
2402 	case XFS_SBS_IFREE:
2403 		count = mp->m_sb.sb_ifree;
2404 		resid = do_div(count, weight);
2405 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2406 			return;
2407 		break;
2408 	case XFS_SBS_FDBLOCKS:
2409 		count = mp->m_sb.sb_fdblocks;
2410 		resid = do_div(count, weight);
2411 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2412 			return;
2413 		break;
2414 	default:
2415 		BUG();
2416 		count = resid = 0;	/* quiet, gcc */
2417 		break;
2418 	}
2419 
2420 	xfs_icsb_enable_counter(mp, field, count, resid);
2421 }
2422 
2423 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2424 xfs_icsb_balance_counter(
2425 	xfs_mount_t	*mp,
2426 	xfs_sb_field_t  fields,
2427 	int		min_per_cpu)
2428 {
2429 	spin_lock(&mp->m_sb_lock);
2430 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2431 	spin_unlock(&mp->m_sb_lock);
2432 }
2433 
2434 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2435 xfs_icsb_modify_counters(
2436 	xfs_mount_t	*mp,
2437 	xfs_sb_field_t	field,
2438 	int64_t		delta,
2439 	int		rsvd)
2440 {
2441 	xfs_icsb_cnts_t	*icsbp;
2442 	long long	lcounter;	/* long counter for 64 bit fields */
2443 	int		ret = 0;
2444 
2445 	might_sleep();
2446 again:
2447 	preempt_disable();
2448 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2449 
2450 	/*
2451 	 * if the counter is disabled, go to slow path
2452 	 */
2453 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2454 		goto slow_path;
2455 	xfs_icsb_lock_cntr(icsbp);
2456 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2457 		xfs_icsb_unlock_cntr(icsbp);
2458 		goto slow_path;
2459 	}
2460 
2461 	switch (field) {
2462 	case XFS_SBS_ICOUNT:
2463 		lcounter = icsbp->icsb_icount;
2464 		lcounter += delta;
2465 		if (unlikely(lcounter < 0))
2466 			goto balance_counter;
2467 		icsbp->icsb_icount = lcounter;
2468 		break;
2469 
2470 	case XFS_SBS_IFREE:
2471 		lcounter = icsbp->icsb_ifree;
2472 		lcounter += delta;
2473 		if (unlikely(lcounter < 0))
2474 			goto balance_counter;
2475 		icsbp->icsb_ifree = lcounter;
2476 		break;
2477 
2478 	case XFS_SBS_FDBLOCKS:
2479 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2480 
2481 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2482 		lcounter += delta;
2483 		if (unlikely(lcounter < 0))
2484 			goto balance_counter;
2485 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2486 		break;
2487 	default:
2488 		BUG();
2489 		break;
2490 	}
2491 	xfs_icsb_unlock_cntr(icsbp);
2492 	preempt_enable();
2493 	return 0;
2494 
2495 slow_path:
2496 	preempt_enable();
2497 
2498 	/*
2499 	 * serialise with a mutex so we don't burn lots of cpu on
2500 	 * the superblock lock. We still need to hold the superblock
2501 	 * lock, however, when we modify the global structures.
2502 	 */
2503 	xfs_icsb_lock(mp);
2504 
2505 	/*
2506 	 * Now running atomically.
2507 	 *
2508 	 * If the counter is enabled, someone has beaten us to rebalancing.
2509 	 * Drop the lock and try again in the fast path....
2510 	 */
2511 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2512 		xfs_icsb_unlock(mp);
2513 		goto again;
2514 	}
2515 
2516 	/*
2517 	 * The counter is currently disabled. Because we are
2518 	 * running atomically here, we know a rebalance cannot
2519 	 * be in progress. Hence we can go straight to operating
2520 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2521 	 * here even though we need to get the m_sb_lock. Doing so
2522 	 * will cause us to re-enter this function and deadlock.
2523 	 * Hence we get the m_sb_lock ourselves and then call
2524 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2525 	 * directly on the global counters.
2526 	 */
2527 	spin_lock(&mp->m_sb_lock);
2528 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2529 	spin_unlock(&mp->m_sb_lock);
2530 
2531 	/*
2532 	 * Now that we've modified the global superblock, we
2533 	 * may be able to re-enable the distributed counters
2534 	 * (e.g. lots of space just got freed). After that
2535 	 * we are done.
2536 	 */
2537 	if (ret != ENOSPC)
2538 		xfs_icsb_balance_counter(mp, field, 0);
2539 	xfs_icsb_unlock(mp);
2540 	return ret;
2541 
2542 balance_counter:
2543 	xfs_icsb_unlock_cntr(icsbp);
2544 	preempt_enable();
2545 
2546 	/*
2547 	 * We may have multiple threads here if multiple per-cpu
2548 	 * counters run dry at the same time. This will mean we can
2549 	 * do more balances than strictly necessary but it is not
2550 	 * the common slowpath case.
2551 	 */
2552 	xfs_icsb_lock(mp);
2553 
2554 	/*
2555 	 * running atomically.
2556 	 *
2557 	 * This will leave the counter in the correct state for future
2558 	 * accesses. After the rebalance, we simply try again and our retry
2559 	 * will either succeed through the fast path or slow path without
2560 	 * another balance operation being required.
2561 	 */
2562 	xfs_icsb_balance_counter(mp, field, delta);
2563 	xfs_icsb_unlock(mp);
2564 	goto again;
2565 }
2566 
2567 #endif
2568