1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
38
39 /*
40 * Check to see if a buffer matching the given parameters is already
41 * a part of the given transaction.
42 */
43 STATIC struct xfs_buf *
xfs_trans_buf_item_match(struct xfs_trans * tp,struct xfs_buftarg * target,xfs_daddr_t blkno,int len)44 xfs_trans_buf_item_match(
45 struct xfs_trans *tp,
46 struct xfs_buftarg *target,
47 xfs_daddr_t blkno,
48 int len)
49 {
50 struct xfs_log_item_desc *lidp;
51 struct xfs_buf_log_item *blip;
52
53 len = BBTOB(len);
54 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 if (blip->bli_item.li_type == XFS_LI_BUF &&
57 XFS_BUF_TARGET(blip->bli_buf) == target &&
58 XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 XFS_BUF_COUNT(blip->bli_buf) == len)
60 return blip->bli_buf;
61 }
62
63 return NULL;
64 }
65
66 /*
67 * Add the locked buffer to the transaction.
68 *
69 * The buffer must be locked, and it cannot be associated with any
70 * transaction.
71 *
72 * If the buffer does not yet have a buf log item associated with it,
73 * then allocate one for it. Then add the buf item to the transaction.
74 */
75 STATIC void
_xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp,int reset_recur)76 _xfs_trans_bjoin(
77 struct xfs_trans *tp,
78 struct xfs_buf *bp,
79 int reset_recur)
80 {
81 struct xfs_buf_log_item *bip;
82
83 ASSERT(XFS_BUF_ISBUSY(bp));
84 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
85
86 /*
87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
88 * it doesn't have one yet, then allocate one and initialize it.
89 * The checks to see if one is there are in xfs_buf_item_init().
90 */
91 xfs_buf_item_init(bp, tp->t_mountp);
92 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 if (reset_recur)
97 bip->bli_recur = 0;
98
99 /*
100 * Take a reference for this transaction on the buf item.
101 */
102 atomic_inc(&bip->bli_refcount);
103
104 /*
105 * Get a log_item_desc to point at the new item.
106 */
107 xfs_trans_add_item(tp, &bip->bli_item);
108
109 /*
110 * Initialize b_fsprivate2 so we can find it with incore_match()
111 * in xfs_trans_get_buf() and friends above.
112 */
113 XFS_BUF_SET_FSPRIVATE2(bp, tp);
114
115 }
116
117 void
xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp)118 xfs_trans_bjoin(
119 struct xfs_trans *tp,
120 struct xfs_buf *bp)
121 {
122 _xfs_trans_bjoin(tp, bp, 0);
123 trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125
126 /*
127 * Get and lock the buffer for the caller if it is not already
128 * locked within the given transaction. If it is already locked
129 * within the transaction, just increment its lock recursion count
130 * and return a pointer to it.
131 *
132 * If the transaction pointer is NULL, make this just a normal
133 * get_buf() call.
134 */
135 xfs_buf_t *
xfs_trans_get_buf(xfs_trans_t * tp,xfs_buftarg_t * target_dev,xfs_daddr_t blkno,int len,uint flags)136 xfs_trans_get_buf(xfs_trans_t *tp,
137 xfs_buftarg_t *target_dev,
138 xfs_daddr_t blkno,
139 int len,
140 uint flags)
141 {
142 xfs_buf_t *bp;
143 xfs_buf_log_item_t *bip;
144
145 if (flags == 0)
146 flags = XBF_LOCK | XBF_MAPPED;
147
148 /*
149 * Default to a normal get_buf() call if the tp is NULL.
150 */
151 if (tp == NULL)
152 return xfs_buf_get(target_dev, blkno, len,
153 flags | XBF_DONT_BLOCK);
154
155 /*
156 * If we find the buffer in the cache with this transaction
157 * pointer in its b_fsprivate2 field, then we know we already
158 * have it locked. In this case we just increment the lock
159 * recursion count and return the buffer to the caller.
160 */
161 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
162 if (bp != NULL) {
163 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
164 if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
165 XFS_BUF_SUPER_STALE(bp);
166
167 /*
168 * If the buffer is stale then it was binval'ed
169 * since last read. This doesn't matter since the
170 * caller isn't allowed to use the data anyway.
171 */
172 else if (XFS_BUF_ISSTALE(bp))
173 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
174
175 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
176 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
177 ASSERT(bip != NULL);
178 ASSERT(atomic_read(&bip->bli_refcount) > 0);
179 bip->bli_recur++;
180 trace_xfs_trans_get_buf_recur(bip);
181 return (bp);
182 }
183
184 /*
185 * We always specify the XBF_DONT_BLOCK flag within a transaction
186 * so that get_buf does not try to push out a delayed write buffer
187 * which might cause another transaction to take place (if the
188 * buffer was delayed alloc). Such recursive transactions can
189 * easily deadlock with our current transaction as well as cause
190 * us to run out of stack space.
191 */
192 bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
193 if (bp == NULL) {
194 return NULL;
195 }
196
197 ASSERT(!XFS_BUF_GETERROR(bp));
198
199 _xfs_trans_bjoin(tp, bp, 1);
200 trace_xfs_trans_get_buf(bp->b_fspriv);
201 return (bp);
202 }
203
204 /*
205 * Get and lock the superblock buffer of this file system for the
206 * given transaction.
207 *
208 * We don't need to use incore_match() here, because the superblock
209 * buffer is a private buffer which we keep a pointer to in the
210 * mount structure.
211 */
212 xfs_buf_t *
xfs_trans_getsb(xfs_trans_t * tp,struct xfs_mount * mp,int flags)213 xfs_trans_getsb(xfs_trans_t *tp,
214 struct xfs_mount *mp,
215 int flags)
216 {
217 xfs_buf_t *bp;
218 xfs_buf_log_item_t *bip;
219
220 /*
221 * Default to just trying to lock the superblock buffer
222 * if tp is NULL.
223 */
224 if (tp == NULL) {
225 return (xfs_getsb(mp, flags));
226 }
227
228 /*
229 * If the superblock buffer already has this transaction
230 * pointer in its b_fsprivate2 field, then we know we already
231 * have it locked. In this case we just increment the lock
232 * recursion count and return the buffer to the caller.
233 */
234 bp = mp->m_sb_bp;
235 if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
236 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
237 ASSERT(bip != NULL);
238 ASSERT(atomic_read(&bip->bli_refcount) > 0);
239 bip->bli_recur++;
240 trace_xfs_trans_getsb_recur(bip);
241 return (bp);
242 }
243
244 bp = xfs_getsb(mp, flags);
245 if (bp == NULL)
246 return NULL;
247
248 _xfs_trans_bjoin(tp, bp, 1);
249 trace_xfs_trans_getsb(bp->b_fspriv);
250 return (bp);
251 }
252
253 #ifdef DEBUG
254 xfs_buftarg_t *xfs_error_target;
255 int xfs_do_error;
256 int xfs_req_num;
257 int xfs_error_mod = 33;
258 #endif
259
260 /*
261 * Get and lock the buffer for the caller if it is not already
262 * locked within the given transaction. If it has not yet been
263 * read in, read it from disk. If it is already locked
264 * within the transaction and already read in, just increment its
265 * lock recursion count and return a pointer to it.
266 *
267 * If the transaction pointer is NULL, make this just a normal
268 * read_buf() call.
269 */
270 int
xfs_trans_read_buf(xfs_mount_t * mp,xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len,uint flags,xfs_buf_t ** bpp)271 xfs_trans_read_buf(
272 xfs_mount_t *mp,
273 xfs_trans_t *tp,
274 xfs_buftarg_t *target,
275 xfs_daddr_t blkno,
276 int len,
277 uint flags,
278 xfs_buf_t **bpp)
279 {
280 xfs_buf_t *bp;
281 xfs_buf_log_item_t *bip;
282 int error;
283
284 if (flags == 0)
285 flags = XBF_LOCK | XBF_MAPPED;
286
287 /*
288 * Default to a normal get_buf() call if the tp is NULL.
289 */
290 if (tp == NULL) {
291 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
292 if (!bp)
293 return (flags & XBF_TRYLOCK) ?
294 EAGAIN : XFS_ERROR(ENOMEM);
295
296 if (XFS_BUF_GETERROR(bp) != 0) {
297 xfs_ioerror_alert("xfs_trans_read_buf", mp,
298 bp, blkno);
299 error = XFS_BUF_GETERROR(bp);
300 xfs_buf_relse(bp);
301 return error;
302 }
303 #ifdef DEBUG
304 if (xfs_do_error) {
305 if (xfs_error_target == target) {
306 if (((xfs_req_num++) % xfs_error_mod) == 0) {
307 xfs_buf_relse(bp);
308 xfs_debug(mp, "Returning error!");
309 return XFS_ERROR(EIO);
310 }
311 }
312 }
313 #endif
314 if (XFS_FORCED_SHUTDOWN(mp))
315 goto shutdown_abort;
316 *bpp = bp;
317 return 0;
318 }
319
320 /*
321 * If we find the buffer in the cache with this transaction
322 * pointer in its b_fsprivate2 field, then we know we already
323 * have it locked. If it is already read in we just increment
324 * the lock recursion count and return the buffer to the caller.
325 * If the buffer is not yet read in, then we read it in, increment
326 * the lock recursion count, and return it to the caller.
327 */
328 bp = xfs_trans_buf_item_match(tp, target, blkno, len);
329 if (bp != NULL) {
330 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
331 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
332 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
333 ASSERT((XFS_BUF_ISERROR(bp)) == 0);
334 if (!(XFS_BUF_ISDONE(bp))) {
335 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
336 ASSERT(!XFS_BUF_ISASYNC(bp));
337 XFS_BUF_READ(bp);
338 xfsbdstrat(tp->t_mountp, bp);
339 error = xfs_buf_iowait(bp);
340 if (error) {
341 xfs_ioerror_alert("xfs_trans_read_buf", mp,
342 bp, blkno);
343 xfs_buf_relse(bp);
344 /*
345 * We can gracefully recover from most read
346 * errors. Ones we can't are those that happen
347 * after the transaction's already dirty.
348 */
349 if (tp->t_flags & XFS_TRANS_DIRTY)
350 xfs_force_shutdown(tp->t_mountp,
351 SHUTDOWN_META_IO_ERROR);
352 return error;
353 }
354 }
355 /*
356 * We never locked this buf ourselves, so we shouldn't
357 * brelse it either. Just get out.
358 */
359 if (XFS_FORCED_SHUTDOWN(mp)) {
360 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
361 *bpp = NULL;
362 return XFS_ERROR(EIO);
363 }
364
365
366 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
367 bip->bli_recur++;
368
369 ASSERT(atomic_read(&bip->bli_refcount) > 0);
370 trace_xfs_trans_read_buf_recur(bip);
371 *bpp = bp;
372 return 0;
373 }
374
375 /*
376 * We always specify the XBF_DONT_BLOCK flag within a transaction
377 * so that get_buf does not try to push out a delayed write buffer
378 * which might cause another transaction to take place (if the
379 * buffer was delayed alloc). Such recursive transactions can
380 * easily deadlock with our current transaction as well as cause
381 * us to run out of stack space.
382 */
383 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
384 if (bp == NULL) {
385 *bpp = NULL;
386 return (flags & XBF_TRYLOCK) ?
387 0 : XFS_ERROR(ENOMEM);
388 }
389 if (XFS_BUF_GETERROR(bp) != 0) {
390 XFS_BUF_SUPER_STALE(bp);
391 error = XFS_BUF_GETERROR(bp);
392
393 xfs_ioerror_alert("xfs_trans_read_buf", mp,
394 bp, blkno);
395 if (tp->t_flags & XFS_TRANS_DIRTY)
396 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
397 xfs_buf_relse(bp);
398 return error;
399 }
400 #ifdef DEBUG
401 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
402 if (xfs_error_target == target) {
403 if (((xfs_req_num++) % xfs_error_mod) == 0) {
404 xfs_force_shutdown(tp->t_mountp,
405 SHUTDOWN_META_IO_ERROR);
406 xfs_buf_relse(bp);
407 xfs_debug(mp, "Returning trans error!");
408 return XFS_ERROR(EIO);
409 }
410 }
411 }
412 #endif
413 if (XFS_FORCED_SHUTDOWN(mp))
414 goto shutdown_abort;
415
416 _xfs_trans_bjoin(tp, bp, 1);
417 trace_xfs_trans_read_buf(bp->b_fspriv);
418
419 *bpp = bp;
420 return 0;
421
422 shutdown_abort:
423 /*
424 * the theory here is that buffer is good but we're
425 * bailing out because the filesystem is being forcibly
426 * shut down. So we should leave the b_flags alone since
427 * the buffer's not staled and just get out.
428 */
429 #if defined(DEBUG)
430 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
431 xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
432 #endif
433 ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) !=
434 (XBF_STALE|XBF_DELWRI));
435
436 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
437 xfs_buf_relse(bp);
438 *bpp = NULL;
439 return XFS_ERROR(EIO);
440 }
441
442
443 /*
444 * Release the buffer bp which was previously acquired with one of the
445 * xfs_trans_... buffer allocation routines if the buffer has not
446 * been modified within this transaction. If the buffer is modified
447 * within this transaction, do decrement the recursion count but do
448 * not release the buffer even if the count goes to 0. If the buffer is not
449 * modified within the transaction, decrement the recursion count and
450 * release the buffer if the recursion count goes to 0.
451 *
452 * If the buffer is to be released and it was not modified before
453 * this transaction began, then free the buf_log_item associated with it.
454 *
455 * If the transaction pointer is NULL, make this just a normal
456 * brelse() call.
457 */
458 void
xfs_trans_brelse(xfs_trans_t * tp,xfs_buf_t * bp)459 xfs_trans_brelse(xfs_trans_t *tp,
460 xfs_buf_t *bp)
461 {
462 xfs_buf_log_item_t *bip;
463 xfs_log_item_t *lip;
464
465 /*
466 * Default to a normal brelse() call if the tp is NULL.
467 */
468 if (tp == NULL) {
469 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
470 /*
471 * If there's a buf log item attached to the buffer,
472 * then let the AIL know that the buffer is being
473 * unlocked.
474 */
475 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
476 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
477 if (lip->li_type == XFS_LI_BUF) {
478 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
479 xfs_trans_unlocked_item(bip->bli_item.li_ailp,
480 lip);
481 }
482 }
483 xfs_buf_relse(bp);
484 return;
485 }
486
487 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
488 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
489 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
490 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
492 ASSERT(atomic_read(&bip->bli_refcount) > 0);
493
494 trace_xfs_trans_brelse(bip);
495
496 /*
497 * If the release is just for a recursive lock,
498 * then decrement the count and return.
499 */
500 if (bip->bli_recur > 0) {
501 bip->bli_recur--;
502 return;
503 }
504
505 /*
506 * If the buffer is dirty within this transaction, we can't
507 * release it until we commit.
508 */
509 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
510 return;
511
512 /*
513 * If the buffer has been invalidated, then we can't release
514 * it until the transaction commits to disk unless it is re-dirtied
515 * as part of this transaction. This prevents us from pulling
516 * the item from the AIL before we should.
517 */
518 if (bip->bli_flags & XFS_BLI_STALE)
519 return;
520
521 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
522
523 /*
524 * Free up the log item descriptor tracking the released item.
525 */
526 xfs_trans_del_item(&bip->bli_item);
527
528 /*
529 * Clear the hold flag in the buf log item if it is set.
530 * We wouldn't want the next user of the buffer to
531 * get confused.
532 */
533 if (bip->bli_flags & XFS_BLI_HOLD) {
534 bip->bli_flags &= ~XFS_BLI_HOLD;
535 }
536
537 /*
538 * Drop our reference to the buf log item.
539 */
540 atomic_dec(&bip->bli_refcount);
541
542 /*
543 * If the buf item is not tracking data in the log, then
544 * we must free it before releasing the buffer back to the
545 * free pool. Before releasing the buffer to the free pool,
546 * clear the transaction pointer in b_fsprivate2 to dissolve
547 * its relation to this transaction.
548 */
549 if (!xfs_buf_item_dirty(bip)) {
550 /***
551 ASSERT(bp->b_pincount == 0);
552 ***/
553 ASSERT(atomic_read(&bip->bli_refcount) == 0);
554 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
555 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
556 xfs_buf_item_relse(bp);
557 bip = NULL;
558 }
559 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
560
561 /*
562 * If we've still got a buf log item on the buffer, then
563 * tell the AIL that the buffer is being unlocked.
564 */
565 if (bip != NULL) {
566 xfs_trans_unlocked_item(bip->bli_item.li_ailp,
567 (xfs_log_item_t*)bip);
568 }
569
570 xfs_buf_relse(bp);
571 return;
572 }
573
574 /*
575 * Mark the buffer as not needing to be unlocked when the buf item's
576 * IOP_UNLOCK() routine is called. The buffer must already be locked
577 * and associated with the given transaction.
578 */
579 /* ARGSUSED */
580 void
xfs_trans_bhold(xfs_trans_t * tp,xfs_buf_t * bp)581 xfs_trans_bhold(xfs_trans_t *tp,
582 xfs_buf_t *bp)
583 {
584 xfs_buf_log_item_t *bip;
585
586 ASSERT(XFS_BUF_ISBUSY(bp));
587 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
588 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
589
590 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
591 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
592 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
593 ASSERT(atomic_read(&bip->bli_refcount) > 0);
594 bip->bli_flags |= XFS_BLI_HOLD;
595 trace_xfs_trans_bhold(bip);
596 }
597
598 /*
599 * Cancel the previous buffer hold request made on this buffer
600 * for this transaction.
601 */
602 void
xfs_trans_bhold_release(xfs_trans_t * tp,xfs_buf_t * bp)603 xfs_trans_bhold_release(xfs_trans_t *tp,
604 xfs_buf_t *bp)
605 {
606 xfs_buf_log_item_t *bip;
607
608 ASSERT(XFS_BUF_ISBUSY(bp));
609 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
610 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
611
612 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
613 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
614 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
615 ASSERT(atomic_read(&bip->bli_refcount) > 0);
616 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
617 bip->bli_flags &= ~XFS_BLI_HOLD;
618
619 trace_xfs_trans_bhold_release(bip);
620 }
621
622 /*
623 * This is called to mark bytes first through last inclusive of the given
624 * buffer as needing to be logged when the transaction is committed.
625 * The buffer must already be associated with the given transaction.
626 *
627 * First and last are numbers relative to the beginning of this buffer,
628 * so the first byte in the buffer is numbered 0 regardless of the
629 * value of b_blkno.
630 */
631 void
xfs_trans_log_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint first,uint last)632 xfs_trans_log_buf(xfs_trans_t *tp,
633 xfs_buf_t *bp,
634 uint first,
635 uint last)
636 {
637 xfs_buf_log_item_t *bip;
638
639 ASSERT(XFS_BUF_ISBUSY(bp));
640 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
641 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
642 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
643 ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
644 (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
645
646 /*
647 * Mark the buffer as needing to be written out eventually,
648 * and set its iodone function to remove the buffer's buf log
649 * item from the AIL and free it when the buffer is flushed
650 * to disk. See xfs_buf_attach_iodone() for more details
651 * on li_cb and xfs_buf_iodone_callbacks().
652 * If we end up aborting this transaction, we trap this buffer
653 * inside the b_bdstrat callback so that this won't get written to
654 * disk.
655 */
656 XFS_BUF_DELAYWRITE(bp);
657 XFS_BUF_DONE(bp);
658
659 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
660 ASSERT(atomic_read(&bip->bli_refcount) > 0);
661 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
662 bip->bli_item.li_cb = xfs_buf_iodone;
663
664 trace_xfs_trans_log_buf(bip);
665
666 /*
667 * If we invalidated the buffer within this transaction, then
668 * cancel the invalidation now that we're dirtying the buffer
669 * again. There are no races with the code in xfs_buf_item_unpin(),
670 * because we have a reference to the buffer this entire time.
671 */
672 if (bip->bli_flags & XFS_BLI_STALE) {
673 bip->bli_flags &= ~XFS_BLI_STALE;
674 ASSERT(XFS_BUF_ISSTALE(bp));
675 XFS_BUF_UNSTALE(bp);
676 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
677 }
678
679 tp->t_flags |= XFS_TRANS_DIRTY;
680 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
681 bip->bli_flags |= XFS_BLI_LOGGED;
682 xfs_buf_item_log(bip, first, last);
683 }
684
685
686 /*
687 * This called to invalidate a buffer that is being used within
688 * a transaction. Typically this is because the blocks in the
689 * buffer are being freed, so we need to prevent it from being
690 * written out when we're done. Allowing it to be written again
691 * might overwrite data in the free blocks if they are reallocated
692 * to a file.
693 *
694 * We prevent the buffer from being written out by clearing the
695 * B_DELWRI flag. We can't always
696 * get rid of the buf log item at this point, though, because
697 * the buffer may still be pinned by another transaction. If that
698 * is the case, then we'll wait until the buffer is committed to
699 * disk for the last time (we can tell by the ref count) and
700 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
701 * will keep the buffer locked so that the buffer and buf log item
702 * are not reused.
703 */
704 void
xfs_trans_binval(xfs_trans_t * tp,xfs_buf_t * bp)705 xfs_trans_binval(
706 xfs_trans_t *tp,
707 xfs_buf_t *bp)
708 {
709 xfs_buf_log_item_t *bip;
710
711 ASSERT(XFS_BUF_ISBUSY(bp));
712 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
713 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
714
715 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
716 ASSERT(atomic_read(&bip->bli_refcount) > 0);
717
718 trace_xfs_trans_binval(bip);
719
720 if (bip->bli_flags & XFS_BLI_STALE) {
721 /*
722 * If the buffer is already invalidated, then
723 * just return.
724 */
725 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
726 ASSERT(XFS_BUF_ISSTALE(bp));
727 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
728 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
729 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
730 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
731 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
732 return;
733 }
734
735 /*
736 * Clear the dirty bit in the buffer and set the STALE flag
737 * in the buf log item. The STALE flag will be used in
738 * xfs_buf_item_unpin() to determine if it should clean up
739 * when the last reference to the buf item is given up.
740 * We set the XFS_BLF_CANCEL flag in the buf log format structure
741 * and log the buf item. This will be used at recovery time
742 * to determine that copies of the buffer in the log before
743 * this should not be replayed.
744 * We mark the item descriptor and the transaction dirty so
745 * that we'll hold the buffer until after the commit.
746 *
747 * Since we're invalidating the buffer, we also clear the state
748 * about which parts of the buffer have been logged. We also
749 * clear the flag indicating that this is an inode buffer since
750 * the data in the buffer will no longer be valid.
751 *
752 * We set the stale bit in the buffer as well since we're getting
753 * rid of it.
754 */
755 XFS_BUF_UNDELAYWRITE(bp);
756 XFS_BUF_STALE(bp);
757 bip->bli_flags |= XFS_BLI_STALE;
758 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
759 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
760 bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
761 memset((char *)(bip->bli_format.blf_data_map), 0,
762 (bip->bli_format.blf_map_size * sizeof(uint)));
763 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
764 tp->t_flags |= XFS_TRANS_DIRTY;
765 }
766
767 /*
768 * This call is used to indicate that the buffer contains on-disk inodes which
769 * must be handled specially during recovery. They require special handling
770 * because only the di_next_unlinked from the inodes in the buffer should be
771 * recovered. The rest of the data in the buffer is logged via the inodes
772 * themselves.
773 *
774 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
775 * transferred to the buffer's log format structure so that we'll know what to
776 * do at recovery time.
777 */
778 void
xfs_trans_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)779 xfs_trans_inode_buf(
780 xfs_trans_t *tp,
781 xfs_buf_t *bp)
782 {
783 xfs_buf_log_item_t *bip;
784
785 ASSERT(XFS_BUF_ISBUSY(bp));
786 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
787 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
788
789 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
790 ASSERT(atomic_read(&bip->bli_refcount) > 0);
791
792 bip->bli_flags |= XFS_BLI_INODE_BUF;
793 }
794
795 /*
796 * This call is used to indicate that the buffer is going to
797 * be staled and was an inode buffer. This means it gets
798 * special processing during unpin - where any inodes
799 * associated with the buffer should be removed from ail.
800 * There is also special processing during recovery,
801 * any replay of the inodes in the buffer needs to be
802 * prevented as the buffer may have been reused.
803 */
804 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)805 xfs_trans_stale_inode_buf(
806 xfs_trans_t *tp,
807 xfs_buf_t *bp)
808 {
809 xfs_buf_log_item_t *bip;
810
811 ASSERT(XFS_BUF_ISBUSY(bp));
812 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
813 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
814
815 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
816 ASSERT(atomic_read(&bip->bli_refcount) > 0);
817
818 bip->bli_flags |= XFS_BLI_STALE_INODE;
819 bip->bli_item.li_cb = xfs_buf_iodone;
820 }
821
822 /*
823 * Mark the buffer as being one which contains newly allocated
824 * inodes. We need to make sure that even if this buffer is
825 * relogged as an 'inode buf' we still recover all of the inode
826 * images in the face of a crash. This works in coordination with
827 * xfs_buf_item_committed() to ensure that the buffer remains in the
828 * AIL at its original location even after it has been relogged.
829 */
830 /* ARGSUSED */
831 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,xfs_buf_t * bp)832 xfs_trans_inode_alloc_buf(
833 xfs_trans_t *tp,
834 xfs_buf_t *bp)
835 {
836 xfs_buf_log_item_t *bip;
837
838 ASSERT(XFS_BUF_ISBUSY(bp));
839 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
840 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
841
842 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
843 ASSERT(atomic_read(&bip->bli_refcount) > 0);
844
845 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
846 }
847
848
849 /*
850 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
851 * dquots. However, unlike in inode buffer recovery, dquot buffers get
852 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
853 * The only thing that makes dquot buffers different from regular
854 * buffers is that we must not replay dquot bufs when recovering
855 * if a _corresponding_ quotaoff has happened. We also have to distinguish
856 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
857 * can be turned off independently.
858 */
859 /* ARGSUSED */
860 void
xfs_trans_dquot_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint type)861 xfs_trans_dquot_buf(
862 xfs_trans_t *tp,
863 xfs_buf_t *bp,
864 uint type)
865 {
866 xfs_buf_log_item_t *bip;
867
868 ASSERT(XFS_BUF_ISBUSY(bp));
869 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
870 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
871 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
872 type == XFS_BLF_PDQUOT_BUF ||
873 type == XFS_BLF_GDQUOT_BUF);
874
875 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
876 ASSERT(atomic_read(&bip->bli_refcount) > 0);
877
878 bip->bli_format.blf_flags |= type;
879 }
880