1 /*
2  * Copyright (c) 2000-2002 Silicon Graphics, Inc.  All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11  *
12  * Further, this software is distributed without any warranty that it is
13  * free of the rightful claim of any third person regarding infringement
14  * or the like.  Any license provided herein, whether implied or
15  * otherwise, applies only to this software file.  Patent licenses, if
16  * any, provided herein do not apply to combinations of this program with
17  * other software, or any other product whatsoever.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24  * Mountain View, CA  94043, or:
25  *
26  * http://www.sgi.com
27  *
28  * For further information regarding this notice, see:
29  *
30  * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31  */
32 
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_error.h"
47 #include "xfs_rw.h"
48 
49 
50 STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *,
51 		xfs_daddr_t, int);
52 STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *,
53 		xfs_daddr_t, int);
54 
55 
56 /*
57  * Get and lock the buffer for the caller if it is not already
58  * locked within the given transaction.  If it is already locked
59  * within the transaction, just increment its lock recursion count
60  * and return a pointer to it.
61  *
62  * Use the fast path function xfs_trans_buf_item_match() or the buffer
63  * cache routine incore_match() to find the buffer
64  * if it is already owned by this transaction.
65  *
66  * If we don't already own the buffer, use get_buf() to get it.
67  * If it doesn't yet have an associated xfs_buf_log_item structure,
68  * then allocate one and add the item to this transaction.
69  *
70  * If the transaction pointer is NULL, make this just a normal
71  * get_buf() call.
72  */
73 xfs_buf_t *
xfs_trans_get_buf(xfs_trans_t * tp,xfs_buftarg_t * target_dev,xfs_daddr_t blkno,int len,uint flags)74 xfs_trans_get_buf(xfs_trans_t	*tp,
75 		  xfs_buftarg_t	*target_dev,
76 		  xfs_daddr_t	blkno,
77 		  int		len,
78 		  uint		flags)
79 {
80 	xfs_buf_t		*bp;
81 	xfs_buf_log_item_t	*bip;
82 
83 	if (flags == 0)
84 		flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
85 
86 	/*
87 	 * Default to a normal get_buf() call if the tp is NULL.
88 	 */
89 	if (tp == NULL) {
90 		bp = xfs_buf_get_flags(target_dev, blkno, len,
91 							flags | BUF_BUSY);
92 		return(bp);
93 	}
94 
95 	/*
96 	 * If we find the buffer in the cache with this transaction
97 	 * pointer in its b_fsprivate2 field, then we know we already
98 	 * have it locked.  In this case we just increment the lock
99 	 * recursion count and return the buffer to the caller.
100 	 */
101 	if (tp->t_items.lic_next == NULL) {
102 		bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
103 	} else {
104 		bp  = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len);
105 	}
106 	if (bp != NULL) {
107 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
108 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
109 			xfs_buftrace("TRANS GET RECUR SHUT", bp);
110 			XFS_BUF_SUPER_STALE(bp);
111 		}
112 		/*
113 		 * If the buffer is stale then it was binval'ed
114 		 * since last read.  This doesn't matter since the
115 		 * caller isn't allowed to use the data anyway.
116 		 */
117 		else if (XFS_BUF_ISSTALE(bp)) {
118 			xfs_buftrace("TRANS GET RECUR STALE", bp);
119 			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
120 		}
121 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
122 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
123 		ASSERT(bip != NULL);
124 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
125 		bip->bli_recur++;
126 		xfs_buftrace("TRANS GET RECUR", bp);
127 		xfs_buf_item_trace("GET RECUR", bip);
128 		return (bp);
129 	}
130 
131 	/*
132 	 * We always specify the BUF_BUSY flag within a transaction so
133 	 * that get_buf does not try to push out a delayed write buffer
134 	 * which might cause another transaction to take place (if the
135 	 * buffer was delayed alloc).  Such recursive transactions can
136 	 * easily deadlock with our current transaction as well as cause
137 	 * us to run out of stack space.
138 	 */
139 	bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY);
140 	if (bp == NULL) {
141 		return NULL;
142 	}
143 
144 	ASSERT(!XFS_BUF_GETERROR(bp));
145 
146 	/*
147 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
148 	 * it doesn't have one yet, then allocate one and initialize it.
149 	 * The checks to see if one is there are in xfs_buf_item_init().
150 	 */
151 	xfs_buf_item_init(bp, tp->t_mountp);
152 
153 	/*
154 	 * Set the recursion count for the buffer within this transaction
155 	 * to 0.
156 	 */
157 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
158 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
159 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
160 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
161 	bip->bli_recur = 0;
162 
163 	/*
164 	 * Take a reference for this transaction on the buf item.
165 	 */
166 	atomic_inc(&bip->bli_refcount);
167 
168 	/*
169 	 * Get a log_item_desc to point at the new item.
170 	 */
171 	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
172 
173 	/*
174 	 * Initialize b_fsprivate2 so we can find it with incore_match()
175 	 * above.
176 	 */
177 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
178 
179 	xfs_buftrace("TRANS GET", bp);
180 	xfs_buf_item_trace("GET", bip);
181 	return (bp);
182 }
183 
184 /*
185  * Get and lock the superblock buffer of this file system for the
186  * given transaction.
187  *
188  * We don't need to use incore_match() here, because the superblock
189  * buffer is a private buffer which we keep a pointer to in the
190  * mount structure.
191  */
192 xfs_buf_t *
xfs_trans_getsb(xfs_trans_t * tp,struct xfs_mount * mp,int flags)193 xfs_trans_getsb(xfs_trans_t	*tp,
194 		struct xfs_mount *mp,
195 		int		flags)
196 {
197 	xfs_buf_t		*bp;
198 	xfs_buf_log_item_t	*bip;
199 
200 	/*
201 	 * Default to just trying to lock the superblock buffer
202 	 * if tp is NULL.
203 	 */
204 	if (tp == NULL) {
205 		return (xfs_getsb(mp, flags));
206 	}
207 
208 	/*
209 	 * If the superblock buffer already has this transaction
210 	 * pointer in its b_fsprivate2 field, then we know we already
211 	 * have it locked.  In this case we just increment the lock
212 	 * recursion count and return the buffer to the caller.
213 	 */
214 	bp = mp->m_sb_bp;
215 	if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
216 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
217 		ASSERT(bip != NULL);
218 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
219 		bip->bli_recur++;
220 		xfs_buf_item_trace("GETSB RECUR", bip);
221 		return (bp);
222 	}
223 
224 	bp = xfs_getsb(mp, flags);
225 	if (bp == NULL) {
226 		return NULL;
227 	}
228 
229 	/*
230 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
231 	 * it doesn't have one yet, then allocate one and initialize it.
232 	 * The checks to see if one is there are in xfs_buf_item_init().
233 	 */
234 	xfs_buf_item_init(bp, mp);
235 
236 	/*
237 	 * Set the recursion count for the buffer within this transaction
238 	 * to 0.
239 	 */
240 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
241 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
242 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
243 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
244 	bip->bli_recur = 0;
245 
246 	/*
247 	 * Take a reference for this transaction on the buf item.
248 	 */
249 	atomic_inc(&bip->bli_refcount);
250 
251 	/*
252 	 * Get a log_item_desc to point at the new item.
253 	 */
254 	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
255 
256 	/*
257 	 * Initialize b_fsprivate2 so we can find it with incore_match()
258 	 * above.
259 	 */
260 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
261 
262 	xfs_buf_item_trace("GETSB", bip);
263 	return (bp);
264 }
265 
266 #ifdef DEBUG
267 xfs_buftarg_t *xfs_error_target;
268 int	xfs_do_error;
269 int	xfs_req_num;
270 int	xfs_error_mod = 33;
271 #endif
272 
273 /*
274  * Get and lock the buffer for the caller if it is not already
275  * locked within the given transaction.  If it has not yet been
276  * read in, read it from disk. If it is already locked
277  * within the transaction and already read in, just increment its
278  * lock recursion count and return a pointer to it.
279  *
280  * Use the fast path function xfs_trans_buf_item_match() or the buffer
281  * cache routine incore_match() to find the buffer
282  * if it is already owned by this transaction.
283  *
284  * If we don't already own the buffer, use read_buf() to get it.
285  * If it doesn't yet have an associated xfs_buf_log_item structure,
286  * then allocate one and add the item to this transaction.
287  *
288  * If the transaction pointer is NULL, make this just a normal
289  * read_buf() call.
290  */
291 int
xfs_trans_read_buf(xfs_mount_t * mp,xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len,uint flags,xfs_buf_t ** bpp)292 xfs_trans_read_buf(
293 	xfs_mount_t	*mp,
294 	xfs_trans_t	*tp,
295 	xfs_buftarg_t	*target,
296 	xfs_daddr_t	blkno,
297 	int		len,
298 	uint		flags,
299 	xfs_buf_t	**bpp)
300 {
301 	xfs_buf_t		*bp;
302 	xfs_buf_log_item_t	*bip;
303 	int			error;
304 
305 	if (flags == 0)
306 		flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
307 
308 	/*
309 	 * Default to a normal get_buf() call if the tp is NULL.
310 	 */
311 	if (tp == NULL) {
312 		bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
313 		if (!bp)
314 			return XFS_ERROR(ENOMEM);
315 
316 		if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) {
317 			xfs_ioerror_alert("xfs_trans_read_buf", mp,
318 					  bp, blkno);
319 			error = XFS_BUF_GETERROR(bp);
320 			xfs_buf_relse(bp);
321 			return error;
322 		}
323 #ifdef DEBUG
324 		if (xfs_do_error && (bp != NULL)) {
325 			if (xfs_error_target == target) {
326 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
327 					xfs_buf_relse(bp);
328 					printk("Returning error!\n");
329 					return XFS_ERROR(EIO);
330 				}
331 			}
332 		}
333 #endif
334 		if (XFS_FORCED_SHUTDOWN(mp))
335 			goto shutdown_abort;
336 		*bpp = bp;
337 		return 0;
338 	}
339 
340 	/*
341 	 * If we find the buffer in the cache with this transaction
342 	 * pointer in its b_fsprivate2 field, then we know we already
343 	 * have it locked.  If it is already read in we just increment
344 	 * the lock recursion count and return the buffer to the caller.
345 	 * If the buffer is not yet read in, then we read it in, increment
346 	 * the lock recursion count, and return it to the caller.
347 	 */
348 	if (tp->t_items.lic_next == NULL) {
349 		bp = xfs_trans_buf_item_match(tp, target, blkno, len);
350 	} else {
351 		bp = xfs_trans_buf_item_match_all(tp, target, blkno, len);
352 	}
353 	if (bp != NULL) {
354 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
355 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
356 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
357 		ASSERT((XFS_BUF_ISERROR(bp)) == 0);
358 		if (!(XFS_BUF_ISDONE(bp))) {
359 			xfs_buftrace("READ_BUF_INCORE !DONE", bp);
360 			ASSERT(!XFS_BUF_ISASYNC(bp));
361 			XFS_BUF_READ(bp);
362 			xfsbdstrat(tp->t_mountp, bp);
363 			xfs_iowait(bp);
364 			if (XFS_BUF_GETERROR(bp) != 0) {
365 				xfs_ioerror_alert("xfs_trans_read_buf", mp,
366 						  bp, blkno);
367 				error = XFS_BUF_GETERROR(bp);
368 				xfs_buf_relse(bp);
369 				/*
370 				 * We can gracefully recover from most
371 				 * read errors. Ones we can't are those
372 				 * that happen after the transaction's
373 				 * already dirty.
374 				 */
375 				if (tp->t_flags & XFS_TRANS_DIRTY)
376 					xfs_force_shutdown(tp->t_mountp,
377 							   XFS_METADATA_IO_ERROR);
378 				return error;
379 			}
380 		}
381 		/*
382 		 * We never locked this buf ourselves, so we shouldn't
383 		 * brelse it either. Just get out.
384 		 */
385 		if (XFS_FORCED_SHUTDOWN(mp)) {
386 			xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp);
387 			*bpp = NULL;
388 			return XFS_ERROR(EIO);
389 		}
390 
391 
392 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
393 		bip->bli_recur++;
394 
395 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
396 		xfs_buf_item_trace("READ RECUR", bip);
397 		*bpp = bp;
398 		return 0;
399 	}
400 
401 	/*
402 	 * We always specify the BUF_BUSY flag within a transaction so
403 	 * that get_buf does not try to push out a delayed write buffer
404 	 * which might cause another transaction to take place (if the
405 	 * buffer was delayed alloc).  Such recursive transactions can
406 	 * easily deadlock with our current transaction as well as cause
407 	 * us to run out of stack space.
408 	 */
409 	bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
410 	if (bp == NULL) {
411 		*bpp = NULL;
412 		return 0;
413 	}
414 	if (XFS_BUF_GETERROR(bp) != 0) {
415 	    XFS_BUF_SUPER_STALE(bp);
416 		xfs_buftrace("READ ERROR", bp);
417 		error = XFS_BUF_GETERROR(bp);
418 
419 		xfs_ioerror_alert("xfs_trans_read_buf", mp,
420 				  bp, blkno);
421 		if (tp->t_flags & XFS_TRANS_DIRTY)
422 			xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR);
423 		xfs_buf_relse(bp);
424 		return error;
425 	}
426 #ifdef DEBUG
427 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
428 		if (xfs_error_target == target) {
429 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
430 				xfs_force_shutdown(tp->t_mountp,
431 						   XFS_METADATA_IO_ERROR);
432 				xfs_buf_relse(bp);
433 				printk("Returning error in trans!\n");
434 				return XFS_ERROR(EIO);
435 			}
436 		}
437 	}
438 #endif
439 	if (XFS_FORCED_SHUTDOWN(mp))
440 		goto shutdown_abort;
441 
442 	/*
443 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
444 	 * it doesn't have one yet, then allocate one and initialize it.
445 	 * The checks to see if one is there are in xfs_buf_item_init().
446 	 */
447 	xfs_buf_item_init(bp, tp->t_mountp);
448 
449 	/*
450 	 * Set the recursion count for the buffer within this transaction
451 	 * to 0.
452 	 */
453 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
454 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
455 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
456 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
457 	bip->bli_recur = 0;
458 
459 	/*
460 	 * Take a reference for this transaction on the buf item.
461 	 */
462 	atomic_inc(&bip->bli_refcount);
463 
464 	/*
465 	 * Get a log_item_desc to point at the new item.
466 	 */
467 	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
468 
469 	/*
470 	 * Initialize b_fsprivate2 so we can find it with incore_match()
471 	 * above.
472 	 */
473 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
474 
475 	xfs_buftrace("TRANS READ", bp);
476 	xfs_buf_item_trace("READ", bip);
477 	*bpp = bp;
478 	return 0;
479 
480 shutdown_abort:
481 	/*
482 	 * the theory here is that buffer is good but we're
483 	 * bailing out because the filesystem is being forcibly
484 	 * shut down.  So we should leave the b_flags alone since
485 	 * the buffer's not staled and just get out.
486 	 */
487 #if defined(DEBUG)
488 	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
489 		cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp);
490 #endif
491 	ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) !=
492 						(XFS_B_STALE|XFS_B_DELWRI));
493 
494 	xfs_buftrace("READ_BUF XFSSHUTDN", bp);
495 	xfs_buf_relse(bp);
496 	*bpp = NULL;
497 	return XFS_ERROR(EIO);
498 }
499 
500 
501 /*
502  * Release the buffer bp which was previously acquired with one of the
503  * xfs_trans_... buffer allocation routines if the buffer has not
504  * been modified within this transaction.  If the buffer is modified
505  * within this transaction, do decrement the recursion count but do
506  * not release the buffer even if the count goes to 0.  If the buffer is not
507  * modified within the transaction, decrement the recursion count and
508  * release the buffer if the recursion count goes to 0.
509  *
510  * If the buffer is to be released and it was not modified before
511  * this transaction began, then free the buf_log_item associated with it.
512  *
513  * If the transaction pointer is NULL, make this just a normal
514  * brelse() call.
515  */
516 void
xfs_trans_brelse(xfs_trans_t * tp,xfs_buf_t * bp)517 xfs_trans_brelse(xfs_trans_t	*tp,
518 		 xfs_buf_t	*bp)
519 {
520 	xfs_buf_log_item_t	*bip;
521 	xfs_log_item_t		*lip;
522 	xfs_log_item_desc_t	*lidp;
523 
524 	/*
525 	 * Default to a normal brelse() call if the tp is NULL.
526 	 */
527 	if (tp == NULL) {
528 		ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
529 		/*
530 		 * If there's a buf log item attached to the buffer,
531 		 * then let the AIL know that the buffer is being
532 		 * unlocked.
533 		 */
534 		if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
535 			lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
536 			if (lip->li_type == XFS_LI_BUF) {
537 				bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
538 				xfs_trans_unlocked_item(
539 						bip->bli_item.li_mountp,
540 						lip);
541 			}
542 		}
543 		xfs_buf_relse(bp);
544 		return;
545 	}
546 
547 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
548 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
549 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
550 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
551 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
552 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
553 
554 	/*
555 	 * Find the item descriptor pointing to this buffer's
556 	 * log item.  It must be there.
557 	 */
558 	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
559 	ASSERT(lidp != NULL);
560 
561 	/*
562 	 * If the release is just for a recursive lock,
563 	 * then decrement the count and return.
564 	 */
565 	if (bip->bli_recur > 0) {
566 		bip->bli_recur--;
567 		xfs_buf_item_trace("RELSE RECUR", bip);
568 		return;
569 	}
570 
571 	/*
572 	 * If the buffer is dirty within this transaction, we can't
573 	 * release it until we commit.
574 	 */
575 	if (lidp->lid_flags & XFS_LID_DIRTY) {
576 		xfs_buf_item_trace("RELSE DIRTY", bip);
577 		return;
578 	}
579 
580 	/*
581 	 * If the buffer has been invalidated, then we can't release
582 	 * it until the transaction commits to disk unless it is re-dirtied
583 	 * as part of this transaction.  This prevents us from pulling
584 	 * the item from the AIL before we should.
585 	 */
586 	if (bip->bli_flags & XFS_BLI_STALE) {
587 		xfs_buf_item_trace("RELSE STALE", bip);
588 		return;
589 	}
590 
591 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
592 	xfs_buf_item_trace("RELSE", bip);
593 
594 	/*
595 	 * Free up the log item descriptor tracking the released item.
596 	 */
597 	xfs_trans_free_item(tp, lidp);
598 
599 	/*
600 	 * Clear the hold flag in the buf log item if it is set.
601 	 * We wouldn't want the next user of the buffer to
602 	 * get confused.
603 	 */
604 	if (bip->bli_flags & XFS_BLI_HOLD) {
605 		bip->bli_flags &= ~XFS_BLI_HOLD;
606 	}
607 
608 	/*
609 	 * Drop our reference to the buf log item.
610 	 */
611 	atomic_dec(&bip->bli_refcount);
612 
613 	/*
614 	 * If the buf item is not tracking data in the log, then
615 	 * we must free it before releasing the buffer back to the
616 	 * free pool.  Before releasing the buffer to the free pool,
617 	 * clear the transaction pointer in b_fsprivate2 to dissolve
618 	 * its relation to this transaction.
619 	 */
620 	if (!xfs_buf_item_dirty(bip)) {
621 /***
622 		ASSERT(bp->b_pincount == 0);
623 ***/
624 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
625 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
626 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
627 		xfs_buf_item_relse(bp);
628 		bip = NULL;
629 	}
630 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
631 
632 	/*
633 	 * If we've still got a buf log item on the buffer, then
634 	 * tell the AIL that the buffer is being unlocked.
635 	 */
636 	if (bip != NULL) {
637 		xfs_trans_unlocked_item(bip->bli_item.li_mountp,
638 					(xfs_log_item_t*)bip);
639 	}
640 
641 	xfs_buf_relse(bp);
642 	return;
643 }
644 
645 /*
646  * Add the locked buffer to the transaction.
647  * The buffer must be locked, and it cannot be associated with any
648  * transaction.
649  *
650  * If the buffer does not yet have a buf log item associated with it,
651  * then allocate one for it.  Then add the buf item to the transaction.
652  */
653 void
xfs_trans_bjoin(xfs_trans_t * tp,xfs_buf_t * bp)654 xfs_trans_bjoin(xfs_trans_t	*tp,
655 		xfs_buf_t	*bp)
656 {
657 	xfs_buf_log_item_t	*bip;
658 
659 	ASSERT(XFS_BUF_ISBUSY(bp));
660 	ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
661 
662 	/*
663 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
664 	 * it doesn't have one yet, then allocate one and initialize it.
665 	 * The checks to see if one is there are in xfs_buf_item_init().
666 	 */
667 	xfs_buf_item_init(bp, tp->t_mountp);
668 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
669 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
670 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
671 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
672 
673 	/*
674 	 * Take a reference for this transaction on the buf item.
675 	 */
676 	atomic_inc(&bip->bli_refcount);
677 
678 	/*
679 	 * Get a log_item_desc to point at the new item.
680 	 */
681 	(void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip);
682 
683 	/*
684 	 * Initialize b_fsprivate2 so we can find it with incore_match()
685 	 * in xfs_trans_get_buf() and friends above.
686 	 */
687 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
688 
689 	xfs_buf_item_trace("BJOIN", bip);
690 }
691 
692 /*
693  * Mark the buffer as not needing to be unlocked when the buf item's
694  * IOP_UNLOCK() routine is called.  The buffer must already be locked
695  * and associated with the given transaction.
696  */
697 /* ARGSUSED */
698 void
xfs_trans_bhold(xfs_trans_t * tp,xfs_buf_t * bp)699 xfs_trans_bhold(xfs_trans_t	*tp,
700 		xfs_buf_t	*bp)
701 {
702 	xfs_buf_log_item_t	*bip;
703 
704 	ASSERT(XFS_BUF_ISBUSY(bp));
705 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
706 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
707 
708 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
709 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
710 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
711 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
712 	bip->bli_flags |= XFS_BLI_HOLD;
713 	xfs_buf_item_trace("BHOLD", bip);
714 }
715 
716 /*
717  * This is called to mark bytes first through last inclusive of the given
718  * buffer as needing to be logged when the transaction is committed.
719  * The buffer must already be associated with the given transaction.
720  *
721  * First and last are numbers relative to the beginning of this buffer,
722  * so the first byte in the buffer is numbered 0 regardless of the
723  * value of b_blkno.
724  */
725 void
xfs_trans_log_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint first,uint last)726 xfs_trans_log_buf(xfs_trans_t	*tp,
727 		  xfs_buf_t	*bp,
728 		  uint		first,
729 		  uint		last)
730 {
731 	xfs_buf_log_item_t	*bip;
732 	xfs_log_item_desc_t	*lidp;
733 
734 	ASSERT(XFS_BUF_ISBUSY(bp));
735 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
736 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
737 	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
738 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
739 	       (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
740 
741 	/*
742 	 * Mark the buffer as needing to be written out eventually,
743 	 * and set its iodone function to remove the buffer's buf log
744 	 * item from the AIL and free it when the buffer is flushed
745 	 * to disk.  See xfs_buf_attach_iodone() for more details
746 	 * on li_cb and xfs_buf_iodone_callbacks().
747 	 * If we end up aborting this transaction, we trap this buffer
748 	 * inside the b_bdstrat callback so that this won't get written to
749 	 * disk.
750 	 */
751 	XFS_BUF_DELAYWRITE(bp);
752 	XFS_BUF_DONE(bp);
753 
754 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
755 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
756 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
757 	bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone;
758 
759 	/*
760 	 * If we invalidated the buffer within this transaction, then
761 	 * cancel the invalidation now that we're dirtying the buffer
762 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
763 	 * because we have a reference to the buffer this entire time.
764 	 */
765 	if (bip->bli_flags & XFS_BLI_STALE) {
766 		xfs_buf_item_trace("BLOG UNSTALE", bip);
767 		bip->bli_flags &= ~XFS_BLI_STALE;
768 		ASSERT(XFS_BUF_ISSTALE(bp));
769 		XFS_BUF_UNSTALE(bp);
770 		bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL;
771 	}
772 
773 	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
774 	ASSERT(lidp != NULL);
775 
776 	tp->t_flags |= XFS_TRANS_DIRTY;
777 	lidp->lid_flags |= XFS_LID_DIRTY;
778 	lidp->lid_flags &= ~XFS_LID_BUF_STALE;
779 	bip->bli_flags |= XFS_BLI_LOGGED;
780 	xfs_buf_item_log(bip, first, last);
781 	xfs_buf_item_trace("BLOG", bip);
782 }
783 
784 
785 /*
786  * This called to invalidate a buffer that is being used within
787  * a transaction.  Typically this is because the blocks in the
788  * buffer are being freed, so we need to prevent it from being
789  * written out when we're done.  Allowing it to be written again
790  * might overwrite data in the free blocks if they are reallocated
791  * to a file.
792  *
793  * We prevent the buffer from being written out by clearing the
794  * B_DELWRI flag.  We can't always
795  * get rid of the buf log item at this point, though, because
796  * the buffer may still be pinned by another transaction.  If that
797  * is the case, then we'll wait until the buffer is committed to
798  * disk for the last time (we can tell by the ref count) and
799  * free it in xfs_buf_item_unpin().  Until it is cleaned up we
800  * will keep the buffer locked so that the buffer and buf log item
801  * are not reused.
802  */
803 void
xfs_trans_binval(xfs_trans_t * tp,xfs_buf_t * bp)804 xfs_trans_binval(
805 	xfs_trans_t	*tp,
806 	xfs_buf_t	*bp)
807 {
808 	xfs_log_item_desc_t	*lidp;
809 	xfs_buf_log_item_t	*bip;
810 
811 	ASSERT(XFS_BUF_ISBUSY(bp));
812 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
813 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
814 
815 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
816 	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
817 	ASSERT(lidp != NULL);
818 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
819 
820 	if (bip->bli_flags & XFS_BLI_STALE) {
821 		/*
822 		 * If the buffer is already invalidated, then
823 		 * just return.
824 		 */
825 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
826 		ASSERT(XFS_BUF_ISSTALE(bp));
827 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
828 		ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF));
829 		ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL);
830 		ASSERT(lidp->lid_flags & XFS_LID_DIRTY);
831 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
832 		xfs_buftrace("XFS_BINVAL RECUR", bp);
833 		xfs_buf_item_trace("BINVAL RECUR", bip);
834 		return;
835 	}
836 
837 	/*
838 	 * Clear the dirty bit in the buffer and set the STALE flag
839 	 * in the buf log item.  The STALE flag will be used in
840 	 * xfs_buf_item_unpin() to determine if it should clean up
841 	 * when the last reference to the buf item is given up.
842 	 * We set the XFS_BLI_CANCEL flag in the buf log format structure
843 	 * and log the buf item.  This will be used at recovery time
844 	 * to determine that copies of the buffer in the log before
845 	 * this should not be replayed.
846 	 * We mark the item descriptor and the transaction dirty so
847 	 * that we'll hold the buffer until after the commit.
848 	 *
849 	 * Since we're invalidating the buffer, we also clear the state
850 	 * about which parts of the buffer have been logged.  We also
851 	 * clear the flag indicating that this is an inode buffer since
852 	 * the data in the buffer will no longer be valid.
853 	 *
854 	 * We set the stale bit in the buffer as well since we're getting
855 	 * rid of it.
856 	 */
857 	XFS_BUF_UNDELAYWRITE(bp);
858 	XFS_BUF_STALE(bp);
859 	bip->bli_flags |= XFS_BLI_STALE;
860 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY);
861 	bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF;
862 	bip->bli_format.blf_flags |= XFS_BLI_CANCEL;
863 	memset((char *)(bip->bli_format.blf_data_map), 0,
864 	      (bip->bli_format.blf_map_size * sizeof(uint)));
865 	lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE;
866 	tp->t_flags |= XFS_TRANS_DIRTY;
867 	xfs_buftrace("XFS_BINVAL", bp);
868 	xfs_buf_item_trace("BINVAL", bip);
869 }
870 
871 /*
872  * This call is used to indicate that the buffer contains on-disk
873  * inodes which must be handled specially during recovery.  They
874  * require special handling because only the di_next_unlinked from
875  * the inodes in the buffer should be recovered.  The rest of the
876  * data in the buffer is logged via the inodes themselves.
877  *
878  * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log
879  * format structure so that we'll know what to do at recovery time.
880  */
881 /* ARGSUSED */
882 void
xfs_trans_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)883 xfs_trans_inode_buf(
884 	xfs_trans_t	*tp,
885 	xfs_buf_t	*bp)
886 {
887 	xfs_buf_log_item_t	*bip;
888 
889 	ASSERT(XFS_BUF_ISBUSY(bp));
890 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
891 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
892 
893 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
894 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
895 
896 	bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF;
897 }
898 
899 /*
900  * This call is used to indicate that the buffer is going to
901  * be staled and was an inode buffer. This means it gets
902  * special processing during unpin - where any inodes
903  * associated with the buffer should be removed from ail.
904  * There is also special processing during recovery,
905  * any replay of the inodes in the buffer needs to be
906  * prevented as the buffer may have been reused.
907  */
908 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)909 xfs_trans_stale_inode_buf(
910 	xfs_trans_t	*tp,
911 	xfs_buf_t	*bp)
912 {
913 	xfs_buf_log_item_t	*bip;
914 
915 	ASSERT(XFS_BUF_ISBUSY(bp));
916 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
917 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
918 
919 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
920 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
921 
922 	bip->bli_flags |= XFS_BLI_STALE_INODE;
923 	bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))
924 		xfs_buf_iodone;
925 }
926 
927 
928 
929 /*
930  * Mark the buffer as being one which contains newly allocated
931  * inodes.  We need to make sure that even if this buffer is
932  * relogged as an 'inode buf' we still recover all of the inode
933  * images in the face of a crash.  This works in coordination with
934  * xfs_buf_item_committed() to ensure that the buffer remains in the
935  * AIL at its original location even after it has been relogged.
936  */
937 /* ARGSUSED */
938 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,xfs_buf_t * bp)939 xfs_trans_inode_alloc_buf(
940 	xfs_trans_t	*tp,
941 	xfs_buf_t	*bp)
942 {
943 	xfs_buf_log_item_t	*bip;
944 
945 	ASSERT(XFS_BUF_ISBUSY(bp));
946 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
947 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
948 
949 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
950 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
951 
952 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
953 }
954 
955 
956 /*
957  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
958  * dquots. However, unlike in inode buffer recovery, dquot buffers get
959  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
960  * The only thing that makes dquot buffers different from regular
961  * buffers is that we must not replay dquot bufs when recovering
962  * if a _corresponding_ quotaoff has happened. We also have to distinguish
963  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
964  * can be turned off independently.
965  */
966 /* ARGSUSED */
967 void
xfs_trans_dquot_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint type)968 xfs_trans_dquot_buf(
969 	xfs_trans_t	*tp,
970 	xfs_buf_t	*bp,
971 	uint		type)
972 {
973 	xfs_buf_log_item_t	*bip;
974 
975 	ASSERT(XFS_BUF_ISBUSY(bp));
976 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
977 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
978 	ASSERT(type == XFS_BLI_UDQUOT_BUF ||
979 	       type == XFS_BLI_GDQUOT_BUF);
980 
981 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
982 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
983 
984 	bip->bli_format.blf_flags |= type;
985 }
986 
987 /*
988  * Check to see if a buffer matching the given parameters is already
989  * a part of the given transaction.  Only check the first, embedded
990  * chunk, since we don't want to spend all day scanning large transactions.
991  */
992 STATIC xfs_buf_t *
xfs_trans_buf_item_match(xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len)993 xfs_trans_buf_item_match(
994 	xfs_trans_t	*tp,
995 	xfs_buftarg_t	*target,
996 	xfs_daddr_t	blkno,
997 	int		len)
998 {
999 	xfs_log_item_chunk_t	*licp;
1000 	xfs_log_item_desc_t	*lidp;
1001 	xfs_buf_log_item_t	*blip;
1002 	xfs_buf_t		*bp;
1003 	int			i;
1004 
1005 	bp = NULL;
1006 	len = BBTOB(len);
1007 	licp = &tp->t_items;
1008 	if (!XFS_LIC_ARE_ALL_FREE(licp)) {
1009 		for (i = 0; i < licp->lic_unused; i++) {
1010 			/*
1011 			 * Skip unoccupied slots.
1012 			 */
1013 			if (XFS_LIC_ISFREE(licp, i)) {
1014 				continue;
1015 			}
1016 
1017 			lidp = XFS_LIC_SLOT(licp, i);
1018 			blip = (xfs_buf_log_item_t *)lidp->lid_item;
1019 			if (blip->bli_item.li_type != XFS_LI_BUF) {
1020 				continue;
1021 			}
1022 
1023 			bp = blip->bli_buf;
1024 			if ((XFS_BUF_TARGET(bp) == target) &&
1025 			    (XFS_BUF_ADDR(bp) == blkno) &&
1026 			    (XFS_BUF_COUNT(bp) == len)) {
1027 				/*
1028 				 * We found it.  Break out and
1029 				 * return the pointer to the buffer.
1030 				 */
1031 				break;
1032 			} else {
1033 				bp = NULL;
1034 			}
1035 		}
1036 	}
1037 	return bp;
1038 }
1039 
1040 /*
1041  * Check to see if a buffer matching the given parameters is already
1042  * a part of the given transaction.  Check all the chunks, we
1043  * want to be thorough.
1044  */
1045 STATIC xfs_buf_t *
xfs_trans_buf_item_match_all(xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len)1046 xfs_trans_buf_item_match_all(
1047 	xfs_trans_t	*tp,
1048 	xfs_buftarg_t	*target,
1049 	xfs_daddr_t	blkno,
1050 	int		len)
1051 {
1052 	xfs_log_item_chunk_t	*licp;
1053 	xfs_log_item_desc_t	*lidp;
1054 	xfs_buf_log_item_t	*blip;
1055 	xfs_buf_t		*bp;
1056 	int			i;
1057 
1058 	bp = NULL;
1059 	len = BBTOB(len);
1060 	for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) {
1061 		if (XFS_LIC_ARE_ALL_FREE(licp)) {
1062 			ASSERT(licp == &tp->t_items);
1063 			ASSERT(licp->lic_next == NULL);
1064 			return NULL;
1065 		}
1066 		for (i = 0; i < licp->lic_unused; i++) {
1067 			/*
1068 			 * Skip unoccupied slots.
1069 			 */
1070 			if (XFS_LIC_ISFREE(licp, i)) {
1071 				continue;
1072 			}
1073 
1074 			lidp = XFS_LIC_SLOT(licp, i);
1075 			blip = (xfs_buf_log_item_t *)lidp->lid_item;
1076 			if (blip->bli_item.li_type != XFS_LI_BUF) {
1077 				continue;
1078 			}
1079 
1080 			bp = blip->bli_buf;
1081 			if ((XFS_BUF_TARGET(bp) == target) &&
1082 			    (XFS_BUF_ADDR(bp) == blkno) &&
1083 			    (XFS_BUF_COUNT(bp) == len)) {
1084 				/*
1085 				 * We found it.  Break out and
1086 				 * return the pointer to the buffer.
1087 				 */
1088 				return bp;
1089 			}
1090 		}
1091 	}
1092 	return NULL;
1093 }
1094