1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
38
39 /*
40 * Check to see if a buffer matching the given parameters is already
41 * a part of the given transaction.
42 */
43 STATIC struct xfs_buf *
xfs_trans_buf_item_match(struct xfs_trans * tp,struct xfs_buftarg * target,xfs_daddr_t blkno,int len)44 xfs_trans_buf_item_match(
45 struct xfs_trans *tp,
46 struct xfs_buftarg *target,
47 xfs_daddr_t blkno,
48 int len)
49 {
50 struct xfs_log_item_desc *lidp;
51 struct xfs_buf_log_item *blip;
52
53 len = BBTOB(len);
54 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 if (blip->bli_item.li_type == XFS_LI_BUF &&
57 blip->bli_buf->b_target == target &&
58 XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 XFS_BUF_COUNT(blip->bli_buf) == len)
60 return blip->bli_buf;
61 }
62
63 return NULL;
64 }
65
66 /*
67 * Add the locked buffer to the transaction.
68 *
69 * The buffer must be locked, and it cannot be associated with any
70 * transaction.
71 *
72 * If the buffer does not yet have a buf log item associated with it,
73 * then allocate one for it. Then add the buf item to the transaction.
74 */
75 STATIC void
_xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp,int reset_recur)76 _xfs_trans_bjoin(
77 struct xfs_trans *tp,
78 struct xfs_buf *bp,
79 int reset_recur)
80 {
81 struct xfs_buf_log_item *bip;
82
83 ASSERT(bp->b_transp == NULL);
84
85 /*
86 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
87 * it doesn't have one yet, then allocate one and initialize it.
88 * The checks to see if one is there are in xfs_buf_item_init().
89 */
90 xfs_buf_item_init(bp, tp->t_mountp);
91 bip = bp->b_fspriv;
92 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
93 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
94 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
95 if (reset_recur)
96 bip->bli_recur = 0;
97
98 /*
99 * Take a reference for this transaction on the buf item.
100 */
101 atomic_inc(&bip->bli_refcount);
102
103 /*
104 * Get a log_item_desc to point at the new item.
105 */
106 xfs_trans_add_item(tp, &bip->bli_item);
107
108 /*
109 * Initialize b_fsprivate2 so we can find it with incore_match()
110 * in xfs_trans_get_buf() and friends above.
111 */
112 bp->b_transp = tp;
113
114 }
115
116 void
xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp)117 xfs_trans_bjoin(
118 struct xfs_trans *tp,
119 struct xfs_buf *bp)
120 {
121 _xfs_trans_bjoin(tp, bp, 0);
122 trace_xfs_trans_bjoin(bp->b_fspriv);
123 }
124
125 /*
126 * Get and lock the buffer for the caller if it is not already
127 * locked within the given transaction. If it is already locked
128 * within the transaction, just increment its lock recursion count
129 * and return a pointer to it.
130 *
131 * If the transaction pointer is NULL, make this just a normal
132 * get_buf() call.
133 */
134 xfs_buf_t *
xfs_trans_get_buf(xfs_trans_t * tp,xfs_buftarg_t * target_dev,xfs_daddr_t blkno,int len,uint flags)135 xfs_trans_get_buf(xfs_trans_t *tp,
136 xfs_buftarg_t *target_dev,
137 xfs_daddr_t blkno,
138 int len,
139 uint flags)
140 {
141 xfs_buf_t *bp;
142 xfs_buf_log_item_t *bip;
143
144 if (flags == 0)
145 flags = XBF_LOCK | XBF_MAPPED;
146
147 /*
148 * Default to a normal get_buf() call if the tp is NULL.
149 */
150 if (tp == NULL)
151 return xfs_buf_get(target_dev, blkno, len,
152 flags | XBF_DONT_BLOCK);
153
154 /*
155 * If we find the buffer in the cache with this transaction
156 * pointer in its b_fsprivate2 field, then we know we already
157 * have it locked. In this case we just increment the lock
158 * recursion count and return the buffer to the caller.
159 */
160 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
161 if (bp != NULL) {
162 ASSERT(xfs_buf_islocked(bp));
163 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
164 xfs_buf_stale(bp);
165 XFS_BUF_DONE(bp);
166 }
167
168 /*
169 * If the buffer is stale then it was binval'ed
170 * since last read. This doesn't matter since the
171 * caller isn't allowed to use the data anyway.
172 */
173 else if (XFS_BUF_ISSTALE(bp))
174 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
175
176 ASSERT(bp->b_transp == tp);
177 bip = bp->b_fspriv;
178 ASSERT(bip != NULL);
179 ASSERT(atomic_read(&bip->bli_refcount) > 0);
180 bip->bli_recur++;
181 trace_xfs_trans_get_buf_recur(bip);
182 return (bp);
183 }
184
185 /*
186 * We always specify the XBF_DONT_BLOCK flag within a transaction
187 * so that get_buf does not try to push out a delayed write buffer
188 * which might cause another transaction to take place (if the
189 * buffer was delayed alloc). Such recursive transactions can
190 * easily deadlock with our current transaction as well as cause
191 * us to run out of stack space.
192 */
193 bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
194 if (bp == NULL) {
195 return NULL;
196 }
197
198 ASSERT(!bp->b_error);
199
200 _xfs_trans_bjoin(tp, bp, 1);
201 trace_xfs_trans_get_buf(bp->b_fspriv);
202 return (bp);
203 }
204
205 /*
206 * Get and lock the superblock buffer of this file system for the
207 * given transaction.
208 *
209 * We don't need to use incore_match() here, because the superblock
210 * buffer is a private buffer which we keep a pointer to in the
211 * mount structure.
212 */
213 xfs_buf_t *
xfs_trans_getsb(xfs_trans_t * tp,struct xfs_mount * mp,int flags)214 xfs_trans_getsb(xfs_trans_t *tp,
215 struct xfs_mount *mp,
216 int flags)
217 {
218 xfs_buf_t *bp;
219 xfs_buf_log_item_t *bip;
220
221 /*
222 * Default to just trying to lock the superblock buffer
223 * if tp is NULL.
224 */
225 if (tp == NULL) {
226 return (xfs_getsb(mp, flags));
227 }
228
229 /*
230 * If the superblock buffer already has this transaction
231 * pointer in its b_fsprivate2 field, then we know we already
232 * have it locked. In this case we just increment the lock
233 * recursion count and return the buffer to the caller.
234 */
235 bp = mp->m_sb_bp;
236 if (bp->b_transp == tp) {
237 bip = bp->b_fspriv;
238 ASSERT(bip != NULL);
239 ASSERT(atomic_read(&bip->bli_refcount) > 0);
240 bip->bli_recur++;
241 trace_xfs_trans_getsb_recur(bip);
242 return (bp);
243 }
244
245 bp = xfs_getsb(mp, flags);
246 if (bp == NULL)
247 return NULL;
248
249 _xfs_trans_bjoin(tp, bp, 1);
250 trace_xfs_trans_getsb(bp->b_fspriv);
251 return (bp);
252 }
253
254 #ifdef DEBUG
255 xfs_buftarg_t *xfs_error_target;
256 int xfs_do_error;
257 int xfs_req_num;
258 int xfs_error_mod = 33;
259 #endif
260
261 /*
262 * Get and lock the buffer for the caller if it is not already
263 * locked within the given transaction. If it has not yet been
264 * read in, read it from disk. If it is already locked
265 * within the transaction and already read in, just increment its
266 * lock recursion count and return a pointer to it.
267 *
268 * If the transaction pointer is NULL, make this just a normal
269 * read_buf() call.
270 */
271 int
xfs_trans_read_buf(xfs_mount_t * mp,xfs_trans_t * tp,xfs_buftarg_t * target,xfs_daddr_t blkno,int len,uint flags,xfs_buf_t ** bpp)272 xfs_trans_read_buf(
273 xfs_mount_t *mp,
274 xfs_trans_t *tp,
275 xfs_buftarg_t *target,
276 xfs_daddr_t blkno,
277 int len,
278 uint flags,
279 xfs_buf_t **bpp)
280 {
281 xfs_buf_t *bp;
282 xfs_buf_log_item_t *bip;
283 int error;
284
285 if (flags == 0)
286 flags = XBF_LOCK | XBF_MAPPED;
287
288 /*
289 * Default to a normal get_buf() call if the tp is NULL.
290 */
291 if (tp == NULL) {
292 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
293 if (!bp)
294 return (flags & XBF_TRYLOCK) ?
295 EAGAIN : XFS_ERROR(ENOMEM);
296
297 if (bp->b_error) {
298 error = bp->b_error;
299 xfs_buf_ioerror_alert(bp, __func__);
300 xfs_buf_relse(bp);
301 return error;
302 }
303 #ifdef DEBUG
304 if (xfs_do_error) {
305 if (xfs_error_target == target) {
306 if (((xfs_req_num++) % xfs_error_mod) == 0) {
307 xfs_buf_relse(bp);
308 xfs_debug(mp, "Returning error!");
309 return XFS_ERROR(EIO);
310 }
311 }
312 }
313 #endif
314 if (XFS_FORCED_SHUTDOWN(mp))
315 goto shutdown_abort;
316 *bpp = bp;
317 return 0;
318 }
319
320 /*
321 * If we find the buffer in the cache with this transaction
322 * pointer in its b_fsprivate2 field, then we know we already
323 * have it locked. If it is already read in we just increment
324 * the lock recursion count and return the buffer to the caller.
325 * If the buffer is not yet read in, then we read it in, increment
326 * the lock recursion count, and return it to the caller.
327 */
328 bp = xfs_trans_buf_item_match(tp, target, blkno, len);
329 if (bp != NULL) {
330 ASSERT(xfs_buf_islocked(bp));
331 ASSERT(bp->b_transp == tp);
332 ASSERT(bp->b_fspriv != NULL);
333 ASSERT(!bp->b_error);
334 if (!(XFS_BUF_ISDONE(bp))) {
335 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
336 ASSERT(!XFS_BUF_ISASYNC(bp));
337 XFS_BUF_READ(bp);
338 xfsbdstrat(tp->t_mountp, bp);
339 error = xfs_buf_iowait(bp);
340 if (error) {
341 xfs_buf_ioerror_alert(bp, __func__);
342 xfs_buf_relse(bp);
343 /*
344 * We can gracefully recover from most read
345 * errors. Ones we can't are those that happen
346 * after the transaction's already dirty.
347 */
348 if (tp->t_flags & XFS_TRANS_DIRTY)
349 xfs_force_shutdown(tp->t_mountp,
350 SHUTDOWN_META_IO_ERROR);
351 return error;
352 }
353 }
354 /*
355 * We never locked this buf ourselves, so we shouldn't
356 * brelse it either. Just get out.
357 */
358 if (XFS_FORCED_SHUTDOWN(mp)) {
359 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
360 *bpp = NULL;
361 return XFS_ERROR(EIO);
362 }
363
364
365 bip = bp->b_fspriv;
366 bip->bli_recur++;
367
368 ASSERT(atomic_read(&bip->bli_refcount) > 0);
369 trace_xfs_trans_read_buf_recur(bip);
370 *bpp = bp;
371 return 0;
372 }
373
374 /*
375 * We always specify the XBF_DONT_BLOCK flag within a transaction
376 * so that get_buf does not try to push out a delayed write buffer
377 * which might cause another transaction to take place (if the
378 * buffer was delayed alloc). Such recursive transactions can
379 * easily deadlock with our current transaction as well as cause
380 * us to run out of stack space.
381 */
382 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
383 if (bp == NULL) {
384 *bpp = NULL;
385 return (flags & XBF_TRYLOCK) ?
386 0 : XFS_ERROR(ENOMEM);
387 }
388 if (bp->b_error) {
389 error = bp->b_error;
390 xfs_buf_stale(bp);
391 XFS_BUF_DONE(bp);
392 xfs_buf_ioerror_alert(bp, __func__);
393 if (tp->t_flags & XFS_TRANS_DIRTY)
394 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
395 xfs_buf_relse(bp);
396 return error;
397 }
398 #ifdef DEBUG
399 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
400 if (xfs_error_target == target) {
401 if (((xfs_req_num++) % xfs_error_mod) == 0) {
402 xfs_force_shutdown(tp->t_mountp,
403 SHUTDOWN_META_IO_ERROR);
404 xfs_buf_relse(bp);
405 xfs_debug(mp, "Returning trans error!");
406 return XFS_ERROR(EIO);
407 }
408 }
409 }
410 #endif
411 if (XFS_FORCED_SHUTDOWN(mp))
412 goto shutdown_abort;
413
414 _xfs_trans_bjoin(tp, bp, 1);
415 trace_xfs_trans_read_buf(bp->b_fspriv);
416
417 *bpp = bp;
418 return 0;
419
420 shutdown_abort:
421 /*
422 * the theory here is that buffer is good but we're
423 * bailing out because the filesystem is being forcibly
424 * shut down. So we should leave the b_flags alone since
425 * the buffer's not staled and just get out.
426 */
427 #if defined(DEBUG)
428 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
429 xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
430 #endif
431 ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) !=
432 (XBF_STALE|XBF_DELWRI));
433
434 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
435 xfs_buf_relse(bp);
436 *bpp = NULL;
437 return XFS_ERROR(EIO);
438 }
439
440
441 /*
442 * Release the buffer bp which was previously acquired with one of the
443 * xfs_trans_... buffer allocation routines if the buffer has not
444 * been modified within this transaction. If the buffer is modified
445 * within this transaction, do decrement the recursion count but do
446 * not release the buffer even if the count goes to 0. If the buffer is not
447 * modified within the transaction, decrement the recursion count and
448 * release the buffer if the recursion count goes to 0.
449 *
450 * If the buffer is to be released and it was not modified before
451 * this transaction began, then free the buf_log_item associated with it.
452 *
453 * If the transaction pointer is NULL, make this just a normal
454 * brelse() call.
455 */
456 void
xfs_trans_brelse(xfs_trans_t * tp,xfs_buf_t * bp)457 xfs_trans_brelse(xfs_trans_t *tp,
458 xfs_buf_t *bp)
459 {
460 xfs_buf_log_item_t *bip;
461
462 /*
463 * Default to a normal brelse() call if the tp is NULL.
464 */
465 if (tp == NULL) {
466 ASSERT(bp->b_transp == NULL);
467 xfs_buf_relse(bp);
468 return;
469 }
470
471 ASSERT(bp->b_transp == tp);
472 bip = bp->b_fspriv;
473 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
474 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
475 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
476 ASSERT(atomic_read(&bip->bli_refcount) > 0);
477
478 trace_xfs_trans_brelse(bip);
479
480 /*
481 * If the release is just for a recursive lock,
482 * then decrement the count and return.
483 */
484 if (bip->bli_recur > 0) {
485 bip->bli_recur--;
486 return;
487 }
488
489 /*
490 * If the buffer is dirty within this transaction, we can't
491 * release it until we commit.
492 */
493 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
494 return;
495
496 /*
497 * If the buffer has been invalidated, then we can't release
498 * it until the transaction commits to disk unless it is re-dirtied
499 * as part of this transaction. This prevents us from pulling
500 * the item from the AIL before we should.
501 */
502 if (bip->bli_flags & XFS_BLI_STALE)
503 return;
504
505 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
506
507 /*
508 * Free up the log item descriptor tracking the released item.
509 */
510 xfs_trans_del_item(&bip->bli_item);
511
512 /*
513 * Clear the hold flag in the buf log item if it is set.
514 * We wouldn't want the next user of the buffer to
515 * get confused.
516 */
517 if (bip->bli_flags & XFS_BLI_HOLD) {
518 bip->bli_flags &= ~XFS_BLI_HOLD;
519 }
520
521 /*
522 * Drop our reference to the buf log item.
523 */
524 atomic_dec(&bip->bli_refcount);
525
526 /*
527 * If the buf item is not tracking data in the log, then
528 * we must free it before releasing the buffer back to the
529 * free pool. Before releasing the buffer to the free pool,
530 * clear the transaction pointer in b_fsprivate2 to dissolve
531 * its relation to this transaction.
532 */
533 if (!xfs_buf_item_dirty(bip)) {
534 /***
535 ASSERT(bp->b_pincount == 0);
536 ***/
537 ASSERT(atomic_read(&bip->bli_refcount) == 0);
538 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
539 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
540 xfs_buf_item_relse(bp);
541 }
542
543 bp->b_transp = NULL;
544 xfs_buf_relse(bp);
545 }
546
547 /*
548 * Mark the buffer as not needing to be unlocked when the buf item's
549 * IOP_UNLOCK() routine is called. The buffer must already be locked
550 * and associated with the given transaction.
551 */
552 /* ARGSUSED */
553 void
xfs_trans_bhold(xfs_trans_t * tp,xfs_buf_t * bp)554 xfs_trans_bhold(xfs_trans_t *tp,
555 xfs_buf_t *bp)
556 {
557 xfs_buf_log_item_t *bip = bp->b_fspriv;
558
559 ASSERT(bp->b_transp == tp);
560 ASSERT(bip != NULL);
561 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
562 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
563 ASSERT(atomic_read(&bip->bli_refcount) > 0);
564
565 bip->bli_flags |= XFS_BLI_HOLD;
566 trace_xfs_trans_bhold(bip);
567 }
568
569 /*
570 * Cancel the previous buffer hold request made on this buffer
571 * for this transaction.
572 */
573 void
xfs_trans_bhold_release(xfs_trans_t * tp,xfs_buf_t * bp)574 xfs_trans_bhold_release(xfs_trans_t *tp,
575 xfs_buf_t *bp)
576 {
577 xfs_buf_log_item_t *bip = bp->b_fspriv;
578
579 ASSERT(bp->b_transp == tp);
580 ASSERT(bip != NULL);
581 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
582 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
583 ASSERT(atomic_read(&bip->bli_refcount) > 0);
584 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
585
586 bip->bli_flags &= ~XFS_BLI_HOLD;
587 trace_xfs_trans_bhold_release(bip);
588 }
589
590 /*
591 * This is called to mark bytes first through last inclusive of the given
592 * buffer as needing to be logged when the transaction is committed.
593 * The buffer must already be associated with the given transaction.
594 *
595 * First and last are numbers relative to the beginning of this buffer,
596 * so the first byte in the buffer is numbered 0 regardless of the
597 * value of b_blkno.
598 */
599 void
xfs_trans_log_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint first,uint last)600 xfs_trans_log_buf(xfs_trans_t *tp,
601 xfs_buf_t *bp,
602 uint first,
603 uint last)
604 {
605 xfs_buf_log_item_t *bip = bp->b_fspriv;
606
607 ASSERT(bp->b_transp == tp);
608 ASSERT(bip != NULL);
609 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
610 ASSERT(bp->b_iodone == NULL ||
611 bp->b_iodone == xfs_buf_iodone_callbacks);
612
613 /*
614 * Mark the buffer as needing to be written out eventually,
615 * and set its iodone function to remove the buffer's buf log
616 * item from the AIL and free it when the buffer is flushed
617 * to disk. See xfs_buf_attach_iodone() for more details
618 * on li_cb and xfs_buf_iodone_callbacks().
619 * If we end up aborting this transaction, we trap this buffer
620 * inside the b_bdstrat callback so that this won't get written to
621 * disk.
622 */
623 XFS_BUF_DONE(bp);
624
625 ASSERT(atomic_read(&bip->bli_refcount) > 0);
626 bp->b_iodone = xfs_buf_iodone_callbacks;
627 bip->bli_item.li_cb = xfs_buf_iodone;
628
629 xfs_buf_delwri_queue(bp);
630
631 trace_xfs_trans_log_buf(bip);
632
633 /*
634 * If we invalidated the buffer within this transaction, then
635 * cancel the invalidation now that we're dirtying the buffer
636 * again. There are no races with the code in xfs_buf_item_unpin(),
637 * because we have a reference to the buffer this entire time.
638 */
639 if (bip->bli_flags & XFS_BLI_STALE) {
640 bip->bli_flags &= ~XFS_BLI_STALE;
641 ASSERT(XFS_BUF_ISSTALE(bp));
642 XFS_BUF_UNSTALE(bp);
643 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
644 }
645
646 tp->t_flags |= XFS_TRANS_DIRTY;
647 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
648 bip->bli_flags |= XFS_BLI_LOGGED;
649 xfs_buf_item_log(bip, first, last);
650 }
651
652
653 /*
654 * This called to invalidate a buffer that is being used within
655 * a transaction. Typically this is because the blocks in the
656 * buffer are being freed, so we need to prevent it from being
657 * written out when we're done. Allowing it to be written again
658 * might overwrite data in the free blocks if they are reallocated
659 * to a file.
660 *
661 * We prevent the buffer from being written out by clearing the
662 * B_DELWRI flag. We can't always
663 * get rid of the buf log item at this point, though, because
664 * the buffer may still be pinned by another transaction. If that
665 * is the case, then we'll wait until the buffer is committed to
666 * disk for the last time (we can tell by the ref count) and
667 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
668 * will keep the buffer locked so that the buffer and buf log item
669 * are not reused.
670 */
671 void
xfs_trans_binval(xfs_trans_t * tp,xfs_buf_t * bp)672 xfs_trans_binval(
673 xfs_trans_t *tp,
674 xfs_buf_t *bp)
675 {
676 xfs_buf_log_item_t *bip = bp->b_fspriv;
677
678 ASSERT(bp->b_transp == tp);
679 ASSERT(bip != NULL);
680 ASSERT(atomic_read(&bip->bli_refcount) > 0);
681
682 trace_xfs_trans_binval(bip);
683
684 if (bip->bli_flags & XFS_BLI_STALE) {
685 /*
686 * If the buffer is already invalidated, then
687 * just return.
688 */
689 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
690 ASSERT(XFS_BUF_ISSTALE(bp));
691 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
692 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
693 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
694 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
695 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
696 return;
697 }
698
699 /*
700 * Clear the dirty bit in the buffer and set the STALE flag
701 * in the buf log item. The STALE flag will be used in
702 * xfs_buf_item_unpin() to determine if it should clean up
703 * when the last reference to the buf item is given up.
704 * We set the XFS_BLF_CANCEL flag in the buf log format structure
705 * and log the buf item. This will be used at recovery time
706 * to determine that copies of the buffer in the log before
707 * this should not be replayed.
708 * We mark the item descriptor and the transaction dirty so
709 * that we'll hold the buffer until after the commit.
710 *
711 * Since we're invalidating the buffer, we also clear the state
712 * about which parts of the buffer have been logged. We also
713 * clear the flag indicating that this is an inode buffer since
714 * the data in the buffer will no longer be valid.
715 *
716 * We set the stale bit in the buffer as well since we're getting
717 * rid of it.
718 */
719 xfs_buf_stale(bp);
720 bip->bli_flags |= XFS_BLI_STALE;
721 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
722 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
723 bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
724 memset((char *)(bip->bli_format.blf_data_map), 0,
725 (bip->bli_format.blf_map_size * sizeof(uint)));
726 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
727 tp->t_flags |= XFS_TRANS_DIRTY;
728 }
729
730 /*
731 * This call is used to indicate that the buffer contains on-disk inodes which
732 * must be handled specially during recovery. They require special handling
733 * because only the di_next_unlinked from the inodes in the buffer should be
734 * recovered. The rest of the data in the buffer is logged via the inodes
735 * themselves.
736 *
737 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
738 * transferred to the buffer's log format structure so that we'll know what to
739 * do at recovery time.
740 */
741 void
xfs_trans_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)742 xfs_trans_inode_buf(
743 xfs_trans_t *tp,
744 xfs_buf_t *bp)
745 {
746 xfs_buf_log_item_t *bip = bp->b_fspriv;
747
748 ASSERT(bp->b_transp == tp);
749 ASSERT(bip != NULL);
750 ASSERT(atomic_read(&bip->bli_refcount) > 0);
751
752 bip->bli_flags |= XFS_BLI_INODE_BUF;
753 }
754
755 /*
756 * This call is used to indicate that the buffer is going to
757 * be staled and was an inode buffer. This means it gets
758 * special processing during unpin - where any inodes
759 * associated with the buffer should be removed from ail.
760 * There is also special processing during recovery,
761 * any replay of the inodes in the buffer needs to be
762 * prevented as the buffer may have been reused.
763 */
764 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)765 xfs_trans_stale_inode_buf(
766 xfs_trans_t *tp,
767 xfs_buf_t *bp)
768 {
769 xfs_buf_log_item_t *bip = bp->b_fspriv;
770
771 ASSERT(bp->b_transp == tp);
772 ASSERT(bip != NULL);
773 ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775 bip->bli_flags |= XFS_BLI_STALE_INODE;
776 bip->bli_item.li_cb = xfs_buf_iodone;
777 }
778
779 /*
780 * Mark the buffer as being one which contains newly allocated
781 * inodes. We need to make sure that even if this buffer is
782 * relogged as an 'inode buf' we still recover all of the inode
783 * images in the face of a crash. This works in coordination with
784 * xfs_buf_item_committed() to ensure that the buffer remains in the
785 * AIL at its original location even after it has been relogged.
786 */
787 /* ARGSUSED */
788 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,xfs_buf_t * bp)789 xfs_trans_inode_alloc_buf(
790 xfs_trans_t *tp,
791 xfs_buf_t *bp)
792 {
793 xfs_buf_log_item_t *bip = bp->b_fspriv;
794
795 ASSERT(bp->b_transp == tp);
796 ASSERT(bip != NULL);
797 ASSERT(atomic_read(&bip->bli_refcount) > 0);
798
799 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
800 }
801
802
803 /*
804 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
805 * dquots. However, unlike in inode buffer recovery, dquot buffers get
806 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
807 * The only thing that makes dquot buffers different from regular
808 * buffers is that we must not replay dquot bufs when recovering
809 * if a _corresponding_ quotaoff has happened. We also have to distinguish
810 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
811 * can be turned off independently.
812 */
813 /* ARGSUSED */
814 void
xfs_trans_dquot_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint type)815 xfs_trans_dquot_buf(
816 xfs_trans_t *tp,
817 xfs_buf_t *bp,
818 uint type)
819 {
820 xfs_buf_log_item_t *bip = bp->b_fspriv;
821
822 ASSERT(bp->b_transp == tp);
823 ASSERT(bip != NULL);
824 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
825 type == XFS_BLF_PDQUOT_BUF ||
826 type == XFS_BLF_GDQUOT_BUF);
827 ASSERT(atomic_read(&bip->bli_refcount) > 0);
828
829 bip->bli_format.blf_flags |= type;
830 }
831