1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27
28 struct kmem_cache *xfs_trans_cache;
29
30 #if defined(CONFIG_TRACEPOINTS)
31 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)32 xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34 {
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
43 }
44 #else
45 # define xfs_trans_trace_reservations(mp)
46 #endif
47
48 /*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52 void
xfs_trans_init(struct xfs_mount * mp)53 xfs_trans_init(
54 struct xfs_mount *mp)
55 {
56 xfs_trans_resv_calc(mp, M_RES(mp));
57 xfs_trans_trace_reservations(mp);
58 }
59
60 /*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64 STATIC void
xfs_trans_free(struct xfs_trans * tp)65 xfs_trans_free(
66 struct xfs_trans *tp)
67 {
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71 trace_xfs_trans_free(tp, _RET_IP_);
72 xfs_trans_clear_context(tp);
73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 sb_end_intwrite(tp->t_mountp->m_super);
75 xfs_trans_free_dqinfo(tp);
76 kmem_cache_free(xfs_trans_cache, tp);
77 }
78
79 /*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
87 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)88 xfs_trans_dup(
89 struct xfs_trans *tp)
90 {
91 struct xfs_trans *ntp;
92
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97 /*
98 * Initialize the new transaction structure.
99 */
100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 ntp->t_mountp = tp->t_mountp;
102 INIT_LIST_HEAD(&ntp->t_items);
103 INIT_LIST_HEAD(&ntp->t_busy);
104 INIT_LIST_HEAD(&ntp->t_dfops);
105 ntp->t_firstblock = NULLFSBLOCK;
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 ASSERT(tp->t_ticket != NULL);
109
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 /* We gave our writer reference to the new transaction */
115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
121
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
124
125 xfs_trans_switch_context(tp, ntp);
126
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
129
130 xfs_trans_dup_dqinfo(tp, ntp);
131 return ntp;
132 }
133
134 /*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)149 xfs_trans_reserve(
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
154 {
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logres > 0) {
175 bool permanent = false;
176
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
181
182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 permanent = true;
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 }
189
190 if (tp->t_ticket != NULL) {
191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 error = xfs_log_regrant(mp, tp->t_ticket);
193 } else {
194 error = xfs_log_reserve(mp, resp->tr_logres,
195 resp->tr_logcount,
196 &tp->t_ticket, permanent);
197 }
198
199 if (error)
200 goto undo_blocks;
201
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 if (error) {
214 error = -ENOSPC;
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226 undo_log:
227 if (resp->tr_logres > 0) {
228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234 undo_blocks:
235 if (blocks > 0) {
236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 tp->t_blk_res = 0;
238 }
239 return error;
240 }
241
242 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)243 xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250 {
251 struct xfs_trans *tp;
252 bool want_retry = true;
253 int error;
254
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
260 retry:
261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
264 xfs_trans_set_context(tp);
265
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 xfs_has_lazysbcount(mp));
274
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
280 INIT_LIST_HEAD(&tp->t_dfops);
281 tp->t_firstblock = NULLFSBLOCK;
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
293 xfs_blockgc_flush_all(mp);
294 want_retry = false;
295 goto retry;
296 }
297 if (error) {
298 xfs_trans_cancel(tp);
299 return error;
300 }
301
302 trace_xfs_trans_alloc(tp, _RET_IP_);
303
304 *tpp = tp;
305 return 0;
306 }
307
308 /*
309 * Create an empty transaction with no reservation. This is a defensive
310 * mechanism for routines that query metadata without actually modifying them --
311 * if the metadata being queried is somehow cross-linked (think a btree block
312 * pointer that points higher in the tree), we risk deadlock. However, blocks
313 * grabbed as part of a transaction can be re-grabbed. The verifiers will
314 * notice the corrupt block and the operation will fail back to userspace
315 * without deadlocking.
316 *
317 * Note the zero-length reservation; this transaction MUST be cancelled without
318 * any dirty data.
319 *
320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
321 * where we can be grabbing buffers at the same time that freeze is trying to
322 * drain the buffer LRU list.
323 */
324 int
xfs_trans_alloc_empty(struct xfs_mount * mp,struct xfs_trans ** tpp)325 xfs_trans_alloc_empty(
326 struct xfs_mount *mp,
327 struct xfs_trans **tpp)
328 {
329 struct xfs_trans_res resv = {0};
330
331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
332 }
333
334 /*
335 * Record the indicated change to the given field for application
336 * to the file system's superblock when the transaction commits.
337 * For now, just store the change in the transaction structure.
338 *
339 * Mark the transaction structure to indicate that the superblock
340 * needs to be updated before committing.
341 *
342 * Because we may not be keeping track of allocated/free inodes and
343 * used filesystem blocks in the superblock, we do not mark the
344 * superblock dirty in this transaction if we modify these fields.
345 * We still need to update the transaction deltas so that they get
346 * applied to the incore superblock, but we don't want them to
347 * cause the superblock to get locked and logged if these are the
348 * only fields in the superblock that the transaction modifies.
349 */
350 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)351 xfs_trans_mod_sb(
352 xfs_trans_t *tp,
353 uint field,
354 int64_t delta)
355 {
356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
357 xfs_mount_t *mp = tp->t_mountp;
358
359 switch (field) {
360 case XFS_TRANS_SB_ICOUNT:
361 tp->t_icount_delta += delta;
362 if (xfs_has_lazysbcount(mp))
363 flags &= ~XFS_TRANS_SB_DIRTY;
364 break;
365 case XFS_TRANS_SB_IFREE:
366 tp->t_ifree_delta += delta;
367 if (xfs_has_lazysbcount(mp))
368 flags &= ~XFS_TRANS_SB_DIRTY;
369 break;
370 case XFS_TRANS_SB_FDBLOCKS:
371 /*
372 * Track the number of blocks allocated in the transaction.
373 * Make sure it does not exceed the number reserved. If so,
374 * shutdown as this can lead to accounting inconsistency.
375 */
376 if (delta < 0) {
377 tp->t_blk_res_used += (uint)-delta;
378 if (tp->t_blk_res_used > tp->t_blk_res)
379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
381 int64_t blkres_delta;
382
383 /*
384 * Return freed blocks directly to the reservation
385 * instead of the global pool, being careful not to
386 * overflow the trans counter. This is used to preserve
387 * reservation across chains of transaction rolls that
388 * repeatedly free and allocate blocks.
389 */
390 blkres_delta = min_t(int64_t, delta,
391 UINT_MAX - tp->t_blk_res);
392 tp->t_blk_res += blkres_delta;
393 delta -= blkres_delta;
394 }
395 tp->t_fdblocks_delta += delta;
396 if (xfs_has_lazysbcount(mp))
397 flags &= ~XFS_TRANS_SB_DIRTY;
398 break;
399 case XFS_TRANS_SB_RES_FDBLOCKS:
400 /*
401 * The allocation has already been applied to the
402 * in-core superblock's counter. This should only
403 * be applied to the on-disk superblock.
404 */
405 tp->t_res_fdblocks_delta += delta;
406 if (xfs_has_lazysbcount(mp))
407 flags &= ~XFS_TRANS_SB_DIRTY;
408 break;
409 case XFS_TRANS_SB_FREXTENTS:
410 /*
411 * Track the number of blocks allocated in the
412 * transaction. Make sure it does not exceed the
413 * number reserved.
414 */
415 if (delta < 0) {
416 tp->t_rtx_res_used += (uint)-delta;
417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
418 }
419 tp->t_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_RES_FREXTENTS:
422 /*
423 * The allocation has already been applied to the
424 * in-core superblock's counter. This should only
425 * be applied to the on-disk superblock.
426 */
427 ASSERT(delta < 0);
428 tp->t_res_frextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_DBLOCKS:
431 tp->t_dblocks_delta += delta;
432 break;
433 case XFS_TRANS_SB_AGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_agcount_delta += delta;
436 break;
437 case XFS_TRANS_SB_IMAXPCT:
438 tp->t_imaxpct_delta += delta;
439 break;
440 case XFS_TRANS_SB_REXTSIZE:
441 tp->t_rextsize_delta += delta;
442 break;
443 case XFS_TRANS_SB_RBMBLOCKS:
444 tp->t_rbmblocks_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBLOCKS:
447 tp->t_rblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_REXTENTS:
450 tp->t_rextents_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTSLOG:
453 tp->t_rextslog_delta += delta;
454 break;
455 default:
456 ASSERT(0);
457 return;
458 }
459
460 tp->t_flags |= flags;
461 }
462
463 /*
464 * xfs_trans_apply_sb_deltas() is called from the commit code
465 * to bring the superblock buffer into the current transaction
466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
467 *
468 * For now we just look at each field allowed to change and change
469 * it if necessary.
470 */
471 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)472 xfs_trans_apply_sb_deltas(
473 xfs_trans_t *tp)
474 {
475 struct xfs_dsb *sbp;
476 struct xfs_buf *bp;
477 int whole = 0;
478
479 bp = xfs_trans_getsb(tp);
480 sbp = bp->b_addr;
481
482 /*
483 * Only update the superblock counters if we are logging them
484 */
485 if (!xfs_has_lazysbcount((tp->t_mountp))) {
486 if (tp->t_icount_delta)
487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
488 if (tp->t_ifree_delta)
489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
490 if (tp->t_fdblocks_delta)
491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
492 if (tp->t_res_fdblocks_delta)
493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
494 }
495
496 /*
497 * Updating frextents requires careful handling because it does not
498 * behave like the lazysb counters because we cannot rely on log
499 * recovery in older kenels to recompute the value from the rtbitmap.
500 * This means that the ondisk frextents must be consistent with the
501 * rtbitmap.
502 *
503 * Therefore, log the frextents change to the ondisk superblock and
504 * update the incore superblock so that future calls to xfs_log_sb
505 * write the correct value ondisk.
506 *
507 * Don't touch m_frextents because it includes incore reservations,
508 * and those are handled by the unreserve function.
509 */
510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
511 struct xfs_mount *mp = tp->t_mountp;
512 int64_t rtxdelta;
513
514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
515
516 spin_lock(&mp->m_sb_lock);
517 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
518 mp->m_sb.sb_frextents += rtxdelta;
519 spin_unlock(&mp->m_sb_lock);
520 }
521
522 if (tp->t_dblocks_delta) {
523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
524 whole = 1;
525 }
526 if (tp->t_agcount_delta) {
527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
528 whole = 1;
529 }
530 if (tp->t_imaxpct_delta) {
531 sbp->sb_imax_pct += tp->t_imaxpct_delta;
532 whole = 1;
533 }
534 if (tp->t_rextsize_delta) {
535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
536 whole = 1;
537 }
538 if (tp->t_rbmblocks_delta) {
539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
540 whole = 1;
541 }
542 if (tp->t_rblocks_delta) {
543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
544 whole = 1;
545 }
546 if (tp->t_rextents_delta) {
547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
548 whole = 1;
549 }
550 if (tp->t_rextslog_delta) {
551 sbp->sb_rextslog += tp->t_rextslog_delta;
552 whole = 1;
553 }
554
555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
556 if (whole)
557 /*
558 * Log the whole thing, the fields are noncontiguous.
559 */
560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
568 sizeof(sbp->sb_frextents) - 1);
569 }
570
571 /*
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
577 *
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
585 */
586 #define XFS_ICOUNT_BATCH 128
587
588 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)589 xfs_trans_unreserve_and_mod_sb(
590 struct xfs_trans *tp)
591 {
592 struct xfs_mount *mp = tp->t_mountp;
593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
594 int64_t blkdelta = 0;
595 int64_t rtxdelta = 0;
596 int64_t idelta = 0;
597 int64_t ifreedelta = 0;
598 int error;
599
600 /* calculate deltas */
601 if (tp->t_blk_res > 0)
602 blkdelta = tp->t_blk_res;
603 if ((tp->t_fdblocks_delta != 0) &&
604 (xfs_has_lazysbcount(mp) ||
605 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
606 blkdelta += tp->t_fdblocks_delta;
607
608 if (tp->t_rtx_res > 0)
609 rtxdelta = tp->t_rtx_res;
610 if ((tp->t_frextents_delta != 0) &&
611 (tp->t_flags & XFS_TRANS_SB_DIRTY))
612 rtxdelta += tp->t_frextents_delta;
613
614 if (xfs_has_lazysbcount(mp) ||
615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 idelta = tp->t_icount_delta;
617 ifreedelta = tp->t_ifree_delta;
618 }
619
620 /* apply the per-cpu counters */
621 if (blkdelta) {
622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
623 ASSERT(!error);
624 }
625
626 if (idelta)
627 percpu_counter_add_batch(&mp->m_icount, idelta,
628 XFS_ICOUNT_BATCH);
629
630 if (ifreedelta)
631 percpu_counter_add(&mp->m_ifree, ifreedelta);
632
633 if (rtxdelta) {
634 error = xfs_mod_frextents(mp, rtxdelta);
635 ASSERT(!error);
636 }
637
638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
639 return;
640
641 /* apply remaining deltas */
642 spin_lock(&mp->m_sb_lock);
643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
644 mp->m_sb.sb_icount += idelta;
645 mp->m_sb.sb_ifree += ifreedelta;
646 /*
647 * Do not touch sb_frextents here because we are dealing with incore
648 * reservation. sb_frextents is not part of the lazy sb counters so it
649 * must be consistent with the ondisk rtbitmap and must never include
650 * incore reservations.
651 */
652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
653 mp->m_sb.sb_agcount += tp->t_agcount_delta;
654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
658 mp->m_sb.sb_rextents += tp->t_rextents_delta;
659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
660 spin_unlock(&mp->m_sb_lock);
661
662 /*
663 * Debug checks outside of the spinlock so they don't lock up the
664 * machine if they fail.
665 */
666 ASSERT(mp->m_sb.sb_imax_pct >= 0);
667 ASSERT(mp->m_sb.sb_rextslog >= 0);
668 return;
669 }
670
671 /* Add the given log item to the transaction's list of log items. */
672 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)673 xfs_trans_add_item(
674 struct xfs_trans *tp,
675 struct xfs_log_item *lip)
676 {
677 ASSERT(lip->li_log == tp->t_mountp->m_log);
678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
679 ASSERT(list_empty(&lip->li_trans));
680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
681
682 list_add_tail(&lip->li_trans, &tp->t_items);
683 trace_xfs_trans_add_item(tp, _RET_IP_);
684 }
685
686 /*
687 * Unlink the log item from the transaction. the log item is no longer
688 * considered dirty in this transaction, as the linked transaction has
689 * finished, either by abort or commit completion.
690 */
691 void
xfs_trans_del_item(struct xfs_log_item * lip)692 xfs_trans_del_item(
693 struct xfs_log_item *lip)
694 {
695 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
696 list_del_init(&lip->li_trans);
697 }
698
699 /* Detach and unlock all of the items in a transaction */
700 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)701 xfs_trans_free_items(
702 struct xfs_trans *tp,
703 bool abort)
704 {
705 struct xfs_log_item *lip, *next;
706
707 trace_xfs_trans_free_items(tp, _RET_IP_);
708
709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
710 xfs_trans_del_item(lip);
711 if (abort)
712 set_bit(XFS_LI_ABORTED, &lip->li_flags);
713 if (lip->li_ops->iop_release)
714 lip->li_ops->iop_release(lip);
715 }
716 }
717
718 static inline void
xfs_log_item_batch_insert(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)719 xfs_log_item_batch_insert(
720 struct xfs_ail *ailp,
721 struct xfs_ail_cursor *cur,
722 struct xfs_log_item **log_items,
723 int nr_items,
724 xfs_lsn_t commit_lsn)
725 {
726 int i;
727
728 spin_lock(&ailp->ail_lock);
729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
731
732 for (i = 0; i < nr_items; i++) {
733 struct xfs_log_item *lip = log_items[i];
734
735 if (lip->li_ops->iop_unpin)
736 lip->li_ops->iop_unpin(lip, 0);
737 }
738 }
739
740 /*
741 * Bulk operation version of xfs_trans_committed that takes a log vector of
742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
743 * minimise lock traffic.
744 *
745 * If we are called with the aborted flag set, it is because a log write during
746 * a CIL checkpoint commit has failed. In this case, all the items in the
747 * checkpoint have already gone through iop_committed and iop_committing, which
748 * means that checkpoint commit abort handling is treated exactly the same
749 * as an iclog write error even though we haven't started any IO yet. Hence in
750 * this case all we need to do is iop_committed processing, followed by an
751 * iop_unpin(aborted) call.
752 *
753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
754 * at the end of the AIL, the insert cursor avoids the need to walk
755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
756 * call. This saves a lot of needless list walking and is a net win, even
757 * though it slightly increases that amount of AIL lock traffic to set it up
758 * and tear it down.
759 */
760 void
xfs_trans_committed_bulk(struct xfs_ail * ailp,struct xfs_log_vec * log_vector,xfs_lsn_t commit_lsn,bool aborted)761 xfs_trans_committed_bulk(
762 struct xfs_ail *ailp,
763 struct xfs_log_vec *log_vector,
764 xfs_lsn_t commit_lsn,
765 bool aborted)
766 {
767 #define LOG_ITEM_BATCH_SIZE 32
768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
769 struct xfs_log_vec *lv;
770 struct xfs_ail_cursor cur;
771 int i = 0;
772
773 spin_lock(&ailp->ail_lock);
774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
775 spin_unlock(&ailp->ail_lock);
776
777 /* unpin all the log items */
778 for (lv = log_vector; lv; lv = lv->lv_next ) {
779 struct xfs_log_item *lip = lv->lv_item;
780 xfs_lsn_t item_lsn;
781
782 if (aborted)
783 set_bit(XFS_LI_ABORTED, &lip->li_flags);
784
785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
786 lip->li_ops->iop_release(lip);
787 continue;
788 }
789
790 if (lip->li_ops->iop_committed)
791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
792 else
793 item_lsn = commit_lsn;
794
795 /* item_lsn of -1 means the item needs no further processing */
796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
797 continue;
798
799 /*
800 * if we are aborting the operation, no point in inserting the
801 * object into the AIL as we are in a shutdown situation.
802 */
803 if (aborted) {
804 ASSERT(xlog_is_shutdown(ailp->ail_log));
805 if (lip->li_ops->iop_unpin)
806 lip->li_ops->iop_unpin(lip, 1);
807 continue;
808 }
809
810 if (item_lsn != commit_lsn) {
811
812 /*
813 * Not a bulk update option due to unusual item_lsn.
814 * Push into AIL immediately, rechecking the lsn once
815 * we have the ail lock. Then unpin the item. This does
816 * not affect the AIL cursor the bulk insert path is
817 * using.
818 */
819 spin_lock(&ailp->ail_lock);
820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
821 xfs_trans_ail_update(ailp, lip, item_lsn);
822 else
823 spin_unlock(&ailp->ail_lock);
824 if (lip->li_ops->iop_unpin)
825 lip->li_ops->iop_unpin(lip, 0);
826 continue;
827 }
828
829 /* Item is a candidate for bulk AIL insert. */
830 log_items[i++] = lv->lv_item;
831 if (i >= LOG_ITEM_BATCH_SIZE) {
832 xfs_log_item_batch_insert(ailp, &cur, log_items,
833 LOG_ITEM_BATCH_SIZE, commit_lsn);
834 i = 0;
835 }
836 }
837
838 /* make sure we insert the remainder! */
839 if (i)
840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
841
842 spin_lock(&ailp->ail_lock);
843 xfs_trans_ail_cursor_done(&cur);
844 spin_unlock(&ailp->ail_lock);
845 }
846
847 /*
848 * Commit the given transaction to the log.
849 *
850 * XFS disk error handling mechanism is not based on a typical
851 * transaction abort mechanism. Logically after the filesystem
852 * gets marked 'SHUTDOWN', we can't let any new transactions
853 * be durable - ie. committed to disk - because some metadata might
854 * be inconsistent. In such cases, this returns an error, and the
855 * caller may assume that all locked objects joined to the transaction
856 * have already been unlocked as if the commit had succeeded.
857 * Do not reference the transaction structure after this call.
858 */
859 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)860 __xfs_trans_commit(
861 struct xfs_trans *tp,
862 bool regrant)
863 {
864 struct xfs_mount *mp = tp->t_mountp;
865 struct xlog *log = mp->m_log;
866 xfs_csn_t commit_seq = 0;
867 int error = 0;
868 int sync = tp->t_flags & XFS_TRANS_SYNC;
869
870 trace_xfs_trans_commit(tp, _RET_IP_);
871
872 /*
873 * Finish deferred items on final commit. Only permanent transactions
874 * should ever have deferred ops.
875 */
876 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
877 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
878 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
879 error = xfs_defer_finish_noroll(&tp);
880 if (error)
881 goto out_unreserve;
882 }
883
884 /*
885 * If there is nothing to be logged by the transaction,
886 * then unlock all of the items associated with the
887 * transaction and free the transaction structure.
888 * Also make sure to return any reserved blocks to
889 * the free pool.
890 */
891 if (!(tp->t_flags & XFS_TRANS_DIRTY))
892 goto out_unreserve;
893
894 /*
895 * We must check against log shutdown here because we cannot abort log
896 * items and leave them dirty, inconsistent and unpinned in memory while
897 * the log is active. This leaves them open to being written back to
898 * disk, and that will lead to on-disk corruption.
899 */
900 if (xlog_is_shutdown(log)) {
901 error = -EIO;
902 goto out_unreserve;
903 }
904
905 ASSERT(tp->t_ticket != NULL);
906
907 /*
908 * If we need to update the superblock, then do it now.
909 */
910 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
911 xfs_trans_apply_sb_deltas(tp);
912 xfs_trans_apply_dquot_deltas(tp);
913
914 xlog_cil_commit(log, tp, &commit_seq, regrant);
915
916 xfs_trans_free(tp);
917
918 /*
919 * If the transaction needs to be synchronous, then force the
920 * log out now and wait for it.
921 */
922 if (sync) {
923 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
924 XFS_STATS_INC(mp, xs_trans_sync);
925 } else {
926 XFS_STATS_INC(mp, xs_trans_async);
927 }
928
929 return error;
930
931 out_unreserve:
932 xfs_trans_unreserve_and_mod_sb(tp);
933
934 /*
935 * It is indeed possible for the transaction to be not dirty but
936 * the dqinfo portion to be. All that means is that we have some
937 * (non-persistent) quota reservations that need to be unreserved.
938 */
939 xfs_trans_unreserve_and_mod_dquots(tp);
940 if (tp->t_ticket) {
941 if (regrant && !xlog_is_shutdown(log))
942 xfs_log_ticket_regrant(log, tp->t_ticket);
943 else
944 xfs_log_ticket_ungrant(log, tp->t_ticket);
945 tp->t_ticket = NULL;
946 }
947 xfs_trans_free_items(tp, !!error);
948 xfs_trans_free(tp);
949
950 XFS_STATS_INC(mp, xs_trans_empty);
951 return error;
952 }
953
954 int
xfs_trans_commit(struct xfs_trans * tp)955 xfs_trans_commit(
956 struct xfs_trans *tp)
957 {
958 return __xfs_trans_commit(tp, false);
959 }
960
961 /*
962 * Unlock all of the transaction's items and free the transaction. If the
963 * transaction is dirty, we must shut down the filesystem because there is no
964 * way to restore them to their previous state.
965 *
966 * If the transaction has made a log reservation, make sure to release it as
967 * well.
968 *
969 * This is a high level function (equivalent to xfs_trans_commit()) and so can
970 * be called after the transaction has effectively been aborted due to the mount
971 * being shut down. However, if the mount has not been shut down and the
972 * transaction is dirty we will shut the mount down and, in doing so, that
973 * guarantees that the log is shut down, too. Hence we don't need to be as
974 * careful with shutdown state and dirty items here as we need to be in
975 * xfs_trans_commit().
976 */
977 void
xfs_trans_cancel(struct xfs_trans * tp)978 xfs_trans_cancel(
979 struct xfs_trans *tp)
980 {
981 struct xfs_mount *mp = tp->t_mountp;
982 struct xlog *log = mp->m_log;
983 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
984
985 trace_xfs_trans_cancel(tp, _RET_IP_);
986
987 /*
988 * It's never valid to cancel a transaction with deferred ops attached,
989 * because the transaction is effectively dirty. Complain about this
990 * loudly before freeing the in-memory defer items.
991 */
992 if (!list_empty(&tp->t_dfops)) {
993 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
994 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
995 dirty = true;
996 xfs_defer_cancel(tp);
997 }
998
999 /*
1000 * See if the caller is relying on us to shut down the filesystem. We
1001 * only want an error report if there isn't already a shutdown in
1002 * progress, so we only need to check against the mount shutdown state
1003 * here.
1004 */
1005 if (dirty && !xfs_is_shutdown(mp)) {
1006 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1007 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1008 }
1009 #ifdef DEBUG
1010 /* Log items need to be consistent until the log is shut down. */
1011 if (!dirty && !xlog_is_shutdown(log)) {
1012 struct xfs_log_item *lip;
1013
1014 list_for_each_entry(lip, &tp->t_items, li_trans)
1015 ASSERT(!xlog_item_is_intent_done(lip));
1016 }
1017 #endif
1018 xfs_trans_unreserve_and_mod_sb(tp);
1019 xfs_trans_unreserve_and_mod_dquots(tp);
1020
1021 if (tp->t_ticket) {
1022 xfs_log_ticket_ungrant(log, tp->t_ticket);
1023 tp->t_ticket = NULL;
1024 }
1025
1026 xfs_trans_free_items(tp, dirty);
1027 xfs_trans_free(tp);
1028 }
1029
1030 /*
1031 * Roll from one trans in the sequence of PERMANENT transactions to
1032 * the next: permanent transactions are only flushed out when
1033 * committed with xfs_trans_commit(), but we still want as soon
1034 * as possible to let chunks of it go to the log. So we commit the
1035 * chunk we've been working on and get a new transaction to continue.
1036 */
1037 int
xfs_trans_roll(struct xfs_trans ** tpp)1038 xfs_trans_roll(
1039 struct xfs_trans **tpp)
1040 {
1041 struct xfs_trans *trans = *tpp;
1042 struct xfs_trans_res tres;
1043 int error;
1044
1045 trace_xfs_trans_roll(trans, _RET_IP_);
1046
1047 /*
1048 * Copy the critical parameters from one trans to the next.
1049 */
1050 tres.tr_logres = trans->t_log_res;
1051 tres.tr_logcount = trans->t_log_count;
1052
1053 *tpp = xfs_trans_dup(trans);
1054
1055 /*
1056 * Commit the current transaction.
1057 * If this commit failed, then it'd just unlock those items that
1058 * are not marked ihold. That also means that a filesystem shutdown
1059 * is in progress. The caller takes the responsibility to cancel
1060 * the duplicate transaction that gets returned.
1061 */
1062 error = __xfs_trans_commit(trans, true);
1063 if (error)
1064 return error;
1065
1066 /*
1067 * Reserve space in the log for the next transaction.
1068 * This also pushes items in the "AIL", the list of logged items,
1069 * out to disk if they are taking up space at the tail of the log
1070 * that we want to use. This requires that either nothing be locked
1071 * across this call, or that anything that is locked be logged in
1072 * the prior and the next transactions.
1073 */
1074 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1075 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1076 }
1077
1078 /*
1079 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1080 *
1081 * The caller must ensure that the on-disk dquots attached to this inode have
1082 * already been allocated and initialized. The caller is responsible for
1083 * releasing ILOCK_EXCL if a new transaction is returned.
1084 */
1085 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1086 xfs_trans_alloc_inode(
1087 struct xfs_inode *ip,
1088 struct xfs_trans_res *resv,
1089 unsigned int dblocks,
1090 unsigned int rblocks,
1091 bool force,
1092 struct xfs_trans **tpp)
1093 {
1094 struct xfs_trans *tp;
1095 struct xfs_mount *mp = ip->i_mount;
1096 bool retried = false;
1097 int error;
1098
1099 retry:
1100 error = xfs_trans_alloc(mp, resv, dblocks,
1101 rblocks / mp->m_sb.sb_rextsize,
1102 force ? XFS_TRANS_RESERVE : 0, &tp);
1103 if (error)
1104 return error;
1105
1106 xfs_ilock(ip, XFS_ILOCK_EXCL);
1107 xfs_trans_ijoin(tp, ip, 0);
1108
1109 error = xfs_qm_dqattach_locked(ip, false);
1110 if (error) {
1111 /* Caller should have allocated the dquots! */
1112 ASSERT(error != -ENOENT);
1113 goto out_cancel;
1114 }
1115
1116 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1117 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1118 xfs_trans_cancel(tp);
1119 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1120 xfs_blockgc_free_quota(ip, 0);
1121 retried = true;
1122 goto retry;
1123 }
1124 if (error)
1125 goto out_cancel;
1126
1127 *tpp = tp;
1128 return 0;
1129
1130 out_cancel:
1131 xfs_trans_cancel(tp);
1132 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1133 return error;
1134 }
1135
1136 /*
1137 * Allocate an transaction in preparation for inode creation by reserving quota
1138 * against the given dquots. Callers are not required to hold any inode locks.
1139 */
1140 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1141 xfs_trans_alloc_icreate(
1142 struct xfs_mount *mp,
1143 struct xfs_trans_res *resv,
1144 struct xfs_dquot *udqp,
1145 struct xfs_dquot *gdqp,
1146 struct xfs_dquot *pdqp,
1147 unsigned int dblocks,
1148 struct xfs_trans **tpp)
1149 {
1150 struct xfs_trans *tp;
1151 bool retried = false;
1152 int error;
1153
1154 retry:
1155 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1156 if (error)
1157 return error;
1158
1159 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1160 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1161 xfs_trans_cancel(tp);
1162 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1163 retried = true;
1164 goto retry;
1165 }
1166 if (error) {
1167 xfs_trans_cancel(tp);
1168 return error;
1169 }
1170
1171 *tpp = tp;
1172 return 0;
1173 }
1174
1175 /*
1176 * Allocate an transaction, lock and join the inode to it, and reserve quota
1177 * in preparation for inode attribute changes that include uid, gid, or prid
1178 * changes.
1179 *
1180 * The caller must ensure that the on-disk dquots attached to this inode have
1181 * already been allocated and initialized. The ILOCK will be dropped when the
1182 * transaction is committed or cancelled.
1183 */
1184 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1185 xfs_trans_alloc_ichange(
1186 struct xfs_inode *ip,
1187 struct xfs_dquot *new_udqp,
1188 struct xfs_dquot *new_gdqp,
1189 struct xfs_dquot *new_pdqp,
1190 bool force,
1191 struct xfs_trans **tpp)
1192 {
1193 struct xfs_trans *tp;
1194 struct xfs_mount *mp = ip->i_mount;
1195 struct xfs_dquot *udqp;
1196 struct xfs_dquot *gdqp;
1197 struct xfs_dquot *pdqp;
1198 bool retried = false;
1199 int error;
1200
1201 retry:
1202 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1203 if (error)
1204 return error;
1205
1206 xfs_ilock(ip, XFS_ILOCK_EXCL);
1207 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1208
1209 error = xfs_qm_dqattach_locked(ip, false);
1210 if (error) {
1211 /* Caller should have allocated the dquots! */
1212 ASSERT(error != -ENOENT);
1213 goto out_cancel;
1214 }
1215
1216 /*
1217 * For each quota type, skip quota reservations if the inode's dquots
1218 * now match the ones that came from the caller, or the caller didn't
1219 * pass one in. The inode's dquots can change if we drop the ILOCK to
1220 * perform a blockgc scan, so we must preserve the caller's arguments.
1221 */
1222 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1223 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1224 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1225 if (udqp || gdqp || pdqp) {
1226 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1227
1228 if (force)
1229 qflags |= XFS_QMOPT_FORCE_RES;
1230
1231 /*
1232 * Reserve enough quota to handle blocks on disk and reserved
1233 * for a delayed allocation. We'll actually transfer the
1234 * delalloc reservation between dquots at chown time, even
1235 * though that part is only semi-transactional.
1236 */
1237 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1238 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1239 1, qflags);
1240 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1241 xfs_trans_cancel(tp);
1242 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1243 retried = true;
1244 goto retry;
1245 }
1246 if (error)
1247 goto out_cancel;
1248 }
1249
1250 *tpp = tp;
1251 return 0;
1252
1253 out_cancel:
1254 xfs_trans_cancel(tp);
1255 return error;
1256 }
1257
1258 /*
1259 * Allocate an transaction, lock and join the directory and child inodes to it,
1260 * and reserve quota for a directory update. If there isn't sufficient space,
1261 * @dblocks will be set to zero for a reservationless directory update and
1262 * @nospace_error will be set to a negative errno describing the space
1263 * constraint we hit.
1264 *
1265 * The caller must ensure that the on-disk dquots attached to this inode have
1266 * already been allocated and initialized. The ILOCKs will be dropped when the
1267 * transaction is committed or cancelled.
1268 */
1269 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1270 xfs_trans_alloc_dir(
1271 struct xfs_inode *dp,
1272 struct xfs_trans_res *resv,
1273 struct xfs_inode *ip,
1274 unsigned int *dblocks,
1275 struct xfs_trans **tpp,
1276 int *nospace_error)
1277 {
1278 struct xfs_trans *tp;
1279 struct xfs_mount *mp = ip->i_mount;
1280 unsigned int resblks;
1281 bool retried = false;
1282 int error;
1283
1284 retry:
1285 *nospace_error = 0;
1286 resblks = *dblocks;
1287 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1288 if (error == -ENOSPC) {
1289 *nospace_error = error;
1290 resblks = 0;
1291 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1292 }
1293 if (error)
1294 return error;
1295
1296 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1297
1298 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1299 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1300
1301 error = xfs_qm_dqattach_locked(dp, false);
1302 if (error) {
1303 /* Caller should have allocated the dquots! */
1304 ASSERT(error != -ENOENT);
1305 goto out_cancel;
1306 }
1307
1308 error = xfs_qm_dqattach_locked(ip, false);
1309 if (error) {
1310 /* Caller should have allocated the dquots! */
1311 ASSERT(error != -ENOENT);
1312 goto out_cancel;
1313 }
1314
1315 if (resblks == 0)
1316 goto done;
1317
1318 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1319 if (error == -EDQUOT || error == -ENOSPC) {
1320 if (!retried) {
1321 xfs_trans_cancel(tp);
1322 xfs_blockgc_free_quota(dp, 0);
1323 retried = true;
1324 goto retry;
1325 }
1326
1327 *nospace_error = error;
1328 resblks = 0;
1329 error = 0;
1330 }
1331 if (error)
1332 goto out_cancel;
1333
1334 done:
1335 *tpp = tp;
1336 *dblocks = resblks;
1337 return 0;
1338
1339 out_cancel:
1340 xfs_trans_cancel(tp);
1341 return error;
1342 }
1343