1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 
47 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57 
58 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
60 #endif
61 
62 static const struct {
63 	short offset;
64 	short type;	/* 0 = integer
65 			 * 1 = binary / string (no translation)
66 			 */
67 } xfs_sb_info[] = {
68     { offsetof(xfs_sb_t, sb_magicnum),   0 },
69     { offsetof(xfs_sb_t, sb_blocksize),  0 },
70     { offsetof(xfs_sb_t, sb_dblocks),    0 },
71     { offsetof(xfs_sb_t, sb_rblocks),    0 },
72     { offsetof(xfs_sb_t, sb_rextents),   0 },
73     { offsetof(xfs_sb_t, sb_uuid),       1 },
74     { offsetof(xfs_sb_t, sb_logstart),   0 },
75     { offsetof(xfs_sb_t, sb_rootino),    0 },
76     { offsetof(xfs_sb_t, sb_rbmino),     0 },
77     { offsetof(xfs_sb_t, sb_rsumino),    0 },
78     { offsetof(xfs_sb_t, sb_rextsize),   0 },
79     { offsetof(xfs_sb_t, sb_agblocks),   0 },
80     { offsetof(xfs_sb_t, sb_agcount),    0 },
81     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
82     { offsetof(xfs_sb_t, sb_logblocks),  0 },
83     { offsetof(xfs_sb_t, sb_versionnum), 0 },
84     { offsetof(xfs_sb_t, sb_sectsize),   0 },
85     { offsetof(xfs_sb_t, sb_inodesize),  0 },
86     { offsetof(xfs_sb_t, sb_inopblock),  0 },
87     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
88     { offsetof(xfs_sb_t, sb_blocklog),   0 },
89     { offsetof(xfs_sb_t, sb_sectlog),    0 },
90     { offsetof(xfs_sb_t, sb_inodelog),   0 },
91     { offsetof(xfs_sb_t, sb_inopblog),   0 },
92     { offsetof(xfs_sb_t, sb_agblklog),   0 },
93     { offsetof(xfs_sb_t, sb_rextslog),   0 },
94     { offsetof(xfs_sb_t, sb_inprogress), 0 },
95     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
96     { offsetof(xfs_sb_t, sb_icount),     0 },
97     { offsetof(xfs_sb_t, sb_ifree),      0 },
98     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
99     { offsetof(xfs_sb_t, sb_frextents),  0 },
100     { offsetof(xfs_sb_t, sb_uquotino),   0 },
101     { offsetof(xfs_sb_t, sb_gquotino),   0 },
102     { offsetof(xfs_sb_t, sb_qflags),     0 },
103     { offsetof(xfs_sb_t, sb_flags),      0 },
104     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
105     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106     { offsetof(xfs_sb_t, sb_unit),	 0 },
107     { offsetof(xfs_sb_t, sb_width),	 0 },
108     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
109     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110     { offsetof(xfs_sb_t, sb_logsectsize),0 },
111     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
112     { offsetof(xfs_sb_t, sb_features2),	 0 },
113     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114     { sizeof(xfs_sb_t),			 0 }
115 };
116 
117 static DEFINE_MUTEX(xfs_uuid_table_mutex);
118 static int xfs_uuid_table_size;
119 static uuid_t *xfs_uuid_table;
120 
121 /*
122  * See if the UUID is unique among mounted XFS filesystems.
123  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124  */
125 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)126 xfs_uuid_mount(
127 	struct xfs_mount	*mp)
128 {
129 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
130 	int			hole, i;
131 
132 	if (mp->m_flags & XFS_MOUNT_NOUUID)
133 		return 0;
134 
135 	if (uuid_is_nil(uuid)) {
136 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
137 		return XFS_ERROR(EINVAL);
138 	}
139 
140 	mutex_lock(&xfs_uuid_table_mutex);
141 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
142 		if (uuid_is_nil(&xfs_uuid_table[i])) {
143 			hole = i;
144 			continue;
145 		}
146 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
147 			goto out_duplicate;
148 	}
149 
150 	if (hole < 0) {
151 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
152 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
153 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
154 			KM_SLEEP);
155 		hole = xfs_uuid_table_size++;
156 	}
157 	xfs_uuid_table[hole] = *uuid;
158 	mutex_unlock(&xfs_uuid_table_mutex);
159 
160 	return 0;
161 
162  out_duplicate:
163 	mutex_unlock(&xfs_uuid_table_mutex);
164 	xfs_warn(mp, "Filesystem has duplicate UUID - can't mount");
165 	return XFS_ERROR(EINVAL);
166 }
167 
168 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)169 xfs_uuid_unmount(
170 	struct xfs_mount	*mp)
171 {
172 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
173 	int			i;
174 
175 	if (mp->m_flags & XFS_MOUNT_NOUUID)
176 		return;
177 
178 	mutex_lock(&xfs_uuid_table_mutex);
179 	for (i = 0; i < xfs_uuid_table_size; i++) {
180 		if (uuid_is_nil(&xfs_uuid_table[i]))
181 			continue;
182 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
183 			continue;
184 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
185 		break;
186 	}
187 	ASSERT(i < xfs_uuid_table_size);
188 	mutex_unlock(&xfs_uuid_table_mutex);
189 }
190 
191 
192 /*
193  * Reference counting access wrappers to the perag structures.
194  * Because we never free per-ag structures, the only thing we
195  * have to protect against changes is the tree structure itself.
196  */
197 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)198 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
199 {
200 	struct xfs_perag	*pag;
201 	int			ref = 0;
202 
203 	rcu_read_lock();
204 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
205 	if (pag) {
206 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
207 		ref = atomic_inc_return(&pag->pag_ref);
208 	}
209 	rcu_read_unlock();
210 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
211 	return pag;
212 }
213 
214 /*
215  * search from @first to find the next perag with the given tag set.
216  */
217 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)218 xfs_perag_get_tag(
219 	struct xfs_mount	*mp,
220 	xfs_agnumber_t		first,
221 	int			tag)
222 {
223 	struct xfs_perag	*pag;
224 	int			found;
225 	int			ref;
226 
227 	rcu_read_lock();
228 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
229 					(void **)&pag, first, 1, tag);
230 	if (found <= 0) {
231 		rcu_read_unlock();
232 		return NULL;
233 	}
234 	ref = atomic_inc_return(&pag->pag_ref);
235 	rcu_read_unlock();
236 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
237 	return pag;
238 }
239 
240 void
xfs_perag_put(struct xfs_perag * pag)241 xfs_perag_put(struct xfs_perag *pag)
242 {
243 	int	ref;
244 
245 	ASSERT(atomic_read(&pag->pag_ref) > 0);
246 	ref = atomic_dec_return(&pag->pag_ref);
247 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
248 }
249 
250 STATIC void
__xfs_free_perag(struct rcu_head * head)251 __xfs_free_perag(
252 	struct rcu_head	*head)
253 {
254 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
255 
256 	ASSERT(atomic_read(&pag->pag_ref) == 0);
257 	kmem_free(pag);
258 }
259 
260 /*
261  * Free up the per-ag resources associated with the mount structure.
262  */
263 STATIC void
xfs_free_perag(xfs_mount_t * mp)264 xfs_free_perag(
265 	xfs_mount_t	*mp)
266 {
267 	xfs_agnumber_t	agno;
268 	struct xfs_perag *pag;
269 
270 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
271 		spin_lock(&mp->m_perag_lock);
272 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
273 		spin_unlock(&mp->m_perag_lock);
274 		ASSERT(pag);
275 		ASSERT(atomic_read(&pag->pag_ref) == 0);
276 		call_rcu(&pag->rcu_head, __xfs_free_perag);
277 	}
278 }
279 
280 /*
281  * Check size of device based on the (data/realtime) block count.
282  * Note: this check is used by the growfs code as well as mount.
283  */
284 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)285 xfs_sb_validate_fsb_count(
286 	xfs_sb_t	*sbp,
287 	__uint64_t	nblocks)
288 {
289 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
290 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
291 
292 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
293 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
294 		return EFBIG;
295 #else                  /* Limited by UINT_MAX of sectors */
296 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
297 		return EFBIG;
298 #endif
299 	return 0;
300 }
301 
302 /*
303  * Check the validity of the SB found.
304  */
305 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,int flags)306 xfs_mount_validate_sb(
307 	xfs_mount_t	*mp,
308 	xfs_sb_t	*sbp,
309 	int		flags)
310 {
311 	int		loud = !(flags & XFS_MFSI_QUIET);
312 
313 	/*
314 	 * If the log device and data device have the
315 	 * same device number, the log is internal.
316 	 * Consequently, the sb_logstart should be non-zero.  If
317 	 * we have a zero sb_logstart in this case, we may be trying to mount
318 	 * a volume filesystem in a non-volume manner.
319 	 */
320 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
321 		if (loud)
322 			xfs_warn(mp, "bad magic number");
323 		return XFS_ERROR(EWRONGFS);
324 	}
325 
326 	if (!xfs_sb_good_version(sbp)) {
327 		if (loud)
328 			xfs_warn(mp, "bad version");
329 		return XFS_ERROR(EWRONGFS);
330 	}
331 
332 	if (unlikely(
333 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
334 		if (loud)
335 			xfs_warn(mp,
336 		"filesystem is marked as having an external log; "
337 		"specify logdev on the mount command line.");
338 		return XFS_ERROR(EINVAL);
339 	}
340 
341 	if (unlikely(
342 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
343 		if (loud)
344 			xfs_warn(mp,
345 		"filesystem is marked as having an internal log; "
346 		"do not specify logdev on the mount command line.");
347 		return XFS_ERROR(EINVAL);
348 	}
349 
350 	/*
351 	 * More sanity checking. These were stolen directly from
352 	 * xfs_repair.
353 	 */
354 	if (unlikely(
355 	    sbp->sb_agcount <= 0					||
356 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
357 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
358 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
359 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
360 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
361 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
362 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
363 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
364 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
365 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
366 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
367 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
368 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
369 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
370 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
371 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
372 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
373 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
374 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
375 		if (loud)
376 			xfs_warn(mp, "SB sanity check 1 failed");
377 		return XFS_ERROR(EFSCORRUPTED);
378 	}
379 
380 	/*
381 	 * Sanity check AG count, size fields against data size field
382 	 */
383 	if (unlikely(
384 	    sbp->sb_dblocks == 0 ||
385 	    sbp->sb_dblocks >
386 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
387 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
388 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
389 		if (loud)
390 			xfs_warn(mp, "SB sanity check 2 failed");
391 		return XFS_ERROR(EFSCORRUPTED);
392 	}
393 
394 	/*
395 	 * Until this is fixed only page-sized or smaller data blocks work.
396 	 */
397 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
398 		if (loud) {
399 			xfs_warn(mp,
400 		"File system with blocksize %d bytes. "
401 		"Only pagesize (%ld) or less will currently work.",
402 				sbp->sb_blocksize, PAGE_SIZE);
403 		}
404 		return XFS_ERROR(ENOSYS);
405 	}
406 
407 	/*
408 	 * Currently only very few inode sizes are supported.
409 	 */
410 	switch (sbp->sb_inodesize) {
411 	case 256:
412 	case 512:
413 	case 1024:
414 	case 2048:
415 		break;
416 	default:
417 		if (loud)
418 			xfs_warn(mp, "inode size of %d bytes not supported",
419 				sbp->sb_inodesize);
420 		return XFS_ERROR(ENOSYS);
421 	}
422 
423 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
424 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
425 		if (loud)
426 			xfs_warn(mp,
427 		"file system too large to be mounted on this system.");
428 		return XFS_ERROR(EFBIG);
429 	}
430 
431 	if (unlikely(sbp->sb_inprogress)) {
432 		if (loud)
433 			xfs_warn(mp, "file system busy");
434 		return XFS_ERROR(EFSCORRUPTED);
435 	}
436 
437 	/*
438 	 * Version 1 directory format has never worked on Linux.
439 	 */
440 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
441 		if (loud)
442 			xfs_warn(mp,
443 				"file system using version 1 directory format");
444 		return XFS_ERROR(ENOSYS);
445 	}
446 
447 	return 0;
448 }
449 
450 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)451 xfs_initialize_perag(
452 	xfs_mount_t	*mp,
453 	xfs_agnumber_t	agcount,
454 	xfs_agnumber_t	*maxagi)
455 {
456 	xfs_agnumber_t	index, max_metadata;
457 	xfs_agnumber_t	first_initialised = 0;
458 	xfs_perag_t	*pag;
459 	xfs_agino_t	agino;
460 	xfs_ino_t	ino;
461 	xfs_sb_t	*sbp = &mp->m_sb;
462 	int		error = -ENOMEM;
463 
464 	/*
465 	 * Walk the current per-ag tree so we don't try to initialise AGs
466 	 * that already exist (growfs case). Allocate and insert all the
467 	 * AGs we don't find ready for initialisation.
468 	 */
469 	for (index = 0; index < agcount; index++) {
470 		pag = xfs_perag_get(mp, index);
471 		if (pag) {
472 			xfs_perag_put(pag);
473 			continue;
474 		}
475 		if (!first_initialised)
476 			first_initialised = index;
477 
478 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
479 		if (!pag)
480 			goto out_unwind;
481 		pag->pag_agno = index;
482 		pag->pag_mount = mp;
483 		spin_lock_init(&pag->pag_ici_lock);
484 		mutex_init(&pag->pag_ici_reclaim_lock);
485 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
486 		spin_lock_init(&pag->pag_buf_lock);
487 		pag->pag_buf_tree = RB_ROOT;
488 
489 		if (radix_tree_preload(GFP_NOFS))
490 			goto out_unwind;
491 
492 		spin_lock(&mp->m_perag_lock);
493 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
494 			BUG();
495 			spin_unlock(&mp->m_perag_lock);
496 			radix_tree_preload_end();
497 			error = -EEXIST;
498 			goto out_unwind;
499 		}
500 		spin_unlock(&mp->m_perag_lock);
501 		radix_tree_preload_end();
502 	}
503 
504 	/*
505 	 * If we mount with the inode64 option, or no inode overflows
506 	 * the legacy 32-bit address space clear the inode32 option.
507 	 */
508 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
509 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
510 
511 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
512 		mp->m_flags |= XFS_MOUNT_32BITINODES;
513 	else
514 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
515 
516 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
517 		/*
518 		 * Calculate how much should be reserved for inodes to meet
519 		 * the max inode percentage.
520 		 */
521 		if (mp->m_maxicount) {
522 			__uint64_t	icount;
523 
524 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
525 			do_div(icount, 100);
526 			icount += sbp->sb_agblocks - 1;
527 			do_div(icount, sbp->sb_agblocks);
528 			max_metadata = icount;
529 		} else {
530 			max_metadata = agcount;
531 		}
532 
533 		for (index = 0; index < agcount; index++) {
534 			ino = XFS_AGINO_TO_INO(mp, index, agino);
535 			if (ino > XFS_MAXINUMBER_32) {
536 				index++;
537 				break;
538 			}
539 
540 			pag = xfs_perag_get(mp, index);
541 			pag->pagi_inodeok = 1;
542 			if (index < max_metadata)
543 				pag->pagf_metadata = 1;
544 			xfs_perag_put(pag);
545 		}
546 	} else {
547 		for (index = 0; index < agcount; index++) {
548 			pag = xfs_perag_get(mp, index);
549 			pag->pagi_inodeok = 1;
550 			xfs_perag_put(pag);
551 		}
552 	}
553 
554 	if (maxagi)
555 		*maxagi = index;
556 	return 0;
557 
558 out_unwind:
559 	kmem_free(pag);
560 	for (; index > first_initialised; index--) {
561 		pag = radix_tree_delete(&mp->m_perag_tree, index);
562 		kmem_free(pag);
563 	}
564 	return error;
565 }
566 
567 void
xfs_sb_from_disk(xfs_sb_t * to,xfs_dsb_t * from)568 xfs_sb_from_disk(
569 	xfs_sb_t	*to,
570 	xfs_dsb_t	*from)
571 {
572 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
573 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
574 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
575 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
576 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
577 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
578 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
579 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
580 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
581 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
582 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
583 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
584 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
585 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
586 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
587 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
588 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
589 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
590 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
591 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
592 	to->sb_blocklog = from->sb_blocklog;
593 	to->sb_sectlog = from->sb_sectlog;
594 	to->sb_inodelog = from->sb_inodelog;
595 	to->sb_inopblog = from->sb_inopblog;
596 	to->sb_agblklog = from->sb_agblklog;
597 	to->sb_rextslog = from->sb_rextslog;
598 	to->sb_inprogress = from->sb_inprogress;
599 	to->sb_imax_pct = from->sb_imax_pct;
600 	to->sb_icount = be64_to_cpu(from->sb_icount);
601 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
602 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
603 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
604 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
605 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
606 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
607 	to->sb_flags = from->sb_flags;
608 	to->sb_shared_vn = from->sb_shared_vn;
609 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
610 	to->sb_unit = be32_to_cpu(from->sb_unit);
611 	to->sb_width = be32_to_cpu(from->sb_width);
612 	to->sb_dirblklog = from->sb_dirblklog;
613 	to->sb_logsectlog = from->sb_logsectlog;
614 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
615 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
616 	to->sb_features2 = be32_to_cpu(from->sb_features2);
617 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
618 }
619 
620 /*
621  * Copy in core superblock to ondisk one.
622  *
623  * The fields argument is mask of superblock fields to copy.
624  */
625 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)626 xfs_sb_to_disk(
627 	xfs_dsb_t	*to,
628 	xfs_sb_t	*from,
629 	__int64_t	fields)
630 {
631 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
632 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
633 	xfs_sb_field_t	f;
634 	int		first;
635 	int		size;
636 
637 	ASSERT(fields);
638 	if (!fields)
639 		return;
640 
641 	while (fields) {
642 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
643 		first = xfs_sb_info[f].offset;
644 		size = xfs_sb_info[f + 1].offset - first;
645 
646 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
647 
648 		if (size == 1 || xfs_sb_info[f].type == 1) {
649 			memcpy(to_ptr + first, from_ptr + first, size);
650 		} else {
651 			switch (size) {
652 			case 2:
653 				*(__be16 *)(to_ptr + first) =
654 					cpu_to_be16(*(__u16 *)(from_ptr + first));
655 				break;
656 			case 4:
657 				*(__be32 *)(to_ptr + first) =
658 					cpu_to_be32(*(__u32 *)(from_ptr + first));
659 				break;
660 			case 8:
661 				*(__be64 *)(to_ptr + first) =
662 					cpu_to_be64(*(__u64 *)(from_ptr + first));
663 				break;
664 			default:
665 				ASSERT(0);
666 			}
667 		}
668 
669 		fields &= ~(1LL << f);
670 	}
671 }
672 
673 /*
674  * xfs_readsb
675  *
676  * Does the initial read of the superblock.
677  */
678 int
xfs_readsb(xfs_mount_t * mp,int flags)679 xfs_readsb(xfs_mount_t *mp, int flags)
680 {
681 	unsigned int	sector_size;
682 	xfs_buf_t	*bp;
683 	int		error;
684 	int		loud = !(flags & XFS_MFSI_QUIET);
685 
686 	ASSERT(mp->m_sb_bp == NULL);
687 	ASSERT(mp->m_ddev_targp != NULL);
688 
689 	/*
690 	 * Allocate a (locked) buffer to hold the superblock.
691 	 * This will be kept around at all times to optimize
692 	 * access to the superblock.
693 	 */
694 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
695 
696 reread:
697 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
698 					XFS_SB_DADDR, sector_size, 0);
699 	if (!bp) {
700 		if (loud)
701 			xfs_warn(mp, "SB buffer read failed");
702 		return EIO;
703 	}
704 
705 	/*
706 	 * Initialize the mount structure from the superblock.
707 	 * But first do some basic consistency checking.
708 	 */
709 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
710 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
711 	if (error) {
712 		if (loud)
713 			xfs_warn(mp, "SB validate failed");
714 		goto release_buf;
715 	}
716 
717 	/*
718 	 * We must be able to do sector-sized and sector-aligned IO.
719 	 */
720 	if (sector_size > mp->m_sb.sb_sectsize) {
721 		if (loud)
722 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
723 				sector_size, mp->m_sb.sb_sectsize);
724 		error = ENOSYS;
725 		goto release_buf;
726 	}
727 
728 	/*
729 	 * If device sector size is smaller than the superblock size,
730 	 * re-read the superblock so the buffer is correctly sized.
731 	 */
732 	if (sector_size < mp->m_sb.sb_sectsize) {
733 		xfs_buf_relse(bp);
734 		sector_size = mp->m_sb.sb_sectsize;
735 		goto reread;
736 	}
737 
738 	/* Initialize per-cpu counters */
739 	xfs_icsb_reinit_counters(mp);
740 
741 	mp->m_sb_bp = bp;
742 	xfs_buf_unlock(bp);
743 	return 0;
744 
745 release_buf:
746 	xfs_buf_relse(bp);
747 	return error;
748 }
749 
750 
751 /*
752  * xfs_mount_common
753  *
754  * Mount initialization code establishing various mount
755  * fields from the superblock associated with the given
756  * mount structure
757  */
758 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)759 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
760 {
761 	mp->m_agfrotor = mp->m_agirotor = 0;
762 	spin_lock_init(&mp->m_agirotor_lock);
763 	mp->m_maxagi = mp->m_sb.sb_agcount;
764 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
765 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
766 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
767 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
768 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
769 	mp->m_blockmask = sbp->sb_blocksize - 1;
770 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
771 	mp->m_blockwmask = mp->m_blockwsize - 1;
772 
773 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
774 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
775 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
776 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
777 
778 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
779 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
780 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
781 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
782 
783 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
784 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
785 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
786 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
787 
788 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
789 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
790 					sbp->sb_inopblock);
791 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
792 }
793 
794 /*
795  * xfs_initialize_perag_data
796  *
797  * Read in each per-ag structure so we can count up the number of
798  * allocated inodes, free inodes and used filesystem blocks as this
799  * information is no longer persistent in the superblock. Once we have
800  * this information, write it into the in-core superblock structure.
801  */
802 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)803 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
804 {
805 	xfs_agnumber_t	index;
806 	xfs_perag_t	*pag;
807 	xfs_sb_t	*sbp = &mp->m_sb;
808 	uint64_t	ifree = 0;
809 	uint64_t	ialloc = 0;
810 	uint64_t	bfree = 0;
811 	uint64_t	bfreelst = 0;
812 	uint64_t	btree = 0;
813 	int		error;
814 
815 	for (index = 0; index < agcount; index++) {
816 		/*
817 		 * read the agf, then the agi. This gets us
818 		 * all the information we need and populates the
819 		 * per-ag structures for us.
820 		 */
821 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
822 		if (error)
823 			return error;
824 
825 		error = xfs_ialloc_pagi_init(mp, NULL, index);
826 		if (error)
827 			return error;
828 		pag = xfs_perag_get(mp, index);
829 		ifree += pag->pagi_freecount;
830 		ialloc += pag->pagi_count;
831 		bfree += pag->pagf_freeblks;
832 		bfreelst += pag->pagf_flcount;
833 		btree += pag->pagf_btreeblks;
834 		xfs_perag_put(pag);
835 	}
836 	/*
837 	 * Overwrite incore superblock counters with just-read data
838 	 */
839 	spin_lock(&mp->m_sb_lock);
840 	sbp->sb_ifree = ifree;
841 	sbp->sb_icount = ialloc;
842 	sbp->sb_fdblocks = bfree + bfreelst + btree;
843 	spin_unlock(&mp->m_sb_lock);
844 
845 	/* Fixup the per-cpu counters as well. */
846 	xfs_icsb_reinit_counters(mp);
847 
848 	return 0;
849 }
850 
851 /*
852  * Update alignment values based on mount options and sb values
853  */
854 STATIC int
xfs_update_alignment(xfs_mount_t * mp)855 xfs_update_alignment(xfs_mount_t *mp)
856 {
857 	xfs_sb_t	*sbp = &(mp->m_sb);
858 
859 	if (mp->m_dalign) {
860 		/*
861 		 * If stripe unit and stripe width are not multiples
862 		 * of the fs blocksize turn off alignment.
863 		 */
864 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
865 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
866 			if (mp->m_flags & XFS_MOUNT_RETERR) {
867 				xfs_warn(mp, "alignment check 1 failed");
868 				return XFS_ERROR(EINVAL);
869 			}
870 			mp->m_dalign = mp->m_swidth = 0;
871 		} else {
872 			/*
873 			 * Convert the stripe unit and width to FSBs.
874 			 */
875 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
876 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
877 				if (mp->m_flags & XFS_MOUNT_RETERR) {
878 					return XFS_ERROR(EINVAL);
879 				}
880 				xfs_warn(mp,
881 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
882 		"incompatible with agsize(%d)",
883 					mp->m_dalign, mp->m_swidth,
884 					sbp->sb_agblocks);
885 
886 				mp->m_dalign = 0;
887 				mp->m_swidth = 0;
888 			} else if (mp->m_dalign) {
889 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
890 			} else {
891 				if (mp->m_flags & XFS_MOUNT_RETERR) {
892 					xfs_warn(mp,
893 		"stripe alignment turned off: sunit(%d) less than bsize(%d)",
894 						mp->m_dalign,
895 						mp->m_blockmask +1);
896 					return XFS_ERROR(EINVAL);
897 				}
898 				mp->m_swidth = 0;
899 			}
900 		}
901 
902 		/*
903 		 * Update superblock with new values
904 		 * and log changes
905 		 */
906 		if (xfs_sb_version_hasdalign(sbp)) {
907 			if (sbp->sb_unit != mp->m_dalign) {
908 				sbp->sb_unit = mp->m_dalign;
909 				mp->m_update_flags |= XFS_SB_UNIT;
910 			}
911 			if (sbp->sb_width != mp->m_swidth) {
912 				sbp->sb_width = mp->m_swidth;
913 				mp->m_update_flags |= XFS_SB_WIDTH;
914 			}
915 		}
916 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
917 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
918 			mp->m_dalign = sbp->sb_unit;
919 			mp->m_swidth = sbp->sb_width;
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * Set the maximum inode count for this filesystem
927  */
928 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)929 xfs_set_maxicount(xfs_mount_t *mp)
930 {
931 	xfs_sb_t	*sbp = &(mp->m_sb);
932 	__uint64_t	icount;
933 
934 	if (sbp->sb_imax_pct) {
935 		/*
936 		 * Make sure the maximum inode count is a multiple
937 		 * of the units we allocate inodes in.
938 		 */
939 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
940 		do_div(icount, 100);
941 		do_div(icount, mp->m_ialloc_blks);
942 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
943 				   sbp->sb_inopblog;
944 	} else {
945 		mp->m_maxicount = 0;
946 	}
947 }
948 
949 /*
950  * Set the default minimum read and write sizes unless
951  * already specified in a mount option.
952  * We use smaller I/O sizes when the file system
953  * is being used for NFS service (wsync mount option).
954  */
955 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)956 xfs_set_rw_sizes(xfs_mount_t *mp)
957 {
958 	xfs_sb_t	*sbp = &(mp->m_sb);
959 	int		readio_log, writeio_log;
960 
961 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
962 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
963 			readio_log = XFS_WSYNC_READIO_LOG;
964 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
965 		} else {
966 			readio_log = XFS_READIO_LOG_LARGE;
967 			writeio_log = XFS_WRITEIO_LOG_LARGE;
968 		}
969 	} else {
970 		readio_log = mp->m_readio_log;
971 		writeio_log = mp->m_writeio_log;
972 	}
973 
974 	if (sbp->sb_blocklog > readio_log) {
975 		mp->m_readio_log = sbp->sb_blocklog;
976 	} else {
977 		mp->m_readio_log = readio_log;
978 	}
979 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
980 	if (sbp->sb_blocklog > writeio_log) {
981 		mp->m_writeio_log = sbp->sb_blocklog;
982 	} else {
983 		mp->m_writeio_log = writeio_log;
984 	}
985 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
986 }
987 
988 /*
989  * precalculate the low space thresholds for dynamic speculative preallocation.
990  */
991 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)992 xfs_set_low_space_thresholds(
993 	struct xfs_mount	*mp)
994 {
995 	int i;
996 
997 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
998 		__uint64_t space = mp->m_sb.sb_dblocks;
999 
1000 		do_div(space, 100);
1001 		mp->m_low_space[i] = space * (i + 1);
1002 	}
1003 }
1004 
1005 
1006 /*
1007  * Set whether we're using inode alignment.
1008  */
1009 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)1010 xfs_set_inoalignment(xfs_mount_t *mp)
1011 {
1012 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1013 	    mp->m_sb.sb_inoalignmt >=
1014 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1015 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1016 	else
1017 		mp->m_inoalign_mask = 0;
1018 	/*
1019 	 * If we are using stripe alignment, check whether
1020 	 * the stripe unit is a multiple of the inode alignment
1021 	 */
1022 	if (mp->m_dalign && mp->m_inoalign_mask &&
1023 	    !(mp->m_dalign & mp->m_inoalign_mask))
1024 		mp->m_sinoalign = mp->m_dalign;
1025 	else
1026 		mp->m_sinoalign = 0;
1027 }
1028 
1029 /*
1030  * Check that the data (and log if separate) are an ok size.
1031  */
1032 STATIC int
xfs_check_sizes(xfs_mount_t * mp)1033 xfs_check_sizes(xfs_mount_t *mp)
1034 {
1035 	xfs_buf_t	*bp;
1036 	xfs_daddr_t	d;
1037 
1038 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1039 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1040 		xfs_warn(mp, "filesystem size mismatch detected");
1041 		return XFS_ERROR(EFBIG);
1042 	}
1043 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1044 					d - XFS_FSS_TO_BB(mp, 1),
1045 					BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1046 	if (!bp) {
1047 		xfs_warn(mp, "last sector read failed");
1048 		return EIO;
1049 	}
1050 	xfs_buf_relse(bp);
1051 
1052 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1053 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1054 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1055 			xfs_warn(mp, "log size mismatch detected");
1056 			return XFS_ERROR(EFBIG);
1057 		}
1058 		bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1059 					d - XFS_FSB_TO_BB(mp, 1),
1060 					XFS_FSB_TO_B(mp, 1), 0);
1061 		if (!bp) {
1062 			xfs_warn(mp, "log device read failed");
1063 			return EIO;
1064 		}
1065 		xfs_buf_relse(bp);
1066 	}
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Clear the quotaflags in memory and in the superblock.
1072  */
1073 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)1074 xfs_mount_reset_sbqflags(
1075 	struct xfs_mount	*mp)
1076 {
1077 	int			error;
1078 	struct xfs_trans	*tp;
1079 
1080 	mp->m_qflags = 0;
1081 
1082 	/*
1083 	 * It is OK to look at sb_qflags here in mount path,
1084 	 * without m_sb_lock.
1085 	 */
1086 	if (mp->m_sb.sb_qflags == 0)
1087 		return 0;
1088 	spin_lock(&mp->m_sb_lock);
1089 	mp->m_sb.sb_qflags = 0;
1090 	spin_unlock(&mp->m_sb_lock);
1091 
1092 	/*
1093 	 * If the fs is readonly, let the incore superblock run
1094 	 * with quotas off but don't flush the update out to disk
1095 	 */
1096 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1097 		return 0;
1098 
1099 #ifdef QUOTADEBUG
1100 	xfs_notice(mp, "Writing superblock quota changes");
1101 #endif
1102 
1103 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1104 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1105 				      XFS_DEFAULT_LOG_COUNT);
1106 	if (error) {
1107 		xfs_trans_cancel(tp, 0);
1108 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1109 		return error;
1110 	}
1111 
1112 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1113 	return xfs_trans_commit(tp, 0);
1114 }
1115 
1116 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)1117 xfs_default_resblks(xfs_mount_t *mp)
1118 {
1119 	__uint64_t resblks;
1120 
1121 	/*
1122 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1123 	 * smaller.  This is intended to cover concurrent allocation
1124 	 * transactions when we initially hit enospc. These each require a 4
1125 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1126 	 * allocation reservations.
1127 	 */
1128 	resblks = mp->m_sb.sb_dblocks;
1129 	do_div(resblks, 20);
1130 	resblks = min_t(__uint64_t, resblks, 8192);
1131 	return resblks;
1132 }
1133 
1134 /*
1135  * This function does the following on an initial mount of a file system:
1136  *	- reads the superblock from disk and init the mount struct
1137  *	- if we're a 32-bit kernel, do a size check on the superblock
1138  *		so we don't mount terabyte filesystems
1139  *	- init mount struct realtime fields
1140  *	- allocate inode hash table for fs
1141  *	- init directory manager
1142  *	- perform recovery and init the log manager
1143  */
1144 int
xfs_mountfs(xfs_mount_t * mp)1145 xfs_mountfs(
1146 	xfs_mount_t	*mp)
1147 {
1148 	xfs_sb_t	*sbp = &(mp->m_sb);
1149 	xfs_inode_t	*rip;
1150 	__uint64_t	resblks;
1151 	uint		quotamount = 0;
1152 	uint		quotaflags = 0;
1153 	int		error = 0;
1154 
1155 	xfs_mount_common(mp, sbp);
1156 
1157 	/*
1158 	 * Check for a mismatched features2 values.  Older kernels
1159 	 * read & wrote into the wrong sb offset for sb_features2
1160 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1161 	 * when sb_features2 was added, which made older superblock
1162 	 * reading/writing routines swap it as a 64-bit value.
1163 	 *
1164 	 * For backwards compatibility, we make both slots equal.
1165 	 *
1166 	 * If we detect a mismatched field, we OR the set bits into the
1167 	 * existing features2 field in case it has already been modified; we
1168 	 * don't want to lose any features.  We then update the bad location
1169 	 * with the ORed value so that older kernels will see any features2
1170 	 * flags, and mark the two fields as needing updates once the
1171 	 * transaction subsystem is online.
1172 	 */
1173 	if (xfs_sb_has_mismatched_features2(sbp)) {
1174 		xfs_warn(mp, "correcting sb_features alignment problem");
1175 		sbp->sb_features2 |= sbp->sb_bad_features2;
1176 		sbp->sb_bad_features2 = sbp->sb_features2;
1177 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1178 
1179 		/*
1180 		 * Re-check for ATTR2 in case it was found in bad_features2
1181 		 * slot.
1182 		 */
1183 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1184 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1185 			mp->m_flags |= XFS_MOUNT_ATTR2;
1186 	}
1187 
1188 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1189 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1190 		xfs_sb_version_removeattr2(&mp->m_sb);
1191 		mp->m_update_flags |= XFS_SB_FEATURES2;
1192 
1193 		/* update sb_versionnum for the clearing of the morebits */
1194 		if (!sbp->sb_features2)
1195 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1196 	}
1197 
1198 	/*
1199 	 * Check if sb_agblocks is aligned at stripe boundary
1200 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1201 	 * allocator alignment is within an ag, therefore ag has
1202 	 * to be aligned at stripe boundary.
1203 	 */
1204 	error = xfs_update_alignment(mp);
1205 	if (error)
1206 		goto out;
1207 
1208 	xfs_alloc_compute_maxlevels(mp);
1209 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1210 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1211 	xfs_ialloc_compute_maxlevels(mp);
1212 
1213 	xfs_set_maxicount(mp);
1214 
1215 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1216 
1217 	error = xfs_uuid_mount(mp);
1218 	if (error)
1219 		goto out;
1220 
1221 	/*
1222 	 * Set the minimum read and write sizes
1223 	 */
1224 	xfs_set_rw_sizes(mp);
1225 
1226 	/* set the low space thresholds for dynamic preallocation */
1227 	xfs_set_low_space_thresholds(mp);
1228 
1229 	/*
1230 	 * Set the inode cluster size.
1231 	 * This may still be overridden by the file system
1232 	 * block size if it is larger than the chosen cluster size.
1233 	 */
1234 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1235 
1236 	/*
1237 	 * Set inode alignment fields
1238 	 */
1239 	xfs_set_inoalignment(mp);
1240 
1241 	/*
1242 	 * Check that the data (and log if separate) are an ok size.
1243 	 */
1244 	error = xfs_check_sizes(mp);
1245 	if (error)
1246 		goto out_remove_uuid;
1247 
1248 	/*
1249 	 * Initialize realtime fields in the mount structure
1250 	 */
1251 	error = xfs_rtmount_init(mp);
1252 	if (error) {
1253 		xfs_warn(mp, "RT mount failed");
1254 		goto out_remove_uuid;
1255 	}
1256 
1257 	/*
1258 	 *  Copies the low order bits of the timestamp and the randomly
1259 	 *  set "sequence" number out of a UUID.
1260 	 */
1261 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1262 
1263 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1264 
1265 	xfs_dir_mount(mp);
1266 
1267 	/*
1268 	 * Initialize the attribute manager's entries.
1269 	 */
1270 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1271 
1272 	/*
1273 	 * Initialize the precomputed transaction reservations values.
1274 	 */
1275 	xfs_trans_init(mp);
1276 
1277 	/*
1278 	 * Allocate and initialize the per-ag data.
1279 	 */
1280 	spin_lock_init(&mp->m_perag_lock);
1281 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1282 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1283 	if (error) {
1284 		xfs_warn(mp, "Failed per-ag init: %d", error);
1285 		goto out_remove_uuid;
1286 	}
1287 
1288 	if (!sbp->sb_logblocks) {
1289 		xfs_warn(mp, "no log defined");
1290 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1291 		error = XFS_ERROR(EFSCORRUPTED);
1292 		goto out_free_perag;
1293 	}
1294 
1295 	/*
1296 	 * log's mount-time initialization. Perform 1st part recovery if needed
1297 	 */
1298 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1299 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1300 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1301 	if (error) {
1302 		xfs_warn(mp, "log mount failed");
1303 		goto out_free_perag;
1304 	}
1305 
1306 	/*
1307 	 * Now the log is mounted, we know if it was an unclean shutdown or
1308 	 * not. If it was, with the first phase of recovery has completed, we
1309 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1310 	 * but they are recovered transactionally in the second recovery phase
1311 	 * later.
1312 	 *
1313 	 * Hence we can safely re-initialise incore superblock counters from
1314 	 * the per-ag data. These may not be correct if the filesystem was not
1315 	 * cleanly unmounted, so we need to wait for recovery to finish before
1316 	 * doing this.
1317 	 *
1318 	 * If the filesystem was cleanly unmounted, then we can trust the
1319 	 * values in the superblock to be correct and we don't need to do
1320 	 * anything here.
1321 	 *
1322 	 * If we are currently making the filesystem, the initialisation will
1323 	 * fail as the perag data is in an undefined state.
1324 	 */
1325 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1326 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1327 	     !mp->m_sb.sb_inprogress) {
1328 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1329 		if (error)
1330 			goto out_free_perag;
1331 	}
1332 
1333 	/*
1334 	 * Get and sanity-check the root inode.
1335 	 * Save the pointer to it in the mount structure.
1336 	 */
1337 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1338 	if (error) {
1339 		xfs_warn(mp, "failed to read root inode");
1340 		goto out_log_dealloc;
1341 	}
1342 
1343 	ASSERT(rip != NULL);
1344 
1345 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1346 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1347 			(unsigned long long)rip->i_ino);
1348 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1349 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1350 				 mp);
1351 		error = XFS_ERROR(EFSCORRUPTED);
1352 		goto out_rele_rip;
1353 	}
1354 	mp->m_rootip = rip;	/* save it */
1355 
1356 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1357 
1358 	/*
1359 	 * Initialize realtime inode pointers in the mount structure
1360 	 */
1361 	error = xfs_rtmount_inodes(mp);
1362 	if (error) {
1363 		/*
1364 		 * Free up the root inode.
1365 		 */
1366 		xfs_warn(mp, "failed to read RT inodes");
1367 		goto out_rele_rip;
1368 	}
1369 
1370 	/*
1371 	 * If this is a read-only mount defer the superblock updates until
1372 	 * the next remount into writeable mode.  Otherwise we would never
1373 	 * perform the update e.g. for the root filesystem.
1374 	 */
1375 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1376 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1377 		if (error) {
1378 			xfs_warn(mp, "failed to write sb changes");
1379 			goto out_rtunmount;
1380 		}
1381 	}
1382 
1383 	/*
1384 	 * Initialise the XFS quota management subsystem for this mount
1385 	 */
1386 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1387 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1388 		if (error)
1389 			goto out_rtunmount;
1390 	} else {
1391 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1392 
1393 		/*
1394 		 * If a file system had quotas running earlier, but decided to
1395 		 * mount without -o uquota/pquota/gquota options, revoke the
1396 		 * quotachecked license.
1397 		 */
1398 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1399 			xfs_notice(mp, "resetting quota flags");
1400 			error = xfs_mount_reset_sbqflags(mp);
1401 			if (error)
1402 				return error;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Finish recovering the file system.  This part needed to be
1408 	 * delayed until after the root and real-time bitmap inodes
1409 	 * were consistently read in.
1410 	 */
1411 	error = xfs_log_mount_finish(mp);
1412 	if (error) {
1413 		xfs_warn(mp, "log mount finish failed");
1414 		goto out_rtunmount;
1415 	}
1416 
1417 	/*
1418 	 * Complete the quota initialisation, post-log-replay component.
1419 	 */
1420 	if (quotamount) {
1421 		ASSERT(mp->m_qflags == 0);
1422 		mp->m_qflags = quotaflags;
1423 
1424 		xfs_qm_mount_quotas(mp);
1425 	}
1426 
1427 	/*
1428 	 * Now we are mounted, reserve a small amount of unused space for
1429 	 * privileged transactions. This is needed so that transaction
1430 	 * space required for critical operations can dip into this pool
1431 	 * when at ENOSPC. This is needed for operations like create with
1432 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1433 	 * are not allowed to use this reserved space.
1434 	 *
1435 	 * This may drive us straight to ENOSPC on mount, but that implies
1436 	 * we were already there on the last unmount. Warn if this occurs.
1437 	 */
1438 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1439 		resblks = xfs_default_resblks(mp);
1440 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1441 		if (error)
1442 			xfs_warn(mp,
1443 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1444 	}
1445 
1446 	return 0;
1447 
1448  out_rtunmount:
1449 	xfs_rtunmount_inodes(mp);
1450  out_rele_rip:
1451 	IRELE(rip);
1452  out_log_dealloc:
1453 	xfs_log_unmount(mp);
1454  out_free_perag:
1455 	xfs_free_perag(mp);
1456  out_remove_uuid:
1457 	xfs_uuid_unmount(mp);
1458  out:
1459 	return error;
1460 }
1461 
1462 /*
1463  * This flushes out the inodes,dquots and the superblock, unmounts the
1464  * log and makes sure that incore structures are freed.
1465  */
1466 void
xfs_unmountfs(struct xfs_mount * mp)1467 xfs_unmountfs(
1468 	struct xfs_mount	*mp)
1469 {
1470 	__uint64_t		resblks;
1471 	int			error;
1472 
1473 	xfs_qm_unmount_quotas(mp);
1474 	xfs_rtunmount_inodes(mp);
1475 	IRELE(mp->m_rootip);
1476 
1477 	/*
1478 	 * We can potentially deadlock here if we have an inode cluster
1479 	 * that has been freed has its buffer still pinned in memory because
1480 	 * the transaction is still sitting in a iclog. The stale inodes
1481 	 * on that buffer will have their flush locks held until the
1482 	 * transaction hits the disk and the callbacks run. the inode
1483 	 * flush takes the flush lock unconditionally and with nothing to
1484 	 * push out the iclog we will never get that unlocked. hence we
1485 	 * need to force the log first.
1486 	 */
1487 	xfs_log_force(mp, XFS_LOG_SYNC);
1488 
1489 	/*
1490 	 * Do a delwri reclaim pass first so that as many dirty inodes are
1491 	 * queued up for IO as possible. Then flush the buffers before making
1492 	 * a synchronous path to catch all the remaining inodes are reclaimed.
1493 	 * This makes the reclaim process as quick as possible by avoiding
1494 	 * synchronous writeout and blocking on inodes already in the delwri
1495 	 * state as much as possible.
1496 	 */
1497 	xfs_reclaim_inodes(mp, 0);
1498 	XFS_bflush(mp->m_ddev_targp);
1499 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1500 
1501 	xfs_qm_unmount(mp);
1502 
1503 	/*
1504 	 * Flush out the log synchronously so that we know for sure
1505 	 * that nothing is pinned.  This is important because bflush()
1506 	 * will skip pinned buffers.
1507 	 */
1508 	xfs_log_force(mp, XFS_LOG_SYNC);
1509 
1510 	xfs_binval(mp->m_ddev_targp);
1511 	if (mp->m_rtdev_targp) {
1512 		xfs_binval(mp->m_rtdev_targp);
1513 	}
1514 
1515 	/*
1516 	 * Unreserve any blocks we have so that when we unmount we don't account
1517 	 * the reserved free space as used. This is really only necessary for
1518 	 * lazy superblock counting because it trusts the incore superblock
1519 	 * counters to be absolutely correct on clean unmount.
1520 	 *
1521 	 * We don't bother correcting this elsewhere for lazy superblock
1522 	 * counting because on mount of an unclean filesystem we reconstruct the
1523 	 * correct counter value and this is irrelevant.
1524 	 *
1525 	 * For non-lazy counter filesystems, this doesn't matter at all because
1526 	 * we only every apply deltas to the superblock and hence the incore
1527 	 * value does not matter....
1528 	 */
1529 	resblks = 0;
1530 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1531 	if (error)
1532 		xfs_warn(mp, "Unable to free reserved block pool. "
1533 				"Freespace may not be correct on next mount.");
1534 
1535 	error = xfs_log_sbcount(mp, 1);
1536 	if (error)
1537 		xfs_warn(mp, "Unable to update superblock counters. "
1538 				"Freespace may not be correct on next mount.");
1539 	xfs_unmountfs_writesb(mp);
1540 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1541 	xfs_log_unmount_write(mp);
1542 	xfs_log_unmount(mp);
1543 	xfs_uuid_unmount(mp);
1544 
1545 #if defined(DEBUG)
1546 	xfs_errortag_clearall(mp, 0);
1547 #endif
1548 	xfs_free_perag(mp);
1549 }
1550 
1551 STATIC void
xfs_unmountfs_wait(xfs_mount_t * mp)1552 xfs_unmountfs_wait(xfs_mount_t *mp)
1553 {
1554 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1555 		xfs_wait_buftarg(mp->m_logdev_targp);
1556 	if (mp->m_rtdev_targp)
1557 		xfs_wait_buftarg(mp->m_rtdev_targp);
1558 	xfs_wait_buftarg(mp->m_ddev_targp);
1559 }
1560 
1561 int
xfs_fs_writable(xfs_mount_t * mp)1562 xfs_fs_writable(xfs_mount_t *mp)
1563 {
1564 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1565 		(mp->m_flags & XFS_MOUNT_RDONLY));
1566 }
1567 
1568 /*
1569  * xfs_log_sbcount
1570  *
1571  * Called either periodically to keep the on disk superblock values
1572  * roughly up to date or from unmount to make sure the values are
1573  * correct on a clean unmount.
1574  *
1575  * Note this code can be called during the process of freezing, so
1576  * we may need to use the transaction allocator which does not not
1577  * block when the transaction subsystem is in its frozen state.
1578  */
1579 int
xfs_log_sbcount(xfs_mount_t * mp,uint sync)1580 xfs_log_sbcount(
1581 	xfs_mount_t	*mp,
1582 	uint		sync)
1583 {
1584 	xfs_trans_t	*tp;
1585 	int		error;
1586 
1587 	if (!xfs_fs_writable(mp))
1588 		return 0;
1589 
1590 	xfs_icsb_sync_counters(mp, 0);
1591 
1592 	/*
1593 	 * we don't need to do this if we are updating the superblock
1594 	 * counters on every modification.
1595 	 */
1596 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1597 		return 0;
1598 
1599 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1600 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1601 					XFS_DEFAULT_LOG_COUNT);
1602 	if (error) {
1603 		xfs_trans_cancel(tp, 0);
1604 		return error;
1605 	}
1606 
1607 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1608 	if (sync)
1609 		xfs_trans_set_sync(tp);
1610 	error = xfs_trans_commit(tp, 0);
1611 	return error;
1612 }
1613 
1614 int
xfs_unmountfs_writesb(xfs_mount_t * mp)1615 xfs_unmountfs_writesb(xfs_mount_t *mp)
1616 {
1617 	xfs_buf_t	*sbp;
1618 	int		error = 0;
1619 
1620 	/*
1621 	 * skip superblock write if fs is read-only, or
1622 	 * if we are doing a forced umount.
1623 	 */
1624 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1625 		XFS_FORCED_SHUTDOWN(mp))) {
1626 
1627 		sbp = xfs_getsb(mp, 0);
1628 
1629 		XFS_BUF_UNDONE(sbp);
1630 		XFS_BUF_UNREAD(sbp);
1631 		XFS_BUF_UNDELAYWRITE(sbp);
1632 		XFS_BUF_WRITE(sbp);
1633 		XFS_BUF_UNASYNC(sbp);
1634 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1635 		xfsbdstrat(mp, sbp);
1636 		error = xfs_buf_iowait(sbp);
1637 		if (error)
1638 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1639 					  mp, sbp, XFS_BUF_ADDR(sbp));
1640 		xfs_buf_relse(sbp);
1641 	}
1642 	return error;
1643 }
1644 
1645 /*
1646  * xfs_mod_sb() can be used to copy arbitrary changes to the
1647  * in-core superblock into the superblock buffer to be logged.
1648  * It does not provide the higher level of locking that is
1649  * needed to protect the in-core superblock from concurrent
1650  * access.
1651  */
1652 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1653 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1654 {
1655 	xfs_buf_t	*bp;
1656 	int		first;
1657 	int		last;
1658 	xfs_mount_t	*mp;
1659 	xfs_sb_field_t	f;
1660 
1661 	ASSERT(fields);
1662 	if (!fields)
1663 		return;
1664 	mp = tp->t_mountp;
1665 	bp = xfs_trans_getsb(tp, mp, 0);
1666 	first = sizeof(xfs_sb_t);
1667 	last = 0;
1668 
1669 	/* translate/copy */
1670 
1671 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1672 
1673 	/* find modified range */
1674 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1675 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1676 	last = xfs_sb_info[f + 1].offset - 1;
1677 
1678 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1679 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1680 	first = xfs_sb_info[f].offset;
1681 
1682 	xfs_trans_log_buf(tp, bp, first, last);
1683 }
1684 
1685 
1686 /*
1687  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1688  * a delta to a specified field in the in-core superblock.  Simply
1689  * switch on the field indicated and apply the delta to that field.
1690  * Fields are not allowed to dip below zero, so if the delta would
1691  * do this do not apply it and return EINVAL.
1692  *
1693  * The m_sb_lock must be held when this routine is called.
1694  */
1695 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1696 xfs_mod_incore_sb_unlocked(
1697 	xfs_mount_t	*mp,
1698 	xfs_sb_field_t	field,
1699 	int64_t		delta,
1700 	int		rsvd)
1701 {
1702 	int		scounter;	/* short counter for 32 bit fields */
1703 	long long	lcounter;	/* long counter for 64 bit fields */
1704 	long long	res_used, rem;
1705 
1706 	/*
1707 	 * With the in-core superblock spin lock held, switch
1708 	 * on the indicated field.  Apply the delta to the
1709 	 * proper field.  If the fields value would dip below
1710 	 * 0, then do not apply the delta and return EINVAL.
1711 	 */
1712 	switch (field) {
1713 	case XFS_SBS_ICOUNT:
1714 		lcounter = (long long)mp->m_sb.sb_icount;
1715 		lcounter += delta;
1716 		if (lcounter < 0) {
1717 			ASSERT(0);
1718 			return XFS_ERROR(EINVAL);
1719 		}
1720 		mp->m_sb.sb_icount = lcounter;
1721 		return 0;
1722 	case XFS_SBS_IFREE:
1723 		lcounter = (long long)mp->m_sb.sb_ifree;
1724 		lcounter += delta;
1725 		if (lcounter < 0) {
1726 			ASSERT(0);
1727 			return XFS_ERROR(EINVAL);
1728 		}
1729 		mp->m_sb.sb_ifree = lcounter;
1730 		return 0;
1731 	case XFS_SBS_FDBLOCKS:
1732 		lcounter = (long long)
1733 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1734 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1735 
1736 		if (delta > 0) {		/* Putting blocks back */
1737 			if (res_used > delta) {
1738 				mp->m_resblks_avail += delta;
1739 			} else {
1740 				rem = delta - res_used;
1741 				mp->m_resblks_avail = mp->m_resblks;
1742 				lcounter += rem;
1743 			}
1744 		} else {				/* Taking blocks away */
1745 			lcounter += delta;
1746 			if (lcounter >= 0) {
1747 				mp->m_sb.sb_fdblocks = lcounter +
1748 							XFS_ALLOC_SET_ASIDE(mp);
1749 				return 0;
1750 			}
1751 
1752 			/*
1753 			 * We are out of blocks, use any available reserved
1754 			 * blocks if were allowed to.
1755 			 */
1756 			if (!rsvd)
1757 				return XFS_ERROR(ENOSPC);
1758 
1759 			lcounter = (long long)mp->m_resblks_avail + delta;
1760 			if (lcounter >= 0) {
1761 				mp->m_resblks_avail = lcounter;
1762 				return 0;
1763 			}
1764 			printk_once(KERN_WARNING
1765 				"Filesystem \"%s\": reserve blocks depleted! "
1766 				"Consider increasing reserve pool size.",
1767 				mp->m_fsname);
1768 			return XFS_ERROR(ENOSPC);
1769 		}
1770 
1771 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1772 		return 0;
1773 	case XFS_SBS_FREXTENTS:
1774 		lcounter = (long long)mp->m_sb.sb_frextents;
1775 		lcounter += delta;
1776 		if (lcounter < 0) {
1777 			return XFS_ERROR(ENOSPC);
1778 		}
1779 		mp->m_sb.sb_frextents = lcounter;
1780 		return 0;
1781 	case XFS_SBS_DBLOCKS:
1782 		lcounter = (long long)mp->m_sb.sb_dblocks;
1783 		lcounter += delta;
1784 		if (lcounter < 0) {
1785 			ASSERT(0);
1786 			return XFS_ERROR(EINVAL);
1787 		}
1788 		mp->m_sb.sb_dblocks = lcounter;
1789 		return 0;
1790 	case XFS_SBS_AGCOUNT:
1791 		scounter = mp->m_sb.sb_agcount;
1792 		scounter += delta;
1793 		if (scounter < 0) {
1794 			ASSERT(0);
1795 			return XFS_ERROR(EINVAL);
1796 		}
1797 		mp->m_sb.sb_agcount = scounter;
1798 		return 0;
1799 	case XFS_SBS_IMAX_PCT:
1800 		scounter = mp->m_sb.sb_imax_pct;
1801 		scounter += delta;
1802 		if (scounter < 0) {
1803 			ASSERT(0);
1804 			return XFS_ERROR(EINVAL);
1805 		}
1806 		mp->m_sb.sb_imax_pct = scounter;
1807 		return 0;
1808 	case XFS_SBS_REXTSIZE:
1809 		scounter = mp->m_sb.sb_rextsize;
1810 		scounter += delta;
1811 		if (scounter < 0) {
1812 			ASSERT(0);
1813 			return XFS_ERROR(EINVAL);
1814 		}
1815 		mp->m_sb.sb_rextsize = scounter;
1816 		return 0;
1817 	case XFS_SBS_RBMBLOCKS:
1818 		scounter = mp->m_sb.sb_rbmblocks;
1819 		scounter += delta;
1820 		if (scounter < 0) {
1821 			ASSERT(0);
1822 			return XFS_ERROR(EINVAL);
1823 		}
1824 		mp->m_sb.sb_rbmblocks = scounter;
1825 		return 0;
1826 	case XFS_SBS_RBLOCKS:
1827 		lcounter = (long long)mp->m_sb.sb_rblocks;
1828 		lcounter += delta;
1829 		if (lcounter < 0) {
1830 			ASSERT(0);
1831 			return XFS_ERROR(EINVAL);
1832 		}
1833 		mp->m_sb.sb_rblocks = lcounter;
1834 		return 0;
1835 	case XFS_SBS_REXTENTS:
1836 		lcounter = (long long)mp->m_sb.sb_rextents;
1837 		lcounter += delta;
1838 		if (lcounter < 0) {
1839 			ASSERT(0);
1840 			return XFS_ERROR(EINVAL);
1841 		}
1842 		mp->m_sb.sb_rextents = lcounter;
1843 		return 0;
1844 	case XFS_SBS_REXTSLOG:
1845 		scounter = mp->m_sb.sb_rextslog;
1846 		scounter += delta;
1847 		if (scounter < 0) {
1848 			ASSERT(0);
1849 			return XFS_ERROR(EINVAL);
1850 		}
1851 		mp->m_sb.sb_rextslog = scounter;
1852 		return 0;
1853 	default:
1854 		ASSERT(0);
1855 		return XFS_ERROR(EINVAL);
1856 	}
1857 }
1858 
1859 /*
1860  * xfs_mod_incore_sb() is used to change a field in the in-core
1861  * superblock structure by the specified delta.  This modification
1862  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1863  * routine to do the work.
1864  */
1865 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1866 xfs_mod_incore_sb(
1867 	struct xfs_mount	*mp,
1868 	xfs_sb_field_t		field,
1869 	int64_t			delta,
1870 	int			rsvd)
1871 {
1872 	int			status;
1873 
1874 #ifdef HAVE_PERCPU_SB
1875 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1876 #endif
1877 	spin_lock(&mp->m_sb_lock);
1878 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1879 	spin_unlock(&mp->m_sb_lock);
1880 
1881 	return status;
1882 }
1883 
1884 /*
1885  * Change more than one field in the in-core superblock structure at a time.
1886  *
1887  * The fields and changes to those fields are specified in the array of
1888  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1889  * will be applied or none of them will.  If any modified field dips below 0,
1890  * then all modifications will be backed out and EINVAL will be returned.
1891  *
1892  * Note that this function may not be used for the superblock values that
1893  * are tracked with the in-memory per-cpu counters - a direct call to
1894  * xfs_icsb_modify_counters is required for these.
1895  */
1896 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1897 xfs_mod_incore_sb_batch(
1898 	struct xfs_mount	*mp,
1899 	xfs_mod_sb_t		*msb,
1900 	uint			nmsb,
1901 	int			rsvd)
1902 {
1903 	xfs_mod_sb_t		*msbp = &msb[0];
1904 	int			error = 0;
1905 
1906 	/*
1907 	 * Loop through the array of mod structures and apply each individually.
1908 	 * If any fail, then back out all those which have already been applied.
1909 	 * Do all of this within the scope of the m_sb_lock so that all of the
1910 	 * changes will be atomic.
1911 	 */
1912 	spin_lock(&mp->m_sb_lock);
1913 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1914 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1915 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1916 
1917 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1918 						   msbp->msb_delta, rsvd);
1919 		if (error)
1920 			goto unwind;
1921 	}
1922 	spin_unlock(&mp->m_sb_lock);
1923 	return 0;
1924 
1925 unwind:
1926 	while (--msbp >= msb) {
1927 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1928 						   -msbp->msb_delta, rsvd);
1929 		ASSERT(error == 0);
1930 	}
1931 	spin_unlock(&mp->m_sb_lock);
1932 	return error;
1933 }
1934 
1935 /*
1936  * xfs_getsb() is called to obtain the buffer for the superblock.
1937  * The buffer is returned locked and read in from disk.
1938  * The buffer should be released with a call to xfs_brelse().
1939  *
1940  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1941  * the superblock buffer if it can be locked without sleeping.
1942  * If it can't then we'll return NULL.
1943  */
1944 xfs_buf_t *
xfs_getsb(xfs_mount_t * mp,int flags)1945 xfs_getsb(
1946 	xfs_mount_t	*mp,
1947 	int		flags)
1948 {
1949 	xfs_buf_t	*bp;
1950 
1951 	ASSERT(mp->m_sb_bp != NULL);
1952 	bp = mp->m_sb_bp;
1953 	if (flags & XBF_TRYLOCK) {
1954 		if (!XFS_BUF_CPSEMA(bp)) {
1955 			return NULL;
1956 		}
1957 	} else {
1958 		XFS_BUF_PSEMA(bp, PRIBIO);
1959 	}
1960 	XFS_BUF_HOLD(bp);
1961 	ASSERT(XFS_BUF_ISDONE(bp));
1962 	return bp;
1963 }
1964 
1965 /*
1966  * Used to free the superblock along various error paths.
1967  */
1968 void
xfs_freesb(struct xfs_mount * mp)1969 xfs_freesb(
1970 	struct xfs_mount	*mp)
1971 {
1972 	struct xfs_buf		*bp = mp->m_sb_bp;
1973 
1974 	xfs_buf_lock(bp);
1975 	mp->m_sb_bp = NULL;
1976 	xfs_buf_relse(bp);
1977 }
1978 
1979 /*
1980  * Used to log changes to the superblock unit and width fields which could
1981  * be altered by the mount options, as well as any potential sb_features2
1982  * fixup. Only the first superblock is updated.
1983  */
1984 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)1985 xfs_mount_log_sb(
1986 	xfs_mount_t	*mp,
1987 	__int64_t	fields)
1988 {
1989 	xfs_trans_t	*tp;
1990 	int		error;
1991 
1992 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1993 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1994 			 XFS_SB_VERSIONNUM));
1995 
1996 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1997 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1998 				XFS_DEFAULT_LOG_COUNT);
1999 	if (error) {
2000 		xfs_trans_cancel(tp, 0);
2001 		return error;
2002 	}
2003 	xfs_mod_sb(tp, fields);
2004 	error = xfs_trans_commit(tp, 0);
2005 	return error;
2006 }
2007 
2008 /*
2009  * If the underlying (data/log/rt) device is readonly, there are some
2010  * operations that cannot proceed.
2011  */
2012 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)2013 xfs_dev_is_read_only(
2014 	struct xfs_mount	*mp,
2015 	char			*message)
2016 {
2017 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2018 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2019 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2020 		xfs_notice(mp, "%s required on read-only device.", message);
2021 		xfs_notice(mp, "write access unavailable, cannot proceed.");
2022 		return EROFS;
2023 	}
2024 	return 0;
2025 }
2026 
2027 #ifdef HAVE_PERCPU_SB
2028 /*
2029  * Per-cpu incore superblock counters
2030  *
2031  * Simple concept, difficult implementation
2032  *
2033  * Basically, replace the incore superblock counters with a distributed per cpu
2034  * counter for contended fields (e.g.  free block count).
2035  *
2036  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2037  * hence needs to be accurately read when we are running low on space. Hence
2038  * there is a method to enable and disable the per-cpu counters based on how
2039  * much "stuff" is available in them.
2040  *
2041  * Basically, a counter is enabled if there is enough free resource to justify
2042  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2043  * ENOSPC), then we disable the counters to synchronise all callers and
2044  * re-distribute the available resources.
2045  *
2046  * If, once we redistributed the available resources, we still get a failure,
2047  * we disable the per-cpu counter and go through the slow path.
2048  *
2049  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2050  * when we disable a per-cpu counter, we need to drain its resources back to
2051  * the global superblock. We do this after disabling the counter to prevent
2052  * more threads from queueing up on the counter.
2053  *
2054  * Essentially, this means that we still need a lock in the fast path to enable
2055  * synchronisation between the global counters and the per-cpu counters. This
2056  * is not a problem because the lock will be local to a CPU almost all the time
2057  * and have little contention except when we get to ENOSPC conditions.
2058  *
2059  * Basically, this lock becomes a barrier that enables us to lock out the fast
2060  * path while we do things like enabling and disabling counters and
2061  * synchronising the counters.
2062  *
2063  * Locking rules:
2064  *
2065  * 	1. m_sb_lock before picking up per-cpu locks
2066  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2067  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2068  * 	4. modifying per-cpu counters requires holding per-cpu lock
2069  * 	5. modifying global counters requires holding m_sb_lock
2070  *	6. enabling or disabling a counter requires holding the m_sb_lock
2071  *	   and _none_ of the per-cpu locks.
2072  *
2073  * Disabled counters are only ever re-enabled by a balance operation
2074  * that results in more free resources per CPU than a given threshold.
2075  * To ensure counters don't remain disabled, they are rebalanced when
2076  * the global resource goes above a higher threshold (i.e. some hysteresis
2077  * is present to prevent thrashing).
2078  */
2079 
2080 #ifdef CONFIG_HOTPLUG_CPU
2081 /*
2082  * hot-plug CPU notifier support.
2083  *
2084  * We need a notifier per filesystem as we need to be able to identify
2085  * the filesystem to balance the counters out. This is achieved by
2086  * having a notifier block embedded in the xfs_mount_t and doing pointer
2087  * magic to get the mount pointer from the notifier block address.
2088  */
2089 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)2090 xfs_icsb_cpu_notify(
2091 	struct notifier_block *nfb,
2092 	unsigned long action,
2093 	void *hcpu)
2094 {
2095 	xfs_icsb_cnts_t *cntp;
2096 	xfs_mount_t	*mp;
2097 
2098 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2099 	cntp = (xfs_icsb_cnts_t *)
2100 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2101 	switch (action) {
2102 	case CPU_UP_PREPARE:
2103 	case CPU_UP_PREPARE_FROZEN:
2104 		/* Easy Case - initialize the area and locks, and
2105 		 * then rebalance when online does everything else for us. */
2106 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2107 		break;
2108 	case CPU_ONLINE:
2109 	case CPU_ONLINE_FROZEN:
2110 		xfs_icsb_lock(mp);
2111 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2112 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2113 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2114 		xfs_icsb_unlock(mp);
2115 		break;
2116 	case CPU_DEAD:
2117 	case CPU_DEAD_FROZEN:
2118 		/* Disable all the counters, then fold the dead cpu's
2119 		 * count into the total on the global superblock and
2120 		 * re-enable the counters. */
2121 		xfs_icsb_lock(mp);
2122 		spin_lock(&mp->m_sb_lock);
2123 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2124 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2125 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2126 
2127 		mp->m_sb.sb_icount += cntp->icsb_icount;
2128 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2129 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2130 
2131 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2132 
2133 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2134 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2135 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2136 		spin_unlock(&mp->m_sb_lock);
2137 		xfs_icsb_unlock(mp);
2138 		break;
2139 	}
2140 
2141 	return NOTIFY_OK;
2142 }
2143 #endif /* CONFIG_HOTPLUG_CPU */
2144 
2145 int
xfs_icsb_init_counters(xfs_mount_t * mp)2146 xfs_icsb_init_counters(
2147 	xfs_mount_t	*mp)
2148 {
2149 	xfs_icsb_cnts_t *cntp;
2150 	int		i;
2151 
2152 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2153 	if (mp->m_sb_cnts == NULL)
2154 		return -ENOMEM;
2155 
2156 #ifdef CONFIG_HOTPLUG_CPU
2157 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2158 	mp->m_icsb_notifier.priority = 0;
2159 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2160 #endif /* CONFIG_HOTPLUG_CPU */
2161 
2162 	for_each_online_cpu(i) {
2163 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2164 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2165 	}
2166 
2167 	mutex_init(&mp->m_icsb_mutex);
2168 
2169 	/*
2170 	 * start with all counters disabled so that the
2171 	 * initial balance kicks us off correctly
2172 	 */
2173 	mp->m_icsb_counters = -1;
2174 	return 0;
2175 }
2176 
2177 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)2178 xfs_icsb_reinit_counters(
2179 	xfs_mount_t	*mp)
2180 {
2181 	xfs_icsb_lock(mp);
2182 	/*
2183 	 * start with all counters disabled so that the
2184 	 * initial balance kicks us off correctly
2185 	 */
2186 	mp->m_icsb_counters = -1;
2187 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2188 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2189 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2190 	xfs_icsb_unlock(mp);
2191 }
2192 
2193 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2194 xfs_icsb_destroy_counters(
2195 	xfs_mount_t	*mp)
2196 {
2197 	if (mp->m_sb_cnts) {
2198 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2199 		free_percpu(mp->m_sb_cnts);
2200 	}
2201 	mutex_destroy(&mp->m_icsb_mutex);
2202 }
2203 
2204 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2205 xfs_icsb_lock_cntr(
2206 	xfs_icsb_cnts_t	*icsbp)
2207 {
2208 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2209 		ndelay(1000);
2210 	}
2211 }
2212 
2213 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2214 xfs_icsb_unlock_cntr(
2215 	xfs_icsb_cnts_t	*icsbp)
2216 {
2217 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2218 }
2219 
2220 
2221 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2222 xfs_icsb_lock_all_counters(
2223 	xfs_mount_t	*mp)
2224 {
2225 	xfs_icsb_cnts_t *cntp;
2226 	int		i;
2227 
2228 	for_each_online_cpu(i) {
2229 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2230 		xfs_icsb_lock_cntr(cntp);
2231 	}
2232 }
2233 
2234 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2235 xfs_icsb_unlock_all_counters(
2236 	xfs_mount_t	*mp)
2237 {
2238 	xfs_icsb_cnts_t *cntp;
2239 	int		i;
2240 
2241 	for_each_online_cpu(i) {
2242 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2243 		xfs_icsb_unlock_cntr(cntp);
2244 	}
2245 }
2246 
2247 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2248 xfs_icsb_count(
2249 	xfs_mount_t	*mp,
2250 	xfs_icsb_cnts_t	*cnt,
2251 	int		flags)
2252 {
2253 	xfs_icsb_cnts_t *cntp;
2254 	int		i;
2255 
2256 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2257 
2258 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2259 		xfs_icsb_lock_all_counters(mp);
2260 
2261 	for_each_online_cpu(i) {
2262 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2263 		cnt->icsb_icount += cntp->icsb_icount;
2264 		cnt->icsb_ifree += cntp->icsb_ifree;
2265 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2266 	}
2267 
2268 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2269 		xfs_icsb_unlock_all_counters(mp);
2270 }
2271 
2272 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2273 xfs_icsb_counter_disabled(
2274 	xfs_mount_t	*mp,
2275 	xfs_sb_field_t	field)
2276 {
2277 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2278 	return test_bit(field, &mp->m_icsb_counters);
2279 }
2280 
2281 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2282 xfs_icsb_disable_counter(
2283 	xfs_mount_t	*mp,
2284 	xfs_sb_field_t	field)
2285 {
2286 	xfs_icsb_cnts_t	cnt;
2287 
2288 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2289 
2290 	/*
2291 	 * If we are already disabled, then there is nothing to do
2292 	 * here. We check before locking all the counters to avoid
2293 	 * the expensive lock operation when being called in the
2294 	 * slow path and the counter is already disabled. This is
2295 	 * safe because the only time we set or clear this state is under
2296 	 * the m_icsb_mutex.
2297 	 */
2298 	if (xfs_icsb_counter_disabled(mp, field))
2299 		return;
2300 
2301 	xfs_icsb_lock_all_counters(mp);
2302 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2303 		/* drain back to superblock */
2304 
2305 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2306 		switch(field) {
2307 		case XFS_SBS_ICOUNT:
2308 			mp->m_sb.sb_icount = cnt.icsb_icount;
2309 			break;
2310 		case XFS_SBS_IFREE:
2311 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2312 			break;
2313 		case XFS_SBS_FDBLOCKS:
2314 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2315 			break;
2316 		default:
2317 			BUG();
2318 		}
2319 	}
2320 
2321 	xfs_icsb_unlock_all_counters(mp);
2322 }
2323 
2324 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2325 xfs_icsb_enable_counter(
2326 	xfs_mount_t	*mp,
2327 	xfs_sb_field_t	field,
2328 	uint64_t	count,
2329 	uint64_t	resid)
2330 {
2331 	xfs_icsb_cnts_t	*cntp;
2332 	int		i;
2333 
2334 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2335 
2336 	xfs_icsb_lock_all_counters(mp);
2337 	for_each_online_cpu(i) {
2338 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2339 		switch (field) {
2340 		case XFS_SBS_ICOUNT:
2341 			cntp->icsb_icount = count + resid;
2342 			break;
2343 		case XFS_SBS_IFREE:
2344 			cntp->icsb_ifree = count + resid;
2345 			break;
2346 		case XFS_SBS_FDBLOCKS:
2347 			cntp->icsb_fdblocks = count + resid;
2348 			break;
2349 		default:
2350 			BUG();
2351 			break;
2352 		}
2353 		resid = 0;
2354 	}
2355 	clear_bit(field, &mp->m_icsb_counters);
2356 	xfs_icsb_unlock_all_counters(mp);
2357 }
2358 
2359 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2360 xfs_icsb_sync_counters_locked(
2361 	xfs_mount_t	*mp,
2362 	int		flags)
2363 {
2364 	xfs_icsb_cnts_t	cnt;
2365 
2366 	xfs_icsb_count(mp, &cnt, flags);
2367 
2368 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2369 		mp->m_sb.sb_icount = cnt.icsb_icount;
2370 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2371 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2372 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2373 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2374 }
2375 
2376 /*
2377  * Accurate update of per-cpu counters to incore superblock
2378  */
2379 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2380 xfs_icsb_sync_counters(
2381 	xfs_mount_t	*mp,
2382 	int		flags)
2383 {
2384 	spin_lock(&mp->m_sb_lock);
2385 	xfs_icsb_sync_counters_locked(mp, flags);
2386 	spin_unlock(&mp->m_sb_lock);
2387 }
2388 
2389 /*
2390  * Balance and enable/disable counters as necessary.
2391  *
2392  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2393  * chosen to be the same number as single on disk allocation chunk per CPU, and
2394  * free blocks is something far enough zero that we aren't going thrash when we
2395  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2396  * prevent looping endlessly when xfs_alloc_space asks for more than will
2397  * be distributed to a single CPU but each CPU has enough blocks to be
2398  * reenabled.
2399  *
2400  * Note that we can be called when counters are already disabled.
2401  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2402  * prevent locking every per-cpu counter needlessly.
2403  */
2404 
2405 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2406 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2407 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2408 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2409 xfs_icsb_balance_counter_locked(
2410 	xfs_mount_t	*mp,
2411 	xfs_sb_field_t  field,
2412 	int		min_per_cpu)
2413 {
2414 	uint64_t	count, resid;
2415 	int		weight = num_online_cpus();
2416 	uint64_t	min = (uint64_t)min_per_cpu;
2417 
2418 	/* disable counter and sync counter */
2419 	xfs_icsb_disable_counter(mp, field);
2420 
2421 	/* update counters  - first CPU gets residual*/
2422 	switch (field) {
2423 	case XFS_SBS_ICOUNT:
2424 		count = mp->m_sb.sb_icount;
2425 		resid = do_div(count, weight);
2426 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2427 			return;
2428 		break;
2429 	case XFS_SBS_IFREE:
2430 		count = mp->m_sb.sb_ifree;
2431 		resid = do_div(count, weight);
2432 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2433 			return;
2434 		break;
2435 	case XFS_SBS_FDBLOCKS:
2436 		count = mp->m_sb.sb_fdblocks;
2437 		resid = do_div(count, weight);
2438 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2439 			return;
2440 		break;
2441 	default:
2442 		BUG();
2443 		count = resid = 0;	/* quiet, gcc */
2444 		break;
2445 	}
2446 
2447 	xfs_icsb_enable_counter(mp, field, count, resid);
2448 }
2449 
2450 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2451 xfs_icsb_balance_counter(
2452 	xfs_mount_t	*mp,
2453 	xfs_sb_field_t  fields,
2454 	int		min_per_cpu)
2455 {
2456 	spin_lock(&mp->m_sb_lock);
2457 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2458 	spin_unlock(&mp->m_sb_lock);
2459 }
2460 
2461 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2462 xfs_icsb_modify_counters(
2463 	xfs_mount_t	*mp,
2464 	xfs_sb_field_t	field,
2465 	int64_t		delta,
2466 	int		rsvd)
2467 {
2468 	xfs_icsb_cnts_t	*icsbp;
2469 	long long	lcounter;	/* long counter for 64 bit fields */
2470 	int		ret = 0;
2471 
2472 	might_sleep();
2473 again:
2474 	preempt_disable();
2475 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2476 
2477 	/*
2478 	 * if the counter is disabled, go to slow path
2479 	 */
2480 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2481 		goto slow_path;
2482 	xfs_icsb_lock_cntr(icsbp);
2483 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2484 		xfs_icsb_unlock_cntr(icsbp);
2485 		goto slow_path;
2486 	}
2487 
2488 	switch (field) {
2489 	case XFS_SBS_ICOUNT:
2490 		lcounter = icsbp->icsb_icount;
2491 		lcounter += delta;
2492 		if (unlikely(lcounter < 0))
2493 			goto balance_counter;
2494 		icsbp->icsb_icount = lcounter;
2495 		break;
2496 
2497 	case XFS_SBS_IFREE:
2498 		lcounter = icsbp->icsb_ifree;
2499 		lcounter += delta;
2500 		if (unlikely(lcounter < 0))
2501 			goto balance_counter;
2502 		icsbp->icsb_ifree = lcounter;
2503 		break;
2504 
2505 	case XFS_SBS_FDBLOCKS:
2506 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2507 
2508 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2509 		lcounter += delta;
2510 		if (unlikely(lcounter < 0))
2511 			goto balance_counter;
2512 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2513 		break;
2514 	default:
2515 		BUG();
2516 		break;
2517 	}
2518 	xfs_icsb_unlock_cntr(icsbp);
2519 	preempt_enable();
2520 	return 0;
2521 
2522 slow_path:
2523 	preempt_enable();
2524 
2525 	/*
2526 	 * serialise with a mutex so we don't burn lots of cpu on
2527 	 * the superblock lock. We still need to hold the superblock
2528 	 * lock, however, when we modify the global structures.
2529 	 */
2530 	xfs_icsb_lock(mp);
2531 
2532 	/*
2533 	 * Now running atomically.
2534 	 *
2535 	 * If the counter is enabled, someone has beaten us to rebalancing.
2536 	 * Drop the lock and try again in the fast path....
2537 	 */
2538 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2539 		xfs_icsb_unlock(mp);
2540 		goto again;
2541 	}
2542 
2543 	/*
2544 	 * The counter is currently disabled. Because we are
2545 	 * running atomically here, we know a rebalance cannot
2546 	 * be in progress. Hence we can go straight to operating
2547 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2548 	 * here even though we need to get the m_sb_lock. Doing so
2549 	 * will cause us to re-enter this function and deadlock.
2550 	 * Hence we get the m_sb_lock ourselves and then call
2551 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2552 	 * directly on the global counters.
2553 	 */
2554 	spin_lock(&mp->m_sb_lock);
2555 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2556 	spin_unlock(&mp->m_sb_lock);
2557 
2558 	/*
2559 	 * Now that we've modified the global superblock, we
2560 	 * may be able to re-enable the distributed counters
2561 	 * (e.g. lots of space just got freed). After that
2562 	 * we are done.
2563 	 */
2564 	if (ret != ENOSPC)
2565 		xfs_icsb_balance_counter(mp, field, 0);
2566 	xfs_icsb_unlock(mp);
2567 	return ret;
2568 
2569 balance_counter:
2570 	xfs_icsb_unlock_cntr(icsbp);
2571 	preempt_enable();
2572 
2573 	/*
2574 	 * We may have multiple threads here if multiple per-cpu
2575 	 * counters run dry at the same time. This will mean we can
2576 	 * do more balances than strictly necessary but it is not
2577 	 * the common slowpath case.
2578 	 */
2579 	xfs_icsb_lock(mp);
2580 
2581 	/*
2582 	 * running atomically.
2583 	 *
2584 	 * This will leave the counter in the correct state for future
2585 	 * accesses. After the rebalance, we simply try again and our retry
2586 	 * will either succeed through the fast path or slow path without
2587 	 * another balance operation being required.
2588 	 */
2589 	xfs_icsb_balance_counter(mp, field, delta);
2590 	xfs_icsb_unlock(mp);
2591 	goto again;
2592 }
2593 
2594 #endif
2595