1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32
33 /*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121 /*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128 int
xfs_reflink_find_shared(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t aglen,xfs_agblock_t * fbno,xfs_extlen_t * flen,bool find_end_of_shared)129 xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138 {
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 if (error)
145 return error;
146
147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 find_end_of_shared);
151
152 xfs_btree_del_cursor(cur, error);
153
154 xfs_trans_brelse(tp, agbp);
155 return error;
156 }
157
158 /*
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
167 */
168 int
xfs_reflink_trim_around_shared(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,bool * shared)169 xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
172 bool *shared)
173 {
174 xfs_agnumber_t agno;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 aglen, &fbno, &flen, true);
195 if (error)
196 return error;
197
198 *shared = false;
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
201 return 0;
202 } else if (fbno == agbno) {
203 /*
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
207 * unshared region.
208 */
209 irec->br_blockcount = flen;
210 *shared = true;
211 return 0;
212 } else {
213 /*
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
218 */
219 irec->br_blockcount = fbno - agbno;
220 return 0;
221 }
222 }
223
224 int
xfs_bmap_trim_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared)225 xfs_bmap_trim_cow(
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
228 bool *shared)
229 {
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
233 *shared = true;
234 return 0;
235 }
236
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240
241 static int
xfs_reflink_convert_cow_locked(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb)242 xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
246 {
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
250 int dummy_logflags;
251 int error = 0;
252
253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 return 0;
255
256 do {
257 if (got.br_startoff >= offset_fsb + count_fsb)
258 break;
259 if (got.br_state == XFS_EXT_NORM)
260 continue;
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 return -EIO;
263
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
266 continue;
267
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
271 &dummy_logflags);
272 if (error)
273 return error;
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275
276 return error;
277 }
278
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
xfs_reflink_convert_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)281 xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
283 xfs_off_t offset,
284 xfs_off_t count)
285 {
286 struct xfs_mount *mp = ip->i_mount;
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
290 int error;
291
292 ASSERT(count != 0);
293
294 xfs_ilock(ip, XFS_ILOCK_EXCL);
295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 return error;
298 }
299
300 /*
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
304 */
305 static int
xfs_find_trim_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,bool * found)306 xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 struct xfs_bmbt_irec *cmap,
310 bool *shared,
311 bool *found)
312 {
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
316
317 *found = false;
318
319 /*
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
322 */
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
326 xfs_trim_extent(imap, imap->br_startoff,
327 cmap->br_startoff - imap->br_startoff);
328 return xfs_bmap_trim_cow(ip, imap, shared);
329 }
330
331 *shared = true;
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 return 0;
335 }
336
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 *found = true;
340 return 0;
341 }
342
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
344 int
xfs_reflink_allocate_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)345 xfs_reflink_allocate_cow(
346 struct xfs_inode *ip,
347 struct xfs_bmbt_irec *imap,
348 struct xfs_bmbt_irec *cmap,
349 bool *shared,
350 uint *lockmode,
351 bool convert_now)
352 {
353 struct xfs_mount *mp = ip->i_mount;
354 xfs_fileoff_t offset_fsb = imap->br_startoff;
355 xfs_filblks_t count_fsb = imap->br_blockcount;
356 struct xfs_trans *tp;
357 int nimaps, error = 0;
358 bool found;
359 xfs_filblks_t resaligned;
360 xfs_extlen_t resblks = 0;
361
362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 if (!ip->i_cowfp) {
364 ASSERT(!xfs_is_reflink_inode(ip));
365 xfs_ifork_init_cow(ip);
366 }
367
368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 if (error || !*shared)
370 return error;
371 if (found)
372 goto convert;
373
374 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377
378 xfs_iunlock(ip, *lockmode);
379 *lockmode = 0;
380
381 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
382 false, &tp);
383 if (error)
384 return error;
385
386 *lockmode = XFS_ILOCK_EXCL;
387
388 /*
389 * Check for an overlapping extent again now that we dropped the ilock.
390 */
391 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 if (error || !*shared)
393 goto out_trans_cancel;
394 if (found) {
395 xfs_trans_cancel(tp);
396 goto convert;
397 }
398
399 /* Allocate the entire reservation as unwritten blocks. */
400 nimaps = 1;
401 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
403 &nimaps);
404 if (error)
405 goto out_trans_cancel;
406
407 xfs_inode_set_cowblocks_tag(ip);
408 error = xfs_trans_commit(tp);
409 if (error)
410 return error;
411
412 /*
413 * Allocation succeeded but the requested range was not even partially
414 * satisfied? Bail out!
415 */
416 if (nimaps == 0)
417 return -ENOSPC;
418 convert:
419 xfs_trim_extent(cmap, offset_fsb, count_fsb);
420 /*
421 * COW fork extents are supposed to remain unwritten until we're ready
422 * to initiate a disk write. For direct I/O we are going to write the
423 * data and need the conversion, but for buffered writes we're done.
424 */
425 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
426 return 0;
427 trace_xfs_reflink_convert_cow(ip, cmap);
428 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
429 if (!error)
430 cmap->br_state = XFS_EXT_NORM;
431 return error;
432
433 out_trans_cancel:
434 xfs_trans_cancel(tp);
435 return error;
436 }
437
438 /*
439 * Cancel CoW reservations for some block range of an inode.
440 *
441 * If cancel_real is true this function cancels all COW fork extents for the
442 * inode; if cancel_real is false, real extents are not cleared.
443 *
444 * Caller must have already joined the inode to the current transaction. The
445 * inode will be joined to the transaction returned to the caller.
446 */
447 int
xfs_reflink_cancel_cow_blocks(struct xfs_inode * ip,struct xfs_trans ** tpp,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb,bool cancel_real)448 xfs_reflink_cancel_cow_blocks(
449 struct xfs_inode *ip,
450 struct xfs_trans **tpp,
451 xfs_fileoff_t offset_fsb,
452 xfs_fileoff_t end_fsb,
453 bool cancel_real)
454 {
455 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
456 struct xfs_bmbt_irec got, del;
457 struct xfs_iext_cursor icur;
458 int error = 0;
459
460 if (!xfs_inode_has_cow_data(ip))
461 return 0;
462 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
463 return 0;
464
465 /* Walk backwards until we're out of the I/O range... */
466 while (got.br_startoff + got.br_blockcount > offset_fsb) {
467 del = got;
468 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
469
470 /* Extent delete may have bumped ext forward */
471 if (!del.br_blockcount) {
472 xfs_iext_prev(ifp, &icur);
473 goto next_extent;
474 }
475
476 trace_xfs_reflink_cancel_cow(ip, &del);
477
478 if (isnullstartblock(del.br_startblock)) {
479 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
480 &icur, &got, &del);
481 if (error)
482 break;
483 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
484 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
485
486 /* Free the CoW orphan record. */
487 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
488 del.br_blockcount);
489
490 xfs_free_extent_later(*tpp, del.br_startblock,
491 del.br_blockcount, NULL);
492
493 /* Roll the transaction */
494 error = xfs_defer_finish(tpp);
495 if (error)
496 break;
497
498 /* Remove the mapping from the CoW fork. */
499 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
500
501 /* Remove the quota reservation */
502 error = xfs_quota_unreserve_blkres(ip,
503 del.br_blockcount);
504 if (error)
505 break;
506 } else {
507 /* Didn't do anything, push cursor back. */
508 xfs_iext_prev(ifp, &icur);
509 }
510 next_extent:
511 if (!xfs_iext_get_extent(ifp, &icur, &got))
512 break;
513 }
514
515 /* clear tag if cow fork is emptied */
516 if (!ifp->if_bytes)
517 xfs_inode_clear_cowblocks_tag(ip);
518 return error;
519 }
520
521 /*
522 * Cancel CoW reservations for some byte range of an inode.
523 *
524 * If cancel_real is true this function cancels all COW fork extents for the
525 * inode; if cancel_real is false, real extents are not cleared.
526 */
527 int
xfs_reflink_cancel_cow_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,bool cancel_real)528 xfs_reflink_cancel_cow_range(
529 struct xfs_inode *ip,
530 xfs_off_t offset,
531 xfs_off_t count,
532 bool cancel_real)
533 {
534 struct xfs_trans *tp;
535 xfs_fileoff_t offset_fsb;
536 xfs_fileoff_t end_fsb;
537 int error;
538
539 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
540 ASSERT(ip->i_cowfp);
541
542 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
543 if (count == NULLFILEOFF)
544 end_fsb = NULLFILEOFF;
545 else
546 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
547
548 /* Start a rolling transaction to remove the mappings */
549 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
550 0, 0, 0, &tp);
551 if (error)
552 goto out;
553
554 xfs_ilock(ip, XFS_ILOCK_EXCL);
555 xfs_trans_ijoin(tp, ip, 0);
556
557 /* Scrape out the old CoW reservations */
558 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
559 cancel_real);
560 if (error)
561 goto out_cancel;
562
563 error = xfs_trans_commit(tp);
564
565 xfs_iunlock(ip, XFS_ILOCK_EXCL);
566 return error;
567
568 out_cancel:
569 xfs_trans_cancel(tp);
570 xfs_iunlock(ip, XFS_ILOCK_EXCL);
571 out:
572 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
573 return error;
574 }
575
576 /*
577 * Remap part of the CoW fork into the data fork.
578 *
579 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
580 * into the data fork; this function will remap what it can (at the end of the
581 * range) and update @end_fsb appropriately. Each remap gets its own
582 * transaction because we can end up merging and splitting bmbt blocks for
583 * every remap operation and we'd like to keep the block reservation
584 * requirements as low as possible.
585 */
586 STATIC int
xfs_reflink_end_cow_extent(struct xfs_inode * ip,xfs_fileoff_t * offset_fsb,xfs_fileoff_t end_fsb)587 xfs_reflink_end_cow_extent(
588 struct xfs_inode *ip,
589 xfs_fileoff_t *offset_fsb,
590 xfs_fileoff_t end_fsb)
591 {
592 struct xfs_iext_cursor icur;
593 struct xfs_bmbt_irec got, del, data;
594 struct xfs_mount *mp = ip->i_mount;
595 struct xfs_trans *tp;
596 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
597 unsigned int resblks;
598 int nmaps;
599 int error;
600
601 /* No COW extents? That's easy! */
602 if (ifp->if_bytes == 0) {
603 *offset_fsb = end_fsb;
604 return 0;
605 }
606
607 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
608 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
609 XFS_TRANS_RESERVE, &tp);
610 if (error)
611 return error;
612
613 /*
614 * Lock the inode. We have to ijoin without automatic unlock because
615 * the lead transaction is the refcountbt record deletion; the data
616 * fork update follows as a deferred log item.
617 */
618 xfs_ilock(ip, XFS_ILOCK_EXCL);
619 xfs_trans_ijoin(tp, ip, 0);
620
621 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
622 XFS_IEXT_REFLINK_END_COW_CNT);
623 if (error == -EFBIG)
624 error = xfs_iext_count_upgrade(tp, ip,
625 XFS_IEXT_REFLINK_END_COW_CNT);
626 if (error)
627 goto out_cancel;
628
629 /*
630 * In case of racing, overlapping AIO writes no COW extents might be
631 * left by the time I/O completes for the loser of the race. In that
632 * case we are done.
633 */
634 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
635 got.br_startoff >= end_fsb) {
636 *offset_fsb = end_fsb;
637 goto out_cancel;
638 }
639
640 /*
641 * Only remap real extents that contain data. With AIO, speculative
642 * preallocations can leak into the range we are called upon, and we
643 * need to skip them. Preserve @got for the eventual CoW fork
644 * deletion; from now on @del represents the mapping that we're
645 * actually remapping.
646 */
647 while (!xfs_bmap_is_written_extent(&got)) {
648 if (!xfs_iext_next_extent(ifp, &icur, &got) ||
649 got.br_startoff >= end_fsb) {
650 *offset_fsb = end_fsb;
651 goto out_cancel;
652 }
653 }
654 del = got;
655
656 /* Grab the corresponding mapping in the data fork. */
657 nmaps = 1;
658 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
659 &nmaps, 0);
660 if (error)
661 goto out_cancel;
662
663 /* We can only remap the smaller of the two extent sizes. */
664 data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
665 del.br_blockcount = data.br_blockcount;
666
667 trace_xfs_reflink_cow_remap_from(ip, &del);
668 trace_xfs_reflink_cow_remap_to(ip, &data);
669
670 if (xfs_bmap_is_real_extent(&data)) {
671 /*
672 * If the extent we're remapping is backed by storage (written
673 * or not), unmap the extent and drop its refcount.
674 */
675 xfs_bmap_unmap_extent(tp, ip, &data);
676 xfs_refcount_decrease_extent(tp, &data);
677 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
678 -data.br_blockcount);
679 } else if (data.br_startblock == DELAYSTARTBLOCK) {
680 int done;
681
682 /*
683 * If the extent we're remapping is a delalloc reservation,
684 * we can use the regular bunmapi function to release the
685 * incore state. Dropping the delalloc reservation takes care
686 * of the quota reservation for us.
687 */
688 error = xfs_bunmapi(NULL, ip, data.br_startoff,
689 data.br_blockcount, 0, 1, &done);
690 if (error)
691 goto out_cancel;
692 ASSERT(done);
693 }
694
695 /* Free the CoW orphan record. */
696 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
697
698 /* Map the new blocks into the data fork. */
699 xfs_bmap_map_extent(tp, ip, &del);
700
701 /* Charge this new data fork mapping to the on-disk quota. */
702 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
703 (long)del.br_blockcount);
704
705 /* Remove the mapping from the CoW fork. */
706 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
707
708 error = xfs_trans_commit(tp);
709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
710 if (error)
711 return error;
712
713 /* Update the caller about how much progress we made. */
714 *offset_fsb = del.br_startoff + del.br_blockcount;
715 return 0;
716
717 out_cancel:
718 xfs_trans_cancel(tp);
719 xfs_iunlock(ip, XFS_ILOCK_EXCL);
720 return error;
721 }
722
723 /*
724 * Remap parts of a file's data fork after a successful CoW.
725 */
726 int
xfs_reflink_end_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)727 xfs_reflink_end_cow(
728 struct xfs_inode *ip,
729 xfs_off_t offset,
730 xfs_off_t count)
731 {
732 xfs_fileoff_t offset_fsb;
733 xfs_fileoff_t end_fsb;
734 int error = 0;
735
736 trace_xfs_reflink_end_cow(ip, offset, count);
737
738 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
739 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
740
741 /*
742 * Walk forwards until we've remapped the I/O range. The loop function
743 * repeatedly cycles the ILOCK to allocate one transaction per remapped
744 * extent.
745 *
746 * If we're being called by writeback then the pages will still
747 * have PageWriteback set, which prevents races with reflink remapping
748 * and truncate. Reflink remapping prevents races with writeback by
749 * taking the iolock and mmaplock before flushing the pages and
750 * remapping, which means there won't be any further writeback or page
751 * cache dirtying until the reflink completes.
752 *
753 * We should never have two threads issuing writeback for the same file
754 * region. There are also have post-eof checks in the writeback
755 * preparation code so that we don't bother writing out pages that are
756 * about to be truncated.
757 *
758 * If we're being called as part of directio write completion, the dio
759 * count is still elevated, which reflink and truncate will wait for.
760 * Reflink remapping takes the iolock and mmaplock and waits for
761 * pending dio to finish, which should prevent any directio until the
762 * remap completes. Multiple concurrent directio writes to the same
763 * region are handled by end_cow processing only occurring for the
764 * threads which succeed; the outcome of multiple overlapping direct
765 * writes is not well defined anyway.
766 *
767 * It's possible that a buffered write and a direct write could collide
768 * here (the buffered write stumbles in after the dio flushes and
769 * invalidates the page cache and immediately queues writeback), but we
770 * have never supported this 100%. If either disk write succeeds the
771 * blocks will be remapped.
772 */
773 while (end_fsb > offset_fsb && !error)
774 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
775
776 if (error)
777 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
778 return error;
779 }
780
781 /*
782 * Free all CoW staging blocks that are still referenced by the ondisk refcount
783 * metadata. The ondisk metadata does not track which inode created the
784 * staging extent, so callers must ensure that there are no cached inodes with
785 * live CoW staging extents.
786 */
787 int
xfs_reflink_recover_cow(struct xfs_mount * mp)788 xfs_reflink_recover_cow(
789 struct xfs_mount *mp)
790 {
791 struct xfs_perag *pag;
792 xfs_agnumber_t agno;
793 int error = 0;
794
795 if (!xfs_has_reflink(mp))
796 return 0;
797
798 for_each_perag(mp, agno, pag) {
799 error = xfs_refcount_recover_cow_leftovers(mp, pag);
800 if (error) {
801 xfs_perag_put(pag);
802 break;
803 }
804 }
805
806 return error;
807 }
808
809 /*
810 * Reflinking (Block) Ranges of Two Files Together
811 *
812 * First, ensure that the reflink flag is set on both inodes. The flag is an
813 * optimization to avoid unnecessary refcount btree lookups in the write path.
814 *
815 * Now we can iteratively remap the range of extents (and holes) in src to the
816 * corresponding ranges in dest. Let drange and srange denote the ranges of
817 * logical blocks in dest and src touched by the reflink operation.
818 *
819 * While the length of drange is greater than zero,
820 * - Read src's bmbt at the start of srange ("imap")
821 * - If imap doesn't exist, make imap appear to start at the end of srange
822 * with zero length.
823 * - If imap starts before srange, advance imap to start at srange.
824 * - If imap goes beyond srange, truncate imap to end at the end of srange.
825 * - Punch (imap start - srange start + imap len) blocks from dest at
826 * offset (drange start).
827 * - If imap points to a real range of pblks,
828 * > Increase the refcount of the imap's pblks
829 * > Map imap's pblks into dest at the offset
830 * (drange start + imap start - srange start)
831 * - Advance drange and srange by (imap start - srange start + imap len)
832 *
833 * Finally, if the reflink made dest longer, update both the in-core and
834 * on-disk file sizes.
835 *
836 * ASCII Art Demonstration:
837 *
838 * Let's say we want to reflink this source file:
839 *
840 * ----SSSSSSS-SSSSS----SSSSSS (src file)
841 * <-------------------->
842 *
843 * into this destination file:
844 *
845 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
846 * <-------------------->
847 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
848 * Observe that the range has different logical offsets in either file.
849 *
850 * Consider that the first extent in the source file doesn't line up with our
851 * reflink range. Unmapping and remapping are separate operations, so we can
852 * unmap more blocks from the destination file than we remap.
853 *
854 * ----SSSSSSS-SSSSS----SSSSSS
855 * <------->
856 * --DDDDD---------DDDDD--DDD
857 * <------->
858 *
859 * Now remap the source extent into the destination file:
860 *
861 * ----SSSSSSS-SSSSS----SSSSSS
862 * <------->
863 * --DDDDD--SSSSSSSDDDDD--DDD
864 * <------->
865 *
866 * Do likewise with the second hole and extent in our range. Holes in the
867 * unmap range don't affect our operation.
868 *
869 * ----SSSSSSS-SSSSS----SSSSSS
870 * <---->
871 * --DDDDD--SSSSSSS-SSSSS-DDD
872 * <---->
873 *
874 * Finally, unmap and remap part of the third extent. This will increase the
875 * size of the destination file.
876 *
877 * ----SSSSSSS-SSSSS----SSSSSS
878 * <----->
879 * --DDDDD--SSSSSSS-SSSSS----SSS
880 * <----->
881 *
882 * Once we update the destination file's i_size, we're done.
883 */
884
885 /*
886 * Ensure the reflink bit is set in both inodes.
887 */
888 STATIC int
xfs_reflink_set_inode_flag(struct xfs_inode * src,struct xfs_inode * dest)889 xfs_reflink_set_inode_flag(
890 struct xfs_inode *src,
891 struct xfs_inode *dest)
892 {
893 struct xfs_mount *mp = src->i_mount;
894 int error;
895 struct xfs_trans *tp;
896
897 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
898 return 0;
899
900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
901 if (error)
902 goto out_error;
903
904 /* Lock both files against IO */
905 if (src->i_ino == dest->i_ino)
906 xfs_ilock(src, XFS_ILOCK_EXCL);
907 else
908 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
909
910 if (!xfs_is_reflink_inode(src)) {
911 trace_xfs_reflink_set_inode_flag(src);
912 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
913 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
914 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
915 xfs_ifork_init_cow(src);
916 } else
917 xfs_iunlock(src, XFS_ILOCK_EXCL);
918
919 if (src->i_ino == dest->i_ino)
920 goto commit_flags;
921
922 if (!xfs_is_reflink_inode(dest)) {
923 trace_xfs_reflink_set_inode_flag(dest);
924 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
925 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
926 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
927 xfs_ifork_init_cow(dest);
928 } else
929 xfs_iunlock(dest, XFS_ILOCK_EXCL);
930
931 commit_flags:
932 error = xfs_trans_commit(tp);
933 if (error)
934 goto out_error;
935 return error;
936
937 out_error:
938 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
939 return error;
940 }
941
942 /*
943 * Update destination inode size & cowextsize hint, if necessary.
944 */
945 int
xfs_reflink_update_dest(struct xfs_inode * dest,xfs_off_t newlen,xfs_extlen_t cowextsize,unsigned int remap_flags)946 xfs_reflink_update_dest(
947 struct xfs_inode *dest,
948 xfs_off_t newlen,
949 xfs_extlen_t cowextsize,
950 unsigned int remap_flags)
951 {
952 struct xfs_mount *mp = dest->i_mount;
953 struct xfs_trans *tp;
954 int error;
955
956 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
957 return 0;
958
959 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
960 if (error)
961 goto out_error;
962
963 xfs_ilock(dest, XFS_ILOCK_EXCL);
964 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
965
966 if (newlen > i_size_read(VFS_I(dest))) {
967 trace_xfs_reflink_update_inode_size(dest, newlen);
968 i_size_write(VFS_I(dest), newlen);
969 dest->i_disk_size = newlen;
970 }
971
972 if (cowextsize) {
973 dest->i_cowextsize = cowextsize;
974 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
975 }
976
977 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
978
979 error = xfs_trans_commit(tp);
980 if (error)
981 goto out_error;
982 return error;
983
984 out_error:
985 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
986 return error;
987 }
988
989 /*
990 * Do we have enough reserve in this AG to handle a reflink? The refcount
991 * btree already reserved all the space it needs, but the rmap btree can grow
992 * infinitely, so we won't allow more reflinks when the AG is down to the
993 * btree reserves.
994 */
995 static int
xfs_reflink_ag_has_free_space(struct xfs_mount * mp,xfs_agnumber_t agno)996 xfs_reflink_ag_has_free_space(
997 struct xfs_mount *mp,
998 xfs_agnumber_t agno)
999 {
1000 struct xfs_perag *pag;
1001 int error = 0;
1002
1003 if (!xfs_has_rmapbt(mp))
1004 return 0;
1005
1006 pag = xfs_perag_get(mp, agno);
1007 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1008 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1009 error = -ENOSPC;
1010 xfs_perag_put(pag);
1011 return error;
1012 }
1013
1014 /*
1015 * Remap the given extent into the file. The dmap blockcount will be set to
1016 * the number of blocks that were actually remapped.
1017 */
1018 STATIC int
xfs_reflink_remap_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * dmap,xfs_off_t new_isize)1019 xfs_reflink_remap_extent(
1020 struct xfs_inode *ip,
1021 struct xfs_bmbt_irec *dmap,
1022 xfs_off_t new_isize)
1023 {
1024 struct xfs_bmbt_irec smap;
1025 struct xfs_mount *mp = ip->i_mount;
1026 struct xfs_trans *tp;
1027 xfs_off_t newlen;
1028 int64_t qdelta = 0;
1029 unsigned int resblks;
1030 bool quota_reserved = true;
1031 bool smap_real;
1032 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1033 int iext_delta = 0;
1034 int nimaps;
1035 int error;
1036
1037 /*
1038 * Start a rolling transaction to switch the mappings.
1039 *
1040 * Adding a written extent to the extent map can cause a bmbt split,
1041 * and removing a mapped extent from the extent can cause a bmbt split.
1042 * The two operations cannot both cause a split since they operate on
1043 * the same index in the bmap btree, so we only need a reservation for
1044 * one bmbt split if either thing is happening. However, we haven't
1045 * locked the inode yet, so we reserve assuming this is the case.
1046 *
1047 * The first allocation call tries to reserve enough space to handle
1048 * mapping dmap into a sparse part of the file plus the bmbt split. We
1049 * haven't locked the inode or read the existing mapping yet, so we do
1050 * not know for sure that we need the space. This should succeed most
1051 * of the time.
1052 *
1053 * If the first attempt fails, try again but reserving only enough
1054 * space to handle a bmbt split. This is the hard minimum requirement,
1055 * and we revisit quota reservations later when we know more about what
1056 * we're remapping.
1057 */
1058 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1059 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1060 resblks + dmap->br_blockcount, 0, false, &tp);
1061 if (error == -EDQUOT || error == -ENOSPC) {
1062 quota_reserved = false;
1063 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1064 resblks, 0, false, &tp);
1065 }
1066 if (error)
1067 goto out;
1068
1069 /*
1070 * Read what's currently mapped in the destination file into smap.
1071 * If smap isn't a hole, we will have to remove it before we can add
1072 * dmap to the destination file.
1073 */
1074 nimaps = 1;
1075 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1076 &smap, &nimaps, 0);
1077 if (error)
1078 goto out_cancel;
1079 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1080 smap_real = xfs_bmap_is_real_extent(&smap);
1081
1082 /*
1083 * We can only remap as many blocks as the smaller of the two extent
1084 * maps, because we can only remap one extent at a time.
1085 */
1086 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1087 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1088
1089 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1090
1091 /*
1092 * Two extents mapped to the same physical block must not have
1093 * different states; that's filesystem corruption. Move on to the next
1094 * extent if they're both holes or both the same physical extent.
1095 */
1096 if (dmap->br_startblock == smap.br_startblock) {
1097 if (dmap->br_state != smap.br_state)
1098 error = -EFSCORRUPTED;
1099 goto out_cancel;
1100 }
1101
1102 /* If both extents are unwritten, leave them alone. */
1103 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1104 smap.br_state == XFS_EXT_UNWRITTEN)
1105 goto out_cancel;
1106
1107 /* No reflinking if the AG of the dest mapping is low on space. */
1108 if (dmap_written) {
1109 error = xfs_reflink_ag_has_free_space(mp,
1110 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1111 if (error)
1112 goto out_cancel;
1113 }
1114
1115 /*
1116 * Increase quota reservation if we think the quota block counter for
1117 * this file could increase.
1118 *
1119 * If we are mapping a written extent into the file, we need to have
1120 * enough quota block count reservation to handle the blocks in that
1121 * extent. We log only the delta to the quota block counts, so if the
1122 * extent we're unmapping also has blocks allocated to it, we don't
1123 * need a quota reservation for the extent itself.
1124 *
1125 * Note that if we're replacing a delalloc reservation with a written
1126 * extent, we have to take the full quota reservation because removing
1127 * the delalloc reservation gives the block count back to the quota
1128 * count. This is suboptimal, but the VFS flushed the dest range
1129 * before we started. That should have removed all the delalloc
1130 * reservations, but we code defensively.
1131 *
1132 * xfs_trans_alloc_inode above already tried to grab an even larger
1133 * quota reservation, and kicked off a blockgc scan if it couldn't.
1134 * If we can't get a potentially smaller quota reservation now, we're
1135 * done.
1136 */
1137 if (!quota_reserved && !smap_real && dmap_written) {
1138 error = xfs_trans_reserve_quota_nblks(tp, ip,
1139 dmap->br_blockcount, 0, false);
1140 if (error)
1141 goto out_cancel;
1142 }
1143
1144 if (smap_real)
1145 ++iext_delta;
1146
1147 if (dmap_written)
1148 ++iext_delta;
1149
1150 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1151 if (error == -EFBIG)
1152 error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1153 if (error)
1154 goto out_cancel;
1155
1156 if (smap_real) {
1157 /*
1158 * If the extent we're unmapping is backed by storage (written
1159 * or not), unmap the extent and drop its refcount.
1160 */
1161 xfs_bmap_unmap_extent(tp, ip, &smap);
1162 xfs_refcount_decrease_extent(tp, &smap);
1163 qdelta -= smap.br_blockcount;
1164 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1165 int done;
1166
1167 /*
1168 * If the extent we're unmapping is a delalloc reservation,
1169 * we can use the regular bunmapi function to release the
1170 * incore state. Dropping the delalloc reservation takes care
1171 * of the quota reservation for us.
1172 */
1173 error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1174 smap.br_blockcount, 0, 1, &done);
1175 if (error)
1176 goto out_cancel;
1177 ASSERT(done);
1178 }
1179
1180 /*
1181 * If the extent we're sharing is backed by written storage, increase
1182 * its refcount and map it into the file.
1183 */
1184 if (dmap_written) {
1185 xfs_refcount_increase_extent(tp, dmap);
1186 xfs_bmap_map_extent(tp, ip, dmap);
1187 qdelta += dmap->br_blockcount;
1188 }
1189
1190 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1191
1192 /* Update dest isize if needed. */
1193 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1194 newlen = min_t(xfs_off_t, newlen, new_isize);
1195 if (newlen > i_size_read(VFS_I(ip))) {
1196 trace_xfs_reflink_update_inode_size(ip, newlen);
1197 i_size_write(VFS_I(ip), newlen);
1198 ip->i_disk_size = newlen;
1199 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1200 }
1201
1202 /* Commit everything and unlock. */
1203 error = xfs_trans_commit(tp);
1204 goto out_unlock;
1205
1206 out_cancel:
1207 xfs_trans_cancel(tp);
1208 out_unlock:
1209 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210 out:
1211 if (error)
1212 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1213 return error;
1214 }
1215
1216 /* Remap a range of one file to the other. */
1217 int
xfs_reflink_remap_blocks(struct xfs_inode * src,loff_t pos_in,struct xfs_inode * dest,loff_t pos_out,loff_t remap_len,loff_t * remapped)1218 xfs_reflink_remap_blocks(
1219 struct xfs_inode *src,
1220 loff_t pos_in,
1221 struct xfs_inode *dest,
1222 loff_t pos_out,
1223 loff_t remap_len,
1224 loff_t *remapped)
1225 {
1226 struct xfs_bmbt_irec imap;
1227 struct xfs_mount *mp = src->i_mount;
1228 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1229 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1230 xfs_filblks_t len;
1231 xfs_filblks_t remapped_len = 0;
1232 xfs_off_t new_isize = pos_out + remap_len;
1233 int nimaps;
1234 int error = 0;
1235
1236 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1237 XFS_MAX_FILEOFF);
1238
1239 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1240
1241 while (len > 0) {
1242 unsigned int lock_mode;
1243
1244 /* Read extent from the source file */
1245 nimaps = 1;
1246 lock_mode = xfs_ilock_data_map_shared(src);
1247 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1248 xfs_iunlock(src, lock_mode);
1249 if (error)
1250 break;
1251 /*
1252 * The caller supposedly flushed all dirty pages in the source
1253 * file range, which means that writeback should have allocated
1254 * or deleted all delalloc reservations in that range. If we
1255 * find one, that's a good sign that something is seriously
1256 * wrong here.
1257 */
1258 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1259 if (imap.br_startblock == DELAYSTARTBLOCK) {
1260 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1261 error = -EFSCORRUPTED;
1262 break;
1263 }
1264
1265 trace_xfs_reflink_remap_extent_src(src, &imap);
1266
1267 /* Remap into the destination file at the given offset. */
1268 imap.br_startoff = destoff;
1269 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1270 if (error)
1271 break;
1272
1273 if (fatal_signal_pending(current)) {
1274 error = -EINTR;
1275 break;
1276 }
1277
1278 /* Advance drange/srange */
1279 srcoff += imap.br_blockcount;
1280 destoff += imap.br_blockcount;
1281 len -= imap.br_blockcount;
1282 remapped_len += imap.br_blockcount;
1283 }
1284
1285 if (error)
1286 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1287 *remapped = min_t(loff_t, remap_len,
1288 XFS_FSB_TO_B(src->i_mount, remapped_len));
1289 return error;
1290 }
1291
1292 /*
1293 * If we're reflinking to a point past the destination file's EOF, we must
1294 * zero any speculative post-EOF preallocations that sit between the old EOF
1295 * and the destination file offset.
1296 */
1297 static int
xfs_reflink_zero_posteof(struct xfs_inode * ip,loff_t pos)1298 xfs_reflink_zero_posteof(
1299 struct xfs_inode *ip,
1300 loff_t pos)
1301 {
1302 loff_t isize = i_size_read(VFS_I(ip));
1303
1304 if (pos <= isize)
1305 return 0;
1306
1307 trace_xfs_zero_eof(ip, isize, pos - isize);
1308 return xfs_zero_range(ip, isize, pos - isize, NULL);
1309 }
1310
1311 /*
1312 * Prepare two files for range cloning. Upon a successful return both inodes
1313 * will have the iolock and mmaplock held, the page cache of the out file will
1314 * be truncated, and any leases on the out file will have been broken. This
1315 * function borrows heavily from xfs_file_aio_write_checks.
1316 *
1317 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1318 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1319 * EOF block in the source dedupe range because it's not a complete block match,
1320 * hence can introduce a corruption into the file that has it's block replaced.
1321 *
1322 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1323 * "block aligned" for the purposes of cloning entire files. However, if the
1324 * source file range includes the EOF block and it lands within the existing EOF
1325 * of the destination file, then we can expose stale data from beyond the source
1326 * file EOF in the destination file.
1327 *
1328 * XFS doesn't support partial block sharing, so in both cases we have check
1329 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1330 * down to the previous whole block and ignore the partial EOF block. While this
1331 * means we can't dedupe the last block of a file, this is an acceptible
1332 * tradeoff for simplicity on implementation.
1333 *
1334 * For cloning, we want to share the partial EOF block if it is also the new EOF
1335 * block of the destination file. If the partial EOF block lies inside the
1336 * existing destination EOF, then we have to abort the clone to avoid exposing
1337 * stale data in the destination file. Hence we reject these clone attempts with
1338 * -EINVAL in this case.
1339 */
1340 int
xfs_reflink_remap_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)1341 xfs_reflink_remap_prep(
1342 struct file *file_in,
1343 loff_t pos_in,
1344 struct file *file_out,
1345 loff_t pos_out,
1346 loff_t *len,
1347 unsigned int remap_flags)
1348 {
1349 struct inode *inode_in = file_inode(file_in);
1350 struct xfs_inode *src = XFS_I(inode_in);
1351 struct inode *inode_out = file_inode(file_out);
1352 struct xfs_inode *dest = XFS_I(inode_out);
1353 int ret;
1354
1355 /* Lock both files against IO */
1356 ret = xfs_ilock2_io_mmap(src, dest);
1357 if (ret)
1358 return ret;
1359
1360 /* Check file eligibility and prepare for block sharing. */
1361 ret = -EINVAL;
1362 /* Don't reflink realtime inodes */
1363 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1364 goto out_unlock;
1365
1366 /* Don't share DAX file data for now. */
1367 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1368 goto out_unlock;
1369
1370 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1371 len, remap_flags);
1372 if (ret || *len == 0)
1373 goto out_unlock;
1374
1375 /* Attach dquots to dest inode before changing block map */
1376 ret = xfs_qm_dqattach(dest);
1377 if (ret)
1378 goto out_unlock;
1379
1380 /*
1381 * Zero existing post-eof speculative preallocations in the destination
1382 * file.
1383 */
1384 ret = xfs_reflink_zero_posteof(dest, pos_out);
1385 if (ret)
1386 goto out_unlock;
1387
1388 /* Set flags and remap blocks. */
1389 ret = xfs_reflink_set_inode_flag(src, dest);
1390 if (ret)
1391 goto out_unlock;
1392
1393 /*
1394 * If pos_out > EOF, we may have dirtied blocks between EOF and
1395 * pos_out. In that case, we need to extend the flush and unmap to cover
1396 * from EOF to the end of the copy length.
1397 */
1398 if (pos_out > XFS_ISIZE(dest)) {
1399 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1400 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1401 } else {
1402 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1403 }
1404 if (ret)
1405 goto out_unlock;
1406
1407 return 0;
1408 out_unlock:
1409 xfs_iunlock2_io_mmap(src, dest);
1410 return ret;
1411 }
1412
1413 /* Does this inode need the reflink flag? */
1414 int
xfs_reflink_inode_has_shared_extents(struct xfs_trans * tp,struct xfs_inode * ip,bool * has_shared)1415 xfs_reflink_inode_has_shared_extents(
1416 struct xfs_trans *tp,
1417 struct xfs_inode *ip,
1418 bool *has_shared)
1419 {
1420 struct xfs_bmbt_irec got;
1421 struct xfs_mount *mp = ip->i_mount;
1422 struct xfs_ifork *ifp;
1423 xfs_agnumber_t agno;
1424 xfs_agblock_t agbno;
1425 xfs_extlen_t aglen;
1426 xfs_agblock_t rbno;
1427 xfs_extlen_t rlen;
1428 struct xfs_iext_cursor icur;
1429 bool found;
1430 int error;
1431
1432 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1433 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1434 if (error)
1435 return error;
1436
1437 *has_shared = false;
1438 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1439 while (found) {
1440 if (isnullstartblock(got.br_startblock) ||
1441 got.br_state != XFS_EXT_NORM)
1442 goto next;
1443 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1444 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1445 aglen = got.br_blockcount;
1446
1447 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1448 &rbno, &rlen, false);
1449 if (error)
1450 return error;
1451 /* Is there still a shared block here? */
1452 if (rbno != NULLAGBLOCK) {
1453 *has_shared = true;
1454 return 0;
1455 }
1456 next:
1457 found = xfs_iext_next_extent(ifp, &icur, &got);
1458 }
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Clear the inode reflink flag if there are no shared extents.
1465 *
1466 * The caller is responsible for joining the inode to the transaction passed in.
1467 * The inode will be joined to the transaction that is returned to the caller.
1468 */
1469 int
xfs_reflink_clear_inode_flag(struct xfs_inode * ip,struct xfs_trans ** tpp)1470 xfs_reflink_clear_inode_flag(
1471 struct xfs_inode *ip,
1472 struct xfs_trans **tpp)
1473 {
1474 bool needs_flag;
1475 int error = 0;
1476
1477 ASSERT(xfs_is_reflink_inode(ip));
1478
1479 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1480 if (error || needs_flag)
1481 return error;
1482
1483 /*
1484 * We didn't find any shared blocks so turn off the reflink flag.
1485 * First, get rid of any leftover CoW mappings.
1486 */
1487 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1488 true);
1489 if (error)
1490 return error;
1491
1492 /* Clear the inode flag. */
1493 trace_xfs_reflink_unset_inode_flag(ip);
1494 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1495 xfs_inode_clear_cowblocks_tag(ip);
1496 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1497
1498 return error;
1499 }
1500
1501 /*
1502 * Clear the inode reflink flag if there are no shared extents and the size
1503 * hasn't changed.
1504 */
1505 STATIC int
xfs_reflink_try_clear_inode_flag(struct xfs_inode * ip)1506 xfs_reflink_try_clear_inode_flag(
1507 struct xfs_inode *ip)
1508 {
1509 struct xfs_mount *mp = ip->i_mount;
1510 struct xfs_trans *tp;
1511 int error = 0;
1512
1513 /* Start a rolling transaction to remove the mappings */
1514 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1515 if (error)
1516 return error;
1517
1518 xfs_ilock(ip, XFS_ILOCK_EXCL);
1519 xfs_trans_ijoin(tp, ip, 0);
1520
1521 error = xfs_reflink_clear_inode_flag(ip, &tp);
1522 if (error)
1523 goto cancel;
1524
1525 error = xfs_trans_commit(tp);
1526 if (error)
1527 goto out;
1528
1529 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530 return 0;
1531 cancel:
1532 xfs_trans_cancel(tp);
1533 out:
1534 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1535 return error;
1536 }
1537
1538 /*
1539 * Pre-COW all shared blocks within a given byte range of a file and turn off
1540 * the reflink flag if we unshare all of the file's blocks.
1541 */
1542 int
xfs_reflink_unshare(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1543 xfs_reflink_unshare(
1544 struct xfs_inode *ip,
1545 xfs_off_t offset,
1546 xfs_off_t len)
1547 {
1548 struct inode *inode = VFS_I(ip);
1549 int error;
1550
1551 if (!xfs_is_reflink_inode(ip))
1552 return 0;
1553
1554 trace_xfs_reflink_unshare(ip, offset, len);
1555
1556 inode_dio_wait(inode);
1557
1558 error = iomap_file_unshare(inode, offset, len,
1559 &xfs_buffered_write_iomap_ops);
1560 if (error)
1561 goto out;
1562
1563 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1564 offset + len - 1);
1565 if (error)
1566 goto out;
1567
1568 /* Turn off the reflink flag if possible. */
1569 error = xfs_reflink_try_clear_inode_flag(ip);
1570 if (error)
1571 goto out;
1572 return 0;
1573
1574 out:
1575 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1576 return error;
1577 }
1578