1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45
46
47 #ifdef HAVE_PERCPU_SB
48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57 #endif
58
59 static const struct {
60 short offset;
61 short type; /* 0 = integer
62 * 1 = binary / string (no translation)
63 */
64 } xfs_sb_info[] = {
65 { offsetof(xfs_sb_t, sb_magicnum), 0 },
66 { offsetof(xfs_sb_t, sb_blocksize), 0 },
67 { offsetof(xfs_sb_t, sb_dblocks), 0 },
68 { offsetof(xfs_sb_t, sb_rblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rextents), 0 },
70 { offsetof(xfs_sb_t, sb_uuid), 1 },
71 { offsetof(xfs_sb_t, sb_logstart), 0 },
72 { offsetof(xfs_sb_t, sb_rootino), 0 },
73 { offsetof(xfs_sb_t, sb_rbmino), 0 },
74 { offsetof(xfs_sb_t, sb_rsumino), 0 },
75 { offsetof(xfs_sb_t, sb_rextsize), 0 },
76 { offsetof(xfs_sb_t, sb_agblocks), 0 },
77 { offsetof(xfs_sb_t, sb_agcount), 0 },
78 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
79 { offsetof(xfs_sb_t, sb_logblocks), 0 },
80 { offsetof(xfs_sb_t, sb_versionnum), 0 },
81 { offsetof(xfs_sb_t, sb_sectsize), 0 },
82 { offsetof(xfs_sb_t, sb_inodesize), 0 },
83 { offsetof(xfs_sb_t, sb_inopblock), 0 },
84 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
85 { offsetof(xfs_sb_t, sb_blocklog), 0 },
86 { offsetof(xfs_sb_t, sb_sectlog), 0 },
87 { offsetof(xfs_sb_t, sb_inodelog), 0 },
88 { offsetof(xfs_sb_t, sb_inopblog), 0 },
89 { offsetof(xfs_sb_t, sb_agblklog), 0 },
90 { offsetof(xfs_sb_t, sb_rextslog), 0 },
91 { offsetof(xfs_sb_t, sb_inprogress), 0 },
92 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
93 { offsetof(xfs_sb_t, sb_icount), 0 },
94 { offsetof(xfs_sb_t, sb_ifree), 0 },
95 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
96 { offsetof(xfs_sb_t, sb_frextents), 0 },
97 { offsetof(xfs_sb_t, sb_uquotino), 0 },
98 { offsetof(xfs_sb_t, sb_gquotino), 0 },
99 { offsetof(xfs_sb_t, sb_qflags), 0 },
100 { offsetof(xfs_sb_t, sb_flags), 0 },
101 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
102 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
103 { offsetof(xfs_sb_t, sb_unit), 0 },
104 { offsetof(xfs_sb_t, sb_width), 0 },
105 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
106 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectsize),0 },
108 { offsetof(xfs_sb_t, sb_logsunit), 0 },
109 { offsetof(xfs_sb_t, sb_features2), 0 },
110 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
111 { sizeof(xfs_sb_t), 0 }
112 };
113
114 static DEFINE_MUTEX(xfs_uuid_table_mutex);
115 static int xfs_uuid_table_size;
116 static uuid_t *xfs_uuid_table;
117
118 /*
119 * See if the UUID is unique among mounted XFS filesystems.
120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
121 */
122 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)123 xfs_uuid_mount(
124 struct xfs_mount *mp)
125 {
126 uuid_t *uuid = &mp->m_sb.sb_uuid;
127 int hole, i;
128
129 if (mp->m_flags & XFS_MOUNT_NOUUID)
130 return 0;
131
132 if (uuid_is_nil(uuid)) {
133 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
134 return XFS_ERROR(EINVAL);
135 }
136
137 mutex_lock(&xfs_uuid_table_mutex);
138 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
139 if (uuid_is_nil(&xfs_uuid_table[i])) {
140 hole = i;
141 continue;
142 }
143 if (uuid_equal(uuid, &xfs_uuid_table[i]))
144 goto out_duplicate;
145 }
146
147 if (hole < 0) {
148 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
149 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
150 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
151 KM_SLEEP);
152 hole = xfs_uuid_table_size++;
153 }
154 xfs_uuid_table[hole] = *uuid;
155 mutex_unlock(&xfs_uuid_table_mutex);
156
157 return 0;
158
159 out_duplicate:
160 mutex_unlock(&xfs_uuid_table_mutex);
161 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
162 return XFS_ERROR(EINVAL);
163 }
164
165 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)166 xfs_uuid_unmount(
167 struct xfs_mount *mp)
168 {
169 uuid_t *uuid = &mp->m_sb.sb_uuid;
170 int i;
171
172 if (mp->m_flags & XFS_MOUNT_NOUUID)
173 return;
174
175 mutex_lock(&xfs_uuid_table_mutex);
176 for (i = 0; i < xfs_uuid_table_size; i++) {
177 if (uuid_is_nil(&xfs_uuid_table[i]))
178 continue;
179 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
180 continue;
181 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
182 break;
183 }
184 ASSERT(i < xfs_uuid_table_size);
185 mutex_unlock(&xfs_uuid_table_mutex);
186 }
187
188
189 /*
190 * Reference counting access wrappers to the perag structures.
191 * Because we never free per-ag structures, the only thing we
192 * have to protect against changes is the tree structure itself.
193 */
194 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
196 {
197 struct xfs_perag *pag;
198 int ref = 0;
199
200 rcu_read_lock();
201 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
202 if (pag) {
203 ASSERT(atomic_read(&pag->pag_ref) >= 0);
204 ref = atomic_inc_return(&pag->pag_ref);
205 }
206 rcu_read_unlock();
207 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
208 return pag;
209 }
210
211 /*
212 * search from @first to find the next perag with the given tag set.
213 */
214 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)215 xfs_perag_get_tag(
216 struct xfs_mount *mp,
217 xfs_agnumber_t first,
218 int tag)
219 {
220 struct xfs_perag *pag;
221 int found;
222 int ref;
223
224 rcu_read_lock();
225 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
226 (void **)&pag, first, 1, tag);
227 if (found <= 0) {
228 rcu_read_unlock();
229 return NULL;
230 }
231 ref = atomic_inc_return(&pag->pag_ref);
232 rcu_read_unlock();
233 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
234 return pag;
235 }
236
237 void
xfs_perag_put(struct xfs_perag * pag)238 xfs_perag_put(struct xfs_perag *pag)
239 {
240 int ref;
241
242 ASSERT(atomic_read(&pag->pag_ref) > 0);
243 ref = atomic_dec_return(&pag->pag_ref);
244 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
245 }
246
247 STATIC void
__xfs_free_perag(struct rcu_head * head)248 __xfs_free_perag(
249 struct rcu_head *head)
250 {
251 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
252
253 ASSERT(atomic_read(&pag->pag_ref) == 0);
254 kmem_free(pag);
255 }
256
257 /*
258 * Free up the per-ag resources associated with the mount structure.
259 */
260 STATIC void
xfs_free_perag(xfs_mount_t * mp)261 xfs_free_perag(
262 xfs_mount_t *mp)
263 {
264 xfs_agnumber_t agno;
265 struct xfs_perag *pag;
266
267 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
268 spin_lock(&mp->m_perag_lock);
269 pag = radix_tree_delete(&mp->m_perag_tree, agno);
270 spin_unlock(&mp->m_perag_lock);
271 ASSERT(pag);
272 ASSERT(atomic_read(&pag->pag_ref) == 0);
273 call_rcu(&pag->rcu_head, __xfs_free_perag);
274 }
275 }
276
277 /*
278 * Check size of device based on the (data/realtime) block count.
279 * Note: this check is used by the growfs code as well as mount.
280 */
281 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)282 xfs_sb_validate_fsb_count(
283 xfs_sb_t *sbp,
284 __uint64_t nblocks)
285 {
286 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
287 ASSERT(sbp->sb_blocklog >= BBSHIFT);
288
289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
290 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
291 return EFBIG;
292 #else /* Limited by UINT_MAX of sectors */
293 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
294 return EFBIG;
295 #endif
296 return 0;
297 }
298
299 /*
300 * Check the validity of the SB found.
301 */
302 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,int flags)303 xfs_mount_validate_sb(
304 xfs_mount_t *mp,
305 xfs_sb_t *sbp,
306 int flags)
307 {
308 int loud = !(flags & XFS_MFSI_QUIET);
309
310 /*
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 if (loud)
319 xfs_warn(mp, "bad magic number");
320 return XFS_ERROR(EWRONGFS);
321 }
322
323 if (!xfs_sb_good_version(sbp)) {
324 if (loud)
325 xfs_warn(mp, "bad version");
326 return XFS_ERROR(EWRONGFS);
327 }
328
329 if (unlikely(
330 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
331 if (loud)
332 xfs_warn(mp,
333 "filesystem is marked as having an external log; "
334 "specify logdev on the mount command line.");
335 return XFS_ERROR(EINVAL);
336 }
337
338 if (unlikely(
339 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
340 if (loud)
341 xfs_warn(mp,
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on the mount command line.");
344 return XFS_ERROR(EINVAL);
345 }
346
347 /*
348 * More sanity checking. Most of these were stolen directly from
349 * xfs_repair.
350 */
351 if (unlikely(
352 sbp->sb_agcount <= 0 ||
353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
372 sbp->sb_dblocks == 0 ||
373 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
374 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
375 if (loud)
376 XFS_CORRUPTION_ERROR("SB sanity check failed",
377 XFS_ERRLEVEL_LOW, mp, sbp);
378 return XFS_ERROR(EFSCORRUPTED);
379 }
380
381 /*
382 * Until this is fixed only page-sized or smaller data blocks work.
383 */
384 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
385 if (loud) {
386 xfs_warn(mp,
387 "File system with blocksize %d bytes. "
388 "Only pagesize (%ld) or less will currently work.",
389 sbp->sb_blocksize, PAGE_SIZE);
390 }
391 return XFS_ERROR(ENOSYS);
392 }
393
394 /*
395 * Currently only very few inode sizes are supported.
396 */
397 switch (sbp->sb_inodesize) {
398 case 256:
399 case 512:
400 case 1024:
401 case 2048:
402 break;
403 default:
404 if (loud)
405 xfs_warn(mp, "inode size of %d bytes not supported",
406 sbp->sb_inodesize);
407 return XFS_ERROR(ENOSYS);
408 }
409
410 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
411 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
412 if (loud)
413 xfs_warn(mp,
414 "file system too large to be mounted on this system.");
415 return XFS_ERROR(EFBIG);
416 }
417
418 if (unlikely(sbp->sb_inprogress)) {
419 if (loud)
420 xfs_warn(mp, "file system busy");
421 return XFS_ERROR(EFSCORRUPTED);
422 }
423
424 /*
425 * Version 1 directory format has never worked on Linux.
426 */
427 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
428 if (loud)
429 xfs_warn(mp,
430 "file system using version 1 directory format");
431 return XFS_ERROR(ENOSYS);
432 }
433
434 return 0;
435 }
436
437 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)438 xfs_initialize_perag(
439 xfs_mount_t *mp,
440 xfs_agnumber_t agcount,
441 xfs_agnumber_t *maxagi)
442 {
443 xfs_agnumber_t index, max_metadata;
444 xfs_agnumber_t first_initialised = 0;
445 xfs_perag_t *pag;
446 xfs_agino_t agino;
447 xfs_ino_t ino;
448 xfs_sb_t *sbp = &mp->m_sb;
449 int error = -ENOMEM;
450
451 /*
452 * Walk the current per-ag tree so we don't try to initialise AGs
453 * that already exist (growfs case). Allocate and insert all the
454 * AGs we don't find ready for initialisation.
455 */
456 for (index = 0; index < agcount; index++) {
457 pag = xfs_perag_get(mp, index);
458 if (pag) {
459 xfs_perag_put(pag);
460 continue;
461 }
462 if (!first_initialised)
463 first_initialised = index;
464
465 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
466 if (!pag)
467 goto out_unwind;
468 pag->pag_agno = index;
469 pag->pag_mount = mp;
470 spin_lock_init(&pag->pag_ici_lock);
471 mutex_init(&pag->pag_ici_reclaim_lock);
472 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
473 spin_lock_init(&pag->pag_buf_lock);
474 pag->pag_buf_tree = RB_ROOT;
475
476 if (radix_tree_preload(GFP_NOFS))
477 goto out_unwind;
478
479 spin_lock(&mp->m_perag_lock);
480 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
481 BUG();
482 spin_unlock(&mp->m_perag_lock);
483 radix_tree_preload_end();
484 error = -EEXIST;
485 goto out_unwind;
486 }
487 spin_unlock(&mp->m_perag_lock);
488 radix_tree_preload_end();
489 }
490
491 /*
492 * If we mount with the inode64 option, or no inode overflows
493 * the legacy 32-bit address space clear the inode32 option.
494 */
495 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
496 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
497
498 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
499 mp->m_flags |= XFS_MOUNT_32BITINODES;
500 else
501 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
502
503 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
504 /*
505 * Calculate how much should be reserved for inodes to meet
506 * the max inode percentage.
507 */
508 if (mp->m_maxicount) {
509 __uint64_t icount;
510
511 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
512 do_div(icount, 100);
513 icount += sbp->sb_agblocks - 1;
514 do_div(icount, sbp->sb_agblocks);
515 max_metadata = icount;
516 } else {
517 max_metadata = agcount;
518 }
519
520 for (index = 0; index < agcount; index++) {
521 ino = XFS_AGINO_TO_INO(mp, index, agino);
522 if (ino > XFS_MAXINUMBER_32) {
523 index++;
524 break;
525 }
526
527 pag = xfs_perag_get(mp, index);
528 pag->pagi_inodeok = 1;
529 if (index < max_metadata)
530 pag->pagf_metadata = 1;
531 xfs_perag_put(pag);
532 }
533 } else {
534 for (index = 0; index < agcount; index++) {
535 pag = xfs_perag_get(mp, index);
536 pag->pagi_inodeok = 1;
537 xfs_perag_put(pag);
538 }
539 }
540
541 if (maxagi)
542 *maxagi = index;
543 return 0;
544
545 out_unwind:
546 kmem_free(pag);
547 for (; index > first_initialised; index--) {
548 pag = radix_tree_delete(&mp->m_perag_tree, index);
549 kmem_free(pag);
550 }
551 return error;
552 }
553
554 void
xfs_sb_from_disk(struct xfs_mount * mp,xfs_dsb_t * from)555 xfs_sb_from_disk(
556 struct xfs_mount *mp,
557 xfs_dsb_t *from)
558 {
559 struct xfs_sb *to = &mp->m_sb;
560
561 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
562 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
563 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
564 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
565 to->sb_rextents = be64_to_cpu(from->sb_rextents);
566 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
567 to->sb_logstart = be64_to_cpu(from->sb_logstart);
568 to->sb_rootino = be64_to_cpu(from->sb_rootino);
569 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
570 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
571 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
572 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
573 to->sb_agcount = be32_to_cpu(from->sb_agcount);
574 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
575 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
576 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
577 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
578 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
579 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
580 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
581 to->sb_blocklog = from->sb_blocklog;
582 to->sb_sectlog = from->sb_sectlog;
583 to->sb_inodelog = from->sb_inodelog;
584 to->sb_inopblog = from->sb_inopblog;
585 to->sb_agblklog = from->sb_agblklog;
586 to->sb_rextslog = from->sb_rextslog;
587 to->sb_inprogress = from->sb_inprogress;
588 to->sb_imax_pct = from->sb_imax_pct;
589 to->sb_icount = be64_to_cpu(from->sb_icount);
590 to->sb_ifree = be64_to_cpu(from->sb_ifree);
591 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
592 to->sb_frextents = be64_to_cpu(from->sb_frextents);
593 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
594 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
595 to->sb_qflags = be16_to_cpu(from->sb_qflags);
596 to->sb_flags = from->sb_flags;
597 to->sb_shared_vn = from->sb_shared_vn;
598 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
599 to->sb_unit = be32_to_cpu(from->sb_unit);
600 to->sb_width = be32_to_cpu(from->sb_width);
601 to->sb_dirblklog = from->sb_dirblklog;
602 to->sb_logsectlog = from->sb_logsectlog;
603 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
604 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
605 to->sb_features2 = be32_to_cpu(from->sb_features2);
606 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
607 }
608
609 /*
610 * Copy in core superblock to ondisk one.
611 *
612 * The fields argument is mask of superblock fields to copy.
613 */
614 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)615 xfs_sb_to_disk(
616 xfs_dsb_t *to,
617 xfs_sb_t *from,
618 __int64_t fields)
619 {
620 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
621 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
622 xfs_sb_field_t f;
623 int first;
624 int size;
625
626 ASSERT(fields);
627 if (!fields)
628 return;
629
630 while (fields) {
631 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
632 first = xfs_sb_info[f].offset;
633 size = xfs_sb_info[f + 1].offset - first;
634
635 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
636
637 if (size == 1 || xfs_sb_info[f].type == 1) {
638 memcpy(to_ptr + first, from_ptr + first, size);
639 } else {
640 switch (size) {
641 case 2:
642 *(__be16 *)(to_ptr + first) =
643 cpu_to_be16(*(__u16 *)(from_ptr + first));
644 break;
645 case 4:
646 *(__be32 *)(to_ptr + first) =
647 cpu_to_be32(*(__u32 *)(from_ptr + first));
648 break;
649 case 8:
650 *(__be64 *)(to_ptr + first) =
651 cpu_to_be64(*(__u64 *)(from_ptr + first));
652 break;
653 default:
654 ASSERT(0);
655 }
656 }
657
658 fields &= ~(1LL << f);
659 }
660 }
661
662 /*
663 * xfs_readsb
664 *
665 * Does the initial read of the superblock.
666 */
667 int
xfs_readsb(xfs_mount_t * mp,int flags)668 xfs_readsb(xfs_mount_t *mp, int flags)
669 {
670 unsigned int sector_size;
671 xfs_buf_t *bp;
672 int error;
673 int loud = !(flags & XFS_MFSI_QUIET);
674
675 ASSERT(mp->m_sb_bp == NULL);
676 ASSERT(mp->m_ddev_targp != NULL);
677
678 /*
679 * Allocate a (locked) buffer to hold the superblock.
680 * This will be kept around at all times to optimize
681 * access to the superblock.
682 */
683 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
684
685 reread:
686 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
687 XFS_SB_DADDR, sector_size, 0);
688 if (!bp) {
689 if (loud)
690 xfs_warn(mp, "SB buffer read failed");
691 return EIO;
692 }
693
694 /*
695 * Initialize the mount structure from the superblock.
696 * But first do some basic consistency checking.
697 */
698 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
699 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
700 if (error) {
701 if (loud)
702 xfs_warn(mp, "SB validate failed");
703 goto release_buf;
704 }
705
706 /*
707 * We must be able to do sector-sized and sector-aligned IO.
708 */
709 if (sector_size > mp->m_sb.sb_sectsize) {
710 if (loud)
711 xfs_warn(mp, "device supports %u byte sectors (not %u)",
712 sector_size, mp->m_sb.sb_sectsize);
713 error = ENOSYS;
714 goto release_buf;
715 }
716
717 /*
718 * If device sector size is smaller than the superblock size,
719 * re-read the superblock so the buffer is correctly sized.
720 */
721 if (sector_size < mp->m_sb.sb_sectsize) {
722 xfs_buf_relse(bp);
723 sector_size = mp->m_sb.sb_sectsize;
724 goto reread;
725 }
726
727 /* Initialize per-cpu counters */
728 xfs_icsb_reinit_counters(mp);
729
730 mp->m_sb_bp = bp;
731 xfs_buf_unlock(bp);
732 return 0;
733
734 release_buf:
735 xfs_buf_relse(bp);
736 return error;
737 }
738
739
740 /*
741 * xfs_mount_common
742 *
743 * Mount initialization code establishing various mount
744 * fields from the superblock associated with the given
745 * mount structure
746 */
747 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)748 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
749 {
750 mp->m_agfrotor = mp->m_agirotor = 0;
751 spin_lock_init(&mp->m_agirotor_lock);
752 mp->m_maxagi = mp->m_sb.sb_agcount;
753 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
754 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
755 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
756 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
757 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
758 mp->m_blockmask = sbp->sb_blocksize - 1;
759 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
760 mp->m_blockwmask = mp->m_blockwsize - 1;
761
762 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
763 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
764 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
765 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
766
767 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
768 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
769 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
770 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
771
772 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
773 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
774 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
775 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
776
777 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
778 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
779 sbp->sb_inopblock);
780 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
781 }
782
783 /*
784 * xfs_initialize_perag_data
785 *
786 * Read in each per-ag structure so we can count up the number of
787 * allocated inodes, free inodes and used filesystem blocks as this
788 * information is no longer persistent in the superblock. Once we have
789 * this information, write it into the in-core superblock structure.
790 */
791 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)792 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
793 {
794 xfs_agnumber_t index;
795 xfs_perag_t *pag;
796 xfs_sb_t *sbp = &mp->m_sb;
797 uint64_t ifree = 0;
798 uint64_t ialloc = 0;
799 uint64_t bfree = 0;
800 uint64_t bfreelst = 0;
801 uint64_t btree = 0;
802 int error;
803
804 for (index = 0; index < agcount; index++) {
805 /*
806 * read the agf, then the agi. This gets us
807 * all the information we need and populates the
808 * per-ag structures for us.
809 */
810 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
811 if (error)
812 return error;
813
814 error = xfs_ialloc_pagi_init(mp, NULL, index);
815 if (error)
816 return error;
817 pag = xfs_perag_get(mp, index);
818 ifree += pag->pagi_freecount;
819 ialloc += pag->pagi_count;
820 bfree += pag->pagf_freeblks;
821 bfreelst += pag->pagf_flcount;
822 btree += pag->pagf_btreeblks;
823 xfs_perag_put(pag);
824 }
825 /*
826 * Overwrite incore superblock counters with just-read data
827 */
828 spin_lock(&mp->m_sb_lock);
829 sbp->sb_ifree = ifree;
830 sbp->sb_icount = ialloc;
831 sbp->sb_fdblocks = bfree + bfreelst + btree;
832 spin_unlock(&mp->m_sb_lock);
833
834 /* Fixup the per-cpu counters as well. */
835 xfs_icsb_reinit_counters(mp);
836
837 return 0;
838 }
839
840 /*
841 * Update alignment values based on mount options and sb values
842 */
843 STATIC int
xfs_update_alignment(xfs_mount_t * mp)844 xfs_update_alignment(xfs_mount_t *mp)
845 {
846 xfs_sb_t *sbp = &(mp->m_sb);
847
848 if (mp->m_dalign) {
849 /*
850 * If stripe unit and stripe width are not multiples
851 * of the fs blocksize turn off alignment.
852 */
853 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
854 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
855 if (mp->m_flags & XFS_MOUNT_RETERR) {
856 xfs_warn(mp, "alignment check failed: "
857 "(sunit/swidth vs. blocksize)");
858 return XFS_ERROR(EINVAL);
859 }
860 mp->m_dalign = mp->m_swidth = 0;
861 } else {
862 /*
863 * Convert the stripe unit and width to FSBs.
864 */
865 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
866 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
867 if (mp->m_flags & XFS_MOUNT_RETERR) {
868 xfs_warn(mp, "alignment check failed: "
869 "(sunit/swidth vs. ag size)");
870 return XFS_ERROR(EINVAL);
871 }
872 xfs_warn(mp,
873 "stripe alignment turned off: sunit(%d)/swidth(%d) "
874 "incompatible with agsize(%d)",
875 mp->m_dalign, mp->m_swidth,
876 sbp->sb_agblocks);
877
878 mp->m_dalign = 0;
879 mp->m_swidth = 0;
880 } else if (mp->m_dalign) {
881 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
882 } else {
883 if (mp->m_flags & XFS_MOUNT_RETERR) {
884 xfs_warn(mp, "alignment check failed: "
885 "sunit(%d) less than bsize(%d)",
886 mp->m_dalign,
887 mp->m_blockmask +1);
888 return XFS_ERROR(EINVAL);
889 }
890 mp->m_swidth = 0;
891 }
892 }
893
894 /*
895 * Update superblock with new values
896 * and log changes
897 */
898 if (xfs_sb_version_hasdalign(sbp)) {
899 if (sbp->sb_unit != mp->m_dalign) {
900 sbp->sb_unit = mp->m_dalign;
901 mp->m_update_flags |= XFS_SB_UNIT;
902 }
903 if (sbp->sb_width != mp->m_swidth) {
904 sbp->sb_width = mp->m_swidth;
905 mp->m_update_flags |= XFS_SB_WIDTH;
906 }
907 }
908 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
909 xfs_sb_version_hasdalign(&mp->m_sb)) {
910 mp->m_dalign = sbp->sb_unit;
911 mp->m_swidth = sbp->sb_width;
912 }
913
914 return 0;
915 }
916
917 /*
918 * Set the maximum inode count for this filesystem
919 */
920 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)921 xfs_set_maxicount(xfs_mount_t *mp)
922 {
923 xfs_sb_t *sbp = &(mp->m_sb);
924 __uint64_t icount;
925
926 if (sbp->sb_imax_pct) {
927 /*
928 * Make sure the maximum inode count is a multiple
929 * of the units we allocate inodes in.
930 */
931 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
932 do_div(icount, 100);
933 do_div(icount, mp->m_ialloc_blks);
934 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
935 sbp->sb_inopblog;
936 } else {
937 mp->m_maxicount = 0;
938 }
939 }
940
941 /*
942 * Set the default minimum read and write sizes unless
943 * already specified in a mount option.
944 * We use smaller I/O sizes when the file system
945 * is being used for NFS service (wsync mount option).
946 */
947 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)948 xfs_set_rw_sizes(xfs_mount_t *mp)
949 {
950 xfs_sb_t *sbp = &(mp->m_sb);
951 int readio_log, writeio_log;
952
953 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
954 if (mp->m_flags & XFS_MOUNT_WSYNC) {
955 readio_log = XFS_WSYNC_READIO_LOG;
956 writeio_log = XFS_WSYNC_WRITEIO_LOG;
957 } else {
958 readio_log = XFS_READIO_LOG_LARGE;
959 writeio_log = XFS_WRITEIO_LOG_LARGE;
960 }
961 } else {
962 readio_log = mp->m_readio_log;
963 writeio_log = mp->m_writeio_log;
964 }
965
966 if (sbp->sb_blocklog > readio_log) {
967 mp->m_readio_log = sbp->sb_blocklog;
968 } else {
969 mp->m_readio_log = readio_log;
970 }
971 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
972 if (sbp->sb_blocklog > writeio_log) {
973 mp->m_writeio_log = sbp->sb_blocklog;
974 } else {
975 mp->m_writeio_log = writeio_log;
976 }
977 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
978 }
979
980 /*
981 * precalculate the low space thresholds for dynamic speculative preallocation.
982 */
983 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)984 xfs_set_low_space_thresholds(
985 struct xfs_mount *mp)
986 {
987 int i;
988
989 for (i = 0; i < XFS_LOWSP_MAX; i++) {
990 __uint64_t space = mp->m_sb.sb_dblocks;
991
992 do_div(space, 100);
993 mp->m_low_space[i] = space * (i + 1);
994 }
995 }
996
997
998 /*
999 * Set whether we're using inode alignment.
1000 */
1001 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)1002 xfs_set_inoalignment(xfs_mount_t *mp)
1003 {
1004 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1005 mp->m_sb.sb_inoalignmt >=
1006 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1007 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1008 else
1009 mp->m_inoalign_mask = 0;
1010 /*
1011 * If we are using stripe alignment, check whether
1012 * the stripe unit is a multiple of the inode alignment
1013 */
1014 if (mp->m_dalign && mp->m_inoalign_mask &&
1015 !(mp->m_dalign & mp->m_inoalign_mask))
1016 mp->m_sinoalign = mp->m_dalign;
1017 else
1018 mp->m_sinoalign = 0;
1019 }
1020
1021 /*
1022 * Check that the data (and log if separate) are an ok size.
1023 */
1024 STATIC int
xfs_check_sizes(xfs_mount_t * mp)1025 xfs_check_sizes(xfs_mount_t *mp)
1026 {
1027 xfs_buf_t *bp;
1028 xfs_daddr_t d;
1029
1030 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1031 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1032 xfs_warn(mp, "filesystem size mismatch detected");
1033 return XFS_ERROR(EFBIG);
1034 }
1035 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1036 d - XFS_FSS_TO_BB(mp, 1),
1037 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1038 if (!bp) {
1039 xfs_warn(mp, "last sector read failed");
1040 return EIO;
1041 }
1042 xfs_buf_relse(bp);
1043
1044 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1045 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1046 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1047 xfs_warn(mp, "log size mismatch detected");
1048 return XFS_ERROR(EFBIG);
1049 }
1050 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1051 d - XFS_FSB_TO_BB(mp, 1),
1052 XFS_FSB_TO_B(mp, 1), 0);
1053 if (!bp) {
1054 xfs_warn(mp, "log device read failed");
1055 return EIO;
1056 }
1057 xfs_buf_relse(bp);
1058 }
1059 return 0;
1060 }
1061
1062 /*
1063 * Clear the quotaflags in memory and in the superblock.
1064 */
1065 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)1066 xfs_mount_reset_sbqflags(
1067 struct xfs_mount *mp)
1068 {
1069 int error;
1070 struct xfs_trans *tp;
1071
1072 mp->m_qflags = 0;
1073
1074 /*
1075 * It is OK to look at sb_qflags here in mount path,
1076 * without m_sb_lock.
1077 */
1078 if (mp->m_sb.sb_qflags == 0)
1079 return 0;
1080 spin_lock(&mp->m_sb_lock);
1081 mp->m_sb.sb_qflags = 0;
1082 spin_unlock(&mp->m_sb_lock);
1083
1084 /*
1085 * If the fs is readonly, let the incore superblock run
1086 * with quotas off but don't flush the update out to disk
1087 */
1088 if (mp->m_flags & XFS_MOUNT_RDONLY)
1089 return 0;
1090
1091 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1092 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1093 XFS_DEFAULT_LOG_COUNT);
1094 if (error) {
1095 xfs_trans_cancel(tp, 0);
1096 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1097 return error;
1098 }
1099
1100 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1101 return xfs_trans_commit(tp, 0);
1102 }
1103
1104 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)1105 xfs_default_resblks(xfs_mount_t *mp)
1106 {
1107 __uint64_t resblks;
1108
1109 /*
1110 * We default to 5% or 8192 fsbs of space reserved, whichever is
1111 * smaller. This is intended to cover concurrent allocation
1112 * transactions when we initially hit enospc. These each require a 4
1113 * block reservation. Hence by default we cover roughly 2000 concurrent
1114 * allocation reservations.
1115 */
1116 resblks = mp->m_sb.sb_dblocks;
1117 do_div(resblks, 20);
1118 resblks = min_t(__uint64_t, resblks, 8192);
1119 return resblks;
1120 }
1121
1122 /*
1123 * This function does the following on an initial mount of a file system:
1124 * - reads the superblock from disk and init the mount struct
1125 * - if we're a 32-bit kernel, do a size check on the superblock
1126 * so we don't mount terabyte filesystems
1127 * - init mount struct realtime fields
1128 * - allocate inode hash table for fs
1129 * - init directory manager
1130 * - perform recovery and init the log manager
1131 */
1132 int
xfs_mountfs(xfs_mount_t * mp)1133 xfs_mountfs(
1134 xfs_mount_t *mp)
1135 {
1136 xfs_sb_t *sbp = &(mp->m_sb);
1137 xfs_inode_t *rip;
1138 __uint64_t resblks;
1139 uint quotamount = 0;
1140 uint quotaflags = 0;
1141 int error = 0;
1142
1143 xfs_mount_common(mp, sbp);
1144
1145 /*
1146 * Check for a mismatched features2 values. Older kernels
1147 * read & wrote into the wrong sb offset for sb_features2
1148 * on some platforms due to xfs_sb_t not being 64bit size aligned
1149 * when sb_features2 was added, which made older superblock
1150 * reading/writing routines swap it as a 64-bit value.
1151 *
1152 * For backwards compatibility, we make both slots equal.
1153 *
1154 * If we detect a mismatched field, we OR the set bits into the
1155 * existing features2 field in case it has already been modified; we
1156 * don't want to lose any features. We then update the bad location
1157 * with the ORed value so that older kernels will see any features2
1158 * flags, and mark the two fields as needing updates once the
1159 * transaction subsystem is online.
1160 */
1161 if (xfs_sb_has_mismatched_features2(sbp)) {
1162 xfs_warn(mp, "correcting sb_features alignment problem");
1163 sbp->sb_features2 |= sbp->sb_bad_features2;
1164 sbp->sb_bad_features2 = sbp->sb_features2;
1165 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1166
1167 /*
1168 * Re-check for ATTR2 in case it was found in bad_features2
1169 * slot.
1170 */
1171 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1172 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1173 mp->m_flags |= XFS_MOUNT_ATTR2;
1174 }
1175
1176 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1177 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1178 xfs_sb_version_removeattr2(&mp->m_sb);
1179 mp->m_update_flags |= XFS_SB_FEATURES2;
1180
1181 /* update sb_versionnum for the clearing of the morebits */
1182 if (!sbp->sb_features2)
1183 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1184 }
1185
1186 /*
1187 * Check if sb_agblocks is aligned at stripe boundary
1188 * If sb_agblocks is NOT aligned turn off m_dalign since
1189 * allocator alignment is within an ag, therefore ag has
1190 * to be aligned at stripe boundary.
1191 */
1192 error = xfs_update_alignment(mp);
1193 if (error)
1194 goto out;
1195
1196 xfs_alloc_compute_maxlevels(mp);
1197 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1198 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1199 xfs_ialloc_compute_maxlevels(mp);
1200
1201 xfs_set_maxicount(mp);
1202
1203 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1204
1205 error = xfs_uuid_mount(mp);
1206 if (error)
1207 goto out;
1208
1209 /*
1210 * Set the minimum read and write sizes
1211 */
1212 xfs_set_rw_sizes(mp);
1213
1214 /* set the low space thresholds for dynamic preallocation */
1215 xfs_set_low_space_thresholds(mp);
1216
1217 /*
1218 * Set the inode cluster size.
1219 * This may still be overridden by the file system
1220 * block size if it is larger than the chosen cluster size.
1221 */
1222 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1223
1224 /*
1225 * Set inode alignment fields
1226 */
1227 xfs_set_inoalignment(mp);
1228
1229 /*
1230 * Check that the data (and log if separate) are an ok size.
1231 */
1232 error = xfs_check_sizes(mp);
1233 if (error)
1234 goto out_remove_uuid;
1235
1236 /*
1237 * Initialize realtime fields in the mount structure
1238 */
1239 error = xfs_rtmount_init(mp);
1240 if (error) {
1241 xfs_warn(mp, "RT mount failed");
1242 goto out_remove_uuid;
1243 }
1244
1245 /*
1246 * Copies the low order bits of the timestamp and the randomly
1247 * set "sequence" number out of a UUID.
1248 */
1249 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1250
1251 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1252
1253 xfs_dir_mount(mp);
1254
1255 /*
1256 * Initialize the attribute manager's entries.
1257 */
1258 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1259
1260 /*
1261 * Initialize the precomputed transaction reservations values.
1262 */
1263 xfs_trans_init(mp);
1264
1265 /*
1266 * Allocate and initialize the per-ag data.
1267 */
1268 spin_lock_init(&mp->m_perag_lock);
1269 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1270 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1271 if (error) {
1272 xfs_warn(mp, "Failed per-ag init: %d", error);
1273 goto out_remove_uuid;
1274 }
1275
1276 if (!sbp->sb_logblocks) {
1277 xfs_warn(mp, "no log defined");
1278 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1279 error = XFS_ERROR(EFSCORRUPTED);
1280 goto out_free_perag;
1281 }
1282
1283 /*
1284 * log's mount-time initialization. Perform 1st part recovery if needed
1285 */
1286 error = xfs_log_mount(mp, mp->m_logdev_targp,
1287 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1288 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1289 if (error) {
1290 xfs_warn(mp, "log mount failed");
1291 goto out_free_perag;
1292 }
1293
1294 /*
1295 * Now the log is mounted, we know if it was an unclean shutdown or
1296 * not. If it was, with the first phase of recovery has completed, we
1297 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1298 * but they are recovered transactionally in the second recovery phase
1299 * later.
1300 *
1301 * Hence we can safely re-initialise incore superblock counters from
1302 * the per-ag data. These may not be correct if the filesystem was not
1303 * cleanly unmounted, so we need to wait for recovery to finish before
1304 * doing this.
1305 *
1306 * If the filesystem was cleanly unmounted, then we can trust the
1307 * values in the superblock to be correct and we don't need to do
1308 * anything here.
1309 *
1310 * If we are currently making the filesystem, the initialisation will
1311 * fail as the perag data is in an undefined state.
1312 */
1313 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1314 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1315 !mp->m_sb.sb_inprogress) {
1316 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1317 if (error)
1318 goto out_free_perag;
1319 }
1320
1321 /*
1322 * Get and sanity-check the root inode.
1323 * Save the pointer to it in the mount structure.
1324 */
1325 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1326 if (error) {
1327 xfs_warn(mp, "failed to read root inode");
1328 goto out_log_dealloc;
1329 }
1330
1331 ASSERT(rip != NULL);
1332
1333 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1334 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1335 (unsigned long long)rip->i_ino);
1336 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1337 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1338 mp);
1339 error = XFS_ERROR(EFSCORRUPTED);
1340 goto out_rele_rip;
1341 }
1342 mp->m_rootip = rip; /* save it */
1343
1344 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1345
1346 /*
1347 * Initialize realtime inode pointers in the mount structure
1348 */
1349 error = xfs_rtmount_inodes(mp);
1350 if (error) {
1351 /*
1352 * Free up the root inode.
1353 */
1354 xfs_warn(mp, "failed to read RT inodes");
1355 goto out_rele_rip;
1356 }
1357
1358 /*
1359 * If this is a read-only mount defer the superblock updates until
1360 * the next remount into writeable mode. Otherwise we would never
1361 * perform the update e.g. for the root filesystem.
1362 */
1363 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1364 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1365 if (error) {
1366 xfs_warn(mp, "failed to write sb changes");
1367 goto out_rtunmount;
1368 }
1369 }
1370
1371 /*
1372 * Initialise the XFS quota management subsystem for this mount
1373 */
1374 if (XFS_IS_QUOTA_RUNNING(mp)) {
1375 error = xfs_qm_newmount(mp, "amount, "aflags);
1376 if (error)
1377 goto out_rtunmount;
1378 } else {
1379 ASSERT(!XFS_IS_QUOTA_ON(mp));
1380
1381 /*
1382 * If a file system had quotas running earlier, but decided to
1383 * mount without -o uquota/pquota/gquota options, revoke the
1384 * quotachecked license.
1385 */
1386 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1387 xfs_notice(mp, "resetting quota flags");
1388 error = xfs_mount_reset_sbqflags(mp);
1389 if (error)
1390 return error;
1391 }
1392 }
1393
1394 /*
1395 * Finish recovering the file system. This part needed to be
1396 * delayed until after the root and real-time bitmap inodes
1397 * were consistently read in.
1398 */
1399 error = xfs_log_mount_finish(mp);
1400 if (error) {
1401 xfs_warn(mp, "log mount finish failed");
1402 goto out_rtunmount;
1403 }
1404
1405 /*
1406 * Complete the quota initialisation, post-log-replay component.
1407 */
1408 if (quotamount) {
1409 ASSERT(mp->m_qflags == 0);
1410 mp->m_qflags = quotaflags;
1411
1412 xfs_qm_mount_quotas(mp);
1413 }
1414
1415 /*
1416 * Now we are mounted, reserve a small amount of unused space for
1417 * privileged transactions. This is needed so that transaction
1418 * space required for critical operations can dip into this pool
1419 * when at ENOSPC. This is needed for operations like create with
1420 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1421 * are not allowed to use this reserved space.
1422 *
1423 * This may drive us straight to ENOSPC on mount, but that implies
1424 * we were already there on the last unmount. Warn if this occurs.
1425 */
1426 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1427 resblks = xfs_default_resblks(mp);
1428 error = xfs_reserve_blocks(mp, &resblks, NULL);
1429 if (error)
1430 xfs_warn(mp,
1431 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1432 }
1433
1434 return 0;
1435
1436 out_rtunmount:
1437 xfs_rtunmount_inodes(mp);
1438 out_rele_rip:
1439 IRELE(rip);
1440 out_log_dealloc:
1441 xfs_log_unmount(mp);
1442 out_free_perag:
1443 xfs_free_perag(mp);
1444 out_remove_uuid:
1445 xfs_uuid_unmount(mp);
1446 out:
1447 return error;
1448 }
1449
1450 /*
1451 * This flushes out the inodes,dquots and the superblock, unmounts the
1452 * log and makes sure that incore structures are freed.
1453 */
1454 void
xfs_unmountfs(struct xfs_mount * mp)1455 xfs_unmountfs(
1456 struct xfs_mount *mp)
1457 {
1458 __uint64_t resblks;
1459 int error;
1460
1461 xfs_qm_unmount_quotas(mp);
1462 xfs_rtunmount_inodes(mp);
1463 IRELE(mp->m_rootip);
1464
1465 /*
1466 * We can potentially deadlock here if we have an inode cluster
1467 * that has been freed has its buffer still pinned in memory because
1468 * the transaction is still sitting in a iclog. The stale inodes
1469 * on that buffer will have their flush locks held until the
1470 * transaction hits the disk and the callbacks run. the inode
1471 * flush takes the flush lock unconditionally and with nothing to
1472 * push out the iclog we will never get that unlocked. hence we
1473 * need to force the log first.
1474 */
1475 xfs_log_force(mp, XFS_LOG_SYNC);
1476
1477 /*
1478 * Do a delwri reclaim pass first so that as many dirty inodes are
1479 * queued up for IO as possible. Then flush the buffers before making
1480 * a synchronous path to catch all the remaining inodes are reclaimed.
1481 * This makes the reclaim process as quick as possible by avoiding
1482 * synchronous writeout and blocking on inodes already in the delwri
1483 * state as much as possible.
1484 */
1485 xfs_reclaim_inodes(mp, 0);
1486 xfs_flush_buftarg(mp->m_ddev_targp, 1);
1487 xfs_reclaim_inodes(mp, SYNC_WAIT);
1488
1489 xfs_qm_unmount(mp);
1490
1491 /*
1492 * Flush out the log synchronously so that we know for sure
1493 * that nothing is pinned. This is important because bflush()
1494 * will skip pinned buffers.
1495 */
1496 xfs_log_force(mp, XFS_LOG_SYNC);
1497
1498 /*
1499 * Unreserve any blocks we have so that when we unmount we don't account
1500 * the reserved free space as used. This is really only necessary for
1501 * lazy superblock counting because it trusts the incore superblock
1502 * counters to be absolutely correct on clean unmount.
1503 *
1504 * We don't bother correcting this elsewhere for lazy superblock
1505 * counting because on mount of an unclean filesystem we reconstruct the
1506 * correct counter value and this is irrelevant.
1507 *
1508 * For non-lazy counter filesystems, this doesn't matter at all because
1509 * we only every apply deltas to the superblock and hence the incore
1510 * value does not matter....
1511 */
1512 resblks = 0;
1513 error = xfs_reserve_blocks(mp, &resblks, NULL);
1514 if (error)
1515 xfs_warn(mp, "Unable to free reserved block pool. "
1516 "Freespace may not be correct on next mount.");
1517
1518 error = xfs_log_sbcount(mp);
1519 if (error)
1520 xfs_warn(mp, "Unable to update superblock counters. "
1521 "Freespace may not be correct on next mount.");
1522 xfs_unmountfs_writesb(mp);
1523
1524 /*
1525 * Make sure all buffers have been flushed and completed before
1526 * unmounting the log.
1527 */
1528 error = xfs_flush_buftarg(mp->m_ddev_targp, 1);
1529 if (error)
1530 xfs_warn(mp, "%d busy buffers during unmount.", error);
1531 xfs_wait_buftarg(mp->m_ddev_targp);
1532
1533 xfs_log_unmount_write(mp);
1534 xfs_log_unmount(mp);
1535 xfs_uuid_unmount(mp);
1536
1537 #if defined(DEBUG)
1538 xfs_errortag_clearall(mp, 0);
1539 #endif
1540 xfs_free_perag(mp);
1541 }
1542
1543 int
xfs_fs_writable(xfs_mount_t * mp)1544 xfs_fs_writable(xfs_mount_t *mp)
1545 {
1546 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1547 (mp->m_flags & XFS_MOUNT_RDONLY));
1548 }
1549
1550 /*
1551 * xfs_log_sbcount
1552 *
1553 * Sync the superblock counters to disk.
1554 *
1555 * Note this code can be called during the process of freezing, so
1556 * we may need to use the transaction allocator which does not
1557 * block when the transaction subsystem is in its frozen state.
1558 */
1559 int
xfs_log_sbcount(xfs_mount_t * mp)1560 xfs_log_sbcount(xfs_mount_t *mp)
1561 {
1562 xfs_trans_t *tp;
1563 int error;
1564
1565 if (!xfs_fs_writable(mp))
1566 return 0;
1567
1568 xfs_icsb_sync_counters(mp, 0);
1569
1570 /*
1571 * we don't need to do this if we are updating the superblock
1572 * counters on every modification.
1573 */
1574 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1575 return 0;
1576
1577 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1578 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1579 XFS_DEFAULT_LOG_COUNT);
1580 if (error) {
1581 xfs_trans_cancel(tp, 0);
1582 return error;
1583 }
1584
1585 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1586 xfs_trans_set_sync(tp);
1587 error = xfs_trans_commit(tp, 0);
1588 return error;
1589 }
1590
1591 int
xfs_unmountfs_writesb(xfs_mount_t * mp)1592 xfs_unmountfs_writesb(xfs_mount_t *mp)
1593 {
1594 xfs_buf_t *sbp;
1595 int error = 0;
1596
1597 /*
1598 * skip superblock write if fs is read-only, or
1599 * if we are doing a forced umount.
1600 */
1601 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1602 XFS_FORCED_SHUTDOWN(mp))) {
1603
1604 sbp = xfs_getsb(mp, 0);
1605
1606 XFS_BUF_UNDONE(sbp);
1607 XFS_BUF_UNREAD(sbp);
1608 xfs_buf_delwri_dequeue(sbp);
1609 XFS_BUF_WRITE(sbp);
1610 XFS_BUF_UNASYNC(sbp);
1611 ASSERT(sbp->b_target == mp->m_ddev_targp);
1612 xfsbdstrat(mp, sbp);
1613 error = xfs_buf_iowait(sbp);
1614 if (error)
1615 xfs_buf_ioerror_alert(sbp, __func__);
1616 xfs_buf_relse(sbp);
1617 }
1618 return error;
1619 }
1620
1621 /*
1622 * xfs_mod_sb() can be used to copy arbitrary changes to the
1623 * in-core superblock into the superblock buffer to be logged.
1624 * It does not provide the higher level of locking that is
1625 * needed to protect the in-core superblock from concurrent
1626 * access.
1627 */
1628 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1629 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1630 {
1631 xfs_buf_t *bp;
1632 int first;
1633 int last;
1634 xfs_mount_t *mp;
1635 xfs_sb_field_t f;
1636
1637 ASSERT(fields);
1638 if (!fields)
1639 return;
1640 mp = tp->t_mountp;
1641 bp = xfs_trans_getsb(tp, mp, 0);
1642 first = sizeof(xfs_sb_t);
1643 last = 0;
1644
1645 /* translate/copy */
1646
1647 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1648
1649 /* find modified range */
1650 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1651 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1652 last = xfs_sb_info[f + 1].offset - 1;
1653
1654 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1655 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1656 first = xfs_sb_info[f].offset;
1657
1658 xfs_trans_log_buf(tp, bp, first, last);
1659 }
1660
1661
1662 /*
1663 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1664 * a delta to a specified field in the in-core superblock. Simply
1665 * switch on the field indicated and apply the delta to that field.
1666 * Fields are not allowed to dip below zero, so if the delta would
1667 * do this do not apply it and return EINVAL.
1668 *
1669 * The m_sb_lock must be held when this routine is called.
1670 */
1671 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1672 xfs_mod_incore_sb_unlocked(
1673 xfs_mount_t *mp,
1674 xfs_sb_field_t field,
1675 int64_t delta,
1676 int rsvd)
1677 {
1678 int scounter; /* short counter for 32 bit fields */
1679 long long lcounter; /* long counter for 64 bit fields */
1680 long long res_used, rem;
1681
1682 /*
1683 * With the in-core superblock spin lock held, switch
1684 * on the indicated field. Apply the delta to the
1685 * proper field. If the fields value would dip below
1686 * 0, then do not apply the delta and return EINVAL.
1687 */
1688 switch (field) {
1689 case XFS_SBS_ICOUNT:
1690 lcounter = (long long)mp->m_sb.sb_icount;
1691 lcounter += delta;
1692 if (lcounter < 0) {
1693 ASSERT(0);
1694 return XFS_ERROR(EINVAL);
1695 }
1696 mp->m_sb.sb_icount = lcounter;
1697 return 0;
1698 case XFS_SBS_IFREE:
1699 lcounter = (long long)mp->m_sb.sb_ifree;
1700 lcounter += delta;
1701 if (lcounter < 0) {
1702 ASSERT(0);
1703 return XFS_ERROR(EINVAL);
1704 }
1705 mp->m_sb.sb_ifree = lcounter;
1706 return 0;
1707 case XFS_SBS_FDBLOCKS:
1708 lcounter = (long long)
1709 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1710 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1711
1712 if (delta > 0) { /* Putting blocks back */
1713 if (res_used > delta) {
1714 mp->m_resblks_avail += delta;
1715 } else {
1716 rem = delta - res_used;
1717 mp->m_resblks_avail = mp->m_resblks;
1718 lcounter += rem;
1719 }
1720 } else { /* Taking blocks away */
1721 lcounter += delta;
1722 if (lcounter >= 0) {
1723 mp->m_sb.sb_fdblocks = lcounter +
1724 XFS_ALLOC_SET_ASIDE(mp);
1725 return 0;
1726 }
1727
1728 /*
1729 * We are out of blocks, use any available reserved
1730 * blocks if were allowed to.
1731 */
1732 if (!rsvd)
1733 return XFS_ERROR(ENOSPC);
1734
1735 lcounter = (long long)mp->m_resblks_avail + delta;
1736 if (lcounter >= 0) {
1737 mp->m_resblks_avail = lcounter;
1738 return 0;
1739 }
1740 printk_once(KERN_WARNING
1741 "Filesystem \"%s\": reserve blocks depleted! "
1742 "Consider increasing reserve pool size.",
1743 mp->m_fsname);
1744 return XFS_ERROR(ENOSPC);
1745 }
1746
1747 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1748 return 0;
1749 case XFS_SBS_FREXTENTS:
1750 lcounter = (long long)mp->m_sb.sb_frextents;
1751 lcounter += delta;
1752 if (lcounter < 0) {
1753 return XFS_ERROR(ENOSPC);
1754 }
1755 mp->m_sb.sb_frextents = lcounter;
1756 return 0;
1757 case XFS_SBS_DBLOCKS:
1758 lcounter = (long long)mp->m_sb.sb_dblocks;
1759 lcounter += delta;
1760 if (lcounter < 0) {
1761 ASSERT(0);
1762 return XFS_ERROR(EINVAL);
1763 }
1764 mp->m_sb.sb_dblocks = lcounter;
1765 return 0;
1766 case XFS_SBS_AGCOUNT:
1767 scounter = mp->m_sb.sb_agcount;
1768 scounter += delta;
1769 if (scounter < 0) {
1770 ASSERT(0);
1771 return XFS_ERROR(EINVAL);
1772 }
1773 mp->m_sb.sb_agcount = scounter;
1774 return 0;
1775 case XFS_SBS_IMAX_PCT:
1776 scounter = mp->m_sb.sb_imax_pct;
1777 scounter += delta;
1778 if (scounter < 0) {
1779 ASSERT(0);
1780 return XFS_ERROR(EINVAL);
1781 }
1782 mp->m_sb.sb_imax_pct = scounter;
1783 return 0;
1784 case XFS_SBS_REXTSIZE:
1785 scounter = mp->m_sb.sb_rextsize;
1786 scounter += delta;
1787 if (scounter < 0) {
1788 ASSERT(0);
1789 return XFS_ERROR(EINVAL);
1790 }
1791 mp->m_sb.sb_rextsize = scounter;
1792 return 0;
1793 case XFS_SBS_RBMBLOCKS:
1794 scounter = mp->m_sb.sb_rbmblocks;
1795 scounter += delta;
1796 if (scounter < 0) {
1797 ASSERT(0);
1798 return XFS_ERROR(EINVAL);
1799 }
1800 mp->m_sb.sb_rbmblocks = scounter;
1801 return 0;
1802 case XFS_SBS_RBLOCKS:
1803 lcounter = (long long)mp->m_sb.sb_rblocks;
1804 lcounter += delta;
1805 if (lcounter < 0) {
1806 ASSERT(0);
1807 return XFS_ERROR(EINVAL);
1808 }
1809 mp->m_sb.sb_rblocks = lcounter;
1810 return 0;
1811 case XFS_SBS_REXTENTS:
1812 lcounter = (long long)mp->m_sb.sb_rextents;
1813 lcounter += delta;
1814 if (lcounter < 0) {
1815 ASSERT(0);
1816 return XFS_ERROR(EINVAL);
1817 }
1818 mp->m_sb.sb_rextents = lcounter;
1819 return 0;
1820 case XFS_SBS_REXTSLOG:
1821 scounter = mp->m_sb.sb_rextslog;
1822 scounter += delta;
1823 if (scounter < 0) {
1824 ASSERT(0);
1825 return XFS_ERROR(EINVAL);
1826 }
1827 mp->m_sb.sb_rextslog = scounter;
1828 return 0;
1829 default:
1830 ASSERT(0);
1831 return XFS_ERROR(EINVAL);
1832 }
1833 }
1834
1835 /*
1836 * xfs_mod_incore_sb() is used to change a field in the in-core
1837 * superblock structure by the specified delta. This modification
1838 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1839 * routine to do the work.
1840 */
1841 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1842 xfs_mod_incore_sb(
1843 struct xfs_mount *mp,
1844 xfs_sb_field_t field,
1845 int64_t delta,
1846 int rsvd)
1847 {
1848 int status;
1849
1850 #ifdef HAVE_PERCPU_SB
1851 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1852 #endif
1853 spin_lock(&mp->m_sb_lock);
1854 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1855 spin_unlock(&mp->m_sb_lock);
1856
1857 return status;
1858 }
1859
1860 /*
1861 * Change more than one field in the in-core superblock structure at a time.
1862 *
1863 * The fields and changes to those fields are specified in the array of
1864 * xfs_mod_sb structures passed in. Either all of the specified deltas
1865 * will be applied or none of them will. If any modified field dips below 0,
1866 * then all modifications will be backed out and EINVAL will be returned.
1867 *
1868 * Note that this function may not be used for the superblock values that
1869 * are tracked with the in-memory per-cpu counters - a direct call to
1870 * xfs_icsb_modify_counters is required for these.
1871 */
1872 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1873 xfs_mod_incore_sb_batch(
1874 struct xfs_mount *mp,
1875 xfs_mod_sb_t *msb,
1876 uint nmsb,
1877 int rsvd)
1878 {
1879 xfs_mod_sb_t *msbp;
1880 int error = 0;
1881
1882 /*
1883 * Loop through the array of mod structures and apply each individually.
1884 * If any fail, then back out all those which have already been applied.
1885 * Do all of this within the scope of the m_sb_lock so that all of the
1886 * changes will be atomic.
1887 */
1888 spin_lock(&mp->m_sb_lock);
1889 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1890 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1891 msbp->msb_field > XFS_SBS_FDBLOCKS);
1892
1893 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1894 msbp->msb_delta, rsvd);
1895 if (error)
1896 goto unwind;
1897 }
1898 spin_unlock(&mp->m_sb_lock);
1899 return 0;
1900
1901 unwind:
1902 while (--msbp >= msb) {
1903 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1904 -msbp->msb_delta, rsvd);
1905 ASSERT(error == 0);
1906 }
1907 spin_unlock(&mp->m_sb_lock);
1908 return error;
1909 }
1910
1911 /*
1912 * xfs_getsb() is called to obtain the buffer for the superblock.
1913 * The buffer is returned locked and read in from disk.
1914 * The buffer should be released with a call to xfs_brelse().
1915 *
1916 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1917 * the superblock buffer if it can be locked without sleeping.
1918 * If it can't then we'll return NULL.
1919 */
1920 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1921 xfs_getsb(
1922 struct xfs_mount *mp,
1923 int flags)
1924 {
1925 struct xfs_buf *bp = mp->m_sb_bp;
1926
1927 if (!xfs_buf_trylock(bp)) {
1928 if (flags & XBF_TRYLOCK)
1929 return NULL;
1930 xfs_buf_lock(bp);
1931 }
1932
1933 xfs_buf_hold(bp);
1934 ASSERT(XFS_BUF_ISDONE(bp));
1935 return bp;
1936 }
1937
1938 /*
1939 * Used to free the superblock along various error paths.
1940 */
1941 void
xfs_freesb(struct xfs_mount * mp)1942 xfs_freesb(
1943 struct xfs_mount *mp)
1944 {
1945 struct xfs_buf *bp = mp->m_sb_bp;
1946
1947 xfs_buf_lock(bp);
1948 mp->m_sb_bp = NULL;
1949 xfs_buf_relse(bp);
1950 }
1951
1952 /*
1953 * Used to log changes to the superblock unit and width fields which could
1954 * be altered by the mount options, as well as any potential sb_features2
1955 * fixup. Only the first superblock is updated.
1956 */
1957 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)1958 xfs_mount_log_sb(
1959 xfs_mount_t *mp,
1960 __int64_t fields)
1961 {
1962 xfs_trans_t *tp;
1963 int error;
1964
1965 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1966 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1967 XFS_SB_VERSIONNUM));
1968
1969 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1970 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1971 XFS_DEFAULT_LOG_COUNT);
1972 if (error) {
1973 xfs_trans_cancel(tp, 0);
1974 return error;
1975 }
1976 xfs_mod_sb(tp, fields);
1977 error = xfs_trans_commit(tp, 0);
1978 return error;
1979 }
1980
1981 /*
1982 * If the underlying (data/log/rt) device is readonly, there are some
1983 * operations that cannot proceed.
1984 */
1985 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1986 xfs_dev_is_read_only(
1987 struct xfs_mount *mp,
1988 char *message)
1989 {
1990 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1991 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1992 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1993 xfs_notice(mp, "%s required on read-only device.", message);
1994 xfs_notice(mp, "write access unavailable, cannot proceed.");
1995 return EROFS;
1996 }
1997 return 0;
1998 }
1999
2000 #ifdef HAVE_PERCPU_SB
2001 /*
2002 * Per-cpu incore superblock counters
2003 *
2004 * Simple concept, difficult implementation
2005 *
2006 * Basically, replace the incore superblock counters with a distributed per cpu
2007 * counter for contended fields (e.g. free block count).
2008 *
2009 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2010 * hence needs to be accurately read when we are running low on space. Hence
2011 * there is a method to enable and disable the per-cpu counters based on how
2012 * much "stuff" is available in them.
2013 *
2014 * Basically, a counter is enabled if there is enough free resource to justify
2015 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2016 * ENOSPC), then we disable the counters to synchronise all callers and
2017 * re-distribute the available resources.
2018 *
2019 * If, once we redistributed the available resources, we still get a failure,
2020 * we disable the per-cpu counter and go through the slow path.
2021 *
2022 * The slow path is the current xfs_mod_incore_sb() function. This means that
2023 * when we disable a per-cpu counter, we need to drain its resources back to
2024 * the global superblock. We do this after disabling the counter to prevent
2025 * more threads from queueing up on the counter.
2026 *
2027 * Essentially, this means that we still need a lock in the fast path to enable
2028 * synchronisation between the global counters and the per-cpu counters. This
2029 * is not a problem because the lock will be local to a CPU almost all the time
2030 * and have little contention except when we get to ENOSPC conditions.
2031 *
2032 * Basically, this lock becomes a barrier that enables us to lock out the fast
2033 * path while we do things like enabling and disabling counters and
2034 * synchronising the counters.
2035 *
2036 * Locking rules:
2037 *
2038 * 1. m_sb_lock before picking up per-cpu locks
2039 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2040 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2041 * 4. modifying per-cpu counters requires holding per-cpu lock
2042 * 5. modifying global counters requires holding m_sb_lock
2043 * 6. enabling or disabling a counter requires holding the m_sb_lock
2044 * and _none_ of the per-cpu locks.
2045 *
2046 * Disabled counters are only ever re-enabled by a balance operation
2047 * that results in more free resources per CPU than a given threshold.
2048 * To ensure counters don't remain disabled, they are rebalanced when
2049 * the global resource goes above a higher threshold (i.e. some hysteresis
2050 * is present to prevent thrashing).
2051 */
2052
2053 #ifdef CONFIG_HOTPLUG_CPU
2054 /*
2055 * hot-plug CPU notifier support.
2056 *
2057 * We need a notifier per filesystem as we need to be able to identify
2058 * the filesystem to balance the counters out. This is achieved by
2059 * having a notifier block embedded in the xfs_mount_t and doing pointer
2060 * magic to get the mount pointer from the notifier block address.
2061 */
2062 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)2063 xfs_icsb_cpu_notify(
2064 struct notifier_block *nfb,
2065 unsigned long action,
2066 void *hcpu)
2067 {
2068 xfs_icsb_cnts_t *cntp;
2069 xfs_mount_t *mp;
2070
2071 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2072 cntp = (xfs_icsb_cnts_t *)
2073 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2074 switch (action) {
2075 case CPU_UP_PREPARE:
2076 case CPU_UP_PREPARE_FROZEN:
2077 /* Easy Case - initialize the area and locks, and
2078 * then rebalance when online does everything else for us. */
2079 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2080 break;
2081 case CPU_ONLINE:
2082 case CPU_ONLINE_FROZEN:
2083 xfs_icsb_lock(mp);
2084 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2085 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2086 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2087 xfs_icsb_unlock(mp);
2088 break;
2089 case CPU_DEAD:
2090 case CPU_DEAD_FROZEN:
2091 /* Disable all the counters, then fold the dead cpu's
2092 * count into the total on the global superblock and
2093 * re-enable the counters. */
2094 xfs_icsb_lock(mp);
2095 spin_lock(&mp->m_sb_lock);
2096 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2097 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2098 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2099
2100 mp->m_sb.sb_icount += cntp->icsb_icount;
2101 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2102 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2103
2104 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2105
2106 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2107 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2108 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2109 spin_unlock(&mp->m_sb_lock);
2110 xfs_icsb_unlock(mp);
2111 break;
2112 }
2113
2114 return NOTIFY_OK;
2115 }
2116 #endif /* CONFIG_HOTPLUG_CPU */
2117
2118 int
xfs_icsb_init_counters(xfs_mount_t * mp)2119 xfs_icsb_init_counters(
2120 xfs_mount_t *mp)
2121 {
2122 xfs_icsb_cnts_t *cntp;
2123 int i;
2124
2125 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2126 if (mp->m_sb_cnts == NULL)
2127 return -ENOMEM;
2128
2129 #ifdef CONFIG_HOTPLUG_CPU
2130 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2131 mp->m_icsb_notifier.priority = 0;
2132 register_hotcpu_notifier(&mp->m_icsb_notifier);
2133 #endif /* CONFIG_HOTPLUG_CPU */
2134
2135 for_each_online_cpu(i) {
2136 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2137 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2138 }
2139
2140 mutex_init(&mp->m_icsb_mutex);
2141
2142 /*
2143 * start with all counters disabled so that the
2144 * initial balance kicks us off correctly
2145 */
2146 mp->m_icsb_counters = -1;
2147 return 0;
2148 }
2149
2150 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)2151 xfs_icsb_reinit_counters(
2152 xfs_mount_t *mp)
2153 {
2154 xfs_icsb_lock(mp);
2155 /*
2156 * start with all counters disabled so that the
2157 * initial balance kicks us off correctly
2158 */
2159 mp->m_icsb_counters = -1;
2160 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2161 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2162 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2163 xfs_icsb_unlock(mp);
2164 }
2165
2166 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2167 xfs_icsb_destroy_counters(
2168 xfs_mount_t *mp)
2169 {
2170 if (mp->m_sb_cnts) {
2171 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2172 free_percpu(mp->m_sb_cnts);
2173 }
2174 mutex_destroy(&mp->m_icsb_mutex);
2175 }
2176
2177 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2178 xfs_icsb_lock_cntr(
2179 xfs_icsb_cnts_t *icsbp)
2180 {
2181 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2182 ndelay(1000);
2183 }
2184 }
2185
2186 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2187 xfs_icsb_unlock_cntr(
2188 xfs_icsb_cnts_t *icsbp)
2189 {
2190 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2191 }
2192
2193
2194 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2195 xfs_icsb_lock_all_counters(
2196 xfs_mount_t *mp)
2197 {
2198 xfs_icsb_cnts_t *cntp;
2199 int i;
2200
2201 for_each_online_cpu(i) {
2202 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2203 xfs_icsb_lock_cntr(cntp);
2204 }
2205 }
2206
2207 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2208 xfs_icsb_unlock_all_counters(
2209 xfs_mount_t *mp)
2210 {
2211 xfs_icsb_cnts_t *cntp;
2212 int i;
2213
2214 for_each_online_cpu(i) {
2215 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2216 xfs_icsb_unlock_cntr(cntp);
2217 }
2218 }
2219
2220 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2221 xfs_icsb_count(
2222 xfs_mount_t *mp,
2223 xfs_icsb_cnts_t *cnt,
2224 int flags)
2225 {
2226 xfs_icsb_cnts_t *cntp;
2227 int i;
2228
2229 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2230
2231 if (!(flags & XFS_ICSB_LAZY_COUNT))
2232 xfs_icsb_lock_all_counters(mp);
2233
2234 for_each_online_cpu(i) {
2235 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2236 cnt->icsb_icount += cntp->icsb_icount;
2237 cnt->icsb_ifree += cntp->icsb_ifree;
2238 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2239 }
2240
2241 if (!(flags & XFS_ICSB_LAZY_COUNT))
2242 xfs_icsb_unlock_all_counters(mp);
2243 }
2244
2245 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2246 xfs_icsb_counter_disabled(
2247 xfs_mount_t *mp,
2248 xfs_sb_field_t field)
2249 {
2250 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2251 return test_bit(field, &mp->m_icsb_counters);
2252 }
2253
2254 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2255 xfs_icsb_disable_counter(
2256 xfs_mount_t *mp,
2257 xfs_sb_field_t field)
2258 {
2259 xfs_icsb_cnts_t cnt;
2260
2261 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2262
2263 /*
2264 * If we are already disabled, then there is nothing to do
2265 * here. We check before locking all the counters to avoid
2266 * the expensive lock operation when being called in the
2267 * slow path and the counter is already disabled. This is
2268 * safe because the only time we set or clear this state is under
2269 * the m_icsb_mutex.
2270 */
2271 if (xfs_icsb_counter_disabled(mp, field))
2272 return;
2273
2274 xfs_icsb_lock_all_counters(mp);
2275 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2276 /* drain back to superblock */
2277
2278 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2279 switch(field) {
2280 case XFS_SBS_ICOUNT:
2281 mp->m_sb.sb_icount = cnt.icsb_icount;
2282 break;
2283 case XFS_SBS_IFREE:
2284 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2285 break;
2286 case XFS_SBS_FDBLOCKS:
2287 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2288 break;
2289 default:
2290 BUG();
2291 }
2292 }
2293
2294 xfs_icsb_unlock_all_counters(mp);
2295 }
2296
2297 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2298 xfs_icsb_enable_counter(
2299 xfs_mount_t *mp,
2300 xfs_sb_field_t field,
2301 uint64_t count,
2302 uint64_t resid)
2303 {
2304 xfs_icsb_cnts_t *cntp;
2305 int i;
2306
2307 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2308
2309 xfs_icsb_lock_all_counters(mp);
2310 for_each_online_cpu(i) {
2311 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2312 switch (field) {
2313 case XFS_SBS_ICOUNT:
2314 cntp->icsb_icount = count + resid;
2315 break;
2316 case XFS_SBS_IFREE:
2317 cntp->icsb_ifree = count + resid;
2318 break;
2319 case XFS_SBS_FDBLOCKS:
2320 cntp->icsb_fdblocks = count + resid;
2321 break;
2322 default:
2323 BUG();
2324 break;
2325 }
2326 resid = 0;
2327 }
2328 clear_bit(field, &mp->m_icsb_counters);
2329 xfs_icsb_unlock_all_counters(mp);
2330 }
2331
2332 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2333 xfs_icsb_sync_counters_locked(
2334 xfs_mount_t *mp,
2335 int flags)
2336 {
2337 xfs_icsb_cnts_t cnt;
2338
2339 xfs_icsb_count(mp, &cnt, flags);
2340
2341 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2342 mp->m_sb.sb_icount = cnt.icsb_icount;
2343 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2344 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2345 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2346 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2347 }
2348
2349 /*
2350 * Accurate update of per-cpu counters to incore superblock
2351 */
2352 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2353 xfs_icsb_sync_counters(
2354 xfs_mount_t *mp,
2355 int flags)
2356 {
2357 spin_lock(&mp->m_sb_lock);
2358 xfs_icsb_sync_counters_locked(mp, flags);
2359 spin_unlock(&mp->m_sb_lock);
2360 }
2361
2362 /*
2363 * Balance and enable/disable counters as necessary.
2364 *
2365 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2366 * chosen to be the same number as single on disk allocation chunk per CPU, and
2367 * free blocks is something far enough zero that we aren't going thrash when we
2368 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2369 * prevent looping endlessly when xfs_alloc_space asks for more than will
2370 * be distributed to a single CPU but each CPU has enough blocks to be
2371 * reenabled.
2372 *
2373 * Note that we can be called when counters are already disabled.
2374 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2375 * prevent locking every per-cpu counter needlessly.
2376 */
2377
2378 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2379 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2380 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2381 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2382 xfs_icsb_balance_counter_locked(
2383 xfs_mount_t *mp,
2384 xfs_sb_field_t field,
2385 int min_per_cpu)
2386 {
2387 uint64_t count, resid;
2388 int weight = num_online_cpus();
2389 uint64_t min = (uint64_t)min_per_cpu;
2390
2391 /* disable counter and sync counter */
2392 xfs_icsb_disable_counter(mp, field);
2393
2394 /* update counters - first CPU gets residual*/
2395 switch (field) {
2396 case XFS_SBS_ICOUNT:
2397 count = mp->m_sb.sb_icount;
2398 resid = do_div(count, weight);
2399 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2400 return;
2401 break;
2402 case XFS_SBS_IFREE:
2403 count = mp->m_sb.sb_ifree;
2404 resid = do_div(count, weight);
2405 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2406 return;
2407 break;
2408 case XFS_SBS_FDBLOCKS:
2409 count = mp->m_sb.sb_fdblocks;
2410 resid = do_div(count, weight);
2411 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2412 return;
2413 break;
2414 default:
2415 BUG();
2416 count = resid = 0; /* quiet, gcc */
2417 break;
2418 }
2419
2420 xfs_icsb_enable_counter(mp, field, count, resid);
2421 }
2422
2423 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2424 xfs_icsb_balance_counter(
2425 xfs_mount_t *mp,
2426 xfs_sb_field_t fields,
2427 int min_per_cpu)
2428 {
2429 spin_lock(&mp->m_sb_lock);
2430 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2431 spin_unlock(&mp->m_sb_lock);
2432 }
2433
2434 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2435 xfs_icsb_modify_counters(
2436 xfs_mount_t *mp,
2437 xfs_sb_field_t field,
2438 int64_t delta,
2439 int rsvd)
2440 {
2441 xfs_icsb_cnts_t *icsbp;
2442 long long lcounter; /* long counter for 64 bit fields */
2443 int ret = 0;
2444
2445 might_sleep();
2446 again:
2447 preempt_disable();
2448 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2449
2450 /*
2451 * if the counter is disabled, go to slow path
2452 */
2453 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2454 goto slow_path;
2455 xfs_icsb_lock_cntr(icsbp);
2456 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2457 xfs_icsb_unlock_cntr(icsbp);
2458 goto slow_path;
2459 }
2460
2461 switch (field) {
2462 case XFS_SBS_ICOUNT:
2463 lcounter = icsbp->icsb_icount;
2464 lcounter += delta;
2465 if (unlikely(lcounter < 0))
2466 goto balance_counter;
2467 icsbp->icsb_icount = lcounter;
2468 break;
2469
2470 case XFS_SBS_IFREE:
2471 lcounter = icsbp->icsb_ifree;
2472 lcounter += delta;
2473 if (unlikely(lcounter < 0))
2474 goto balance_counter;
2475 icsbp->icsb_ifree = lcounter;
2476 break;
2477
2478 case XFS_SBS_FDBLOCKS:
2479 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2480
2481 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2482 lcounter += delta;
2483 if (unlikely(lcounter < 0))
2484 goto balance_counter;
2485 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2486 break;
2487 default:
2488 BUG();
2489 break;
2490 }
2491 xfs_icsb_unlock_cntr(icsbp);
2492 preempt_enable();
2493 return 0;
2494
2495 slow_path:
2496 preempt_enable();
2497
2498 /*
2499 * serialise with a mutex so we don't burn lots of cpu on
2500 * the superblock lock. We still need to hold the superblock
2501 * lock, however, when we modify the global structures.
2502 */
2503 xfs_icsb_lock(mp);
2504
2505 /*
2506 * Now running atomically.
2507 *
2508 * If the counter is enabled, someone has beaten us to rebalancing.
2509 * Drop the lock and try again in the fast path....
2510 */
2511 if (!(xfs_icsb_counter_disabled(mp, field))) {
2512 xfs_icsb_unlock(mp);
2513 goto again;
2514 }
2515
2516 /*
2517 * The counter is currently disabled. Because we are
2518 * running atomically here, we know a rebalance cannot
2519 * be in progress. Hence we can go straight to operating
2520 * on the global superblock. We do not call xfs_mod_incore_sb()
2521 * here even though we need to get the m_sb_lock. Doing so
2522 * will cause us to re-enter this function and deadlock.
2523 * Hence we get the m_sb_lock ourselves and then call
2524 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2525 * directly on the global counters.
2526 */
2527 spin_lock(&mp->m_sb_lock);
2528 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2529 spin_unlock(&mp->m_sb_lock);
2530
2531 /*
2532 * Now that we've modified the global superblock, we
2533 * may be able to re-enable the distributed counters
2534 * (e.g. lots of space just got freed). After that
2535 * we are done.
2536 */
2537 if (ret != ENOSPC)
2538 xfs_icsb_balance_counter(mp, field, 0);
2539 xfs_icsb_unlock(mp);
2540 return ret;
2541
2542 balance_counter:
2543 xfs_icsb_unlock_cntr(icsbp);
2544 preempt_enable();
2545
2546 /*
2547 * We may have multiple threads here if multiple per-cpu
2548 * counters run dry at the same time. This will mean we can
2549 * do more balances than strictly necessary but it is not
2550 * the common slowpath case.
2551 */
2552 xfs_icsb_lock(mp);
2553
2554 /*
2555 * running atomically.
2556 *
2557 * This will leave the counter in the correct state for future
2558 * accesses. After the rebalance, we simply try again and our retry
2559 * will either succeed through the fast path or slow path without
2560 * another balance operation being required.
2561 */
2562 xfs_icsb_balance_counter(mp, field, delta);
2563 xfs_icsb_unlock(mp);
2564 goto again;
2565 }
2566
2567 #endif
2568