1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
45 /*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51 #define XFS_LOOKUP_BATCH 32
52
53 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip)54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56 {
57 struct inode *inode = VFS_I(ip);
58
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
94
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
98 }
99
100 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
107 {
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
113
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
123
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
131 }
132
133 /*
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
136 */
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
154 */
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
160 }
161
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
164
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
176 }
177
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
181
182 cond_resched();
183
184 } while (nr_found && !done);
185
186 if (skipped) {
187 delay(1);
188 goto restart;
189 }
190 return last_error;
191 }
192
193 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)194 xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
198 int flags)
199 {
200 struct xfs_perag *pag;
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
204
205 ag = 0;
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
209 xfs_perag_put(pag);
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
214 }
215 }
216 return XFS_ERROR(last_error);
217 }
218
219 STATIC int
xfs_sync_inode_data(struct xfs_inode * ip,struct xfs_perag * pag,int flags)220 xfs_sync_inode_data(
221 struct xfs_inode *ip,
222 struct xfs_perag *pag,
223 int flags)
224 {
225 struct inode *inode = VFS_I(ip);
226 struct address_space *mapping = inode->i_mapping;
227 int error = 0;
228
229 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
230 return 0;
231
232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 if (flags & SYNC_TRYLOCK)
234 return 0;
235 xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 }
237
238 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
239 0 : XBF_ASYNC, FI_NONE);
240 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
241 return error;
242 }
243
244 STATIC int
xfs_sync_inode_attr(struct xfs_inode * ip,struct xfs_perag * pag,int flags)245 xfs_sync_inode_attr(
246 struct xfs_inode *ip,
247 struct xfs_perag *pag,
248 int flags)
249 {
250 int error = 0;
251
252 xfs_ilock(ip, XFS_ILOCK_SHARED);
253 if (xfs_inode_clean(ip))
254 goto out_unlock;
255 if (!xfs_iflock_nowait(ip)) {
256 if (!(flags & SYNC_WAIT))
257 goto out_unlock;
258 xfs_iflock(ip);
259 }
260
261 if (xfs_inode_clean(ip)) {
262 xfs_ifunlock(ip);
263 goto out_unlock;
264 }
265
266 error = xfs_iflush(ip, flags);
267
268 /*
269 * We don't want to try again on non-blocking flushes that can't run
270 * again immediately. If an inode really must be written, then that's
271 * what the SYNC_WAIT flag is for.
272 */
273 if (error == EAGAIN) {
274 ASSERT(!(flags & SYNC_WAIT));
275 error = 0;
276 }
277
278 out_unlock:
279 xfs_iunlock(ip, XFS_ILOCK_SHARED);
280 return error;
281 }
282
283 /*
284 * Write out pagecache data for the whole filesystem.
285 */
286 STATIC int
xfs_sync_data(struct xfs_mount * mp,int flags)287 xfs_sync_data(
288 struct xfs_mount *mp,
289 int flags)
290 {
291 int error;
292
293 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
294
295 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
296 if (error)
297 return XFS_ERROR(error);
298
299 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
300 return 0;
301 }
302
303 /*
304 * Write out inode metadata (attributes) for the whole filesystem.
305 */
306 STATIC int
xfs_sync_attr(struct xfs_mount * mp,int flags)307 xfs_sync_attr(
308 struct xfs_mount *mp,
309 int flags)
310 {
311 ASSERT((flags & ~SYNC_WAIT) == 0);
312
313 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
314 }
315
316 STATIC int
xfs_sync_fsdata(struct xfs_mount * mp)317 xfs_sync_fsdata(
318 struct xfs_mount *mp)
319 {
320 struct xfs_buf *bp;
321 int error;
322
323 /*
324 * If the buffer is pinned then push on the log so we won't get stuck
325 * waiting in the write for someone, maybe ourselves, to flush the log.
326 *
327 * Even though we just pushed the log above, we did not have the
328 * superblock buffer locked at that point so it can become pinned in
329 * between there and here.
330 */
331 bp = xfs_getsb(mp, 0);
332 if (xfs_buf_ispinned(bp))
333 xfs_log_force(mp, 0);
334 error = xfs_bwrite(bp);
335 xfs_buf_relse(bp);
336 return error;
337 }
338
339 /*
340 * When remounting a filesystem read-only or freezing the filesystem, we have
341 * two phases to execute. This first phase is syncing the data before we
342 * quiesce the filesystem, and the second is flushing all the inodes out after
343 * we've waited for all the transactions created by the first phase to
344 * complete. The second phase ensures that the inodes are written to their
345 * location on disk rather than just existing in transactions in the log. This
346 * means after a quiesce there is no log replay required to write the inodes to
347 * disk (this is the main difference between a sync and a quiesce).
348 */
349 /*
350 * First stage of freeze - no writers will make progress now we are here,
351 * so we flush delwri and delalloc buffers here, then wait for all I/O to
352 * complete. Data is frozen at that point. Metadata is not frozen,
353 * transactions can still occur here so don't bother flushing the buftarg
354 * because it'll just get dirty again.
355 */
356 int
xfs_quiesce_data(struct xfs_mount * mp)357 xfs_quiesce_data(
358 struct xfs_mount *mp)
359 {
360 int error, error2 = 0;
361
362 /* force out the log */
363 xfs_log_force(mp, XFS_LOG_SYNC);
364
365 /* write superblock and hoover up shutdown errors */
366 error = xfs_sync_fsdata(mp);
367
368 /* make sure all delwri buffers are written out */
369 xfs_flush_buftarg(mp->m_ddev_targp, 1);
370
371 /* mark the log as covered if needed */
372 if (xfs_log_need_covered(mp))
373 error2 = xfs_fs_log_dummy(mp);
374
375 /* flush data-only devices */
376 if (mp->m_rtdev_targp)
377 xfs_flush_buftarg(mp->m_rtdev_targp, 1);
378
379 return error ? error : error2;
380 }
381
382 STATIC void
xfs_quiesce_fs(struct xfs_mount * mp)383 xfs_quiesce_fs(
384 struct xfs_mount *mp)
385 {
386 int count = 0, pincount;
387
388 xfs_reclaim_inodes(mp, 0);
389 xfs_flush_buftarg(mp->m_ddev_targp, 0);
390
391 /*
392 * This loop must run at least twice. The first instance of the loop
393 * will flush most meta data but that will generate more meta data
394 * (typically directory updates). Which then must be flushed and
395 * logged before we can write the unmount record. We also so sync
396 * reclaim of inodes to catch any that the above delwri flush skipped.
397 */
398 do {
399 xfs_reclaim_inodes(mp, SYNC_WAIT);
400 xfs_sync_attr(mp, SYNC_WAIT);
401 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
402 if (!pincount) {
403 delay(50);
404 count++;
405 }
406 } while (count < 2);
407 }
408
409 /*
410 * Second stage of a quiesce. The data is already synced, now we have to take
411 * care of the metadata. New transactions are already blocked, so we need to
412 * wait for any remaining transactions to drain out before proceeding.
413 */
414 void
xfs_quiesce_attr(struct xfs_mount * mp)415 xfs_quiesce_attr(
416 struct xfs_mount *mp)
417 {
418 int error = 0;
419
420 /* wait for all modifications to complete */
421 while (atomic_read(&mp->m_active_trans) > 0)
422 delay(100);
423
424 /* flush inodes and push all remaining buffers out to disk */
425 xfs_quiesce_fs(mp);
426
427 /*
428 * Just warn here till VFS can correctly support
429 * read-only remount without racing.
430 */
431 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
432
433 /* Push the superblock and write an unmount record */
434 error = xfs_log_sbcount(mp);
435 if (error)
436 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
437 "Frozen image may not be consistent.");
438 xfs_log_unmount_write(mp);
439 xfs_unmountfs_writesb(mp);
440 }
441
442 static void
xfs_syncd_queue_sync(struct xfs_mount * mp)443 xfs_syncd_queue_sync(
444 struct xfs_mount *mp)
445 {
446 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
447 msecs_to_jiffies(xfs_syncd_centisecs * 10));
448 }
449
450 /*
451 * Every sync period we need to unpin all items, reclaim inodes and sync
452 * disk quotas. We might need to cover the log to indicate that the
453 * filesystem is idle and not frozen.
454 */
455 STATIC void
xfs_sync_worker(struct work_struct * work)456 xfs_sync_worker(
457 struct work_struct *work)
458 {
459 struct xfs_mount *mp = container_of(to_delayed_work(work),
460 struct xfs_mount, m_sync_work);
461 int error;
462
463 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
464 /* dgc: errors ignored here */
465 if (mp->m_super->s_frozen == SB_UNFROZEN &&
466 xfs_log_need_covered(mp))
467 error = xfs_fs_log_dummy(mp);
468 else
469 xfs_log_force(mp, 0);
470
471 /* start pushing all the metadata that is currently dirty */
472 xfs_ail_push_all(mp->m_ail);
473 }
474
475 /* queue us up again */
476 xfs_syncd_queue_sync(mp);
477 }
478
479 /*
480 * Queue a new inode reclaim pass if there are reclaimable inodes and there
481 * isn't a reclaim pass already in progress. By default it runs every 5s based
482 * on the xfs syncd work default of 30s. Perhaps this should have it's own
483 * tunable, but that can be done if this method proves to be ineffective or too
484 * aggressive.
485 */
486 static void
xfs_syncd_queue_reclaim(struct xfs_mount * mp)487 xfs_syncd_queue_reclaim(
488 struct xfs_mount *mp)
489 {
490
491 /*
492 * We can have inodes enter reclaim after we've shut down the syncd
493 * workqueue during unmount, so don't allow reclaim work to be queued
494 * during unmount.
495 */
496 if (!(mp->m_super->s_flags & MS_ACTIVE))
497 return;
498
499 rcu_read_lock();
500 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
501 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
502 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
503 }
504 rcu_read_unlock();
505 }
506
507 /*
508 * This is a fast pass over the inode cache to try to get reclaim moving on as
509 * many inodes as possible in a short period of time. It kicks itself every few
510 * seconds, as well as being kicked by the inode cache shrinker when memory
511 * goes low. It scans as quickly as possible avoiding locked inodes or those
512 * already being flushed, and once done schedules a future pass.
513 */
514 STATIC void
xfs_reclaim_worker(struct work_struct * work)515 xfs_reclaim_worker(
516 struct work_struct *work)
517 {
518 struct xfs_mount *mp = container_of(to_delayed_work(work),
519 struct xfs_mount, m_reclaim_work);
520
521 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
522 xfs_syncd_queue_reclaim(mp);
523 }
524
525 /*
526 * Flush delayed allocate data, attempting to free up reserved space
527 * from existing allocations. At this point a new allocation attempt
528 * has failed with ENOSPC and we are in the process of scratching our
529 * heads, looking about for more room.
530 *
531 * Queue a new data flush if there isn't one already in progress and
532 * wait for completion of the flush. This means that we only ever have one
533 * inode flush in progress no matter how many ENOSPC events are occurring and
534 * so will prevent the system from bogging down due to every concurrent
535 * ENOSPC event scanning all the active inodes in the system for writeback.
536 */
537 void
xfs_flush_inodes(struct xfs_inode * ip)538 xfs_flush_inodes(
539 struct xfs_inode *ip)
540 {
541 struct xfs_mount *mp = ip->i_mount;
542
543 queue_work(xfs_syncd_wq, &mp->m_flush_work);
544 flush_work_sync(&mp->m_flush_work);
545 }
546
547 STATIC void
xfs_flush_worker(struct work_struct * work)548 xfs_flush_worker(
549 struct work_struct *work)
550 {
551 struct xfs_mount *mp = container_of(work,
552 struct xfs_mount, m_flush_work);
553
554 xfs_sync_data(mp, SYNC_TRYLOCK);
555 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
556 }
557
558 int
xfs_syncd_init(struct xfs_mount * mp)559 xfs_syncd_init(
560 struct xfs_mount *mp)
561 {
562 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
563 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
564 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
565
566 xfs_syncd_queue_sync(mp);
567 xfs_syncd_queue_reclaim(mp);
568
569 return 0;
570 }
571
572 void
xfs_syncd_stop(struct xfs_mount * mp)573 xfs_syncd_stop(
574 struct xfs_mount *mp)
575 {
576 cancel_delayed_work_sync(&mp->m_sync_work);
577 cancel_delayed_work_sync(&mp->m_reclaim_work);
578 cancel_work_sync(&mp->m_flush_work);
579 }
580
581 void
__xfs_inode_set_reclaim_tag(struct xfs_perag * pag,struct xfs_inode * ip)582 __xfs_inode_set_reclaim_tag(
583 struct xfs_perag *pag,
584 struct xfs_inode *ip)
585 {
586 radix_tree_tag_set(&pag->pag_ici_root,
587 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
588 XFS_ICI_RECLAIM_TAG);
589
590 if (!pag->pag_ici_reclaimable) {
591 /* propagate the reclaim tag up into the perag radix tree */
592 spin_lock(&ip->i_mount->m_perag_lock);
593 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
594 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
595 XFS_ICI_RECLAIM_TAG);
596 spin_unlock(&ip->i_mount->m_perag_lock);
597
598 /* schedule periodic background inode reclaim */
599 xfs_syncd_queue_reclaim(ip->i_mount);
600
601 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
602 -1, _RET_IP_);
603 }
604 pag->pag_ici_reclaimable++;
605 }
606
607 /*
608 * We set the inode flag atomically with the radix tree tag.
609 * Once we get tag lookups on the radix tree, this inode flag
610 * can go away.
611 */
612 void
xfs_inode_set_reclaim_tag(xfs_inode_t * ip)613 xfs_inode_set_reclaim_tag(
614 xfs_inode_t *ip)
615 {
616 struct xfs_mount *mp = ip->i_mount;
617 struct xfs_perag *pag;
618
619 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
620 spin_lock(&pag->pag_ici_lock);
621 spin_lock(&ip->i_flags_lock);
622 __xfs_inode_set_reclaim_tag(pag, ip);
623 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
624 spin_unlock(&ip->i_flags_lock);
625 spin_unlock(&pag->pag_ici_lock);
626 xfs_perag_put(pag);
627 }
628
629 STATIC void
__xfs_inode_clear_reclaim(xfs_perag_t * pag,xfs_inode_t * ip)630 __xfs_inode_clear_reclaim(
631 xfs_perag_t *pag,
632 xfs_inode_t *ip)
633 {
634 pag->pag_ici_reclaimable--;
635 if (!pag->pag_ici_reclaimable) {
636 /* clear the reclaim tag from the perag radix tree */
637 spin_lock(&ip->i_mount->m_perag_lock);
638 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
639 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
640 XFS_ICI_RECLAIM_TAG);
641 spin_unlock(&ip->i_mount->m_perag_lock);
642 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
643 -1, _RET_IP_);
644 }
645 }
646
647 void
__xfs_inode_clear_reclaim_tag(xfs_mount_t * mp,xfs_perag_t * pag,xfs_inode_t * ip)648 __xfs_inode_clear_reclaim_tag(
649 xfs_mount_t *mp,
650 xfs_perag_t *pag,
651 xfs_inode_t *ip)
652 {
653 radix_tree_tag_clear(&pag->pag_ici_root,
654 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
655 __xfs_inode_clear_reclaim(pag, ip);
656 }
657
658 /*
659 * Grab the inode for reclaim exclusively.
660 * Return 0 if we grabbed it, non-zero otherwise.
661 */
662 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)663 xfs_reclaim_inode_grab(
664 struct xfs_inode *ip,
665 int flags)
666 {
667 ASSERT(rcu_read_lock_held());
668
669 /* quick check for stale RCU freed inode */
670 if (!ip->i_ino)
671 return 1;
672
673 /*
674 * If we are asked for non-blocking operation, do unlocked checks to
675 * see if the inode already is being flushed or in reclaim to avoid
676 * lock traffic.
677 */
678 if ((flags & SYNC_TRYLOCK) &&
679 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
680 return 1;
681
682 /*
683 * The radix tree lock here protects a thread in xfs_iget from racing
684 * with us starting reclaim on the inode. Once we have the
685 * XFS_IRECLAIM flag set it will not touch us.
686 *
687 * Due to RCU lookup, we may find inodes that have been freed and only
688 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
689 * aren't candidates for reclaim at all, so we must check the
690 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
691 */
692 spin_lock(&ip->i_flags_lock);
693 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
694 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
695 /* not a reclaim candidate. */
696 spin_unlock(&ip->i_flags_lock);
697 return 1;
698 }
699 __xfs_iflags_set(ip, XFS_IRECLAIM);
700 spin_unlock(&ip->i_flags_lock);
701 return 0;
702 }
703
704 /*
705 * Inodes in different states need to be treated differently, and the return
706 * value of xfs_iflush is not sufficient to get this right. The following table
707 * lists the inode states and the reclaim actions necessary for non-blocking
708 * reclaim:
709 *
710 *
711 * inode state iflush ret required action
712 * --------------- ---------- ---------------
713 * bad - reclaim
714 * shutdown EIO unpin and reclaim
715 * clean, unpinned 0 reclaim
716 * stale, unpinned 0 reclaim
717 * clean, pinned(*) 0 requeue
718 * stale, pinned EAGAIN requeue
719 * dirty, delwri ok 0 requeue
720 * dirty, delwri blocked EAGAIN requeue
721 * dirty, sync flush 0 reclaim
722 *
723 * (*) dgc: I don't think the clean, pinned state is possible but it gets
724 * handled anyway given the order of checks implemented.
725 *
726 * As can be seen from the table, the return value of xfs_iflush() is not
727 * sufficient to correctly decide the reclaim action here. The checks in
728 * xfs_iflush() might look like duplicates, but they are not.
729 *
730 * Also, because we get the flush lock first, we know that any inode that has
731 * been flushed delwri has had the flush completed by the time we check that
732 * the inode is clean. The clean inode check needs to be done before flushing
733 * the inode delwri otherwise we would loop forever requeuing clean inodes as
734 * we cannot tell apart a successful delwri flush and a clean inode from the
735 * return value of xfs_iflush().
736 *
737 * Note that because the inode is flushed delayed write by background
738 * writeback, the flush lock may already be held here and waiting on it can
739 * result in very long latencies. Hence for sync reclaims, where we wait on the
740 * flush lock, the caller should push out delayed write inodes first before
741 * trying to reclaim them to minimise the amount of time spent waiting. For
742 * background relaim, we just requeue the inode for the next pass.
743 *
744 * Hence the order of actions after gaining the locks should be:
745 * bad => reclaim
746 * shutdown => unpin and reclaim
747 * pinned, delwri => requeue
748 * pinned, sync => unpin
749 * stale => reclaim
750 * clean => reclaim
751 * dirty, delwri => flush and requeue
752 * dirty, sync => flush, wait and reclaim
753 */
754 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)755 xfs_reclaim_inode(
756 struct xfs_inode *ip,
757 struct xfs_perag *pag,
758 int sync_mode)
759 {
760 int error;
761
762 restart:
763 error = 0;
764 xfs_ilock(ip, XFS_ILOCK_EXCL);
765 if (!xfs_iflock_nowait(ip)) {
766 if (!(sync_mode & SYNC_WAIT))
767 goto out;
768
769 /*
770 * If we only have a single dirty inode in a cluster there is
771 * a fair chance that the AIL push may have pushed it into
772 * the buffer, but xfsbufd won't touch it until 30 seconds
773 * from now, and thus we will lock up here.
774 *
775 * Promote the inode buffer to the front of the delwri list
776 * and wake up xfsbufd now.
777 */
778 xfs_promote_inode(ip);
779 xfs_iflock(ip);
780 }
781
782 if (is_bad_inode(VFS_I(ip)))
783 goto reclaim;
784 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
785 xfs_iunpin_wait(ip);
786 goto reclaim;
787 }
788 if (xfs_ipincount(ip)) {
789 if (!(sync_mode & SYNC_WAIT)) {
790 xfs_ifunlock(ip);
791 goto out;
792 }
793 xfs_iunpin_wait(ip);
794 }
795 if (xfs_iflags_test(ip, XFS_ISTALE))
796 goto reclaim;
797 if (xfs_inode_clean(ip))
798 goto reclaim;
799
800 /*
801 * Now we have an inode that needs flushing.
802 *
803 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
804 * reclaim as we can deadlock with inode cluster removal.
805 * xfs_ifree_cluster() can lock the inode buffer before it locks the
806 * ip->i_lock, and we are doing the exact opposite here. As a result,
807 * doing a blocking xfs_itobp() to get the cluster buffer will result
808 * in an ABBA deadlock with xfs_ifree_cluster().
809 *
810 * As xfs_ifree_cluser() must gather all inodes that are active in the
811 * cache to mark them stale, if we hit this case we don't actually want
812 * to do IO here - we want the inode marked stale so we can simply
813 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
814 * just unlock the inode, back off and try again. Hopefully the next
815 * pass through will see the stale flag set on the inode.
816 */
817 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
818 if (sync_mode & SYNC_WAIT) {
819 if (error == EAGAIN) {
820 xfs_iunlock(ip, XFS_ILOCK_EXCL);
821 /* backoff longer than in xfs_ifree_cluster */
822 delay(2);
823 goto restart;
824 }
825 xfs_iflock(ip);
826 goto reclaim;
827 }
828
829 /*
830 * When we have to flush an inode but don't have SYNC_WAIT set, we
831 * flush the inode out using a delwri buffer and wait for the next
832 * call into reclaim to find it in a clean state instead of waiting for
833 * it now. We also don't return errors here - if the error is transient
834 * then the next reclaim pass will flush the inode, and if the error
835 * is permanent then the next sync reclaim will reclaim the inode and
836 * pass on the error.
837 */
838 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
839 xfs_warn(ip->i_mount,
840 "inode 0x%llx background reclaim flush failed with %d",
841 (long long)ip->i_ino, error);
842 }
843 out:
844 xfs_iflags_clear(ip, XFS_IRECLAIM);
845 xfs_iunlock(ip, XFS_ILOCK_EXCL);
846 /*
847 * We could return EAGAIN here to make reclaim rescan the inode tree in
848 * a short while. However, this just burns CPU time scanning the tree
849 * waiting for IO to complete and xfssyncd never goes back to the idle
850 * state. Instead, return 0 to let the next scheduled background reclaim
851 * attempt to reclaim the inode again.
852 */
853 return 0;
854
855 reclaim:
856 xfs_ifunlock(ip);
857 xfs_iunlock(ip, XFS_ILOCK_EXCL);
858
859 XFS_STATS_INC(xs_ig_reclaims);
860 /*
861 * Remove the inode from the per-AG radix tree.
862 *
863 * Because radix_tree_delete won't complain even if the item was never
864 * added to the tree assert that it's been there before to catch
865 * problems with the inode life time early on.
866 */
867 spin_lock(&pag->pag_ici_lock);
868 if (!radix_tree_delete(&pag->pag_ici_root,
869 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
870 ASSERT(0);
871 __xfs_inode_clear_reclaim(pag, ip);
872 spin_unlock(&pag->pag_ici_lock);
873
874 /*
875 * Here we do an (almost) spurious inode lock in order to coordinate
876 * with inode cache radix tree lookups. This is because the lookup
877 * can reference the inodes in the cache without taking references.
878 *
879 * We make that OK here by ensuring that we wait until the inode is
880 * unlocked after the lookup before we go ahead and free it.
881 */
882 xfs_ilock(ip, XFS_ILOCK_EXCL);
883 xfs_qm_dqdetach(ip);
884 xfs_iunlock(ip, XFS_ILOCK_EXCL);
885
886 xfs_inode_free(ip);
887
888 return error;
889 }
890
891 /*
892 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
893 * corrupted, we still want to try to reclaim all the inodes. If we don't,
894 * then a shut down during filesystem unmount reclaim walk leak all the
895 * unreclaimed inodes.
896 */
897 int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)898 xfs_reclaim_inodes_ag(
899 struct xfs_mount *mp,
900 int flags,
901 int *nr_to_scan)
902 {
903 struct xfs_perag *pag;
904 int error = 0;
905 int last_error = 0;
906 xfs_agnumber_t ag;
907 int trylock = flags & SYNC_TRYLOCK;
908 int skipped;
909
910 restart:
911 ag = 0;
912 skipped = 0;
913 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
914 unsigned long first_index = 0;
915 int done = 0;
916 int nr_found = 0;
917
918 ag = pag->pag_agno + 1;
919
920 if (trylock) {
921 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
922 skipped++;
923 xfs_perag_put(pag);
924 continue;
925 }
926 first_index = pag->pag_ici_reclaim_cursor;
927 } else
928 mutex_lock(&pag->pag_ici_reclaim_lock);
929
930 do {
931 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
932 int i;
933
934 rcu_read_lock();
935 nr_found = radix_tree_gang_lookup_tag(
936 &pag->pag_ici_root,
937 (void **)batch, first_index,
938 XFS_LOOKUP_BATCH,
939 XFS_ICI_RECLAIM_TAG);
940 if (!nr_found) {
941 done = 1;
942 rcu_read_unlock();
943 break;
944 }
945
946 /*
947 * Grab the inodes before we drop the lock. if we found
948 * nothing, nr == 0 and the loop will be skipped.
949 */
950 for (i = 0; i < nr_found; i++) {
951 struct xfs_inode *ip = batch[i];
952
953 if (done || xfs_reclaim_inode_grab(ip, flags))
954 batch[i] = NULL;
955
956 /*
957 * Update the index for the next lookup. Catch
958 * overflows into the next AG range which can
959 * occur if we have inodes in the last block of
960 * the AG and we are currently pointing to the
961 * last inode.
962 *
963 * Because we may see inodes that are from the
964 * wrong AG due to RCU freeing and
965 * reallocation, only update the index if it
966 * lies in this AG. It was a race that lead us
967 * to see this inode, so another lookup from
968 * the same index will not find it again.
969 */
970 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
971 pag->pag_agno)
972 continue;
973 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
974 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
975 done = 1;
976 }
977
978 /* unlock now we've grabbed the inodes. */
979 rcu_read_unlock();
980
981 for (i = 0; i < nr_found; i++) {
982 if (!batch[i])
983 continue;
984 error = xfs_reclaim_inode(batch[i], pag, flags);
985 if (error && last_error != EFSCORRUPTED)
986 last_error = error;
987 }
988
989 *nr_to_scan -= XFS_LOOKUP_BATCH;
990
991 cond_resched();
992
993 } while (nr_found && !done && *nr_to_scan > 0);
994
995 if (trylock && !done)
996 pag->pag_ici_reclaim_cursor = first_index;
997 else
998 pag->pag_ici_reclaim_cursor = 0;
999 mutex_unlock(&pag->pag_ici_reclaim_lock);
1000 xfs_perag_put(pag);
1001 }
1002
1003 /*
1004 * if we skipped any AG, and we still have scan count remaining, do
1005 * another pass this time using blocking reclaim semantics (i.e
1006 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1007 * ensure that when we get more reclaimers than AGs we block rather
1008 * than spin trying to execute reclaim.
1009 */
1010 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1011 trylock = 0;
1012 goto restart;
1013 }
1014 return XFS_ERROR(last_error);
1015 }
1016
1017 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1018 xfs_reclaim_inodes(
1019 xfs_mount_t *mp,
1020 int mode)
1021 {
1022 int nr_to_scan = INT_MAX;
1023
1024 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1025 }
1026
1027 /*
1028 * Scan a certain number of inodes for reclaim.
1029 *
1030 * When called we make sure that there is a background (fast) inode reclaim in
1031 * progress, while we will throttle the speed of reclaim via doing synchronous
1032 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1033 * them to be cleaned, which we hope will not be very long due to the
1034 * background walker having already kicked the IO off on those dirty inodes.
1035 */
1036 void
xfs_reclaim_inodes_nr(struct xfs_mount * mp,int nr_to_scan)1037 xfs_reclaim_inodes_nr(
1038 struct xfs_mount *mp,
1039 int nr_to_scan)
1040 {
1041 /* kick background reclaimer and push the AIL */
1042 xfs_syncd_queue_reclaim(mp);
1043 xfs_ail_push_all(mp->m_ail);
1044
1045 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1046 }
1047
1048 /*
1049 * Return the number of reclaimable inodes in the filesystem for
1050 * the shrinker to determine how much to reclaim.
1051 */
1052 int
xfs_reclaim_inodes_count(struct xfs_mount * mp)1053 xfs_reclaim_inodes_count(
1054 struct xfs_mount *mp)
1055 {
1056 struct xfs_perag *pag;
1057 xfs_agnumber_t ag = 0;
1058 int reclaimable = 0;
1059
1060 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1061 ag = pag->pag_agno + 1;
1062 reclaimable += pag->pag_ici_reclaimable;
1063 xfs_perag_put(pag);
1064 }
1065 return reclaimable;
1066 }
1067
1068