1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 
43 struct workqueue_struct	*xfs_syncd_wq;	/* sync workqueue */
44 
45 /*
46  * The inode lookup is done in batches to keep the amount of lock traffic and
47  * radix tree lookups to a minimum. The batch size is a trade off between
48  * lookup reduction and stack usage. This is in the reclaim path, so we can't
49  * be too greedy.
50  */
51 #define XFS_LOOKUP_BATCH	32
52 
53 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip)54 xfs_inode_ag_walk_grab(
55 	struct xfs_inode	*ip)
56 {
57 	struct inode		*inode = VFS_I(ip);
58 
59 	ASSERT(rcu_read_lock_held());
60 
61 	/*
62 	 * check for stale RCU freed inode
63 	 *
64 	 * If the inode has been reallocated, it doesn't matter if it's not in
65 	 * the AG we are walking - we are walking for writeback, so if it
66 	 * passes all the "valid inode" checks and is dirty, then we'll write
67 	 * it back anyway.  If it has been reallocated and still being
68 	 * initialised, the XFS_INEW check below will catch it.
69 	 */
70 	spin_lock(&ip->i_flags_lock);
71 	if (!ip->i_ino)
72 		goto out_unlock_noent;
73 
74 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 		goto out_unlock_noent;
77 	spin_unlock(&ip->i_flags_lock);
78 
79 	/* nothing to sync during shutdown */
80 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 		return EFSCORRUPTED;
82 
83 	/* If we can't grab the inode, it must on it's way to reclaim. */
84 	if (!igrab(inode))
85 		return ENOENT;
86 
87 	if (is_bad_inode(inode)) {
88 		IRELE(ip);
89 		return ENOENT;
90 	}
91 
92 	/* inode is valid */
93 	return 0;
94 
95 out_unlock_noent:
96 	spin_unlock(&ip->i_flags_lock);
97 	return ENOENT;
98 }
99 
100 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)101 xfs_inode_ag_walk(
102 	struct xfs_mount	*mp,
103 	struct xfs_perag	*pag,
104 	int			(*execute)(struct xfs_inode *ip,
105 					   struct xfs_perag *pag, int flags),
106 	int			flags)
107 {
108 	uint32_t		first_index;
109 	int			last_error = 0;
110 	int			skipped;
111 	int			done;
112 	int			nr_found;
113 
114 restart:
115 	done = 0;
116 	skipped = 0;
117 	first_index = 0;
118 	nr_found = 0;
119 	do {
120 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 		int		error = 0;
122 		int		i;
123 
124 		rcu_read_lock();
125 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 					(void **)batch, first_index,
127 					XFS_LOOKUP_BATCH);
128 		if (!nr_found) {
129 			rcu_read_unlock();
130 			break;
131 		}
132 
133 		/*
134 		 * Grab the inodes before we drop the lock. if we found
135 		 * nothing, nr == 0 and the loop will be skipped.
136 		 */
137 		for (i = 0; i < nr_found; i++) {
138 			struct xfs_inode *ip = batch[i];
139 
140 			if (done || xfs_inode_ag_walk_grab(ip))
141 				batch[i] = NULL;
142 
143 			/*
144 			 * Update the index for the next lookup. Catch
145 			 * overflows into the next AG range which can occur if
146 			 * we have inodes in the last block of the AG and we
147 			 * are currently pointing to the last inode.
148 			 *
149 			 * Because we may see inodes that are from the wrong AG
150 			 * due to RCU freeing and reallocation, only update the
151 			 * index if it lies in this AG. It was a race that lead
152 			 * us to see this inode, so another lookup from the
153 			 * same index will not find it again.
154 			 */
155 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 				continue;
157 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 				done = 1;
160 		}
161 
162 		/* unlock now we've grabbed the inodes. */
163 		rcu_read_unlock();
164 
165 		for (i = 0; i < nr_found; i++) {
166 			if (!batch[i])
167 				continue;
168 			error = execute(batch[i], pag, flags);
169 			IRELE(batch[i]);
170 			if (error == EAGAIN) {
171 				skipped++;
172 				continue;
173 			}
174 			if (error && last_error != EFSCORRUPTED)
175 				last_error = error;
176 		}
177 
178 		/* bail out if the filesystem is corrupted.  */
179 		if (error == EFSCORRUPTED)
180 			break;
181 
182 	} while (nr_found && !done);
183 
184 	if (skipped) {
185 		delay(1);
186 		goto restart;
187 	}
188 	return last_error;
189 }
190 
191 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)192 xfs_inode_ag_iterator(
193 	struct xfs_mount	*mp,
194 	int			(*execute)(struct xfs_inode *ip,
195 					   struct xfs_perag *pag, int flags),
196 	int			flags)
197 {
198 	struct xfs_perag	*pag;
199 	int			error = 0;
200 	int			last_error = 0;
201 	xfs_agnumber_t		ag;
202 
203 	ag = 0;
204 	while ((pag = xfs_perag_get(mp, ag))) {
205 		ag = pag->pag_agno + 1;
206 		error = xfs_inode_ag_walk(mp, pag, execute, flags);
207 		xfs_perag_put(pag);
208 		if (error) {
209 			last_error = error;
210 			if (error == EFSCORRUPTED)
211 				break;
212 		}
213 	}
214 	return XFS_ERROR(last_error);
215 }
216 
217 STATIC int
xfs_sync_inode_data(struct xfs_inode * ip,struct xfs_perag * pag,int flags)218 xfs_sync_inode_data(
219 	struct xfs_inode	*ip,
220 	struct xfs_perag	*pag,
221 	int			flags)
222 {
223 	struct inode		*inode = VFS_I(ip);
224 	struct address_space *mapping = inode->i_mapping;
225 	int			error = 0;
226 
227 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
228 		goto out_wait;
229 
230 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
231 		if (flags & SYNC_TRYLOCK)
232 			goto out_wait;
233 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
234 	}
235 
236 	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
237 				0 : XBF_ASYNC, FI_NONE);
238 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
239 
240  out_wait:
241 	if (flags & SYNC_WAIT)
242 		xfs_ioend_wait(ip);
243 	return error;
244 }
245 
246 STATIC int
xfs_sync_inode_attr(struct xfs_inode * ip,struct xfs_perag * pag,int flags)247 xfs_sync_inode_attr(
248 	struct xfs_inode	*ip,
249 	struct xfs_perag	*pag,
250 	int			flags)
251 {
252 	int			error = 0;
253 
254 	xfs_ilock(ip, XFS_ILOCK_SHARED);
255 	if (xfs_inode_clean(ip))
256 		goto out_unlock;
257 	if (!xfs_iflock_nowait(ip)) {
258 		if (!(flags & SYNC_WAIT))
259 			goto out_unlock;
260 		xfs_iflock(ip);
261 	}
262 
263 	if (xfs_inode_clean(ip)) {
264 		xfs_ifunlock(ip);
265 		goto out_unlock;
266 	}
267 
268 	error = xfs_iflush(ip, flags);
269 
270  out_unlock:
271 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
272 	return error;
273 }
274 
275 /*
276  * Write out pagecache data for the whole filesystem.
277  */
278 STATIC int
xfs_sync_data(struct xfs_mount * mp,int flags)279 xfs_sync_data(
280 	struct xfs_mount	*mp,
281 	int			flags)
282 {
283 	int			error;
284 
285 	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
286 
287 	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
288 	if (error)
289 		return XFS_ERROR(error);
290 
291 	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
292 	return 0;
293 }
294 
295 /*
296  * Write out inode metadata (attributes) for the whole filesystem.
297  */
298 STATIC int
xfs_sync_attr(struct xfs_mount * mp,int flags)299 xfs_sync_attr(
300 	struct xfs_mount	*mp,
301 	int			flags)
302 {
303 	ASSERT((flags & ~SYNC_WAIT) == 0);
304 
305 	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
306 }
307 
308 STATIC int
xfs_sync_fsdata(struct xfs_mount * mp)309 xfs_sync_fsdata(
310 	struct xfs_mount	*mp)
311 {
312 	struct xfs_buf		*bp;
313 
314 	/*
315 	 * If the buffer is pinned then push on the log so we won't get stuck
316 	 * waiting in the write for someone, maybe ourselves, to flush the log.
317 	 *
318 	 * Even though we just pushed the log above, we did not have the
319 	 * superblock buffer locked at that point so it can become pinned in
320 	 * between there and here.
321 	 */
322 	bp = xfs_getsb(mp, 0);
323 	if (XFS_BUF_ISPINNED(bp))
324 		xfs_log_force(mp, 0);
325 
326 	return xfs_bwrite(mp, bp);
327 }
328 
329 /*
330  * When remounting a filesystem read-only or freezing the filesystem, we have
331  * two phases to execute. This first phase is syncing the data before we
332  * quiesce the filesystem, and the second is flushing all the inodes out after
333  * we've waited for all the transactions created by the first phase to
334  * complete. The second phase ensures that the inodes are written to their
335  * location on disk rather than just existing in transactions in the log. This
336  * means after a quiesce there is no log replay required to write the inodes to
337  * disk (this is the main difference between a sync and a quiesce).
338  */
339 /*
340  * First stage of freeze - no writers will make progress now we are here,
341  * so we flush delwri and delalloc buffers here, then wait for all I/O to
342  * complete.  Data is frozen at that point. Metadata is not frozen,
343  * transactions can still occur here so don't bother flushing the buftarg
344  * because it'll just get dirty again.
345  */
346 int
xfs_quiesce_data(struct xfs_mount * mp)347 xfs_quiesce_data(
348 	struct xfs_mount	*mp)
349 {
350 	int			error, error2 = 0;
351 
352 	/* push non-blocking */
353 	xfs_sync_data(mp, 0);
354 	xfs_qm_sync(mp, SYNC_TRYLOCK);
355 
356 	/* push and block till complete */
357 	xfs_sync_data(mp, SYNC_WAIT);
358 	xfs_qm_sync(mp, SYNC_WAIT);
359 
360 	/* write superblock and hoover up shutdown errors */
361 	error = xfs_sync_fsdata(mp);
362 
363 	/* make sure all delwri buffers are written out */
364 	xfs_flush_buftarg(mp->m_ddev_targp, 1);
365 
366 	/* mark the log as covered if needed */
367 	if (xfs_log_need_covered(mp))
368 		error2 = xfs_fs_log_dummy(mp);
369 
370 	/* flush data-only devices */
371 	if (mp->m_rtdev_targp)
372 		XFS_bflush(mp->m_rtdev_targp);
373 
374 	return error ? error : error2;
375 }
376 
377 STATIC void
xfs_quiesce_fs(struct xfs_mount * mp)378 xfs_quiesce_fs(
379 	struct xfs_mount	*mp)
380 {
381 	int	count = 0, pincount;
382 
383 	xfs_reclaim_inodes(mp, 0);
384 	xfs_flush_buftarg(mp->m_ddev_targp, 0);
385 
386 	/*
387 	 * This loop must run at least twice.  The first instance of the loop
388 	 * will flush most meta data but that will generate more meta data
389 	 * (typically directory updates).  Which then must be flushed and
390 	 * logged before we can write the unmount record. We also so sync
391 	 * reclaim of inodes to catch any that the above delwri flush skipped.
392 	 */
393 	do {
394 		xfs_reclaim_inodes(mp, SYNC_WAIT);
395 		xfs_sync_attr(mp, SYNC_WAIT);
396 		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
397 		if (!pincount) {
398 			delay(50);
399 			count++;
400 		}
401 	} while (count < 2);
402 }
403 
404 /*
405  * Second stage of a quiesce. The data is already synced, now we have to take
406  * care of the metadata. New transactions are already blocked, so we need to
407  * wait for any remaining transactions to drain out before proceeding.
408  */
409 void
xfs_quiesce_attr(struct xfs_mount * mp)410 xfs_quiesce_attr(
411 	struct xfs_mount	*mp)
412 {
413 	int	error = 0;
414 
415 	/* wait for all modifications to complete */
416 	while (atomic_read(&mp->m_active_trans) > 0)
417 		delay(100);
418 
419 	/* flush inodes and push all remaining buffers out to disk */
420 	xfs_quiesce_fs(mp);
421 
422 	/*
423 	 * Just warn here till VFS can correctly support
424 	 * read-only remount without racing.
425 	 */
426 	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
427 
428 	/* Push the superblock and write an unmount record */
429 	error = xfs_log_sbcount(mp, 1);
430 	if (error)
431 		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
432 				"Frozen image may not be consistent.");
433 	xfs_log_unmount_write(mp);
434 	xfs_unmountfs_writesb(mp);
435 }
436 
437 static void
xfs_syncd_queue_sync(struct xfs_mount * mp)438 xfs_syncd_queue_sync(
439 	struct xfs_mount        *mp)
440 {
441 	queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
442 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
443 }
444 
445 /*
446  * Every sync period we need to unpin all items, reclaim inodes and sync
447  * disk quotas.  We might need to cover the log to indicate that the
448  * filesystem is idle and not frozen.
449  */
450 STATIC void
xfs_sync_worker(struct work_struct * work)451 xfs_sync_worker(
452 	struct work_struct *work)
453 {
454 	struct xfs_mount *mp = container_of(to_delayed_work(work),
455 					struct xfs_mount, m_sync_work);
456 	int		error;
457 
458 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
459 		/* dgc: errors ignored here */
460 		if (mp->m_super->s_frozen == SB_UNFROZEN &&
461 		    xfs_log_need_covered(mp))
462 			error = xfs_fs_log_dummy(mp);
463 		else
464 			xfs_log_force(mp, 0);
465 		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
466 
467 		/* start pushing all the metadata that is currently dirty */
468 		xfs_ail_push_all(mp->m_ail);
469 	}
470 
471 	/* queue us up again */
472 	xfs_syncd_queue_sync(mp);
473 }
474 
475 /*
476  * Queue a new inode reclaim pass if there are reclaimable inodes and there
477  * isn't a reclaim pass already in progress. By default it runs every 5s based
478  * on the xfs syncd work default of 30s. Perhaps this should have it's own
479  * tunable, but that can be done if this method proves to be ineffective or too
480  * aggressive.
481  */
482 static void
xfs_syncd_queue_reclaim(struct xfs_mount * mp)483 xfs_syncd_queue_reclaim(
484 	struct xfs_mount        *mp)
485 {
486 
487 	/*
488 	 * We can have inodes enter reclaim after we've shut down the syncd
489 	 * workqueue during unmount, so don't allow reclaim work to be queued
490 	 * during unmount.
491 	 */
492 	if (!(mp->m_super->s_flags & MS_ACTIVE))
493 		return;
494 
495 	rcu_read_lock();
496 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
497 		queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
498 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
499 	}
500 	rcu_read_unlock();
501 }
502 
503 /*
504  * This is a fast pass over the inode cache to try to get reclaim moving on as
505  * many inodes as possible in a short period of time. It kicks itself every few
506  * seconds, as well as being kicked by the inode cache shrinker when memory
507  * goes low. It scans as quickly as possible avoiding locked inodes or those
508  * already being flushed, and once done schedules a future pass.
509  */
510 STATIC void
xfs_reclaim_worker(struct work_struct * work)511 xfs_reclaim_worker(
512 	struct work_struct *work)
513 {
514 	struct xfs_mount *mp = container_of(to_delayed_work(work),
515 					struct xfs_mount, m_reclaim_work);
516 
517 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
518 	xfs_syncd_queue_reclaim(mp);
519 }
520 
521 /*
522  * Flush delayed allocate data, attempting to free up reserved space
523  * from existing allocations.  At this point a new allocation attempt
524  * has failed with ENOSPC and we are in the process of scratching our
525  * heads, looking about for more room.
526  *
527  * Queue a new data flush if there isn't one already in progress and
528  * wait for completion of the flush. This means that we only ever have one
529  * inode flush in progress no matter how many ENOSPC events are occurring and
530  * so will prevent the system from bogging down due to every concurrent
531  * ENOSPC event scanning all the active inodes in the system for writeback.
532  */
533 void
xfs_flush_inodes(struct xfs_inode * ip)534 xfs_flush_inodes(
535 	struct xfs_inode	*ip)
536 {
537 	struct xfs_mount	*mp = ip->i_mount;
538 
539 	queue_work(xfs_syncd_wq, &mp->m_flush_work);
540 	flush_work_sync(&mp->m_flush_work);
541 }
542 
543 STATIC void
xfs_flush_worker(struct work_struct * work)544 xfs_flush_worker(
545 	struct work_struct *work)
546 {
547 	struct xfs_mount *mp = container_of(work,
548 					struct xfs_mount, m_flush_work);
549 
550 	xfs_sync_data(mp, SYNC_TRYLOCK);
551 	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
552 }
553 
554 int
xfs_syncd_init(struct xfs_mount * mp)555 xfs_syncd_init(
556 	struct xfs_mount	*mp)
557 {
558 	INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
559 	INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
560 	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
561 
562 	xfs_syncd_queue_sync(mp);
563 	xfs_syncd_queue_reclaim(mp);
564 
565 	return 0;
566 }
567 
568 void
xfs_syncd_stop(struct xfs_mount * mp)569 xfs_syncd_stop(
570 	struct xfs_mount	*mp)
571 {
572 	cancel_delayed_work_sync(&mp->m_sync_work);
573 	cancel_delayed_work_sync(&mp->m_reclaim_work);
574 	cancel_work_sync(&mp->m_flush_work);
575 }
576 
577 void
__xfs_inode_set_reclaim_tag(struct xfs_perag * pag,struct xfs_inode * ip)578 __xfs_inode_set_reclaim_tag(
579 	struct xfs_perag	*pag,
580 	struct xfs_inode	*ip)
581 {
582 	radix_tree_tag_set(&pag->pag_ici_root,
583 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
584 			   XFS_ICI_RECLAIM_TAG);
585 
586 	if (!pag->pag_ici_reclaimable) {
587 		/* propagate the reclaim tag up into the perag radix tree */
588 		spin_lock(&ip->i_mount->m_perag_lock);
589 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
590 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
591 				XFS_ICI_RECLAIM_TAG);
592 		spin_unlock(&ip->i_mount->m_perag_lock);
593 
594 		/* schedule periodic background inode reclaim */
595 		xfs_syncd_queue_reclaim(ip->i_mount);
596 
597 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
598 							-1, _RET_IP_);
599 	}
600 	pag->pag_ici_reclaimable++;
601 }
602 
603 /*
604  * We set the inode flag atomically with the radix tree tag.
605  * Once we get tag lookups on the radix tree, this inode flag
606  * can go away.
607  */
608 void
xfs_inode_set_reclaim_tag(xfs_inode_t * ip)609 xfs_inode_set_reclaim_tag(
610 	xfs_inode_t	*ip)
611 {
612 	struct xfs_mount *mp = ip->i_mount;
613 	struct xfs_perag *pag;
614 
615 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
616 	spin_lock(&pag->pag_ici_lock);
617 	spin_lock(&ip->i_flags_lock);
618 	__xfs_inode_set_reclaim_tag(pag, ip);
619 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
620 	spin_unlock(&ip->i_flags_lock);
621 	spin_unlock(&pag->pag_ici_lock);
622 	xfs_perag_put(pag);
623 }
624 
625 STATIC void
__xfs_inode_clear_reclaim(xfs_perag_t * pag,xfs_inode_t * ip)626 __xfs_inode_clear_reclaim(
627 	xfs_perag_t	*pag,
628 	xfs_inode_t	*ip)
629 {
630 	pag->pag_ici_reclaimable--;
631 	if (!pag->pag_ici_reclaimable) {
632 		/* clear the reclaim tag from the perag radix tree */
633 		spin_lock(&ip->i_mount->m_perag_lock);
634 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
635 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
636 				XFS_ICI_RECLAIM_TAG);
637 		spin_unlock(&ip->i_mount->m_perag_lock);
638 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
639 							-1, _RET_IP_);
640 	}
641 }
642 
643 void
__xfs_inode_clear_reclaim_tag(xfs_mount_t * mp,xfs_perag_t * pag,xfs_inode_t * ip)644 __xfs_inode_clear_reclaim_tag(
645 	xfs_mount_t	*mp,
646 	xfs_perag_t	*pag,
647 	xfs_inode_t	*ip)
648 {
649 	radix_tree_tag_clear(&pag->pag_ici_root,
650 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
651 	__xfs_inode_clear_reclaim(pag, ip);
652 }
653 
654 /*
655  * Grab the inode for reclaim exclusively.
656  * Return 0 if we grabbed it, non-zero otherwise.
657  */
658 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)659 xfs_reclaim_inode_grab(
660 	struct xfs_inode	*ip,
661 	int			flags)
662 {
663 	ASSERT(rcu_read_lock_held());
664 
665 	/* quick check for stale RCU freed inode */
666 	if (!ip->i_ino)
667 		return 1;
668 
669 	/*
670 	 * do some unlocked checks first to avoid unnecessary lock traffic.
671 	 * The first is a flush lock check, the second is a already in reclaim
672 	 * check. Only do these checks if we are not going to block on locks.
673 	 */
674 	if ((flags & SYNC_TRYLOCK) &&
675 	    (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
676 		return 1;
677 	}
678 
679 	/*
680 	 * The radix tree lock here protects a thread in xfs_iget from racing
681 	 * with us starting reclaim on the inode.  Once we have the
682 	 * XFS_IRECLAIM flag set it will not touch us.
683 	 *
684 	 * Due to RCU lookup, we may find inodes that have been freed and only
685 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
686 	 * aren't candidates for reclaim at all, so we must check the
687 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
688 	 */
689 	spin_lock(&ip->i_flags_lock);
690 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
691 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
692 		/* not a reclaim candidate. */
693 		spin_unlock(&ip->i_flags_lock);
694 		return 1;
695 	}
696 	__xfs_iflags_set(ip, XFS_IRECLAIM);
697 	spin_unlock(&ip->i_flags_lock);
698 	return 0;
699 }
700 
701 /*
702  * Inodes in different states need to be treated differently, and the return
703  * value of xfs_iflush is not sufficient to get this right. The following table
704  * lists the inode states and the reclaim actions necessary for non-blocking
705  * reclaim:
706  *
707  *
708  *	inode state	     iflush ret		required action
709  *      ---------------      ----------         ---------------
710  *	bad			-		reclaim
711  *	shutdown		EIO		unpin and reclaim
712  *	clean, unpinned		0		reclaim
713  *	stale, unpinned		0		reclaim
714  *	clean, pinned(*)	0		requeue
715  *	stale, pinned		EAGAIN		requeue
716  *	dirty, delwri ok	0		requeue
717  *	dirty, delwri blocked	EAGAIN		requeue
718  *	dirty, sync flush	0		reclaim
719  *
720  * (*) dgc: I don't think the clean, pinned state is possible but it gets
721  * handled anyway given the order of checks implemented.
722  *
723  * As can be seen from the table, the return value of xfs_iflush() is not
724  * sufficient to correctly decide the reclaim action here. The checks in
725  * xfs_iflush() might look like duplicates, but they are not.
726  *
727  * Also, because we get the flush lock first, we know that any inode that has
728  * been flushed delwri has had the flush completed by the time we check that
729  * the inode is clean. The clean inode check needs to be done before flushing
730  * the inode delwri otherwise we would loop forever requeuing clean inodes as
731  * we cannot tell apart a successful delwri flush and a clean inode from the
732  * return value of xfs_iflush().
733  *
734  * Note that because the inode is flushed delayed write by background
735  * writeback, the flush lock may already be held here and waiting on it can
736  * result in very long latencies. Hence for sync reclaims, where we wait on the
737  * flush lock, the caller should push out delayed write inodes first before
738  * trying to reclaim them to minimise the amount of time spent waiting. For
739  * background relaim, we just requeue the inode for the next pass.
740  *
741  * Hence the order of actions after gaining the locks should be:
742  *	bad		=> reclaim
743  *	shutdown	=> unpin and reclaim
744  *	pinned, delwri	=> requeue
745  *	pinned, sync	=> unpin
746  *	stale		=> reclaim
747  *	clean		=> reclaim
748  *	dirty, delwri	=> flush and requeue
749  *	dirty, sync	=> flush, wait and reclaim
750  */
751 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)752 xfs_reclaim_inode(
753 	struct xfs_inode	*ip,
754 	struct xfs_perag	*pag,
755 	int			sync_mode)
756 {
757 	int	error;
758 
759 restart:
760 	error = 0;
761 	xfs_ilock(ip, XFS_ILOCK_EXCL);
762 	if (!xfs_iflock_nowait(ip)) {
763 		if (!(sync_mode & SYNC_WAIT))
764 			goto out;
765 		xfs_iflock(ip);
766 	}
767 
768 	if (is_bad_inode(VFS_I(ip)))
769 		goto reclaim;
770 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
771 		xfs_iunpin_wait(ip);
772 		goto reclaim;
773 	}
774 	if (xfs_ipincount(ip)) {
775 		if (!(sync_mode & SYNC_WAIT)) {
776 			xfs_ifunlock(ip);
777 			goto out;
778 		}
779 		xfs_iunpin_wait(ip);
780 	}
781 	if (xfs_iflags_test(ip, XFS_ISTALE))
782 		goto reclaim;
783 	if (xfs_inode_clean(ip))
784 		goto reclaim;
785 
786 	/*
787 	 * Now we have an inode that needs flushing.
788 	 *
789 	 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
790 	 * reclaim as we can deadlock with inode cluster removal.
791 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
792 	 * ip->i_lock, and we are doing the exact opposite here. As a result,
793 	 * doing a blocking xfs_itobp() to get the cluster buffer will result
794 	 * in an ABBA deadlock with xfs_ifree_cluster().
795 	 *
796 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
797 	 * cache to mark them stale, if we hit this case we don't actually want
798 	 * to do IO here - we want the inode marked stale so we can simply
799 	 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
800 	 * just unlock the inode, back off and try again. Hopefully the next
801 	 * pass through will see the stale flag set on the inode.
802 	 */
803 	error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
804 	if (sync_mode & SYNC_WAIT) {
805 		if (error == EAGAIN) {
806 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
807 			/* backoff longer than in xfs_ifree_cluster */
808 			delay(2);
809 			goto restart;
810 		}
811 		xfs_iflock(ip);
812 		goto reclaim;
813 	}
814 
815 	/*
816 	 * When we have to flush an inode but don't have SYNC_WAIT set, we
817 	 * flush the inode out using a delwri buffer and wait for the next
818 	 * call into reclaim to find it in a clean state instead of waiting for
819 	 * it now. We also don't return errors here - if the error is transient
820 	 * then the next reclaim pass will flush the inode, and if the error
821 	 * is permanent then the next sync reclaim will reclaim the inode and
822 	 * pass on the error.
823 	 */
824 	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 		xfs_warn(ip->i_mount,
826 			"inode 0x%llx background reclaim flush failed with %d",
827 			(long long)ip->i_ino, error);
828 	}
829 out:
830 	xfs_iflags_clear(ip, XFS_IRECLAIM);
831 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
832 	/*
833 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
834 	 * a short while. However, this just burns CPU time scanning the tree
835 	 * waiting for IO to complete and xfssyncd never goes back to the idle
836 	 * state. Instead, return 0 to let the next scheduled background reclaim
837 	 * attempt to reclaim the inode again.
838 	 */
839 	return 0;
840 
841 reclaim:
842 	xfs_ifunlock(ip);
843 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
844 
845 	XFS_STATS_INC(xs_ig_reclaims);
846 	/*
847 	 * Remove the inode from the per-AG radix tree.
848 	 *
849 	 * Because radix_tree_delete won't complain even if the item was never
850 	 * added to the tree assert that it's been there before to catch
851 	 * problems with the inode life time early on.
852 	 */
853 	spin_lock(&pag->pag_ici_lock);
854 	if (!radix_tree_delete(&pag->pag_ici_root,
855 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
856 		ASSERT(0);
857 	__xfs_inode_clear_reclaim(pag, ip);
858 	spin_unlock(&pag->pag_ici_lock);
859 
860 	/*
861 	 * Here we do an (almost) spurious inode lock in order to coordinate
862 	 * with inode cache radix tree lookups.  This is because the lookup
863 	 * can reference the inodes in the cache without taking references.
864 	 *
865 	 * We make that OK here by ensuring that we wait until the inode is
866 	 * unlocked after the lookup before we go ahead and free it.  We get
867 	 * both the ilock and the iolock because the code may need to drop the
868 	 * ilock one but will still hold the iolock.
869 	 */
870 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
871 	xfs_qm_dqdetach(ip);
872 	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
873 
874 	xfs_inode_free(ip);
875 	return error;
876 
877 }
878 
879 /*
880  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
881  * corrupted, we still want to try to reclaim all the inodes. If we don't,
882  * then a shut down during filesystem unmount reclaim walk leak all the
883  * unreclaimed inodes.
884  */
885 int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)886 xfs_reclaim_inodes_ag(
887 	struct xfs_mount	*mp,
888 	int			flags,
889 	int			*nr_to_scan)
890 {
891 	struct xfs_perag	*pag;
892 	int			error = 0;
893 	int			last_error = 0;
894 	xfs_agnumber_t		ag;
895 	int			trylock = flags & SYNC_TRYLOCK;
896 	int			skipped;
897 
898 restart:
899 	ag = 0;
900 	skipped = 0;
901 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
902 		unsigned long	first_index = 0;
903 		int		done = 0;
904 		int		nr_found = 0;
905 
906 		ag = pag->pag_agno + 1;
907 
908 		if (trylock) {
909 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
910 				skipped++;
911 				xfs_perag_put(pag);
912 				continue;
913 			}
914 			first_index = pag->pag_ici_reclaim_cursor;
915 		} else
916 			mutex_lock(&pag->pag_ici_reclaim_lock);
917 
918 		do {
919 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
920 			int	i;
921 
922 			rcu_read_lock();
923 			nr_found = radix_tree_gang_lookup_tag(
924 					&pag->pag_ici_root,
925 					(void **)batch, first_index,
926 					XFS_LOOKUP_BATCH,
927 					XFS_ICI_RECLAIM_TAG);
928 			if (!nr_found) {
929 				done = 1;
930 				rcu_read_unlock();
931 				break;
932 			}
933 
934 			/*
935 			 * Grab the inodes before we drop the lock. if we found
936 			 * nothing, nr == 0 and the loop will be skipped.
937 			 */
938 			for (i = 0; i < nr_found; i++) {
939 				struct xfs_inode *ip = batch[i];
940 
941 				if (done || xfs_reclaim_inode_grab(ip, flags))
942 					batch[i] = NULL;
943 
944 				/*
945 				 * Update the index for the next lookup. Catch
946 				 * overflows into the next AG range which can
947 				 * occur if we have inodes in the last block of
948 				 * the AG and we are currently pointing to the
949 				 * last inode.
950 				 *
951 				 * Because we may see inodes that are from the
952 				 * wrong AG due to RCU freeing and
953 				 * reallocation, only update the index if it
954 				 * lies in this AG. It was a race that lead us
955 				 * to see this inode, so another lookup from
956 				 * the same index will not find it again.
957 				 */
958 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
959 								pag->pag_agno)
960 					continue;
961 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
962 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
963 					done = 1;
964 			}
965 
966 			/* unlock now we've grabbed the inodes. */
967 			rcu_read_unlock();
968 
969 			for (i = 0; i < nr_found; i++) {
970 				if (!batch[i])
971 					continue;
972 				error = xfs_reclaim_inode(batch[i], pag, flags);
973 				if (error && last_error != EFSCORRUPTED)
974 					last_error = error;
975 			}
976 
977 			*nr_to_scan -= XFS_LOOKUP_BATCH;
978 
979 		} while (nr_found && !done && *nr_to_scan > 0);
980 
981 		if (trylock && !done)
982 			pag->pag_ici_reclaim_cursor = first_index;
983 		else
984 			pag->pag_ici_reclaim_cursor = 0;
985 		mutex_unlock(&pag->pag_ici_reclaim_lock);
986 		xfs_perag_put(pag);
987 	}
988 
989 	/*
990 	 * if we skipped any AG, and we still have scan count remaining, do
991 	 * another pass this time using blocking reclaim semantics (i.e
992 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
993 	 * ensure that when we get more reclaimers than AGs we block rather
994 	 * than spin trying to execute reclaim.
995 	 */
996 	if (trylock && skipped && *nr_to_scan > 0) {
997 		trylock = 0;
998 		goto restart;
999 	}
1000 	return XFS_ERROR(last_error);
1001 }
1002 
1003 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1004 xfs_reclaim_inodes(
1005 	xfs_mount_t	*mp,
1006 	int		mode)
1007 {
1008 	int		nr_to_scan = INT_MAX;
1009 
1010 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1011 }
1012 
1013 /*
1014  * Inode cache shrinker.
1015  *
1016  * When called we make sure that there is a background (fast) inode reclaim in
1017  * progress, while we will throttle the speed of reclaim via doiing synchronous
1018  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1019  * them to be cleaned, which we hope will not be very long due to the
1020  * background walker having already kicked the IO off on those dirty inodes.
1021  */
1022 static int
xfs_reclaim_inode_shrink(struct shrinker * shrink,int nr_to_scan,gfp_t gfp_mask)1023 xfs_reclaim_inode_shrink(
1024 	struct shrinker	*shrink,
1025 	int		nr_to_scan,
1026 	gfp_t		gfp_mask)
1027 {
1028 	struct xfs_mount *mp;
1029 	struct xfs_perag *pag;
1030 	xfs_agnumber_t	ag;
1031 	int		reclaimable;
1032 
1033 	mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
1034 	if (nr_to_scan) {
1035 		/* kick background reclaimer and push the AIL */
1036 		xfs_syncd_queue_reclaim(mp);
1037 		xfs_ail_push_all(mp->m_ail);
1038 
1039 		if (!(gfp_mask & __GFP_FS))
1040 			return -1;
1041 
1042 		xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT,
1043 					&nr_to_scan);
1044 		/* terminate if we don't exhaust the scan */
1045 		if (nr_to_scan > 0)
1046 			return -1;
1047        }
1048 
1049 	reclaimable = 0;
1050 	ag = 0;
1051 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1052 		ag = pag->pag_agno + 1;
1053 		reclaimable += pag->pag_ici_reclaimable;
1054 		xfs_perag_put(pag);
1055 	}
1056 	return reclaimable;
1057 }
1058 
1059 void
xfs_inode_shrinker_register(struct xfs_mount * mp)1060 xfs_inode_shrinker_register(
1061 	struct xfs_mount	*mp)
1062 {
1063 	mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1064 	mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1065 	register_shrinker(&mp->m_inode_shrink);
1066 }
1067 
1068 void
xfs_inode_shrinker_unregister(struct xfs_mount * mp)1069 xfs_inode_shrinker_unregister(
1070 	struct xfs_mount	*mp)
1071 {
1072 	unregister_shrinker(&mp->m_inode_shrink);
1073 }
1074