1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
45 /*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51 #define XFS_LOOKUP_BATCH 32
52
53 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip)54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56 {
57 struct inode *inode = VFS_I(ip);
58
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
94
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
98 }
99
100 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
107 {
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
113
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
123
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
131 }
132
133 /*
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
136 */
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
154 */
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
160 }
161
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
164
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
176 }
177
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
181
182 } while (nr_found && !done);
183
184 if (skipped) {
185 delay(1);
186 goto restart;
187 }
188 return last_error;
189 }
190
191 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)192 xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
196 int flags)
197 {
198 struct xfs_perag *pag;
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
202
203 ag = 0;
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
207 xfs_perag_put(pag);
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
212 }
213 }
214 return XFS_ERROR(last_error);
215 }
216
217 STATIC int
xfs_sync_inode_data(struct xfs_inode * ip,struct xfs_perag * pag,int flags)218 xfs_sync_inode_data(
219 struct xfs_inode *ip,
220 struct xfs_perag *pag,
221 int flags)
222 {
223 struct inode *inode = VFS_I(ip);
224 struct address_space *mapping = inode->i_mapping;
225 int error = 0;
226
227 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
228 goto out_wait;
229
230 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
231 if (flags & SYNC_TRYLOCK)
232 goto out_wait;
233 xfs_ilock(ip, XFS_IOLOCK_SHARED);
234 }
235
236 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
237 0 : XBF_ASYNC, FI_NONE);
238 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
239
240 out_wait:
241 if (flags & SYNC_WAIT)
242 xfs_ioend_wait(ip);
243 return error;
244 }
245
246 STATIC int
xfs_sync_inode_attr(struct xfs_inode * ip,struct xfs_perag * pag,int flags)247 xfs_sync_inode_attr(
248 struct xfs_inode *ip,
249 struct xfs_perag *pag,
250 int flags)
251 {
252 int error = 0;
253
254 xfs_ilock(ip, XFS_ILOCK_SHARED);
255 if (xfs_inode_clean(ip))
256 goto out_unlock;
257 if (!xfs_iflock_nowait(ip)) {
258 if (!(flags & SYNC_WAIT))
259 goto out_unlock;
260 xfs_iflock(ip);
261 }
262
263 if (xfs_inode_clean(ip)) {
264 xfs_ifunlock(ip);
265 goto out_unlock;
266 }
267
268 error = xfs_iflush(ip, flags);
269
270 out_unlock:
271 xfs_iunlock(ip, XFS_ILOCK_SHARED);
272 return error;
273 }
274
275 /*
276 * Write out pagecache data for the whole filesystem.
277 */
278 STATIC int
xfs_sync_data(struct xfs_mount * mp,int flags)279 xfs_sync_data(
280 struct xfs_mount *mp,
281 int flags)
282 {
283 int error;
284
285 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
286
287 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
288 if (error)
289 return XFS_ERROR(error);
290
291 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
292 return 0;
293 }
294
295 /*
296 * Write out inode metadata (attributes) for the whole filesystem.
297 */
298 STATIC int
xfs_sync_attr(struct xfs_mount * mp,int flags)299 xfs_sync_attr(
300 struct xfs_mount *mp,
301 int flags)
302 {
303 ASSERT((flags & ~SYNC_WAIT) == 0);
304
305 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
306 }
307
308 STATIC int
xfs_sync_fsdata(struct xfs_mount * mp)309 xfs_sync_fsdata(
310 struct xfs_mount *mp)
311 {
312 struct xfs_buf *bp;
313
314 /*
315 * If the buffer is pinned then push on the log so we won't get stuck
316 * waiting in the write for someone, maybe ourselves, to flush the log.
317 *
318 * Even though we just pushed the log above, we did not have the
319 * superblock buffer locked at that point so it can become pinned in
320 * between there and here.
321 */
322 bp = xfs_getsb(mp, 0);
323 if (XFS_BUF_ISPINNED(bp))
324 xfs_log_force(mp, 0);
325
326 return xfs_bwrite(mp, bp);
327 }
328
329 /*
330 * When remounting a filesystem read-only or freezing the filesystem, we have
331 * two phases to execute. This first phase is syncing the data before we
332 * quiesce the filesystem, and the second is flushing all the inodes out after
333 * we've waited for all the transactions created by the first phase to
334 * complete. The second phase ensures that the inodes are written to their
335 * location on disk rather than just existing in transactions in the log. This
336 * means after a quiesce there is no log replay required to write the inodes to
337 * disk (this is the main difference between a sync and a quiesce).
338 */
339 /*
340 * First stage of freeze - no writers will make progress now we are here,
341 * so we flush delwri and delalloc buffers here, then wait for all I/O to
342 * complete. Data is frozen at that point. Metadata is not frozen,
343 * transactions can still occur here so don't bother flushing the buftarg
344 * because it'll just get dirty again.
345 */
346 int
xfs_quiesce_data(struct xfs_mount * mp)347 xfs_quiesce_data(
348 struct xfs_mount *mp)
349 {
350 int error, error2 = 0;
351
352 /* push non-blocking */
353 xfs_sync_data(mp, 0);
354 xfs_qm_sync(mp, SYNC_TRYLOCK);
355
356 /* push and block till complete */
357 xfs_sync_data(mp, SYNC_WAIT);
358 xfs_qm_sync(mp, SYNC_WAIT);
359
360 /* write superblock and hoover up shutdown errors */
361 error = xfs_sync_fsdata(mp);
362
363 /* make sure all delwri buffers are written out */
364 xfs_flush_buftarg(mp->m_ddev_targp, 1);
365
366 /* mark the log as covered if needed */
367 if (xfs_log_need_covered(mp))
368 error2 = xfs_fs_log_dummy(mp);
369
370 /* flush data-only devices */
371 if (mp->m_rtdev_targp)
372 XFS_bflush(mp->m_rtdev_targp);
373
374 return error ? error : error2;
375 }
376
377 STATIC void
xfs_quiesce_fs(struct xfs_mount * mp)378 xfs_quiesce_fs(
379 struct xfs_mount *mp)
380 {
381 int count = 0, pincount;
382
383 xfs_reclaim_inodes(mp, 0);
384 xfs_flush_buftarg(mp->m_ddev_targp, 0);
385
386 /*
387 * This loop must run at least twice. The first instance of the loop
388 * will flush most meta data but that will generate more meta data
389 * (typically directory updates). Which then must be flushed and
390 * logged before we can write the unmount record. We also so sync
391 * reclaim of inodes to catch any that the above delwri flush skipped.
392 */
393 do {
394 xfs_reclaim_inodes(mp, SYNC_WAIT);
395 xfs_sync_attr(mp, SYNC_WAIT);
396 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
397 if (!pincount) {
398 delay(50);
399 count++;
400 }
401 } while (count < 2);
402 }
403
404 /*
405 * Second stage of a quiesce. The data is already synced, now we have to take
406 * care of the metadata. New transactions are already blocked, so we need to
407 * wait for any remaining transactions to drain out before proceeding.
408 */
409 void
xfs_quiesce_attr(struct xfs_mount * mp)410 xfs_quiesce_attr(
411 struct xfs_mount *mp)
412 {
413 int error = 0;
414
415 /* wait for all modifications to complete */
416 while (atomic_read(&mp->m_active_trans) > 0)
417 delay(100);
418
419 /* flush inodes and push all remaining buffers out to disk */
420 xfs_quiesce_fs(mp);
421
422 /*
423 * Just warn here till VFS can correctly support
424 * read-only remount without racing.
425 */
426 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
427
428 /* Push the superblock and write an unmount record */
429 error = xfs_log_sbcount(mp, 1);
430 if (error)
431 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
432 "Frozen image may not be consistent.");
433 xfs_log_unmount_write(mp);
434 xfs_unmountfs_writesb(mp);
435 }
436
437 static void
xfs_syncd_queue_sync(struct xfs_mount * mp)438 xfs_syncd_queue_sync(
439 struct xfs_mount *mp)
440 {
441 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
442 msecs_to_jiffies(xfs_syncd_centisecs * 10));
443 }
444
445 /*
446 * Every sync period we need to unpin all items, reclaim inodes and sync
447 * disk quotas. We might need to cover the log to indicate that the
448 * filesystem is idle and not frozen.
449 */
450 STATIC void
xfs_sync_worker(struct work_struct * work)451 xfs_sync_worker(
452 struct work_struct *work)
453 {
454 struct xfs_mount *mp = container_of(to_delayed_work(work),
455 struct xfs_mount, m_sync_work);
456 int error;
457
458 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
459 /* dgc: errors ignored here */
460 if (mp->m_super->s_frozen == SB_UNFROZEN &&
461 xfs_log_need_covered(mp))
462 error = xfs_fs_log_dummy(mp);
463 else
464 xfs_log_force(mp, 0);
465 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
466
467 /* start pushing all the metadata that is currently dirty */
468 xfs_ail_push_all(mp->m_ail);
469 }
470
471 /* queue us up again */
472 xfs_syncd_queue_sync(mp);
473 }
474
475 /*
476 * Queue a new inode reclaim pass if there are reclaimable inodes and there
477 * isn't a reclaim pass already in progress. By default it runs every 5s based
478 * on the xfs syncd work default of 30s. Perhaps this should have it's own
479 * tunable, but that can be done if this method proves to be ineffective or too
480 * aggressive.
481 */
482 static void
xfs_syncd_queue_reclaim(struct xfs_mount * mp)483 xfs_syncd_queue_reclaim(
484 struct xfs_mount *mp)
485 {
486
487 /*
488 * We can have inodes enter reclaim after we've shut down the syncd
489 * workqueue during unmount, so don't allow reclaim work to be queued
490 * during unmount.
491 */
492 if (!(mp->m_super->s_flags & MS_ACTIVE))
493 return;
494
495 rcu_read_lock();
496 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
497 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
498 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
499 }
500 rcu_read_unlock();
501 }
502
503 /*
504 * This is a fast pass over the inode cache to try to get reclaim moving on as
505 * many inodes as possible in a short period of time. It kicks itself every few
506 * seconds, as well as being kicked by the inode cache shrinker when memory
507 * goes low. It scans as quickly as possible avoiding locked inodes or those
508 * already being flushed, and once done schedules a future pass.
509 */
510 STATIC void
xfs_reclaim_worker(struct work_struct * work)511 xfs_reclaim_worker(
512 struct work_struct *work)
513 {
514 struct xfs_mount *mp = container_of(to_delayed_work(work),
515 struct xfs_mount, m_reclaim_work);
516
517 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
518 xfs_syncd_queue_reclaim(mp);
519 }
520
521 /*
522 * Flush delayed allocate data, attempting to free up reserved space
523 * from existing allocations. At this point a new allocation attempt
524 * has failed with ENOSPC and we are in the process of scratching our
525 * heads, looking about for more room.
526 *
527 * Queue a new data flush if there isn't one already in progress and
528 * wait for completion of the flush. This means that we only ever have one
529 * inode flush in progress no matter how many ENOSPC events are occurring and
530 * so will prevent the system from bogging down due to every concurrent
531 * ENOSPC event scanning all the active inodes in the system for writeback.
532 */
533 void
xfs_flush_inodes(struct xfs_inode * ip)534 xfs_flush_inodes(
535 struct xfs_inode *ip)
536 {
537 struct xfs_mount *mp = ip->i_mount;
538
539 queue_work(xfs_syncd_wq, &mp->m_flush_work);
540 flush_work_sync(&mp->m_flush_work);
541 }
542
543 STATIC void
xfs_flush_worker(struct work_struct * work)544 xfs_flush_worker(
545 struct work_struct *work)
546 {
547 struct xfs_mount *mp = container_of(work,
548 struct xfs_mount, m_flush_work);
549
550 xfs_sync_data(mp, SYNC_TRYLOCK);
551 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
552 }
553
554 int
xfs_syncd_init(struct xfs_mount * mp)555 xfs_syncd_init(
556 struct xfs_mount *mp)
557 {
558 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
559 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
560 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
561
562 xfs_syncd_queue_sync(mp);
563 xfs_syncd_queue_reclaim(mp);
564
565 return 0;
566 }
567
568 void
xfs_syncd_stop(struct xfs_mount * mp)569 xfs_syncd_stop(
570 struct xfs_mount *mp)
571 {
572 cancel_delayed_work_sync(&mp->m_sync_work);
573 cancel_delayed_work_sync(&mp->m_reclaim_work);
574 cancel_work_sync(&mp->m_flush_work);
575 }
576
577 void
__xfs_inode_set_reclaim_tag(struct xfs_perag * pag,struct xfs_inode * ip)578 __xfs_inode_set_reclaim_tag(
579 struct xfs_perag *pag,
580 struct xfs_inode *ip)
581 {
582 radix_tree_tag_set(&pag->pag_ici_root,
583 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
584 XFS_ICI_RECLAIM_TAG);
585
586 if (!pag->pag_ici_reclaimable) {
587 /* propagate the reclaim tag up into the perag radix tree */
588 spin_lock(&ip->i_mount->m_perag_lock);
589 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
590 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
591 XFS_ICI_RECLAIM_TAG);
592 spin_unlock(&ip->i_mount->m_perag_lock);
593
594 /* schedule periodic background inode reclaim */
595 xfs_syncd_queue_reclaim(ip->i_mount);
596
597 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
598 -1, _RET_IP_);
599 }
600 pag->pag_ici_reclaimable++;
601 }
602
603 /*
604 * We set the inode flag atomically with the radix tree tag.
605 * Once we get tag lookups on the radix tree, this inode flag
606 * can go away.
607 */
608 void
xfs_inode_set_reclaim_tag(xfs_inode_t * ip)609 xfs_inode_set_reclaim_tag(
610 xfs_inode_t *ip)
611 {
612 struct xfs_mount *mp = ip->i_mount;
613 struct xfs_perag *pag;
614
615 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
616 spin_lock(&pag->pag_ici_lock);
617 spin_lock(&ip->i_flags_lock);
618 __xfs_inode_set_reclaim_tag(pag, ip);
619 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
620 spin_unlock(&ip->i_flags_lock);
621 spin_unlock(&pag->pag_ici_lock);
622 xfs_perag_put(pag);
623 }
624
625 STATIC void
__xfs_inode_clear_reclaim(xfs_perag_t * pag,xfs_inode_t * ip)626 __xfs_inode_clear_reclaim(
627 xfs_perag_t *pag,
628 xfs_inode_t *ip)
629 {
630 pag->pag_ici_reclaimable--;
631 if (!pag->pag_ici_reclaimable) {
632 /* clear the reclaim tag from the perag radix tree */
633 spin_lock(&ip->i_mount->m_perag_lock);
634 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
635 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
636 XFS_ICI_RECLAIM_TAG);
637 spin_unlock(&ip->i_mount->m_perag_lock);
638 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
639 -1, _RET_IP_);
640 }
641 }
642
643 void
__xfs_inode_clear_reclaim_tag(xfs_mount_t * mp,xfs_perag_t * pag,xfs_inode_t * ip)644 __xfs_inode_clear_reclaim_tag(
645 xfs_mount_t *mp,
646 xfs_perag_t *pag,
647 xfs_inode_t *ip)
648 {
649 radix_tree_tag_clear(&pag->pag_ici_root,
650 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
651 __xfs_inode_clear_reclaim(pag, ip);
652 }
653
654 /*
655 * Grab the inode for reclaim exclusively.
656 * Return 0 if we grabbed it, non-zero otherwise.
657 */
658 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)659 xfs_reclaim_inode_grab(
660 struct xfs_inode *ip,
661 int flags)
662 {
663 ASSERT(rcu_read_lock_held());
664
665 /* quick check for stale RCU freed inode */
666 if (!ip->i_ino)
667 return 1;
668
669 /*
670 * do some unlocked checks first to avoid unnecessary lock traffic.
671 * The first is a flush lock check, the second is a already in reclaim
672 * check. Only do these checks if we are not going to block on locks.
673 */
674 if ((flags & SYNC_TRYLOCK) &&
675 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
676 return 1;
677 }
678
679 /*
680 * The radix tree lock here protects a thread in xfs_iget from racing
681 * with us starting reclaim on the inode. Once we have the
682 * XFS_IRECLAIM flag set it will not touch us.
683 *
684 * Due to RCU lookup, we may find inodes that have been freed and only
685 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
686 * aren't candidates for reclaim at all, so we must check the
687 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
688 */
689 spin_lock(&ip->i_flags_lock);
690 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
691 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
692 /* not a reclaim candidate. */
693 spin_unlock(&ip->i_flags_lock);
694 return 1;
695 }
696 __xfs_iflags_set(ip, XFS_IRECLAIM);
697 spin_unlock(&ip->i_flags_lock);
698 return 0;
699 }
700
701 /*
702 * Inodes in different states need to be treated differently, and the return
703 * value of xfs_iflush is not sufficient to get this right. The following table
704 * lists the inode states and the reclaim actions necessary for non-blocking
705 * reclaim:
706 *
707 *
708 * inode state iflush ret required action
709 * --------------- ---------- ---------------
710 * bad - reclaim
711 * shutdown EIO unpin and reclaim
712 * clean, unpinned 0 reclaim
713 * stale, unpinned 0 reclaim
714 * clean, pinned(*) 0 requeue
715 * stale, pinned EAGAIN requeue
716 * dirty, delwri ok 0 requeue
717 * dirty, delwri blocked EAGAIN requeue
718 * dirty, sync flush 0 reclaim
719 *
720 * (*) dgc: I don't think the clean, pinned state is possible but it gets
721 * handled anyway given the order of checks implemented.
722 *
723 * As can be seen from the table, the return value of xfs_iflush() is not
724 * sufficient to correctly decide the reclaim action here. The checks in
725 * xfs_iflush() might look like duplicates, but they are not.
726 *
727 * Also, because we get the flush lock first, we know that any inode that has
728 * been flushed delwri has had the flush completed by the time we check that
729 * the inode is clean. The clean inode check needs to be done before flushing
730 * the inode delwri otherwise we would loop forever requeuing clean inodes as
731 * we cannot tell apart a successful delwri flush and a clean inode from the
732 * return value of xfs_iflush().
733 *
734 * Note that because the inode is flushed delayed write by background
735 * writeback, the flush lock may already be held here and waiting on it can
736 * result in very long latencies. Hence for sync reclaims, where we wait on the
737 * flush lock, the caller should push out delayed write inodes first before
738 * trying to reclaim them to minimise the amount of time spent waiting. For
739 * background relaim, we just requeue the inode for the next pass.
740 *
741 * Hence the order of actions after gaining the locks should be:
742 * bad => reclaim
743 * shutdown => unpin and reclaim
744 * pinned, delwri => requeue
745 * pinned, sync => unpin
746 * stale => reclaim
747 * clean => reclaim
748 * dirty, delwri => flush and requeue
749 * dirty, sync => flush, wait and reclaim
750 */
751 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)752 xfs_reclaim_inode(
753 struct xfs_inode *ip,
754 struct xfs_perag *pag,
755 int sync_mode)
756 {
757 int error;
758
759 restart:
760 error = 0;
761 xfs_ilock(ip, XFS_ILOCK_EXCL);
762 if (!xfs_iflock_nowait(ip)) {
763 if (!(sync_mode & SYNC_WAIT))
764 goto out;
765 xfs_iflock(ip);
766 }
767
768 if (is_bad_inode(VFS_I(ip)))
769 goto reclaim;
770 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
771 xfs_iunpin_wait(ip);
772 goto reclaim;
773 }
774 if (xfs_ipincount(ip)) {
775 if (!(sync_mode & SYNC_WAIT)) {
776 xfs_ifunlock(ip);
777 goto out;
778 }
779 xfs_iunpin_wait(ip);
780 }
781 if (xfs_iflags_test(ip, XFS_ISTALE))
782 goto reclaim;
783 if (xfs_inode_clean(ip))
784 goto reclaim;
785
786 /*
787 * Now we have an inode that needs flushing.
788 *
789 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
790 * reclaim as we can deadlock with inode cluster removal.
791 * xfs_ifree_cluster() can lock the inode buffer before it locks the
792 * ip->i_lock, and we are doing the exact opposite here. As a result,
793 * doing a blocking xfs_itobp() to get the cluster buffer will result
794 * in an ABBA deadlock with xfs_ifree_cluster().
795 *
796 * As xfs_ifree_cluser() must gather all inodes that are active in the
797 * cache to mark them stale, if we hit this case we don't actually want
798 * to do IO here - we want the inode marked stale so we can simply
799 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
800 * just unlock the inode, back off and try again. Hopefully the next
801 * pass through will see the stale flag set on the inode.
802 */
803 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
804 if (sync_mode & SYNC_WAIT) {
805 if (error == EAGAIN) {
806 xfs_iunlock(ip, XFS_ILOCK_EXCL);
807 /* backoff longer than in xfs_ifree_cluster */
808 delay(2);
809 goto restart;
810 }
811 xfs_iflock(ip);
812 goto reclaim;
813 }
814
815 /*
816 * When we have to flush an inode but don't have SYNC_WAIT set, we
817 * flush the inode out using a delwri buffer and wait for the next
818 * call into reclaim to find it in a clean state instead of waiting for
819 * it now. We also don't return errors here - if the error is transient
820 * then the next reclaim pass will flush the inode, and if the error
821 * is permanent then the next sync reclaim will reclaim the inode and
822 * pass on the error.
823 */
824 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 xfs_warn(ip->i_mount,
826 "inode 0x%llx background reclaim flush failed with %d",
827 (long long)ip->i_ino, error);
828 }
829 out:
830 xfs_iflags_clear(ip, XFS_IRECLAIM);
831 xfs_iunlock(ip, XFS_ILOCK_EXCL);
832 /*
833 * We could return EAGAIN here to make reclaim rescan the inode tree in
834 * a short while. However, this just burns CPU time scanning the tree
835 * waiting for IO to complete and xfssyncd never goes back to the idle
836 * state. Instead, return 0 to let the next scheduled background reclaim
837 * attempt to reclaim the inode again.
838 */
839 return 0;
840
841 reclaim:
842 xfs_ifunlock(ip);
843 xfs_iunlock(ip, XFS_ILOCK_EXCL);
844
845 XFS_STATS_INC(xs_ig_reclaims);
846 /*
847 * Remove the inode from the per-AG radix tree.
848 *
849 * Because radix_tree_delete won't complain even if the item was never
850 * added to the tree assert that it's been there before to catch
851 * problems with the inode life time early on.
852 */
853 spin_lock(&pag->pag_ici_lock);
854 if (!radix_tree_delete(&pag->pag_ici_root,
855 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
856 ASSERT(0);
857 __xfs_inode_clear_reclaim(pag, ip);
858 spin_unlock(&pag->pag_ici_lock);
859
860 /*
861 * Here we do an (almost) spurious inode lock in order to coordinate
862 * with inode cache radix tree lookups. This is because the lookup
863 * can reference the inodes in the cache without taking references.
864 *
865 * We make that OK here by ensuring that we wait until the inode is
866 * unlocked after the lookup before we go ahead and free it. We get
867 * both the ilock and the iolock because the code may need to drop the
868 * ilock one but will still hold the iolock.
869 */
870 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
871 xfs_qm_dqdetach(ip);
872 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
873
874 xfs_inode_free(ip);
875 return error;
876
877 }
878
879 /*
880 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
881 * corrupted, we still want to try to reclaim all the inodes. If we don't,
882 * then a shut down during filesystem unmount reclaim walk leak all the
883 * unreclaimed inodes.
884 */
885 int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)886 xfs_reclaim_inodes_ag(
887 struct xfs_mount *mp,
888 int flags,
889 int *nr_to_scan)
890 {
891 struct xfs_perag *pag;
892 int error = 0;
893 int last_error = 0;
894 xfs_agnumber_t ag;
895 int trylock = flags & SYNC_TRYLOCK;
896 int skipped;
897
898 restart:
899 ag = 0;
900 skipped = 0;
901 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
902 unsigned long first_index = 0;
903 int done = 0;
904 int nr_found = 0;
905
906 ag = pag->pag_agno + 1;
907
908 if (trylock) {
909 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
910 skipped++;
911 xfs_perag_put(pag);
912 continue;
913 }
914 first_index = pag->pag_ici_reclaim_cursor;
915 } else
916 mutex_lock(&pag->pag_ici_reclaim_lock);
917
918 do {
919 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
920 int i;
921
922 rcu_read_lock();
923 nr_found = radix_tree_gang_lookup_tag(
924 &pag->pag_ici_root,
925 (void **)batch, first_index,
926 XFS_LOOKUP_BATCH,
927 XFS_ICI_RECLAIM_TAG);
928 if (!nr_found) {
929 done = 1;
930 rcu_read_unlock();
931 break;
932 }
933
934 /*
935 * Grab the inodes before we drop the lock. if we found
936 * nothing, nr == 0 and the loop will be skipped.
937 */
938 for (i = 0; i < nr_found; i++) {
939 struct xfs_inode *ip = batch[i];
940
941 if (done || xfs_reclaim_inode_grab(ip, flags))
942 batch[i] = NULL;
943
944 /*
945 * Update the index for the next lookup. Catch
946 * overflows into the next AG range which can
947 * occur if we have inodes in the last block of
948 * the AG and we are currently pointing to the
949 * last inode.
950 *
951 * Because we may see inodes that are from the
952 * wrong AG due to RCU freeing and
953 * reallocation, only update the index if it
954 * lies in this AG. It was a race that lead us
955 * to see this inode, so another lookup from
956 * the same index will not find it again.
957 */
958 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
959 pag->pag_agno)
960 continue;
961 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
962 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
963 done = 1;
964 }
965
966 /* unlock now we've grabbed the inodes. */
967 rcu_read_unlock();
968
969 for (i = 0; i < nr_found; i++) {
970 if (!batch[i])
971 continue;
972 error = xfs_reclaim_inode(batch[i], pag, flags);
973 if (error && last_error != EFSCORRUPTED)
974 last_error = error;
975 }
976
977 *nr_to_scan -= XFS_LOOKUP_BATCH;
978
979 } while (nr_found && !done && *nr_to_scan > 0);
980
981 if (trylock && !done)
982 pag->pag_ici_reclaim_cursor = first_index;
983 else
984 pag->pag_ici_reclaim_cursor = 0;
985 mutex_unlock(&pag->pag_ici_reclaim_lock);
986 xfs_perag_put(pag);
987 }
988
989 /*
990 * if we skipped any AG, and we still have scan count remaining, do
991 * another pass this time using blocking reclaim semantics (i.e
992 * waiting on the reclaim locks and ignoring the reclaim cursors). This
993 * ensure that when we get more reclaimers than AGs we block rather
994 * than spin trying to execute reclaim.
995 */
996 if (trylock && skipped && *nr_to_scan > 0) {
997 trylock = 0;
998 goto restart;
999 }
1000 return XFS_ERROR(last_error);
1001 }
1002
1003 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1004 xfs_reclaim_inodes(
1005 xfs_mount_t *mp,
1006 int mode)
1007 {
1008 int nr_to_scan = INT_MAX;
1009
1010 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1011 }
1012
1013 /*
1014 * Inode cache shrinker.
1015 *
1016 * When called we make sure that there is a background (fast) inode reclaim in
1017 * progress, while we will throttle the speed of reclaim via doiing synchronous
1018 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1019 * them to be cleaned, which we hope will not be very long due to the
1020 * background walker having already kicked the IO off on those dirty inodes.
1021 */
1022 static int
xfs_reclaim_inode_shrink(struct shrinker * shrink,int nr_to_scan,gfp_t gfp_mask)1023 xfs_reclaim_inode_shrink(
1024 struct shrinker *shrink,
1025 int nr_to_scan,
1026 gfp_t gfp_mask)
1027 {
1028 struct xfs_mount *mp;
1029 struct xfs_perag *pag;
1030 xfs_agnumber_t ag;
1031 int reclaimable;
1032
1033 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
1034 if (nr_to_scan) {
1035 /* kick background reclaimer and push the AIL */
1036 xfs_syncd_queue_reclaim(mp);
1037 xfs_ail_push_all(mp->m_ail);
1038
1039 if (!(gfp_mask & __GFP_FS))
1040 return -1;
1041
1042 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT,
1043 &nr_to_scan);
1044 /* terminate if we don't exhaust the scan */
1045 if (nr_to_scan > 0)
1046 return -1;
1047 }
1048
1049 reclaimable = 0;
1050 ag = 0;
1051 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1052 ag = pag->pag_agno + 1;
1053 reclaimable += pag->pag_ici_reclaimable;
1054 xfs_perag_put(pag);
1055 }
1056 return reclaimable;
1057 }
1058
1059 void
xfs_inode_shrinker_register(struct xfs_mount * mp)1060 xfs_inode_shrinker_register(
1061 struct xfs_mount *mp)
1062 {
1063 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1064 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1065 register_shrinker(&mp->m_inode_shrink);
1066 }
1067
1068 void
xfs_inode_shrinker_unregister(struct xfs_mount * mp)1069 xfs_inode_shrinker_unregister(
1070 struct xfs_mount *mp)
1071 {
1072 unregister_shrinker(&mp->m_inode_shrink);
1073 }
1074