1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 /* local functions to manipulate grant head */
71 STATIC int  xlog_grant_log_space(xlog_t		*log,
72 				 xlog_ticket_t	*xtic);
73 STATIC void xlog_grant_push_ail(struct log	*log,
74 				int		need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
76 					   xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t		*log,
78 					 xlog_ticket_t  *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
80 				   xlog_ticket_t *ticket);
81 
82 #if defined(DEBUG)
83 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void	xlog_verify_grant_tail(struct log *log);
85 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 				  int count, boolean_t syncing);
87 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 				     xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
95 
96 STATIC int	xlog_iclogs_empty(xlog_t *log);
97 
98 static void
xlog_grant_sub_space(struct log * log,atomic64_t * head,int bytes)99 xlog_grant_sub_space(
100 	struct log	*log,
101 	atomic64_t	*head,
102 	int		bytes)
103 {
104 	int64_t	head_val = atomic64_read(head);
105 	int64_t new, old;
106 
107 	do {
108 		int	cycle, space;
109 
110 		xlog_crack_grant_head_val(head_val, &cycle, &space);
111 
112 		space -= bytes;
113 		if (space < 0) {
114 			space += log->l_logsize;
115 			cycle--;
116 		}
117 
118 		old = head_val;
119 		new = xlog_assign_grant_head_val(cycle, space);
120 		head_val = atomic64_cmpxchg(head, old, new);
121 	} while (head_val != old);
122 }
123 
124 static void
xlog_grant_add_space(struct log * log,atomic64_t * head,int bytes)125 xlog_grant_add_space(
126 	struct log	*log,
127 	atomic64_t	*head,
128 	int		bytes)
129 {
130 	int64_t	head_val = atomic64_read(head);
131 	int64_t new, old;
132 
133 	do {
134 		int		tmp;
135 		int		cycle, space;
136 
137 		xlog_crack_grant_head_val(head_val, &cycle, &space);
138 
139 		tmp = log->l_logsize - space;
140 		if (tmp > bytes)
141 			space += bytes;
142 		else {
143 			space = bytes - tmp;
144 			cycle++;
145 		}
146 
147 		old = head_val;
148 		new = xlog_assign_grant_head_val(cycle, space);
149 		head_val = atomic64_cmpxchg(head, old, new);
150 	} while (head_val != old);
151 }
152 
153 static void
xlog_tic_reset_res(xlog_ticket_t * tic)154 xlog_tic_reset_res(xlog_ticket_t *tic)
155 {
156 	tic->t_res_num = 0;
157 	tic->t_res_arr_sum = 0;
158 	tic->t_res_num_ophdrs = 0;
159 }
160 
161 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)162 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
163 {
164 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
165 		/* add to overflow and start again */
166 		tic->t_res_o_flow += tic->t_res_arr_sum;
167 		tic->t_res_num = 0;
168 		tic->t_res_arr_sum = 0;
169 	}
170 
171 	tic->t_res_arr[tic->t_res_num].r_len = len;
172 	tic->t_res_arr[tic->t_res_num].r_type = type;
173 	tic->t_res_arr_sum += len;
174 	tic->t_res_num++;
175 }
176 
177 /*
178  * NOTES:
179  *
180  *	1. currblock field gets updated at startup and after in-core logs
181  *		marked as with WANT_SYNC.
182  */
183 
184 /*
185  * This routine is called when a user of a log manager ticket is done with
186  * the reservation.  If the ticket was ever used, then a commit record for
187  * the associated transaction is written out as a log operation header with
188  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
189  * a given ticket.  If the ticket was one with a permanent reservation, then
190  * a few operations are done differently.  Permanent reservation tickets by
191  * default don't release the reservation.  They just commit the current
192  * transaction with the belief that the reservation is still needed.  A flag
193  * must be passed in before permanent reservations are actually released.
194  * When these type of tickets are not released, they need to be set into
195  * the inited state again.  By doing this, a start record will be written
196  * out when the next write occurs.
197  */
198 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,uint flags)199 xfs_log_done(
200 	struct xfs_mount	*mp,
201 	struct xlog_ticket	*ticket,
202 	struct xlog_in_core	**iclog,
203 	uint			flags)
204 {
205 	struct log		*log = mp->m_log;
206 	xfs_lsn_t		lsn = 0;
207 
208 	if (XLOG_FORCED_SHUTDOWN(log) ||
209 	    /*
210 	     * If nothing was ever written, don't write out commit record.
211 	     * If we get an error, just continue and give back the log ticket.
212 	     */
213 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
214 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
215 		lsn = (xfs_lsn_t) -1;
216 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
217 			flags |= XFS_LOG_REL_PERM_RESERV;
218 		}
219 	}
220 
221 
222 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
223 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
224 		trace_xfs_log_done_nonperm(log, ticket);
225 
226 		/*
227 		 * Release ticket if not permanent reservation or a specific
228 		 * request has been made to release a permanent reservation.
229 		 */
230 		xlog_ungrant_log_space(log, ticket);
231 		xfs_log_ticket_put(ticket);
232 	} else {
233 		trace_xfs_log_done_perm(log, ticket);
234 
235 		xlog_regrant_reserve_log_space(log, ticket);
236 		/* If this ticket was a permanent reservation and we aren't
237 		 * trying to release it, reset the inited flags; so next time
238 		 * we write, a start record will be written out.
239 		 */
240 		ticket->t_flags |= XLOG_TIC_INITED;
241 	}
242 
243 	return lsn;
244 }
245 
246 /*
247  * Attaches a new iclog I/O completion callback routine during
248  * transaction commit.  If the log is in error state, a non-zero
249  * return code is handed back and the caller is responsible for
250  * executing the callback at an appropriate time.
251  */
252 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)253 xfs_log_notify(
254 	struct xfs_mount	*mp,
255 	struct xlog_in_core	*iclog,
256 	xfs_log_callback_t	*cb)
257 {
258 	int	abortflg;
259 
260 	spin_lock(&iclog->ic_callback_lock);
261 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
262 	if (!abortflg) {
263 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
264 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
265 		cb->cb_next = NULL;
266 		*(iclog->ic_callback_tail) = cb;
267 		iclog->ic_callback_tail = &(cb->cb_next);
268 	}
269 	spin_unlock(&iclog->ic_callback_lock);
270 	return abortflg;
271 }
272 
273 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)274 xfs_log_release_iclog(
275 	struct xfs_mount	*mp,
276 	struct xlog_in_core	*iclog)
277 {
278 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
279 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
280 		return EIO;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  *  1. Reserve an amount of on-disk log space and return a ticket corresponding
288  *	to the reservation.
289  *  2. Potentially, push buffers at tail of log to disk.
290  *
291  * Each reservation is going to reserve extra space for a log record header.
292  * When writes happen to the on-disk log, we don't subtract the length of the
293  * log record header from any reservation.  By wasting space in each
294  * reservation, we prevent over allocation problems.
295  */
296 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticket,__uint8_t client,uint flags,uint t_type)297 xfs_log_reserve(
298 	struct xfs_mount	*mp,
299 	int		 	unit_bytes,
300 	int		 	cnt,
301 	struct xlog_ticket	**ticket,
302 	__uint8_t	 	client,
303 	uint		 	flags,
304 	uint		 	t_type)
305 {
306 	struct log		*log = mp->m_log;
307 	struct xlog_ticket	*internal_ticket;
308 	int			retval = 0;
309 
310 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
311 
312 	if (XLOG_FORCED_SHUTDOWN(log))
313 		return XFS_ERROR(EIO);
314 
315 	XFS_STATS_INC(xs_try_logspace);
316 
317 
318 	if (*ticket != NULL) {
319 		ASSERT(flags & XFS_LOG_PERM_RESERV);
320 		internal_ticket = *ticket;
321 
322 		/*
323 		 * this is a new transaction on the ticket, so we need to
324 		 * change the transaction ID so that the next transaction has a
325 		 * different TID in the log. Just add one to the existing tid
326 		 * so that we can see chains of rolling transactions in the log
327 		 * easily.
328 		 */
329 		internal_ticket->t_tid++;
330 
331 		trace_xfs_log_reserve(log, internal_ticket);
332 
333 		xlog_grant_push_ail(log, internal_ticket->t_unit_res);
334 		retval = xlog_regrant_write_log_space(log, internal_ticket);
335 	} else {
336 		/* may sleep if need to allocate more tickets */
337 		internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
338 						  client, flags,
339 						  KM_SLEEP|KM_MAYFAIL);
340 		if (!internal_ticket)
341 			return XFS_ERROR(ENOMEM);
342 		internal_ticket->t_trans_type = t_type;
343 		*ticket = internal_ticket;
344 
345 		trace_xfs_log_reserve(log, internal_ticket);
346 
347 		xlog_grant_push_ail(log,
348 				    (internal_ticket->t_unit_res *
349 				     internal_ticket->t_cnt));
350 		retval = xlog_grant_log_space(log, internal_ticket);
351 	}
352 
353 	return retval;
354 }	/* xfs_log_reserve */
355 
356 
357 /*
358  * Mount a log filesystem
359  *
360  * mp		- ubiquitous xfs mount point structure
361  * log_target	- buftarg of on-disk log device
362  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
363  * num_bblocks	- Number of BBSIZE blocks in on-disk log
364  *
365  * Return error or zero.
366  */
367 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)368 xfs_log_mount(
369 	xfs_mount_t	*mp,
370 	xfs_buftarg_t	*log_target,
371 	xfs_daddr_t	blk_offset,
372 	int		num_bblks)
373 {
374 	int		error;
375 
376 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
377 		xfs_notice(mp, "Mounting Filesystem");
378 	else {
379 		xfs_notice(mp,
380 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
381 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
382 	}
383 
384 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
385 	if (IS_ERR(mp->m_log)) {
386 		error = -PTR_ERR(mp->m_log);
387 		goto out;
388 	}
389 
390 	/*
391 	 * Initialize the AIL now we have a log.
392 	 */
393 	error = xfs_trans_ail_init(mp);
394 	if (error) {
395 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
396 		goto out_free_log;
397 	}
398 	mp->m_log->l_ailp = mp->m_ail;
399 
400 	/*
401 	 * skip log recovery on a norecovery mount.  pretend it all
402 	 * just worked.
403 	 */
404 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
405 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
406 
407 		if (readonly)
408 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
409 
410 		error = xlog_recover(mp->m_log);
411 
412 		if (readonly)
413 			mp->m_flags |= XFS_MOUNT_RDONLY;
414 		if (error) {
415 			xfs_warn(mp, "log mount/recovery failed: error %d",
416 				error);
417 			goto out_destroy_ail;
418 		}
419 	}
420 
421 	/* Normal transactions can now occur */
422 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
423 
424 	/*
425 	 * Now the log has been fully initialised and we know were our
426 	 * space grant counters are, we can initialise the permanent ticket
427 	 * needed for delayed logging to work.
428 	 */
429 	xlog_cil_init_post_recovery(mp->m_log);
430 
431 	return 0;
432 
433 out_destroy_ail:
434 	xfs_trans_ail_destroy(mp);
435 out_free_log:
436 	xlog_dealloc_log(mp->m_log);
437 out:
438 	return error;
439 }
440 
441 /*
442  * Finish the recovery of the file system.  This is separate from
443  * the xfs_log_mount() call, because it depends on the code in
444  * xfs_mountfs() to read in the root and real-time bitmap inodes
445  * between calling xfs_log_mount() and here.
446  *
447  * mp		- ubiquitous xfs mount point structure
448  */
449 int
xfs_log_mount_finish(xfs_mount_t * mp)450 xfs_log_mount_finish(xfs_mount_t *mp)
451 {
452 	int	error;
453 
454 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
455 		error = xlog_recover_finish(mp->m_log);
456 	else {
457 		error = 0;
458 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
459 	}
460 
461 	return error;
462 }
463 
464 /*
465  * Final log writes as part of unmount.
466  *
467  * Mark the filesystem clean as unmount happens.  Note that during relocation
468  * this routine needs to be executed as part of source-bag while the
469  * deallocation must not be done until source-end.
470  */
471 
472 /*
473  * Unmount record used to have a string "Unmount filesystem--" in the
474  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
475  * We just write the magic number now since that particular field isn't
476  * currently architecture converted and "nUmount" is a bit foo.
477  * As far as I know, there weren't any dependencies on the old behaviour.
478  */
479 
480 int
xfs_log_unmount_write(xfs_mount_t * mp)481 xfs_log_unmount_write(xfs_mount_t *mp)
482 {
483 	xlog_t		 *log = mp->m_log;
484 	xlog_in_core_t	 *iclog;
485 #ifdef DEBUG
486 	xlog_in_core_t	 *first_iclog;
487 #endif
488 	xlog_ticket_t	*tic = NULL;
489 	xfs_lsn_t	 lsn;
490 	int		 error;
491 
492 	/*
493 	 * Don't write out unmount record on read-only mounts.
494 	 * Or, if we are doing a forced umount (typically because of IO errors).
495 	 */
496 	if (mp->m_flags & XFS_MOUNT_RDONLY)
497 		return 0;
498 
499 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
500 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
501 
502 #ifdef DEBUG
503 	first_iclog = iclog = log->l_iclog;
504 	do {
505 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
506 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
507 			ASSERT(iclog->ic_offset == 0);
508 		}
509 		iclog = iclog->ic_next;
510 	} while (iclog != first_iclog);
511 #endif
512 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
513 		error = xfs_log_reserve(mp, 600, 1, &tic,
514 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
515 		if (!error) {
516 			/* the data section must be 32 bit size aligned */
517 			struct {
518 			    __uint16_t magic;
519 			    __uint16_t pad1;
520 			    __uint32_t pad2; /* may as well make it 64 bits */
521 			} magic = {
522 				.magic = XLOG_UNMOUNT_TYPE,
523 			};
524 			struct xfs_log_iovec reg = {
525 				.i_addr = &magic,
526 				.i_len = sizeof(magic),
527 				.i_type = XLOG_REG_TYPE_UNMOUNT,
528 			};
529 			struct xfs_log_vec vec = {
530 				.lv_niovecs = 1,
531 				.lv_iovecp = &reg,
532 			};
533 
534 			/* remove inited flag */
535 			tic->t_flags = 0;
536 			error = xlog_write(log, &vec, tic, &lsn,
537 					   NULL, XLOG_UNMOUNT_TRANS);
538 			/*
539 			 * At this point, we're umounting anyway,
540 			 * so there's no point in transitioning log state
541 			 * to IOERROR. Just continue...
542 			 */
543 		}
544 
545 		if (error)
546 			xfs_alert(mp, "%s: unmount record failed", __func__);
547 
548 
549 		spin_lock(&log->l_icloglock);
550 		iclog = log->l_iclog;
551 		atomic_inc(&iclog->ic_refcnt);
552 		xlog_state_want_sync(log, iclog);
553 		spin_unlock(&log->l_icloglock);
554 		error = xlog_state_release_iclog(log, iclog);
555 
556 		spin_lock(&log->l_icloglock);
557 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
558 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
559 			if (!XLOG_FORCED_SHUTDOWN(log)) {
560 				xlog_wait(&iclog->ic_force_wait,
561 							&log->l_icloglock);
562 			} else {
563 				spin_unlock(&log->l_icloglock);
564 			}
565 		} else {
566 			spin_unlock(&log->l_icloglock);
567 		}
568 		if (tic) {
569 			trace_xfs_log_umount_write(log, tic);
570 			xlog_ungrant_log_space(log, tic);
571 			xfs_log_ticket_put(tic);
572 		}
573 	} else {
574 		/*
575 		 * We're already in forced_shutdown mode, couldn't
576 		 * even attempt to write out the unmount transaction.
577 		 *
578 		 * Go through the motions of sync'ing and releasing
579 		 * the iclog, even though no I/O will actually happen,
580 		 * we need to wait for other log I/Os that may already
581 		 * be in progress.  Do this as a separate section of
582 		 * code so we'll know if we ever get stuck here that
583 		 * we're in this odd situation of trying to unmount
584 		 * a file system that went into forced_shutdown as
585 		 * the result of an unmount..
586 		 */
587 		spin_lock(&log->l_icloglock);
588 		iclog = log->l_iclog;
589 		atomic_inc(&iclog->ic_refcnt);
590 
591 		xlog_state_want_sync(log, iclog);
592 		spin_unlock(&log->l_icloglock);
593 		error =  xlog_state_release_iclog(log, iclog);
594 
595 		spin_lock(&log->l_icloglock);
596 
597 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
598 			|| iclog->ic_state == XLOG_STATE_DIRTY
599 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
600 
601 				xlog_wait(&iclog->ic_force_wait,
602 							&log->l_icloglock);
603 		} else {
604 			spin_unlock(&log->l_icloglock);
605 		}
606 	}
607 
608 	return error;
609 }	/* xfs_log_unmount_write */
610 
611 /*
612  * Deallocate log structures for unmount/relocation.
613  *
614  * We need to stop the aild from running before we destroy
615  * and deallocate the log as the aild references the log.
616  */
617 void
xfs_log_unmount(xfs_mount_t * mp)618 xfs_log_unmount(xfs_mount_t *mp)
619 {
620 	xfs_trans_ail_destroy(mp);
621 	xlog_dealloc_log(mp->m_log);
622 }
623 
624 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,struct xfs_item_ops * ops)625 xfs_log_item_init(
626 	struct xfs_mount	*mp,
627 	struct xfs_log_item	*item,
628 	int			type,
629 	struct xfs_item_ops	*ops)
630 {
631 	item->li_mountp = mp;
632 	item->li_ailp = mp->m_ail;
633 	item->li_type = type;
634 	item->li_ops = ops;
635 	item->li_lv = NULL;
636 
637 	INIT_LIST_HEAD(&item->li_ail);
638 	INIT_LIST_HEAD(&item->li_cil);
639 }
640 
641 /*
642  * Write region vectors to log.  The write happens using the space reservation
643  * of the ticket (tic).  It is not a requirement that all writes for a given
644  * transaction occur with one call to xfs_log_write(). However, it is important
645  * to note that the transaction reservation code makes an assumption about the
646  * number of log headers a transaction requires that may be violated if you
647  * don't pass all the transaction vectors in one call....
648  */
649 int
xfs_log_write(struct xfs_mount * mp,struct xfs_log_iovec reg[],int nentries,struct xlog_ticket * tic,xfs_lsn_t * start_lsn)650 xfs_log_write(
651 	struct xfs_mount	*mp,
652 	struct xfs_log_iovec	reg[],
653 	int			nentries,
654 	struct xlog_ticket	*tic,
655 	xfs_lsn_t		*start_lsn)
656 {
657 	struct log		*log = mp->m_log;
658 	int			error;
659 	struct xfs_log_vec	vec = {
660 		.lv_niovecs = nentries,
661 		.lv_iovecp = reg,
662 	};
663 
664 	if (XLOG_FORCED_SHUTDOWN(log))
665 		return XFS_ERROR(EIO);
666 
667 	error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
668 	if (error)
669 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
670 	return error;
671 }
672 
673 void
xfs_log_move_tail(xfs_mount_t * mp,xfs_lsn_t tail_lsn)674 xfs_log_move_tail(xfs_mount_t	*mp,
675 		  xfs_lsn_t	tail_lsn)
676 {
677 	xlog_ticket_t	*tic;
678 	xlog_t		*log = mp->m_log;
679 	int		need_bytes, free_bytes;
680 
681 	if (XLOG_FORCED_SHUTDOWN(log))
682 		return;
683 
684 	if (tail_lsn == 0)
685 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
686 
687 	/* tail_lsn == 1 implies that we weren't passed a valid value.  */
688 	if (tail_lsn != 1)
689 		atomic64_set(&log->l_tail_lsn, tail_lsn);
690 
691 	if (!list_empty_careful(&log->l_writeq)) {
692 #ifdef DEBUG
693 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
694 			panic("Recovery problem");
695 #endif
696 		spin_lock(&log->l_grant_write_lock);
697 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
698 		list_for_each_entry(tic, &log->l_writeq, t_queue) {
699 			ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
700 
701 			if (free_bytes < tic->t_unit_res && tail_lsn != 1)
702 				break;
703 			tail_lsn = 0;
704 			free_bytes -= tic->t_unit_res;
705 			trace_xfs_log_regrant_write_wake_up(log, tic);
706 			wake_up(&tic->t_wait);
707 		}
708 		spin_unlock(&log->l_grant_write_lock);
709 	}
710 
711 	if (!list_empty_careful(&log->l_reserveq)) {
712 #ifdef DEBUG
713 		if (log->l_flags & XLOG_ACTIVE_RECOVERY)
714 			panic("Recovery problem");
715 #endif
716 		spin_lock(&log->l_grant_reserve_lock);
717 		free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
718 		list_for_each_entry(tic, &log->l_reserveq, t_queue) {
719 			if (tic->t_flags & XLOG_TIC_PERM_RESERV)
720 				need_bytes = tic->t_unit_res*tic->t_cnt;
721 			else
722 				need_bytes = tic->t_unit_res;
723 			if (free_bytes < need_bytes && tail_lsn != 1)
724 				break;
725 			tail_lsn = 0;
726 			free_bytes -= need_bytes;
727 			trace_xfs_log_grant_wake_up(log, tic);
728 			wake_up(&tic->t_wait);
729 		}
730 		spin_unlock(&log->l_grant_reserve_lock);
731 	}
732 }
733 
734 /*
735  * Determine if we have a transaction that has gone to disk
736  * that needs to be covered. To begin the transition to the idle state
737  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
738  * If we are then in a state where covering is needed, the caller is informed
739  * that dummy transactions are required to move the log into the idle state.
740  *
741  * Because this is called as part of the sync process, we should also indicate
742  * that dummy transactions should be issued in anything but the covered or
743  * idle states. This ensures that the log tail is accurately reflected in
744  * the log at the end of the sync, hence if a crash occurrs avoids replay
745  * of transactions where the metadata is already on disk.
746  */
747 int
xfs_log_need_covered(xfs_mount_t * mp)748 xfs_log_need_covered(xfs_mount_t *mp)
749 {
750 	int		needed = 0;
751 	xlog_t		*log = mp->m_log;
752 
753 	if (!xfs_fs_writable(mp))
754 		return 0;
755 
756 	spin_lock(&log->l_icloglock);
757 	switch (log->l_covered_state) {
758 	case XLOG_STATE_COVER_DONE:
759 	case XLOG_STATE_COVER_DONE2:
760 	case XLOG_STATE_COVER_IDLE:
761 		break;
762 	case XLOG_STATE_COVER_NEED:
763 	case XLOG_STATE_COVER_NEED2:
764 		if (!xfs_ail_min_lsn(log->l_ailp) &&
765 		    xlog_iclogs_empty(log)) {
766 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
767 				log->l_covered_state = XLOG_STATE_COVER_DONE;
768 			else
769 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
770 		}
771 		/* FALLTHRU */
772 	default:
773 		needed = 1;
774 		break;
775 	}
776 	spin_unlock(&log->l_icloglock);
777 	return needed;
778 }
779 
780 /******************************************************************************
781  *
782  *	local routines
783  *
784  ******************************************************************************
785  */
786 
787 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
788  * The log manager must keep track of the last LR which was committed
789  * to disk.  The lsn of this LR will become the new tail_lsn whenever
790  * xfs_trans_tail_ail returns 0.  If we don't do this, we run into
791  * the situation where stuff could be written into the log but nothing
792  * was ever in the AIL when asked.  Eventually, we panic since the
793  * tail hits the head.
794  *
795  * We may be holding the log iclog lock upon entering this routine.
796  */
797 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)798 xlog_assign_tail_lsn(
799 	struct xfs_mount	*mp)
800 {
801 	xfs_lsn_t		tail_lsn;
802 	struct log		*log = mp->m_log;
803 
804 	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
805 	if (!tail_lsn)
806 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
807 
808 	atomic64_set(&log->l_tail_lsn, tail_lsn);
809 	return tail_lsn;
810 }
811 
812 /*
813  * Return the space in the log between the tail and the head.  The head
814  * is passed in the cycle/bytes formal parms.  In the special case where
815  * the reserve head has wrapped passed the tail, this calculation is no
816  * longer valid.  In this case, just return 0 which means there is no space
817  * in the log.  This works for all places where this function is called
818  * with the reserve head.  Of course, if the write head were to ever
819  * wrap the tail, we should blow up.  Rather than catch this case here,
820  * we depend on other ASSERTions in other parts of the code.   XXXmiken
821  *
822  * This code also handles the case where the reservation head is behind
823  * the tail.  The details of this case are described below, but the end
824  * result is that we return the size of the log as the amount of space left.
825  */
826 STATIC int
xlog_space_left(struct log * log,atomic64_t * head)827 xlog_space_left(
828 	struct log	*log,
829 	atomic64_t	*head)
830 {
831 	int		free_bytes;
832 	int		tail_bytes;
833 	int		tail_cycle;
834 	int		head_cycle;
835 	int		head_bytes;
836 
837 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
838 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
839 	tail_bytes = BBTOB(tail_bytes);
840 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
841 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
842 	else if (tail_cycle + 1 < head_cycle)
843 		return 0;
844 	else if (tail_cycle < head_cycle) {
845 		ASSERT(tail_cycle == (head_cycle - 1));
846 		free_bytes = tail_bytes - head_bytes;
847 	} else {
848 		/*
849 		 * The reservation head is behind the tail.
850 		 * In this case we just want to return the size of the
851 		 * log as the amount of space left.
852 		 */
853 		xfs_alert(log->l_mp,
854 			"xlog_space_left: head behind tail\n"
855 			"  tail_cycle = %d, tail_bytes = %d\n"
856 			"  GH   cycle = %d, GH   bytes = %d",
857 			tail_cycle, tail_bytes, head_cycle, head_bytes);
858 		ASSERT(0);
859 		free_bytes = log->l_logsize;
860 	}
861 	return free_bytes;
862 }
863 
864 
865 /*
866  * Log function which is called when an io completes.
867  *
868  * The log manager needs its own routine, in order to control what
869  * happens with the buffer after the write completes.
870  */
871 void
xlog_iodone(xfs_buf_t * bp)872 xlog_iodone(xfs_buf_t *bp)
873 {
874 	xlog_in_core_t	*iclog;
875 	xlog_t		*l;
876 	int		aborted;
877 
878 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
879 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2);
880 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
881 	aborted = 0;
882 	l = iclog->ic_log;
883 
884 	/*
885 	 * Race to shutdown the filesystem if we see an error.
886 	 */
887 	if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp,
888 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
889 		xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp));
890 		XFS_BUF_STALE(bp);
891 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
892 		/*
893 		 * This flag will be propagated to the trans-committed
894 		 * callback routines to let them know that the log-commit
895 		 * didn't succeed.
896 		 */
897 		aborted = XFS_LI_ABORTED;
898 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
899 		aborted = XFS_LI_ABORTED;
900 	}
901 
902 	/* log I/O is always issued ASYNC */
903 	ASSERT(XFS_BUF_ISASYNC(bp));
904 	xlog_state_done_syncing(iclog, aborted);
905 	/*
906 	 * do not reference the buffer (bp) here as we could race
907 	 * with it being freed after writing the unmount record to the
908 	 * log.
909 	 */
910 
911 }	/* xlog_iodone */
912 
913 /*
914  * Return size of each in-core log record buffer.
915  *
916  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
917  *
918  * If the filesystem blocksize is too large, we may need to choose a
919  * larger size since the directory code currently logs entire blocks.
920  */
921 
922 STATIC void
xlog_get_iclog_buffer_size(xfs_mount_t * mp,xlog_t * log)923 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
924 			   xlog_t	*log)
925 {
926 	int size;
927 	int xhdrs;
928 
929 	if (mp->m_logbufs <= 0)
930 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
931 	else
932 		log->l_iclog_bufs = mp->m_logbufs;
933 
934 	/*
935 	 * Buffer size passed in from mount system call.
936 	 */
937 	if (mp->m_logbsize > 0) {
938 		size = log->l_iclog_size = mp->m_logbsize;
939 		log->l_iclog_size_log = 0;
940 		while (size != 1) {
941 			log->l_iclog_size_log++;
942 			size >>= 1;
943 		}
944 
945 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
946 			/* # headers = size / 32k
947 			 * one header holds cycles from 32k of data
948 			 */
949 
950 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
951 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
952 				xhdrs++;
953 			log->l_iclog_hsize = xhdrs << BBSHIFT;
954 			log->l_iclog_heads = xhdrs;
955 		} else {
956 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
957 			log->l_iclog_hsize = BBSIZE;
958 			log->l_iclog_heads = 1;
959 		}
960 		goto done;
961 	}
962 
963 	/* All machines use 32kB buffers by default. */
964 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
965 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
966 
967 	/* the default log size is 16k or 32k which is one header sector */
968 	log->l_iclog_hsize = BBSIZE;
969 	log->l_iclog_heads = 1;
970 
971 done:
972 	/* are we being asked to make the sizes selected above visible? */
973 	if (mp->m_logbufs == 0)
974 		mp->m_logbufs = log->l_iclog_bufs;
975 	if (mp->m_logbsize == 0)
976 		mp->m_logbsize = log->l_iclog_size;
977 }	/* xlog_get_iclog_buffer_size */
978 
979 
980 /*
981  * This routine initializes some of the log structure for a given mount point.
982  * Its primary purpose is to fill in enough, so recovery can occur.  However,
983  * some other stuff may be filled in too.
984  */
985 STATIC xlog_t *
xlog_alloc_log(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)986 xlog_alloc_log(xfs_mount_t	*mp,
987 	       xfs_buftarg_t	*log_target,
988 	       xfs_daddr_t	blk_offset,
989 	       int		num_bblks)
990 {
991 	xlog_t			*log;
992 	xlog_rec_header_t	*head;
993 	xlog_in_core_t		**iclogp;
994 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
995 	xfs_buf_t		*bp;
996 	int			i;
997 	int			error = ENOMEM;
998 	uint			log2_size = 0;
999 
1000 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1001 	if (!log) {
1002 		xfs_warn(mp, "Log allocation failed: No memory!");
1003 		goto out;
1004 	}
1005 
1006 	log->l_mp	   = mp;
1007 	log->l_targ	   = log_target;
1008 	log->l_logsize     = BBTOB(num_bblks);
1009 	log->l_logBBstart  = blk_offset;
1010 	log->l_logBBsize   = num_bblks;
1011 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1012 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1013 
1014 	log->l_prev_block  = -1;
1015 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1016 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1017 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1018 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1019 	xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1020 	xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1021 	INIT_LIST_HEAD(&log->l_reserveq);
1022 	INIT_LIST_HEAD(&log->l_writeq);
1023 	spin_lock_init(&log->l_grant_reserve_lock);
1024 	spin_lock_init(&log->l_grant_write_lock);
1025 
1026 	error = EFSCORRUPTED;
1027 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1028 	        log2_size = mp->m_sb.sb_logsectlog;
1029 		if (log2_size < BBSHIFT) {
1030 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1031 				log2_size, BBSHIFT);
1032 			goto out_free_log;
1033 		}
1034 
1035 	        log2_size -= BBSHIFT;
1036 		if (log2_size > mp->m_sectbb_log) {
1037 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1038 				log2_size, mp->m_sectbb_log);
1039 			goto out_free_log;
1040 		}
1041 
1042 		/* for larger sector sizes, must have v2 or external log */
1043 		if (log2_size && log->l_logBBstart > 0 &&
1044 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1045 			xfs_warn(mp,
1046 		"log sector size (0x%x) invalid for configuration.",
1047 				log2_size);
1048 			goto out_free_log;
1049 		}
1050 	}
1051 	log->l_sectBBsize = 1 << log2_size;
1052 
1053 	xlog_get_iclog_buffer_size(mp, log);
1054 
1055 	error = ENOMEM;
1056 	bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp);
1057 	if (!bp)
1058 		goto out_free_log;
1059 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1060 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1061 	ASSERT(XFS_BUF_ISBUSY(bp));
1062 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
1063 	log->l_xbuf = bp;
1064 
1065 	spin_lock_init(&log->l_icloglock);
1066 	init_waitqueue_head(&log->l_flush_wait);
1067 
1068 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1069 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1070 
1071 	iclogp = &log->l_iclog;
1072 	/*
1073 	 * The amount of memory to allocate for the iclog structure is
1074 	 * rather funky due to the way the structure is defined.  It is
1075 	 * done this way so that we can use different sizes for machines
1076 	 * with different amounts of memory.  See the definition of
1077 	 * xlog_in_core_t in xfs_log_priv.h for details.
1078 	 */
1079 	ASSERT(log->l_iclog_size >= 4096);
1080 	for (i=0; i < log->l_iclog_bufs; i++) {
1081 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1082 		if (!*iclogp)
1083 			goto out_free_iclog;
1084 
1085 		iclog = *iclogp;
1086 		iclog->ic_prev = prev_iclog;
1087 		prev_iclog = iclog;
1088 
1089 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1090 						log->l_iclog_size, 0);
1091 		if (!bp)
1092 			goto out_free_iclog;
1093 		if (!XFS_BUF_CPSEMA(bp))
1094 			ASSERT(0);
1095 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone);
1096 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1);
1097 		iclog->ic_bp = bp;
1098 		iclog->ic_data = bp->b_addr;
1099 #ifdef DEBUG
1100 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1101 #endif
1102 		head = &iclog->ic_header;
1103 		memset(head, 0, sizeof(xlog_rec_header_t));
1104 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1105 		head->h_version = cpu_to_be32(
1106 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1107 		head->h_size = cpu_to_be32(log->l_iclog_size);
1108 		/* new fields */
1109 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1110 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1111 
1112 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1113 		iclog->ic_state = XLOG_STATE_ACTIVE;
1114 		iclog->ic_log = log;
1115 		atomic_set(&iclog->ic_refcnt, 0);
1116 		spin_lock_init(&iclog->ic_callback_lock);
1117 		iclog->ic_callback_tail = &(iclog->ic_callback);
1118 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1119 
1120 		ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp));
1121 		ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0);
1122 		init_waitqueue_head(&iclog->ic_force_wait);
1123 		init_waitqueue_head(&iclog->ic_write_wait);
1124 
1125 		iclogp = &iclog->ic_next;
1126 	}
1127 	*iclogp = log->l_iclog;			/* complete ring */
1128 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1129 
1130 	error = xlog_cil_init(log);
1131 	if (error)
1132 		goto out_free_iclog;
1133 	return log;
1134 
1135 out_free_iclog:
1136 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1137 		prev_iclog = iclog->ic_next;
1138 		if (iclog->ic_bp)
1139 			xfs_buf_free(iclog->ic_bp);
1140 		kmem_free(iclog);
1141 	}
1142 	spinlock_destroy(&log->l_icloglock);
1143 	xfs_buf_free(log->l_xbuf);
1144 out_free_log:
1145 	kmem_free(log);
1146 out:
1147 	return ERR_PTR(-error);
1148 }	/* xlog_alloc_log */
1149 
1150 
1151 /*
1152  * Write out the commit record of a transaction associated with the given
1153  * ticket.  Return the lsn of the commit record.
1154  */
1155 STATIC int
xlog_commit_record(struct log * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1156 xlog_commit_record(
1157 	struct log		*log,
1158 	struct xlog_ticket	*ticket,
1159 	struct xlog_in_core	**iclog,
1160 	xfs_lsn_t		*commitlsnp)
1161 {
1162 	struct xfs_mount *mp = log->l_mp;
1163 	int	error;
1164 	struct xfs_log_iovec reg = {
1165 		.i_addr = NULL,
1166 		.i_len = 0,
1167 		.i_type = XLOG_REG_TYPE_COMMIT,
1168 	};
1169 	struct xfs_log_vec vec = {
1170 		.lv_niovecs = 1,
1171 		.lv_iovecp = &reg,
1172 	};
1173 
1174 	ASSERT_ALWAYS(iclog);
1175 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1176 					XLOG_COMMIT_TRANS);
1177 	if (error)
1178 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1179 	return error;
1180 }
1181 
1182 /*
1183  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1184  * log space.  This code pushes on the lsn which would supposedly free up
1185  * the 25% which we want to leave free.  We may need to adopt a policy which
1186  * pushes on an lsn which is further along in the log once we reach the high
1187  * water mark.  In this manner, we would be creating a low water mark.
1188  */
1189 STATIC void
xlog_grant_push_ail(struct log * log,int need_bytes)1190 xlog_grant_push_ail(
1191 	struct log	*log,
1192 	int		need_bytes)
1193 {
1194 	xfs_lsn_t	threshold_lsn = 0;
1195 	xfs_lsn_t	last_sync_lsn;
1196 	int		free_blocks;
1197 	int		free_bytes;
1198 	int		threshold_block;
1199 	int		threshold_cycle;
1200 	int		free_threshold;
1201 
1202 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1203 
1204 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1205 	free_blocks = BTOBBT(free_bytes);
1206 
1207 	/*
1208 	 * Set the threshold for the minimum number of free blocks in the
1209 	 * log to the maximum of what the caller needs, one quarter of the
1210 	 * log, and 256 blocks.
1211 	 */
1212 	free_threshold = BTOBB(need_bytes);
1213 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1214 	free_threshold = MAX(free_threshold, 256);
1215 	if (free_blocks >= free_threshold)
1216 		return;
1217 
1218 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1219 						&threshold_block);
1220 	threshold_block += free_threshold;
1221 	if (threshold_block >= log->l_logBBsize) {
1222 		threshold_block -= log->l_logBBsize;
1223 		threshold_cycle += 1;
1224 	}
1225 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1226 					threshold_block);
1227 	/*
1228 	 * Don't pass in an lsn greater than the lsn of the last
1229 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1230 	 * so that it doesn't change between the compare and the set.
1231 	 */
1232 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1233 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1234 		threshold_lsn = last_sync_lsn;
1235 
1236 	/*
1237 	 * Get the transaction layer to kick the dirty buffers out to
1238 	 * disk asynchronously. No point in trying to do this if
1239 	 * the filesystem is shutting down.
1240 	 */
1241 	if (!XLOG_FORCED_SHUTDOWN(log))
1242 		xfs_ail_push(log->l_ailp, threshold_lsn);
1243 }
1244 
1245 /*
1246  * The bdstrat callback function for log bufs. This gives us a central
1247  * place to trap bufs in case we get hit by a log I/O error and need to
1248  * shutdown. Actually, in practice, even when we didn't get a log error,
1249  * we transition the iclogs to IOERROR state *after* flushing all existing
1250  * iclogs to disk. This is because we don't want anymore new transactions to be
1251  * started or completed afterwards.
1252  */
1253 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1254 xlog_bdstrat(
1255 	struct xfs_buf		*bp)
1256 {
1257 	struct xlog_in_core	*iclog;
1258 
1259 	iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *);
1260 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1261 		XFS_BUF_ERROR(bp, EIO);
1262 		XFS_BUF_STALE(bp);
1263 		xfs_buf_ioend(bp, 0);
1264 		/*
1265 		 * It would seem logical to return EIO here, but we rely on
1266 		 * the log state machine to propagate I/O errors instead of
1267 		 * doing it here.
1268 		 */
1269 		return 0;
1270 	}
1271 
1272 	bp->b_flags |= _XBF_RUN_QUEUES;
1273 	xfs_buf_iorequest(bp);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1279  * fashion.  Previously, we should have moved the current iclog
1280  * ptr in the log to point to the next available iclog.  This allows further
1281  * write to continue while this code syncs out an iclog ready to go.
1282  * Before an in-core log can be written out, the data section must be scanned
1283  * to save away the 1st word of each BBSIZE block into the header.  We replace
1284  * it with the current cycle count.  Each BBSIZE block is tagged with the
1285  * cycle count because there in an implicit assumption that drives will
1286  * guarantee that entire 512 byte blocks get written at once.  In other words,
1287  * we can't have part of a 512 byte block written and part not written.  By
1288  * tagging each block, we will know which blocks are valid when recovering
1289  * after an unclean shutdown.
1290  *
1291  * This routine is single threaded on the iclog.  No other thread can be in
1292  * this routine with the same iclog.  Changing contents of iclog can there-
1293  * fore be done without grabbing the state machine lock.  Updating the global
1294  * log will require grabbing the lock though.
1295  *
1296  * The entire log manager uses a logical block numbering scheme.  Only
1297  * log_sync (and then only bwrite()) know about the fact that the log may
1298  * not start with block zero on a given device.  The log block start offset
1299  * is added immediately before calling bwrite().
1300  */
1301 
1302 STATIC int
xlog_sync(xlog_t * log,xlog_in_core_t * iclog)1303 xlog_sync(xlog_t		*log,
1304 	  xlog_in_core_t	*iclog)
1305 {
1306 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1307 	xfs_buf_t	*bp;
1308 	int		i;
1309 	uint		count;		/* byte count of bwrite */
1310 	uint		count_init;	/* initial count before roundup */
1311 	int		roundoff;       /* roundoff to BB or stripe */
1312 	int		split = 0;	/* split write into two regions */
1313 	int		error;
1314 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1315 
1316 	XFS_STATS_INC(xs_log_writes);
1317 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1318 
1319 	/* Add for LR header */
1320 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1321 
1322 	/* Round out the log write size */
1323 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1324 		/* we have a v2 stripe unit to use */
1325 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1326 	} else {
1327 		count = BBTOB(BTOBB(count_init));
1328 	}
1329 	roundoff = count - count_init;
1330 	ASSERT(roundoff >= 0);
1331 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1332                 roundoff < log->l_mp->m_sb.sb_logsunit)
1333 		||
1334 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1335 		 roundoff < BBTOB(1)));
1336 
1337 	/* move grant heads by roundoff in sync */
1338 	xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1339 	xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1340 
1341 	/* put cycle number in every block */
1342 	xlog_pack_data(log, iclog, roundoff);
1343 
1344 	/* real byte length */
1345 	if (v2) {
1346 		iclog->ic_header.h_len =
1347 			cpu_to_be32(iclog->ic_offset + roundoff);
1348 	} else {
1349 		iclog->ic_header.h_len =
1350 			cpu_to_be32(iclog->ic_offset);
1351 	}
1352 
1353 	bp = iclog->ic_bp;
1354 	ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1);
1355 	XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1356 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1357 
1358 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1359 
1360 	/* Do we need to split this write into 2 parts? */
1361 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1362 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1363 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1364 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1365 	} else {
1366 		iclog->ic_bwritecnt = 1;
1367 	}
1368 	XFS_BUF_SET_COUNT(bp, count);
1369 	XFS_BUF_SET_FSPRIVATE(bp, iclog);	/* save for later */
1370 	XFS_BUF_ZEROFLAGS(bp);
1371 	XFS_BUF_BUSY(bp);
1372 	XFS_BUF_ASYNC(bp);
1373 	bp->b_flags |= XBF_LOG_BUFFER;
1374 
1375 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1376 		XFS_BUF_ORDERED(bp);
1377 
1378 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1379 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1380 
1381 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1382 
1383 	/* account for log which doesn't start at block #0 */
1384 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1385 	/*
1386 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1387 	 * is shutting down.
1388 	 */
1389 	XFS_BUF_WRITE(bp);
1390 
1391 	if ((error = xlog_bdstrat(bp))) {
1392 		xfs_ioerror_alert("xlog_sync", log->l_mp, bp,
1393 				  XFS_BUF_ADDR(bp));
1394 		return error;
1395 	}
1396 	if (split) {
1397 		bp = iclog->ic_log->l_xbuf;
1398 		ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) ==
1399 							(unsigned long)1);
1400 		XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2);
1401 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1402 		XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+
1403 					    (__psint_t)count), split);
1404 		XFS_BUF_SET_FSPRIVATE(bp, iclog);
1405 		XFS_BUF_ZEROFLAGS(bp);
1406 		XFS_BUF_BUSY(bp);
1407 		XFS_BUF_ASYNC(bp);
1408 		bp->b_flags |= XBF_LOG_BUFFER;
1409 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1410 			XFS_BUF_ORDERED(bp);
1411 		dptr = XFS_BUF_PTR(bp);
1412 		/*
1413 		 * Bump the cycle numbers at the start of each block
1414 		 * since this part of the buffer is at the start of
1415 		 * a new cycle.  Watch out for the header magic number
1416 		 * case, though.
1417 		 */
1418 		for (i = 0; i < split; i += BBSIZE) {
1419 			be32_add_cpu((__be32 *)dptr, 1);
1420 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1421 				be32_add_cpu((__be32 *)dptr, 1);
1422 			dptr += BBSIZE;
1423 		}
1424 
1425 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1426 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1427 
1428 		/* account for internal log which doesn't start at block #0 */
1429 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1430 		XFS_BUF_WRITE(bp);
1431 		if ((error = xlog_bdstrat(bp))) {
1432 			xfs_ioerror_alert("xlog_sync (split)", log->l_mp,
1433 					  bp, XFS_BUF_ADDR(bp));
1434 			return error;
1435 		}
1436 	}
1437 	return 0;
1438 }	/* xlog_sync */
1439 
1440 
1441 /*
1442  * Deallocate a log structure
1443  */
1444 STATIC void
xlog_dealloc_log(xlog_t * log)1445 xlog_dealloc_log(xlog_t *log)
1446 {
1447 	xlog_in_core_t	*iclog, *next_iclog;
1448 	int		i;
1449 
1450 	xlog_cil_destroy(log);
1451 
1452 	iclog = log->l_iclog;
1453 	for (i=0; i<log->l_iclog_bufs; i++) {
1454 		xfs_buf_free(iclog->ic_bp);
1455 		next_iclog = iclog->ic_next;
1456 		kmem_free(iclog);
1457 		iclog = next_iclog;
1458 	}
1459 	spinlock_destroy(&log->l_icloglock);
1460 
1461 	xfs_buf_free(log->l_xbuf);
1462 	log->l_mp->m_log = NULL;
1463 	kmem_free(log);
1464 }	/* xlog_dealloc_log */
1465 
1466 /*
1467  * Update counters atomically now that memcpy is done.
1468  */
1469 /* ARGSUSED */
1470 static inline void
xlog_state_finish_copy(xlog_t * log,xlog_in_core_t * iclog,int record_cnt,int copy_bytes)1471 xlog_state_finish_copy(xlog_t		*log,
1472 		       xlog_in_core_t	*iclog,
1473 		       int		record_cnt,
1474 		       int		copy_bytes)
1475 {
1476 	spin_lock(&log->l_icloglock);
1477 
1478 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1479 	iclog->ic_offset += copy_bytes;
1480 
1481 	spin_unlock(&log->l_icloglock);
1482 }	/* xlog_state_finish_copy */
1483 
1484 
1485 
1486 
1487 /*
1488  * print out info relating to regions written which consume
1489  * the reservation
1490  */
1491 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1492 xlog_print_tic_res(
1493 	struct xfs_mount	*mp,
1494 	struct xlog_ticket	*ticket)
1495 {
1496 	uint i;
1497 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1498 
1499 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1500 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1501 	    "bformat",
1502 	    "bchunk",
1503 	    "efi_format",
1504 	    "efd_format",
1505 	    "iformat",
1506 	    "icore",
1507 	    "iext",
1508 	    "ibroot",
1509 	    "ilocal",
1510 	    "iattr_ext",
1511 	    "iattr_broot",
1512 	    "iattr_local",
1513 	    "qformat",
1514 	    "dquot",
1515 	    "quotaoff",
1516 	    "LR header",
1517 	    "unmount",
1518 	    "commit",
1519 	    "trans header"
1520 	};
1521 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1522 	    "SETATTR_NOT_SIZE",
1523 	    "SETATTR_SIZE",
1524 	    "INACTIVE",
1525 	    "CREATE",
1526 	    "CREATE_TRUNC",
1527 	    "TRUNCATE_FILE",
1528 	    "REMOVE",
1529 	    "LINK",
1530 	    "RENAME",
1531 	    "MKDIR",
1532 	    "RMDIR",
1533 	    "SYMLINK",
1534 	    "SET_DMATTRS",
1535 	    "GROWFS",
1536 	    "STRAT_WRITE",
1537 	    "DIOSTRAT",
1538 	    "WRITE_SYNC",
1539 	    "WRITEID",
1540 	    "ADDAFORK",
1541 	    "ATTRINVAL",
1542 	    "ATRUNCATE",
1543 	    "ATTR_SET",
1544 	    "ATTR_RM",
1545 	    "ATTR_FLAG",
1546 	    "CLEAR_AGI_BUCKET",
1547 	    "QM_SBCHANGE",
1548 	    "DUMMY1",
1549 	    "DUMMY2",
1550 	    "QM_QUOTAOFF",
1551 	    "QM_DQALLOC",
1552 	    "QM_SETQLIM",
1553 	    "QM_DQCLUSTER",
1554 	    "QM_QINOCREATE",
1555 	    "QM_QUOTAOFF_END",
1556 	    "SB_UNIT",
1557 	    "FSYNC_TS",
1558 	    "GROWFSRT_ALLOC",
1559 	    "GROWFSRT_ZERO",
1560 	    "GROWFSRT_FREE",
1561 	    "SWAPEXT"
1562 	};
1563 
1564 	xfs_warn(mp,
1565 		"xfs_log_write: reservation summary:\n"
1566 		"  trans type  = %s (%u)\n"
1567 		"  unit res    = %d bytes\n"
1568 		"  current res = %d bytes\n"
1569 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1570 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1571 		"  ophdr + reg = %u bytes\n"
1572 		"  num regions = %u\n",
1573 		((ticket->t_trans_type <= 0 ||
1574 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1575 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1576 		ticket->t_trans_type,
1577 		ticket->t_unit_res,
1578 		ticket->t_curr_res,
1579 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1580 		ticket->t_res_num_ophdrs, ophdr_spc,
1581 		ticket->t_res_arr_sum +
1582 		ticket->t_res_o_flow + ophdr_spc,
1583 		ticket->t_res_num);
1584 
1585 	for (i = 0; i < ticket->t_res_num; i++) {
1586 		uint r_type = ticket->t_res_arr[i].r_type;
1587 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1588 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1589 			    "bad-rtype" : res_type_str[r_type-1]),
1590 			    ticket->t_res_arr[i].r_len);
1591 	}
1592 
1593 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1594 		"xfs_log_write: reservation ran out. Need to up reservation");
1595 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1596 }
1597 
1598 /*
1599  * Calculate the potential space needed by the log vector.  Each region gets
1600  * its own xlog_op_header_t and may need to be double word aligned.
1601  */
1602 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)1603 xlog_write_calc_vec_length(
1604 	struct xlog_ticket	*ticket,
1605 	struct xfs_log_vec	*log_vector)
1606 {
1607 	struct xfs_log_vec	*lv;
1608 	int			headers = 0;
1609 	int			len = 0;
1610 	int			i;
1611 
1612 	/* acct for start rec of xact */
1613 	if (ticket->t_flags & XLOG_TIC_INITED)
1614 		headers++;
1615 
1616 	for (lv = log_vector; lv; lv = lv->lv_next) {
1617 		headers += lv->lv_niovecs;
1618 
1619 		for (i = 0; i < lv->lv_niovecs; i++) {
1620 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1621 
1622 			len += vecp->i_len;
1623 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1624 		}
1625 	}
1626 
1627 	ticket->t_res_num_ophdrs += headers;
1628 	len += headers * sizeof(struct xlog_op_header);
1629 
1630 	return len;
1631 }
1632 
1633 /*
1634  * If first write for transaction, insert start record  We can't be trying to
1635  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1636  */
1637 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)1638 xlog_write_start_rec(
1639 	struct xlog_op_header	*ophdr,
1640 	struct xlog_ticket	*ticket)
1641 {
1642 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1643 		return 0;
1644 
1645 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1646 	ophdr->oh_clientid = ticket->t_clientid;
1647 	ophdr->oh_len = 0;
1648 	ophdr->oh_flags = XLOG_START_TRANS;
1649 	ophdr->oh_res2 = 0;
1650 
1651 	ticket->t_flags &= ~XLOG_TIC_INITED;
1652 
1653 	return sizeof(struct xlog_op_header);
1654 }
1655 
1656 static xlog_op_header_t *
xlog_write_setup_ophdr(struct log * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)1657 xlog_write_setup_ophdr(
1658 	struct log		*log,
1659 	struct xlog_op_header	*ophdr,
1660 	struct xlog_ticket	*ticket,
1661 	uint			flags)
1662 {
1663 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1664 	ophdr->oh_clientid = ticket->t_clientid;
1665 	ophdr->oh_res2 = 0;
1666 
1667 	/* are we copying a commit or unmount record? */
1668 	ophdr->oh_flags = flags;
1669 
1670 	/*
1671 	 * We've seen logs corrupted with bad transaction client ids.  This
1672 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1673 	 * and shut down the filesystem.
1674 	 */
1675 	switch (ophdr->oh_clientid)  {
1676 	case XFS_TRANSACTION:
1677 	case XFS_VOLUME:
1678 	case XFS_LOG:
1679 		break;
1680 	default:
1681 		xfs_warn(log->l_mp,
1682 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1683 			ophdr->oh_clientid, ticket);
1684 		return NULL;
1685 	}
1686 
1687 	return ophdr;
1688 }
1689 
1690 /*
1691  * Set up the parameters of the region copy into the log. This has
1692  * to handle region write split across multiple log buffers - this
1693  * state is kept external to this function so that this code can
1694  * can be written in an obvious, self documenting manner.
1695  */
1696 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)1697 xlog_write_setup_copy(
1698 	struct xlog_ticket	*ticket,
1699 	struct xlog_op_header	*ophdr,
1700 	int			space_available,
1701 	int			space_required,
1702 	int			*copy_off,
1703 	int			*copy_len,
1704 	int			*last_was_partial_copy,
1705 	int			*bytes_consumed)
1706 {
1707 	int			still_to_copy;
1708 
1709 	still_to_copy = space_required - *bytes_consumed;
1710 	*copy_off = *bytes_consumed;
1711 
1712 	if (still_to_copy <= space_available) {
1713 		/* write of region completes here */
1714 		*copy_len = still_to_copy;
1715 		ophdr->oh_len = cpu_to_be32(*copy_len);
1716 		if (*last_was_partial_copy)
1717 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1718 		*last_was_partial_copy = 0;
1719 		*bytes_consumed = 0;
1720 		return 0;
1721 	}
1722 
1723 	/* partial write of region, needs extra log op header reservation */
1724 	*copy_len = space_available;
1725 	ophdr->oh_len = cpu_to_be32(*copy_len);
1726 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1727 	if (*last_was_partial_copy)
1728 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1729 	*bytes_consumed += *copy_len;
1730 	(*last_was_partial_copy)++;
1731 
1732 	/* account for new log op header */
1733 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1734 	ticket->t_res_num_ophdrs++;
1735 
1736 	return sizeof(struct xlog_op_header);
1737 }
1738 
1739 static int
xlog_write_copy_finish(struct log * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)1740 xlog_write_copy_finish(
1741 	struct log		*log,
1742 	struct xlog_in_core	*iclog,
1743 	uint			flags,
1744 	int			*record_cnt,
1745 	int			*data_cnt,
1746 	int			*partial_copy,
1747 	int			*partial_copy_len,
1748 	int			log_offset,
1749 	struct xlog_in_core	**commit_iclog)
1750 {
1751 	if (*partial_copy) {
1752 		/*
1753 		 * This iclog has already been marked WANT_SYNC by
1754 		 * xlog_state_get_iclog_space.
1755 		 */
1756 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1757 		*record_cnt = 0;
1758 		*data_cnt = 0;
1759 		return xlog_state_release_iclog(log, iclog);
1760 	}
1761 
1762 	*partial_copy = 0;
1763 	*partial_copy_len = 0;
1764 
1765 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1766 		/* no more space in this iclog - push it. */
1767 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1768 		*record_cnt = 0;
1769 		*data_cnt = 0;
1770 
1771 		spin_lock(&log->l_icloglock);
1772 		xlog_state_want_sync(log, iclog);
1773 		spin_unlock(&log->l_icloglock);
1774 
1775 		if (!commit_iclog)
1776 			return xlog_state_release_iclog(log, iclog);
1777 		ASSERT(flags & XLOG_COMMIT_TRANS);
1778 		*commit_iclog = iclog;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 /*
1785  * Write some region out to in-core log
1786  *
1787  * This will be called when writing externally provided regions or when
1788  * writing out a commit record for a given transaction.
1789  *
1790  * General algorithm:
1791  *	1. Find total length of this write.  This may include adding to the
1792  *		lengths passed in.
1793  *	2. Check whether we violate the tickets reservation.
1794  *	3. While writing to this iclog
1795  *	    A. Reserve as much space in this iclog as can get
1796  *	    B. If this is first write, save away start lsn
1797  *	    C. While writing this region:
1798  *		1. If first write of transaction, write start record
1799  *		2. Write log operation header (header per region)
1800  *		3. Find out if we can fit entire region into this iclog
1801  *		4. Potentially, verify destination memcpy ptr
1802  *		5. Memcpy (partial) region
1803  *		6. If partial copy, release iclog; otherwise, continue
1804  *			copying more regions into current iclog
1805  *	4. Mark want sync bit (in simulation mode)
1806  *	5. Release iclog for potential flush to on-disk log.
1807  *
1808  * ERRORS:
1809  * 1.	Panic if reservation is overrun.  This should never happen since
1810  *	reservation amounts are generated internal to the filesystem.
1811  * NOTES:
1812  * 1. Tickets are single threaded data structures.
1813  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1814  *	syncing routine.  When a single log_write region needs to span
1815  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1816  *	on all log operation writes which don't contain the end of the
1817  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1818  *	operation which contains the end of the continued log_write region.
1819  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1820  *	we don't really know exactly how much space will be used.  As a result,
1821  *	we don't update ic_offset until the end when we know exactly how many
1822  *	bytes have been written out.
1823  */
1824 int
xlog_write(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)1825 xlog_write(
1826 	struct log		*log,
1827 	struct xfs_log_vec	*log_vector,
1828 	struct xlog_ticket	*ticket,
1829 	xfs_lsn_t		*start_lsn,
1830 	struct xlog_in_core	**commit_iclog,
1831 	uint			flags)
1832 {
1833 	struct xlog_in_core	*iclog = NULL;
1834 	struct xfs_log_iovec	*vecp;
1835 	struct xfs_log_vec	*lv;
1836 	int			len;
1837 	int			index;
1838 	int			partial_copy = 0;
1839 	int			partial_copy_len = 0;
1840 	int			contwr = 0;
1841 	int			record_cnt = 0;
1842 	int			data_cnt = 0;
1843 	int			error;
1844 
1845 	*start_lsn = 0;
1846 
1847 	len = xlog_write_calc_vec_length(ticket, log_vector);
1848 	if (log->l_cilp) {
1849 		/*
1850 		 * Region headers and bytes are already accounted for.
1851 		 * We only need to take into account start records and
1852 		 * split regions in this function.
1853 		 */
1854 		if (ticket->t_flags & XLOG_TIC_INITED)
1855 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1856 
1857 		/*
1858 		 * Commit record headers need to be accounted for. These
1859 		 * come in as separate writes so are easy to detect.
1860 		 */
1861 		if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1862 			ticket->t_curr_res -= sizeof(xlog_op_header_t);
1863 	} else
1864 		ticket->t_curr_res -= len;
1865 
1866 	if (ticket->t_curr_res < 0)
1867 		xlog_print_tic_res(log->l_mp, ticket);
1868 
1869 	index = 0;
1870 	lv = log_vector;
1871 	vecp = lv->lv_iovecp;
1872 	while (lv && index < lv->lv_niovecs) {
1873 		void		*ptr;
1874 		int		log_offset;
1875 
1876 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
1877 						   &contwr, &log_offset);
1878 		if (error)
1879 			return error;
1880 
1881 		ASSERT(log_offset <= iclog->ic_size - 1);
1882 		ptr = iclog->ic_datap + log_offset;
1883 
1884 		/* start_lsn is the first lsn written to. That's all we need. */
1885 		if (!*start_lsn)
1886 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
1887 
1888 		/*
1889 		 * This loop writes out as many regions as can fit in the amount
1890 		 * of space which was allocated by xlog_state_get_iclog_space().
1891 		 */
1892 		while (lv && index < lv->lv_niovecs) {
1893 			struct xfs_log_iovec	*reg = &vecp[index];
1894 			struct xlog_op_header	*ophdr;
1895 			int			start_rec_copy;
1896 			int			copy_len;
1897 			int			copy_off;
1898 
1899 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
1900 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
1901 
1902 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
1903 			if (start_rec_copy) {
1904 				record_cnt++;
1905 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
1906 						   start_rec_copy);
1907 			}
1908 
1909 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
1910 			if (!ophdr)
1911 				return XFS_ERROR(EIO);
1912 
1913 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
1914 					   sizeof(struct xlog_op_header));
1915 
1916 			len += xlog_write_setup_copy(ticket, ophdr,
1917 						     iclog->ic_size-log_offset,
1918 						     reg->i_len,
1919 						     &copy_off, &copy_len,
1920 						     &partial_copy,
1921 						     &partial_copy_len);
1922 			xlog_verify_dest_ptr(log, ptr);
1923 
1924 			/* copy region */
1925 			ASSERT(copy_len >= 0);
1926 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
1927 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
1928 
1929 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
1930 			record_cnt++;
1931 			data_cnt += contwr ? copy_len : 0;
1932 
1933 			error = xlog_write_copy_finish(log, iclog, flags,
1934 						       &record_cnt, &data_cnt,
1935 						       &partial_copy,
1936 						       &partial_copy_len,
1937 						       log_offset,
1938 						       commit_iclog);
1939 			if (error)
1940 				return error;
1941 
1942 			/*
1943 			 * if we had a partial copy, we need to get more iclog
1944 			 * space but we don't want to increment the region
1945 			 * index because there is still more is this region to
1946 			 * write.
1947 			 *
1948 			 * If we completed writing this region, and we flushed
1949 			 * the iclog (indicated by resetting of the record
1950 			 * count), then we also need to get more log space. If
1951 			 * this was the last record, though, we are done and
1952 			 * can just return.
1953 			 */
1954 			if (partial_copy)
1955 				break;
1956 
1957 			if (++index == lv->lv_niovecs) {
1958 				lv = lv->lv_next;
1959 				index = 0;
1960 				if (lv)
1961 					vecp = lv->lv_iovecp;
1962 			}
1963 			if (record_cnt == 0) {
1964 				if (!lv)
1965 					return 0;
1966 				break;
1967 			}
1968 		}
1969 	}
1970 
1971 	ASSERT(len == 0);
1972 
1973 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
1974 	if (!commit_iclog)
1975 		return xlog_state_release_iclog(log, iclog);
1976 
1977 	ASSERT(flags & XLOG_COMMIT_TRANS);
1978 	*commit_iclog = iclog;
1979 	return 0;
1980 }
1981 
1982 
1983 /*****************************************************************************
1984  *
1985  *		State Machine functions
1986  *
1987  *****************************************************************************
1988  */
1989 
1990 /* Clean iclogs starting from the head.  This ordering must be
1991  * maintained, so an iclog doesn't become ACTIVE beyond one that
1992  * is SYNCING.  This is also required to maintain the notion that we use
1993  * a ordered wait queue to hold off would be writers to the log when every
1994  * iclog is trying to sync to disk.
1995  *
1996  * State Change: DIRTY -> ACTIVE
1997  */
1998 STATIC void
xlog_state_clean_log(xlog_t * log)1999 xlog_state_clean_log(xlog_t *log)
2000 {
2001 	xlog_in_core_t	*iclog;
2002 	int changed = 0;
2003 
2004 	iclog = log->l_iclog;
2005 	do {
2006 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2007 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2008 			iclog->ic_offset       = 0;
2009 			ASSERT(iclog->ic_callback == NULL);
2010 			/*
2011 			 * If the number of ops in this iclog indicate it just
2012 			 * contains the dummy transaction, we can
2013 			 * change state into IDLE (the second time around).
2014 			 * Otherwise we should change the state into
2015 			 * NEED a dummy.
2016 			 * We don't need to cover the dummy.
2017 			 */
2018 			if (!changed &&
2019 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2020 			   		XLOG_COVER_OPS)) {
2021 				changed = 1;
2022 			} else {
2023 				/*
2024 				 * We have two dirty iclogs so start over
2025 				 * This could also be num of ops indicates
2026 				 * this is not the dummy going out.
2027 				 */
2028 				changed = 2;
2029 			}
2030 			iclog->ic_header.h_num_logops = 0;
2031 			memset(iclog->ic_header.h_cycle_data, 0,
2032 			      sizeof(iclog->ic_header.h_cycle_data));
2033 			iclog->ic_header.h_lsn = 0;
2034 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2035 			/* do nothing */;
2036 		else
2037 			break;	/* stop cleaning */
2038 		iclog = iclog->ic_next;
2039 	} while (iclog != log->l_iclog);
2040 
2041 	/* log is locked when we are called */
2042 	/*
2043 	 * Change state for the dummy log recording.
2044 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2045 	 * we are done writing the dummy record.
2046 	 * If we are done with the second dummy recored (DONE2), then
2047 	 * we go to IDLE.
2048 	 */
2049 	if (changed) {
2050 		switch (log->l_covered_state) {
2051 		case XLOG_STATE_COVER_IDLE:
2052 		case XLOG_STATE_COVER_NEED:
2053 		case XLOG_STATE_COVER_NEED2:
2054 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2055 			break;
2056 
2057 		case XLOG_STATE_COVER_DONE:
2058 			if (changed == 1)
2059 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2060 			else
2061 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2062 			break;
2063 
2064 		case XLOG_STATE_COVER_DONE2:
2065 			if (changed == 1)
2066 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2067 			else
2068 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2069 			break;
2070 
2071 		default:
2072 			ASSERT(0);
2073 		}
2074 	}
2075 }	/* xlog_state_clean_log */
2076 
2077 STATIC xfs_lsn_t
xlog_get_lowest_lsn(xlog_t * log)2078 xlog_get_lowest_lsn(
2079 	xlog_t		*log)
2080 {
2081 	xlog_in_core_t  *lsn_log;
2082 	xfs_lsn_t	lowest_lsn, lsn;
2083 
2084 	lsn_log = log->l_iclog;
2085 	lowest_lsn = 0;
2086 	do {
2087 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2088 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2089 		if ((lsn && !lowest_lsn) ||
2090 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2091 			lowest_lsn = lsn;
2092 		}
2093 	    }
2094 	    lsn_log = lsn_log->ic_next;
2095 	} while (lsn_log != log->l_iclog);
2096 	return lowest_lsn;
2097 }
2098 
2099 
2100 STATIC void
xlog_state_do_callback(xlog_t * log,int aborted,xlog_in_core_t * ciclog)2101 xlog_state_do_callback(
2102 	xlog_t		*log,
2103 	int		aborted,
2104 	xlog_in_core_t	*ciclog)
2105 {
2106 	xlog_in_core_t	   *iclog;
2107 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2108 						 * processed all iclogs once */
2109 	xfs_log_callback_t *cb, *cb_next;
2110 	int		   flushcnt = 0;
2111 	xfs_lsn_t	   lowest_lsn;
2112 	int		   ioerrors;	/* counter: iclogs with errors */
2113 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2114 	int		   funcdidcallbacks; /* flag: function did callbacks */
2115 	int		   repeats;	/* for issuing console warnings if
2116 					 * looping too many times */
2117 	int		   wake = 0;
2118 
2119 	spin_lock(&log->l_icloglock);
2120 	first_iclog = iclog = log->l_iclog;
2121 	ioerrors = 0;
2122 	funcdidcallbacks = 0;
2123 	repeats = 0;
2124 
2125 	do {
2126 		/*
2127 		 * Scan all iclogs starting with the one pointed to by the
2128 		 * log.  Reset this starting point each time the log is
2129 		 * unlocked (during callbacks).
2130 		 *
2131 		 * Keep looping through iclogs until one full pass is made
2132 		 * without running any callbacks.
2133 		 */
2134 		first_iclog = log->l_iclog;
2135 		iclog = log->l_iclog;
2136 		loopdidcallbacks = 0;
2137 		repeats++;
2138 
2139 		do {
2140 
2141 			/* skip all iclogs in the ACTIVE & DIRTY states */
2142 			if (iclog->ic_state &
2143 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2144 				iclog = iclog->ic_next;
2145 				continue;
2146 			}
2147 
2148 			/*
2149 			 * Between marking a filesystem SHUTDOWN and stopping
2150 			 * the log, we do flush all iclogs to disk (if there
2151 			 * wasn't a log I/O error). So, we do want things to
2152 			 * go smoothly in case of just a SHUTDOWN  w/o a
2153 			 * LOG_IO_ERROR.
2154 			 */
2155 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2156 				/*
2157 				 * Can only perform callbacks in order.  Since
2158 				 * this iclog is not in the DONE_SYNC/
2159 				 * DO_CALLBACK state, we skip the rest and
2160 				 * just try to clean up.  If we set our iclog
2161 				 * to DO_CALLBACK, we will not process it when
2162 				 * we retry since a previous iclog is in the
2163 				 * CALLBACK and the state cannot change since
2164 				 * we are holding the l_icloglock.
2165 				 */
2166 				if (!(iclog->ic_state &
2167 					(XLOG_STATE_DONE_SYNC |
2168 						 XLOG_STATE_DO_CALLBACK))) {
2169 					if (ciclog && (ciclog->ic_state ==
2170 							XLOG_STATE_DONE_SYNC)) {
2171 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2172 					}
2173 					break;
2174 				}
2175 				/*
2176 				 * We now have an iclog that is in either the
2177 				 * DO_CALLBACK or DONE_SYNC states. The other
2178 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2179 				 * caught by the above if and are going to
2180 				 * clean (i.e. we aren't doing their callbacks)
2181 				 * see the above if.
2182 				 */
2183 
2184 				/*
2185 				 * We will do one more check here to see if we
2186 				 * have chased our tail around.
2187 				 */
2188 
2189 				lowest_lsn = xlog_get_lowest_lsn(log);
2190 				if (lowest_lsn &&
2191 				    XFS_LSN_CMP(lowest_lsn,
2192 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2193 					iclog = iclog->ic_next;
2194 					continue; /* Leave this iclog for
2195 						   * another thread */
2196 				}
2197 
2198 				iclog->ic_state = XLOG_STATE_CALLBACK;
2199 
2200 
2201 				/*
2202 				 * update the last_sync_lsn before we drop the
2203 				 * icloglock to ensure we are the only one that
2204 				 * can update it.
2205 				 */
2206 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2207 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2208 				atomic64_set(&log->l_last_sync_lsn,
2209 					be64_to_cpu(iclog->ic_header.h_lsn));
2210 
2211 			} else
2212 				ioerrors++;
2213 
2214 			spin_unlock(&log->l_icloglock);
2215 
2216 			/*
2217 			 * Keep processing entries in the callback list until
2218 			 * we come around and it is empty.  We need to
2219 			 * atomically see that the list is empty and change the
2220 			 * state to DIRTY so that we don't miss any more
2221 			 * callbacks being added.
2222 			 */
2223 			spin_lock(&iclog->ic_callback_lock);
2224 			cb = iclog->ic_callback;
2225 			while (cb) {
2226 				iclog->ic_callback_tail = &(iclog->ic_callback);
2227 				iclog->ic_callback = NULL;
2228 				spin_unlock(&iclog->ic_callback_lock);
2229 
2230 				/* perform callbacks in the order given */
2231 				for (; cb; cb = cb_next) {
2232 					cb_next = cb->cb_next;
2233 					cb->cb_func(cb->cb_arg, aborted);
2234 				}
2235 				spin_lock(&iclog->ic_callback_lock);
2236 				cb = iclog->ic_callback;
2237 			}
2238 
2239 			loopdidcallbacks++;
2240 			funcdidcallbacks++;
2241 
2242 			spin_lock(&log->l_icloglock);
2243 			ASSERT(iclog->ic_callback == NULL);
2244 			spin_unlock(&iclog->ic_callback_lock);
2245 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2246 				iclog->ic_state = XLOG_STATE_DIRTY;
2247 
2248 			/*
2249 			 * Transition from DIRTY to ACTIVE if applicable.
2250 			 * NOP if STATE_IOERROR.
2251 			 */
2252 			xlog_state_clean_log(log);
2253 
2254 			/* wake up threads waiting in xfs_log_force() */
2255 			wake_up_all(&iclog->ic_force_wait);
2256 
2257 			iclog = iclog->ic_next;
2258 		} while (first_iclog != iclog);
2259 
2260 		if (repeats > 5000) {
2261 			flushcnt += repeats;
2262 			repeats = 0;
2263 			xfs_warn(log->l_mp,
2264 				"%s: possible infinite loop (%d iterations)",
2265 				__func__, flushcnt);
2266 		}
2267 	} while (!ioerrors && loopdidcallbacks);
2268 
2269 	/*
2270 	 * make one last gasp attempt to see if iclogs are being left in
2271 	 * limbo..
2272 	 */
2273 #ifdef DEBUG
2274 	if (funcdidcallbacks) {
2275 		first_iclog = iclog = log->l_iclog;
2276 		do {
2277 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2278 			/*
2279 			 * Terminate the loop if iclogs are found in states
2280 			 * which will cause other threads to clean up iclogs.
2281 			 *
2282 			 * SYNCING - i/o completion will go through logs
2283 			 * DONE_SYNC - interrupt thread should be waiting for
2284 			 *              l_icloglock
2285 			 * IOERROR - give up hope all ye who enter here
2286 			 */
2287 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2288 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2289 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2290 			    iclog->ic_state == XLOG_STATE_IOERROR )
2291 				break;
2292 			iclog = iclog->ic_next;
2293 		} while (first_iclog != iclog);
2294 	}
2295 #endif
2296 
2297 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2298 		wake = 1;
2299 	spin_unlock(&log->l_icloglock);
2300 
2301 	if (wake)
2302 		wake_up_all(&log->l_flush_wait);
2303 }
2304 
2305 
2306 /*
2307  * Finish transitioning this iclog to the dirty state.
2308  *
2309  * Make sure that we completely execute this routine only when this is
2310  * the last call to the iclog.  There is a good chance that iclog flushes,
2311  * when we reach the end of the physical log, get turned into 2 separate
2312  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2313  * routine.  By using the reference count bwritecnt, we guarantee that only
2314  * the second completion goes through.
2315  *
2316  * Callbacks could take time, so they are done outside the scope of the
2317  * global state machine log lock.
2318  */
2319 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2320 xlog_state_done_syncing(
2321 	xlog_in_core_t	*iclog,
2322 	int		aborted)
2323 {
2324 	xlog_t		   *log = iclog->ic_log;
2325 
2326 	spin_lock(&log->l_icloglock);
2327 
2328 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2329 	       iclog->ic_state == XLOG_STATE_IOERROR);
2330 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2331 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2332 
2333 
2334 	/*
2335 	 * If we got an error, either on the first buffer, or in the case of
2336 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2337 	 * and none should ever be attempted to be written to disk
2338 	 * again.
2339 	 */
2340 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2341 		if (--iclog->ic_bwritecnt == 1) {
2342 			spin_unlock(&log->l_icloglock);
2343 			return;
2344 		}
2345 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2346 	}
2347 
2348 	/*
2349 	 * Someone could be sleeping prior to writing out the next
2350 	 * iclog buffer, we wake them all, one will get to do the
2351 	 * I/O, the others get to wait for the result.
2352 	 */
2353 	wake_up_all(&iclog->ic_write_wait);
2354 	spin_unlock(&log->l_icloglock);
2355 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2356 }	/* xlog_state_done_syncing */
2357 
2358 
2359 /*
2360  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2361  * sleep.  We wait on the flush queue on the head iclog as that should be
2362  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2363  * we will wait here and all new writes will sleep until a sync completes.
2364  *
2365  * The in-core logs are used in a circular fashion. They are not used
2366  * out-of-order even when an iclog past the head is free.
2367  *
2368  * return:
2369  *	* log_offset where xlog_write() can start writing into the in-core
2370  *		log's data space.
2371  *	* in-core log pointer to which xlog_write() should write.
2372  *	* boolean indicating this is a continued write to an in-core log.
2373  *		If this is the last write, then the in-core log's offset field
2374  *		needs to be incremented, depending on the amount of data which
2375  *		is copied.
2376  */
2377 STATIC int
xlog_state_get_iclog_space(xlog_t * log,int len,xlog_in_core_t ** iclogp,xlog_ticket_t * ticket,int * continued_write,int * logoffsetp)2378 xlog_state_get_iclog_space(xlog_t	  *log,
2379 			   int		  len,
2380 			   xlog_in_core_t **iclogp,
2381 			   xlog_ticket_t  *ticket,
2382 			   int		  *continued_write,
2383 			   int		  *logoffsetp)
2384 {
2385 	int		  log_offset;
2386 	xlog_rec_header_t *head;
2387 	xlog_in_core_t	  *iclog;
2388 	int		  error;
2389 
2390 restart:
2391 	spin_lock(&log->l_icloglock);
2392 	if (XLOG_FORCED_SHUTDOWN(log)) {
2393 		spin_unlock(&log->l_icloglock);
2394 		return XFS_ERROR(EIO);
2395 	}
2396 
2397 	iclog = log->l_iclog;
2398 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2399 		XFS_STATS_INC(xs_log_noiclogs);
2400 
2401 		/* Wait for log writes to have flushed */
2402 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2403 		goto restart;
2404 	}
2405 
2406 	head = &iclog->ic_header;
2407 
2408 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2409 	log_offset = iclog->ic_offset;
2410 
2411 	/* On the 1st write to an iclog, figure out lsn.  This works
2412 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2413 	 * committing to.  If the offset is set, that's how many blocks
2414 	 * must be written.
2415 	 */
2416 	if (log_offset == 0) {
2417 		ticket->t_curr_res -= log->l_iclog_hsize;
2418 		xlog_tic_add_region(ticket,
2419 				    log->l_iclog_hsize,
2420 				    XLOG_REG_TYPE_LRHEADER);
2421 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2422 		head->h_lsn = cpu_to_be64(
2423 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2424 		ASSERT(log->l_curr_block >= 0);
2425 	}
2426 
2427 	/* If there is enough room to write everything, then do it.  Otherwise,
2428 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2429 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2430 	 * until you know exactly how many bytes get copied.  Therefore, wait
2431 	 * until later to update ic_offset.
2432 	 *
2433 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2434 	 * can fit into remaining data section.
2435 	 */
2436 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2437 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2438 
2439 		/*
2440 		 * If I'm the only one writing to this iclog, sync it to disk.
2441 		 * We need to do an atomic compare and decrement here to avoid
2442 		 * racing with concurrent atomic_dec_and_lock() calls in
2443 		 * xlog_state_release_iclog() when there is more than one
2444 		 * reference to the iclog.
2445 		 */
2446 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2447 			/* we are the only one */
2448 			spin_unlock(&log->l_icloglock);
2449 			error = xlog_state_release_iclog(log, iclog);
2450 			if (error)
2451 				return error;
2452 		} else {
2453 			spin_unlock(&log->l_icloglock);
2454 		}
2455 		goto restart;
2456 	}
2457 
2458 	/* Do we have enough room to write the full amount in the remainder
2459 	 * of this iclog?  Or must we continue a write on the next iclog and
2460 	 * mark this iclog as completely taken?  In the case where we switch
2461 	 * iclogs (to mark it taken), this particular iclog will release/sync
2462 	 * to disk in xlog_write().
2463 	 */
2464 	if (len <= iclog->ic_size - iclog->ic_offset) {
2465 		*continued_write = 0;
2466 		iclog->ic_offset += len;
2467 	} else {
2468 		*continued_write = 1;
2469 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2470 	}
2471 	*iclogp = iclog;
2472 
2473 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2474 	spin_unlock(&log->l_icloglock);
2475 
2476 	*logoffsetp = log_offset;
2477 	return 0;
2478 }	/* xlog_state_get_iclog_space */
2479 
2480 /*
2481  * Atomically get the log space required for a log ticket.
2482  *
2483  * Once a ticket gets put onto the reserveq, it will only return after
2484  * the needed reservation is satisfied.
2485  *
2486  * This function is structured so that it has a lock free fast path. This is
2487  * necessary because every new transaction reservation will come through this
2488  * path. Hence any lock will be globally hot if we take it unconditionally on
2489  * every pass.
2490  *
2491  * As tickets are only ever moved on and off the reserveq under the
2492  * l_grant_reserve_lock, we only need to take that lock if we are going
2493  * to add the ticket to the queue and sleep. We can avoid taking the lock if the
2494  * ticket was never added to the reserveq because the t_queue list head will be
2495  * empty and we hold the only reference to it so it can safely be checked
2496  * unlocked.
2497  */
2498 STATIC int
xlog_grant_log_space(xlog_t * log,xlog_ticket_t * tic)2499 xlog_grant_log_space(xlog_t	   *log,
2500 		     xlog_ticket_t *tic)
2501 {
2502 	int		 free_bytes;
2503 	int		 need_bytes;
2504 
2505 #ifdef DEBUG
2506 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2507 		panic("grant Recovery problem");
2508 #endif
2509 
2510 	trace_xfs_log_grant_enter(log, tic);
2511 
2512 	need_bytes = tic->t_unit_res;
2513 	if (tic->t_flags & XFS_LOG_PERM_RESERV)
2514 		need_bytes *= tic->t_ocnt;
2515 
2516 	/* something is already sleeping; insert new transaction at end */
2517 	if (!list_empty_careful(&log->l_reserveq)) {
2518 		spin_lock(&log->l_grant_reserve_lock);
2519 		/* recheck the queue now we are locked */
2520 		if (list_empty(&log->l_reserveq)) {
2521 			spin_unlock(&log->l_grant_reserve_lock);
2522 			goto redo;
2523 		}
2524 		list_add_tail(&tic->t_queue, &log->l_reserveq);
2525 
2526 		trace_xfs_log_grant_sleep1(log, tic);
2527 
2528 		/*
2529 		 * Gotta check this before going to sleep, while we're
2530 		 * holding the grant lock.
2531 		 */
2532 		if (XLOG_FORCED_SHUTDOWN(log))
2533 			goto error_return;
2534 
2535 		XFS_STATS_INC(xs_sleep_logspace);
2536 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2537 
2538 		/*
2539 		 * If we got an error, and the filesystem is shutting down,
2540 		 * we'll catch it down below. So just continue...
2541 		 */
2542 		trace_xfs_log_grant_wake1(log, tic);
2543 	}
2544 
2545 redo:
2546 	if (XLOG_FORCED_SHUTDOWN(log))
2547 		goto error_return_unlocked;
2548 
2549 	free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2550 	if (free_bytes < need_bytes) {
2551 		spin_lock(&log->l_grant_reserve_lock);
2552 		if (list_empty(&tic->t_queue))
2553 			list_add_tail(&tic->t_queue, &log->l_reserveq);
2554 
2555 		trace_xfs_log_grant_sleep2(log, tic);
2556 
2557 		if (XLOG_FORCED_SHUTDOWN(log))
2558 			goto error_return;
2559 
2560 		xlog_grant_push_ail(log, need_bytes);
2561 
2562 		XFS_STATS_INC(xs_sleep_logspace);
2563 		xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
2564 
2565 		trace_xfs_log_grant_wake2(log, tic);
2566 		goto redo;
2567 	}
2568 
2569 	if (!list_empty(&tic->t_queue)) {
2570 		spin_lock(&log->l_grant_reserve_lock);
2571 		list_del_init(&tic->t_queue);
2572 		spin_unlock(&log->l_grant_reserve_lock);
2573 	}
2574 
2575 	/* we've got enough space */
2576 	xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2577 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2578 	trace_xfs_log_grant_exit(log, tic);
2579 	xlog_verify_grant_tail(log);
2580 	return 0;
2581 
2582 error_return_unlocked:
2583 	spin_lock(&log->l_grant_reserve_lock);
2584 error_return:
2585 	list_del_init(&tic->t_queue);
2586 	spin_unlock(&log->l_grant_reserve_lock);
2587 	trace_xfs_log_grant_error(log, tic);
2588 
2589 	/*
2590 	 * If we are failing, make sure the ticket doesn't have any
2591 	 * current reservations. We don't want to add this back when
2592 	 * the ticket/transaction gets cancelled.
2593 	 */
2594 	tic->t_curr_res = 0;
2595 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2596 	return XFS_ERROR(EIO);
2597 }	/* xlog_grant_log_space */
2598 
2599 
2600 /*
2601  * Replenish the byte reservation required by moving the grant write head.
2602  *
2603  * Similar to xlog_grant_log_space, the function is structured to have a lock
2604  * free fast path.
2605  */
2606 STATIC int
xlog_regrant_write_log_space(xlog_t * log,xlog_ticket_t * tic)2607 xlog_regrant_write_log_space(xlog_t	   *log,
2608 			     xlog_ticket_t *tic)
2609 {
2610 	int		free_bytes, need_bytes;
2611 
2612 	tic->t_curr_res = tic->t_unit_res;
2613 	xlog_tic_reset_res(tic);
2614 
2615 	if (tic->t_cnt > 0)
2616 		return 0;
2617 
2618 #ifdef DEBUG
2619 	if (log->l_flags & XLOG_ACTIVE_RECOVERY)
2620 		panic("regrant Recovery problem");
2621 #endif
2622 
2623 	trace_xfs_log_regrant_write_enter(log, tic);
2624 	if (XLOG_FORCED_SHUTDOWN(log))
2625 		goto error_return_unlocked;
2626 
2627 	/* If there are other waiters on the queue then give them a
2628 	 * chance at logspace before us. Wake up the first waiters,
2629 	 * if we do not wake up all the waiters then go to sleep waiting
2630 	 * for more free space, otherwise try to get some space for
2631 	 * this transaction.
2632 	 */
2633 	need_bytes = tic->t_unit_res;
2634 	if (!list_empty_careful(&log->l_writeq)) {
2635 		struct xlog_ticket *ntic;
2636 
2637 		spin_lock(&log->l_grant_write_lock);
2638 		free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2639 		list_for_each_entry(ntic, &log->l_writeq, t_queue) {
2640 			ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV);
2641 
2642 			if (free_bytes < ntic->t_unit_res)
2643 				break;
2644 			free_bytes -= ntic->t_unit_res;
2645 			wake_up(&ntic->t_wait);
2646 		}
2647 
2648 		if (ntic != list_first_entry(&log->l_writeq,
2649 						struct xlog_ticket, t_queue)) {
2650 			if (list_empty(&tic->t_queue))
2651 				list_add_tail(&tic->t_queue, &log->l_writeq);
2652 			trace_xfs_log_regrant_write_sleep1(log, tic);
2653 
2654 			xlog_grant_push_ail(log, need_bytes);
2655 
2656 			XFS_STATS_INC(xs_sleep_logspace);
2657 			xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2658 			trace_xfs_log_regrant_write_wake1(log, tic);
2659 		} else
2660 			spin_unlock(&log->l_grant_write_lock);
2661 	}
2662 
2663 redo:
2664 	if (XLOG_FORCED_SHUTDOWN(log))
2665 		goto error_return_unlocked;
2666 
2667 	free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2668 	if (free_bytes < need_bytes) {
2669 		spin_lock(&log->l_grant_write_lock);
2670 		if (list_empty(&tic->t_queue))
2671 			list_add_tail(&tic->t_queue, &log->l_writeq);
2672 
2673 		if (XLOG_FORCED_SHUTDOWN(log))
2674 			goto error_return;
2675 
2676 		xlog_grant_push_ail(log, need_bytes);
2677 
2678 		XFS_STATS_INC(xs_sleep_logspace);
2679 		trace_xfs_log_regrant_write_sleep2(log, tic);
2680 		xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
2681 
2682 		trace_xfs_log_regrant_write_wake2(log, tic);
2683 		goto redo;
2684 	}
2685 
2686 	if (!list_empty(&tic->t_queue)) {
2687 		spin_lock(&log->l_grant_write_lock);
2688 		list_del_init(&tic->t_queue);
2689 		spin_unlock(&log->l_grant_write_lock);
2690 	}
2691 
2692 	/* we've got enough space */
2693 	xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2694 	trace_xfs_log_regrant_write_exit(log, tic);
2695 	xlog_verify_grant_tail(log);
2696 	return 0;
2697 
2698 
2699  error_return_unlocked:
2700 	spin_lock(&log->l_grant_write_lock);
2701  error_return:
2702 	list_del_init(&tic->t_queue);
2703 	spin_unlock(&log->l_grant_write_lock);
2704 	trace_xfs_log_regrant_write_error(log, tic);
2705 
2706 	/*
2707 	 * If we are failing, make sure the ticket doesn't have any
2708 	 * current reservations. We don't want to add this back when
2709 	 * the ticket/transaction gets cancelled.
2710 	 */
2711 	tic->t_curr_res = 0;
2712 	tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
2713 	return XFS_ERROR(EIO);
2714 }	/* xlog_regrant_write_log_space */
2715 
2716 
2717 /* The first cnt-1 times through here we don't need to
2718  * move the grant write head because the permanent
2719  * reservation has reserved cnt times the unit amount.
2720  * Release part of current permanent unit reservation and
2721  * reset current reservation to be one units worth.  Also
2722  * move grant reservation head forward.
2723  */
2724 STATIC void
xlog_regrant_reserve_log_space(xlog_t * log,xlog_ticket_t * ticket)2725 xlog_regrant_reserve_log_space(xlog_t	     *log,
2726 			       xlog_ticket_t *ticket)
2727 {
2728 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2729 
2730 	if (ticket->t_cnt > 0)
2731 		ticket->t_cnt--;
2732 
2733 	xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2734 					ticket->t_curr_res);
2735 	xlog_grant_sub_space(log, &log->l_grant_write_head,
2736 					ticket->t_curr_res);
2737 	ticket->t_curr_res = ticket->t_unit_res;
2738 	xlog_tic_reset_res(ticket);
2739 
2740 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2741 
2742 	/* just return if we still have some of the pre-reserved space */
2743 	if (ticket->t_cnt > 0)
2744 		return;
2745 
2746 	xlog_grant_add_space(log, &log->l_grant_reserve_head,
2747 					ticket->t_unit_res);
2748 
2749 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2750 
2751 	ticket->t_curr_res = ticket->t_unit_res;
2752 	xlog_tic_reset_res(ticket);
2753 }	/* xlog_regrant_reserve_log_space */
2754 
2755 
2756 /*
2757  * Give back the space left from a reservation.
2758  *
2759  * All the information we need to make a correct determination of space left
2760  * is present.  For non-permanent reservations, things are quite easy.  The
2761  * count should have been decremented to zero.  We only need to deal with the
2762  * space remaining in the current reservation part of the ticket.  If the
2763  * ticket contains a permanent reservation, there may be left over space which
2764  * needs to be released.  A count of N means that N-1 refills of the current
2765  * reservation can be done before we need to ask for more space.  The first
2766  * one goes to fill up the first current reservation.  Once we run out of
2767  * space, the count will stay at zero and the only space remaining will be
2768  * in the current reservation field.
2769  */
2770 STATIC void
xlog_ungrant_log_space(xlog_t * log,xlog_ticket_t * ticket)2771 xlog_ungrant_log_space(xlog_t	     *log,
2772 		       xlog_ticket_t *ticket)
2773 {
2774 	int	bytes;
2775 
2776 	if (ticket->t_cnt > 0)
2777 		ticket->t_cnt--;
2778 
2779 	trace_xfs_log_ungrant_enter(log, ticket);
2780 	trace_xfs_log_ungrant_sub(log, ticket);
2781 
2782 	/*
2783 	 * If this is a permanent reservation ticket, we may be able to free
2784 	 * up more space based on the remaining count.
2785 	 */
2786 	bytes = ticket->t_curr_res;
2787 	if (ticket->t_cnt > 0) {
2788 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2789 		bytes += ticket->t_unit_res*ticket->t_cnt;
2790 	}
2791 
2792 	xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2793 	xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2794 
2795 	trace_xfs_log_ungrant_exit(log, ticket);
2796 
2797 	xfs_log_move_tail(log->l_mp, 1);
2798 }	/* xlog_ungrant_log_space */
2799 
2800 
2801 /*
2802  * Flush iclog to disk if this is the last reference to the given iclog and
2803  * the WANT_SYNC bit is set.
2804  *
2805  * When this function is entered, the iclog is not necessarily in the
2806  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2807  *
2808  *
2809  */
2810 STATIC int
xlog_state_release_iclog(xlog_t * log,xlog_in_core_t * iclog)2811 xlog_state_release_iclog(
2812 	xlog_t		*log,
2813 	xlog_in_core_t	*iclog)
2814 {
2815 	int		sync = 0;	/* do we sync? */
2816 
2817 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2818 		return XFS_ERROR(EIO);
2819 
2820 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2821 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2822 		return 0;
2823 
2824 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2825 		spin_unlock(&log->l_icloglock);
2826 		return XFS_ERROR(EIO);
2827 	}
2828 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2829 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2830 
2831 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2832 		/* update tail before writing to iclog */
2833 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2834 		sync++;
2835 		iclog->ic_state = XLOG_STATE_SYNCING;
2836 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2837 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2838 		/* cycle incremented when incrementing curr_block */
2839 	}
2840 	spin_unlock(&log->l_icloglock);
2841 
2842 	/*
2843 	 * We let the log lock go, so it's possible that we hit a log I/O
2844 	 * error or some other SHUTDOWN condition that marks the iclog
2845 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2846 	 * this iclog has consistent data, so we ignore IOERROR
2847 	 * flags after this point.
2848 	 */
2849 	if (sync)
2850 		return xlog_sync(log, iclog);
2851 	return 0;
2852 }	/* xlog_state_release_iclog */
2853 
2854 
2855 /*
2856  * This routine will mark the current iclog in the ring as WANT_SYNC
2857  * and move the current iclog pointer to the next iclog in the ring.
2858  * When this routine is called from xlog_state_get_iclog_space(), the
2859  * exact size of the iclog has not yet been determined.  All we know is
2860  * that every data block.  We have run out of space in this log record.
2861  */
2862 STATIC void
xlog_state_switch_iclogs(xlog_t * log,xlog_in_core_t * iclog,int eventual_size)2863 xlog_state_switch_iclogs(xlog_t		*log,
2864 			 xlog_in_core_t *iclog,
2865 			 int		eventual_size)
2866 {
2867 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2868 	if (!eventual_size)
2869 		eventual_size = iclog->ic_offset;
2870 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2871 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2872 	log->l_prev_block = log->l_curr_block;
2873 	log->l_prev_cycle = log->l_curr_cycle;
2874 
2875 	/* roll log?: ic_offset changed later */
2876 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2877 
2878 	/* Round up to next log-sunit */
2879 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2880 	    log->l_mp->m_sb.sb_logsunit > 1) {
2881 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2882 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2883 	}
2884 
2885 	if (log->l_curr_block >= log->l_logBBsize) {
2886 		log->l_curr_cycle++;
2887 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2888 			log->l_curr_cycle++;
2889 		log->l_curr_block -= log->l_logBBsize;
2890 		ASSERT(log->l_curr_block >= 0);
2891 	}
2892 	ASSERT(iclog == log->l_iclog);
2893 	log->l_iclog = iclog->ic_next;
2894 }	/* xlog_state_switch_iclogs */
2895 
2896 /*
2897  * Write out all data in the in-core log as of this exact moment in time.
2898  *
2899  * Data may be written to the in-core log during this call.  However,
2900  * we don't guarantee this data will be written out.  A change from past
2901  * implementation means this routine will *not* write out zero length LRs.
2902  *
2903  * Basically, we try and perform an intelligent scan of the in-core logs.
2904  * If we determine there is no flushable data, we just return.  There is no
2905  * flushable data if:
2906  *
2907  *	1. the current iclog is active and has no data; the previous iclog
2908  *		is in the active or dirty state.
2909  *	2. the current iclog is drity, and the previous iclog is in the
2910  *		active or dirty state.
2911  *
2912  * We may sleep if:
2913  *
2914  *	1. the current iclog is not in the active nor dirty state.
2915  *	2. the current iclog dirty, and the previous iclog is not in the
2916  *		active nor dirty state.
2917  *	3. the current iclog is active, and there is another thread writing
2918  *		to this particular iclog.
2919  *	4. a) the current iclog is active and has no other writers
2920  *	   b) when we return from flushing out this iclog, it is still
2921  *		not in the active nor dirty state.
2922  */
2923 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)2924 _xfs_log_force(
2925 	struct xfs_mount	*mp,
2926 	uint			flags,
2927 	int			*log_flushed)
2928 {
2929 	struct log		*log = mp->m_log;
2930 	struct xlog_in_core	*iclog;
2931 	xfs_lsn_t		lsn;
2932 
2933 	XFS_STATS_INC(xs_log_force);
2934 
2935 	if (log->l_cilp)
2936 		xlog_cil_force(log);
2937 
2938 	spin_lock(&log->l_icloglock);
2939 
2940 	iclog = log->l_iclog;
2941 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2942 		spin_unlock(&log->l_icloglock);
2943 		return XFS_ERROR(EIO);
2944 	}
2945 
2946 	/* If the head iclog is not active nor dirty, we just attach
2947 	 * ourselves to the head and go to sleep.
2948 	 */
2949 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2950 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2951 		/*
2952 		 * If the head is dirty or (active and empty), then
2953 		 * we need to look at the previous iclog.  If the previous
2954 		 * iclog is active or dirty we are done.  There is nothing
2955 		 * to sync out.  Otherwise, we attach ourselves to the
2956 		 * previous iclog and go to sleep.
2957 		 */
2958 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2959 		    (atomic_read(&iclog->ic_refcnt) == 0
2960 		     && iclog->ic_offset == 0)) {
2961 			iclog = iclog->ic_prev;
2962 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2963 			    iclog->ic_state == XLOG_STATE_DIRTY)
2964 				goto no_sleep;
2965 			else
2966 				goto maybe_sleep;
2967 		} else {
2968 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2969 				/* We are the only one with access to this
2970 				 * iclog.  Flush it out now.  There should
2971 				 * be a roundoff of zero to show that someone
2972 				 * has already taken care of the roundoff from
2973 				 * the previous sync.
2974 				 */
2975 				atomic_inc(&iclog->ic_refcnt);
2976 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2977 				xlog_state_switch_iclogs(log, iclog, 0);
2978 				spin_unlock(&log->l_icloglock);
2979 
2980 				if (xlog_state_release_iclog(log, iclog))
2981 					return XFS_ERROR(EIO);
2982 
2983 				if (log_flushed)
2984 					*log_flushed = 1;
2985 				spin_lock(&log->l_icloglock);
2986 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2987 				    iclog->ic_state != XLOG_STATE_DIRTY)
2988 					goto maybe_sleep;
2989 				else
2990 					goto no_sleep;
2991 			} else {
2992 				/* Someone else is writing to this iclog.
2993 				 * Use its call to flush out the data.  However,
2994 				 * the other thread may not force out this LR,
2995 				 * so we mark it WANT_SYNC.
2996 				 */
2997 				xlog_state_switch_iclogs(log, iclog, 0);
2998 				goto maybe_sleep;
2999 			}
3000 		}
3001 	}
3002 
3003 	/* By the time we come around again, the iclog could've been filled
3004 	 * which would give it another lsn.  If we have a new lsn, just
3005 	 * return because the relevant data has been flushed.
3006 	 */
3007 maybe_sleep:
3008 	if (flags & XFS_LOG_SYNC) {
3009 		/*
3010 		 * We must check if we're shutting down here, before
3011 		 * we wait, while we're holding the l_icloglock.
3012 		 * Then we check again after waking up, in case our
3013 		 * sleep was disturbed by a bad news.
3014 		 */
3015 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3016 			spin_unlock(&log->l_icloglock);
3017 			return XFS_ERROR(EIO);
3018 		}
3019 		XFS_STATS_INC(xs_log_force_sleep);
3020 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3021 		/*
3022 		 * No need to grab the log lock here since we're
3023 		 * only deciding whether or not to return EIO
3024 		 * and the memory read should be atomic.
3025 		 */
3026 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3027 			return XFS_ERROR(EIO);
3028 		if (log_flushed)
3029 			*log_flushed = 1;
3030 	} else {
3031 
3032 no_sleep:
3033 		spin_unlock(&log->l_icloglock);
3034 	}
3035 	return 0;
3036 }
3037 
3038 /*
3039  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3040  * about errors or whether the log was flushed or not. This is the normal
3041  * interface to use when trying to unpin items or move the log forward.
3042  */
3043 void
xfs_log_force(xfs_mount_t * mp,uint flags)3044 xfs_log_force(
3045 	xfs_mount_t	*mp,
3046 	uint		flags)
3047 {
3048 	int	error;
3049 
3050 	error = _xfs_log_force(mp, flags, NULL);
3051 	if (error)
3052 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3053 }
3054 
3055 /*
3056  * Force the in-core log to disk for a specific LSN.
3057  *
3058  * Find in-core log with lsn.
3059  *	If it is in the DIRTY state, just return.
3060  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3061  *		state and go to sleep or return.
3062  *	If it is in any other state, go to sleep or return.
3063  *
3064  * Synchronous forces are implemented with a signal variable. All callers
3065  * to force a given lsn to disk will wait on a the sv attached to the
3066  * specific in-core log.  When given in-core log finally completes its
3067  * write to disk, that thread will wake up all threads waiting on the
3068  * sv.
3069  */
3070 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3071 _xfs_log_force_lsn(
3072 	struct xfs_mount	*mp,
3073 	xfs_lsn_t		lsn,
3074 	uint			flags,
3075 	int			*log_flushed)
3076 {
3077 	struct log		*log = mp->m_log;
3078 	struct xlog_in_core	*iclog;
3079 	int			already_slept = 0;
3080 
3081 	ASSERT(lsn != 0);
3082 
3083 	XFS_STATS_INC(xs_log_force);
3084 
3085 	if (log->l_cilp) {
3086 		lsn = xlog_cil_force_lsn(log, lsn);
3087 		if (lsn == NULLCOMMITLSN)
3088 			return 0;
3089 	}
3090 
3091 try_again:
3092 	spin_lock(&log->l_icloglock);
3093 	iclog = log->l_iclog;
3094 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3095 		spin_unlock(&log->l_icloglock);
3096 		return XFS_ERROR(EIO);
3097 	}
3098 
3099 	do {
3100 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3101 			iclog = iclog->ic_next;
3102 			continue;
3103 		}
3104 
3105 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3106 			spin_unlock(&log->l_icloglock);
3107 			return 0;
3108 		}
3109 
3110 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3111 			/*
3112 			 * We sleep here if we haven't already slept (e.g.
3113 			 * this is the first time we've looked at the correct
3114 			 * iclog buf) and the buffer before us is going to
3115 			 * be sync'ed. The reason for this is that if we
3116 			 * are doing sync transactions here, by waiting for
3117 			 * the previous I/O to complete, we can allow a few
3118 			 * more transactions into this iclog before we close
3119 			 * it down.
3120 			 *
3121 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3122 			 * up the refcnt so we can release the log (which
3123 			 * drops the ref count).  The state switch keeps new
3124 			 * transaction commits from using this buffer.  When
3125 			 * the current commits finish writing into the buffer,
3126 			 * the refcount will drop to zero and the buffer will
3127 			 * go out then.
3128 			 */
3129 			if (!already_slept &&
3130 			    (iclog->ic_prev->ic_state &
3131 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3132 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3133 
3134 				XFS_STATS_INC(xs_log_force_sleep);
3135 
3136 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3137 							&log->l_icloglock);
3138 				if (log_flushed)
3139 					*log_flushed = 1;
3140 				already_slept = 1;
3141 				goto try_again;
3142 			}
3143 			atomic_inc(&iclog->ic_refcnt);
3144 			xlog_state_switch_iclogs(log, iclog, 0);
3145 			spin_unlock(&log->l_icloglock);
3146 			if (xlog_state_release_iclog(log, iclog))
3147 				return XFS_ERROR(EIO);
3148 			if (log_flushed)
3149 				*log_flushed = 1;
3150 			spin_lock(&log->l_icloglock);
3151 		}
3152 
3153 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3154 		    !(iclog->ic_state &
3155 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3156 			/*
3157 			 * Don't wait on completion if we know that we've
3158 			 * gotten a log write error.
3159 			 */
3160 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3161 				spin_unlock(&log->l_icloglock);
3162 				return XFS_ERROR(EIO);
3163 			}
3164 			XFS_STATS_INC(xs_log_force_sleep);
3165 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3166 			/*
3167 			 * No need to grab the log lock here since we're
3168 			 * only deciding whether or not to return EIO
3169 			 * and the memory read should be atomic.
3170 			 */
3171 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3172 				return XFS_ERROR(EIO);
3173 
3174 			if (log_flushed)
3175 				*log_flushed = 1;
3176 		} else {		/* just return */
3177 			spin_unlock(&log->l_icloglock);
3178 		}
3179 
3180 		return 0;
3181 	} while (iclog != log->l_iclog);
3182 
3183 	spin_unlock(&log->l_icloglock);
3184 	return 0;
3185 }
3186 
3187 /*
3188  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3189  * about errors or whether the log was flushed or not. This is the normal
3190  * interface to use when trying to unpin items or move the log forward.
3191  */
3192 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3193 xfs_log_force_lsn(
3194 	xfs_mount_t	*mp,
3195 	xfs_lsn_t	lsn,
3196 	uint		flags)
3197 {
3198 	int	error;
3199 
3200 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3201 	if (error)
3202 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3203 }
3204 
3205 /*
3206  * Called when we want to mark the current iclog as being ready to sync to
3207  * disk.
3208  */
3209 STATIC void
xlog_state_want_sync(xlog_t * log,xlog_in_core_t * iclog)3210 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3211 {
3212 	assert_spin_locked(&log->l_icloglock);
3213 
3214 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3215 		xlog_state_switch_iclogs(log, iclog, 0);
3216 	} else {
3217 		ASSERT(iclog->ic_state &
3218 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3219 	}
3220 }
3221 
3222 
3223 /*****************************************************************************
3224  *
3225  *		TICKET functions
3226  *
3227  *****************************************************************************
3228  */
3229 
3230 /*
3231  * Free a used ticket when its refcount falls to zero.
3232  */
3233 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3234 xfs_log_ticket_put(
3235 	xlog_ticket_t	*ticket)
3236 {
3237 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3238 	if (atomic_dec_and_test(&ticket->t_ref))
3239 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3240 }
3241 
3242 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3243 xfs_log_ticket_get(
3244 	xlog_ticket_t	*ticket)
3245 {
3246 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3247 	atomic_inc(&ticket->t_ref);
3248 	return ticket;
3249 }
3250 
3251 xlog_tid_t
xfs_log_get_trans_ident(struct xfs_trans * tp)3252 xfs_log_get_trans_ident(
3253 	struct xfs_trans	*tp)
3254 {
3255 	return tp->t_ticket->t_tid;
3256 }
3257 
3258 /*
3259  * Allocate and initialise a new log ticket.
3260  */
3261 xlog_ticket_t *
xlog_ticket_alloc(struct log * log,int unit_bytes,int cnt,char client,uint xflags,int alloc_flags)3262 xlog_ticket_alloc(
3263 	struct log	*log,
3264 	int		unit_bytes,
3265 	int		cnt,
3266 	char		client,
3267 	uint		xflags,
3268 	int		alloc_flags)
3269 {
3270 	struct xlog_ticket *tic;
3271 	uint		num_headers;
3272 	int		iclog_space;
3273 
3274 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3275 	if (!tic)
3276 		return NULL;
3277 
3278 	/*
3279 	 * Permanent reservations have up to 'cnt'-1 active log operations
3280 	 * in the log.  A unit in this case is the amount of space for one
3281 	 * of these log operations.  Normal reservations have a cnt of 1
3282 	 * and their unit amount is the total amount of space required.
3283 	 *
3284 	 * The following lines of code account for non-transaction data
3285 	 * which occupy space in the on-disk log.
3286 	 *
3287 	 * Normal form of a transaction is:
3288 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3289 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3290 	 *
3291 	 * We need to account for all the leadup data and trailer data
3292 	 * around the transaction data.
3293 	 * And then we need to account for the worst case in terms of using
3294 	 * more space.
3295 	 * The worst case will happen if:
3296 	 * - the placement of the transaction happens to be such that the
3297 	 *   roundoff is at its maximum
3298 	 * - the transaction data is synced before the commit record is synced
3299 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3300 	 *   Therefore the commit record is in its own Log Record.
3301 	 *   This can happen as the commit record is called with its
3302 	 *   own region to xlog_write().
3303 	 *   This then means that in the worst case, roundoff can happen for
3304 	 *   the commit-rec as well.
3305 	 *   The commit-rec is smaller than padding in this scenario and so it is
3306 	 *   not added separately.
3307 	 */
3308 
3309 	/* for trans header */
3310 	unit_bytes += sizeof(xlog_op_header_t);
3311 	unit_bytes += sizeof(xfs_trans_header_t);
3312 
3313 	/* for start-rec */
3314 	unit_bytes += sizeof(xlog_op_header_t);
3315 
3316 	/*
3317 	 * for LR headers - the space for data in an iclog is the size minus
3318 	 * the space used for the headers. If we use the iclog size, then we
3319 	 * undercalculate the number of headers required.
3320 	 *
3321 	 * Furthermore - the addition of op headers for split-recs might
3322 	 * increase the space required enough to require more log and op
3323 	 * headers, so take that into account too.
3324 	 *
3325 	 * IMPORTANT: This reservation makes the assumption that if this
3326 	 * transaction is the first in an iclog and hence has the LR headers
3327 	 * accounted to it, then the remaining space in the iclog is
3328 	 * exclusively for this transaction.  i.e. if the transaction is larger
3329 	 * than the iclog, it will be the only thing in that iclog.
3330 	 * Fundamentally, this means we must pass the entire log vector to
3331 	 * xlog_write to guarantee this.
3332 	 */
3333 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3334 	num_headers = howmany(unit_bytes, iclog_space);
3335 
3336 	/* for split-recs - ophdrs added when data split over LRs */
3337 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3338 
3339 	/* add extra header reservations if we overrun */
3340 	while (!num_headers ||
3341 	       howmany(unit_bytes, iclog_space) > num_headers) {
3342 		unit_bytes += sizeof(xlog_op_header_t);
3343 		num_headers++;
3344 	}
3345 	unit_bytes += log->l_iclog_hsize * num_headers;
3346 
3347 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3348 	unit_bytes += log->l_iclog_hsize;
3349 
3350 	/* for roundoff padding for transaction data and one for commit record */
3351 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3352 	    log->l_mp->m_sb.sb_logsunit > 1) {
3353 		/* log su roundoff */
3354 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3355 	} else {
3356 		/* BB roundoff */
3357 		unit_bytes += 2*BBSIZE;
3358         }
3359 
3360 	atomic_set(&tic->t_ref, 1);
3361 	INIT_LIST_HEAD(&tic->t_queue);
3362 	tic->t_unit_res		= unit_bytes;
3363 	tic->t_curr_res		= unit_bytes;
3364 	tic->t_cnt		= cnt;
3365 	tic->t_ocnt		= cnt;
3366 	tic->t_tid		= random32();
3367 	tic->t_clientid		= client;
3368 	tic->t_flags		= XLOG_TIC_INITED;
3369 	tic->t_trans_type	= 0;
3370 	if (xflags & XFS_LOG_PERM_RESERV)
3371 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3372 	init_waitqueue_head(&tic->t_wait);
3373 
3374 	xlog_tic_reset_res(tic);
3375 
3376 	return tic;
3377 }
3378 
3379 
3380 /******************************************************************************
3381  *
3382  *		Log debug routines
3383  *
3384  ******************************************************************************
3385  */
3386 #if defined(DEBUG)
3387 /*
3388  * Make sure that the destination ptr is within the valid data region of
3389  * one of the iclogs.  This uses backup pointers stored in a different
3390  * part of the log in case we trash the log structure.
3391  */
3392 void
xlog_verify_dest_ptr(struct log * log,char * ptr)3393 xlog_verify_dest_ptr(
3394 	struct log	*log,
3395 	char		*ptr)
3396 {
3397 	int i;
3398 	int good_ptr = 0;
3399 
3400 	for (i = 0; i < log->l_iclog_bufs; i++) {
3401 		if (ptr >= log->l_iclog_bak[i] &&
3402 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3403 			good_ptr++;
3404 	}
3405 
3406 	if (!good_ptr)
3407 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3408 }
3409 
3410 /*
3411  * Check to make sure the grant write head didn't just over lap the tail.  If
3412  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3413  * the cycles differ by exactly one and check the byte count.
3414  *
3415  * This check is run unlocked, so can give false positives. Rather than assert
3416  * on failures, use a warn-once flag and a panic tag to allow the admin to
3417  * determine if they want to panic the machine when such an error occurs. For
3418  * debug kernels this will have the same effect as using an assert but, unlinke
3419  * an assert, it can be turned off at runtime.
3420  */
3421 STATIC void
xlog_verify_grant_tail(struct log * log)3422 xlog_verify_grant_tail(
3423 	struct log	*log)
3424 {
3425 	int		tail_cycle, tail_blocks;
3426 	int		cycle, space;
3427 
3428 	xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3429 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3430 	if (tail_cycle != cycle) {
3431 		if (cycle - 1 != tail_cycle &&
3432 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3433 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3434 				"%s: cycle - 1 != tail_cycle", __func__);
3435 			log->l_flags |= XLOG_TAIL_WARN;
3436 		}
3437 
3438 		if (space > BBTOB(tail_blocks) &&
3439 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3440 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3441 				"%s: space > BBTOB(tail_blocks)", __func__);
3442 			log->l_flags |= XLOG_TAIL_WARN;
3443 		}
3444 	}
3445 }
3446 
3447 /* check if it will fit */
3448 STATIC void
xlog_verify_tail_lsn(xlog_t * log,xlog_in_core_t * iclog,xfs_lsn_t tail_lsn)3449 xlog_verify_tail_lsn(xlog_t	    *log,
3450 		     xlog_in_core_t *iclog,
3451 		     xfs_lsn_t	    tail_lsn)
3452 {
3453     int blocks;
3454 
3455     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3456 	blocks =
3457 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3458 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3459 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3460     } else {
3461 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3462 
3463 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3464 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3465 
3466 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3467 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3468 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3469     }
3470 }	/* xlog_verify_tail_lsn */
3471 
3472 /*
3473  * Perform a number of checks on the iclog before writing to disk.
3474  *
3475  * 1. Make sure the iclogs are still circular
3476  * 2. Make sure we have a good magic number
3477  * 3. Make sure we don't have magic numbers in the data
3478  * 4. Check fields of each log operation header for:
3479  *	A. Valid client identifier
3480  *	B. tid ptr value falls in valid ptr space (user space code)
3481  *	C. Length in log record header is correct according to the
3482  *		individual operation headers within record.
3483  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3484  *	log, check the preceding blocks of the physical log to make sure all
3485  *	the cycle numbers agree with the current cycle number.
3486  */
3487 STATIC void
xlog_verify_iclog(xlog_t * log,xlog_in_core_t * iclog,int count,boolean_t syncing)3488 xlog_verify_iclog(xlog_t	 *log,
3489 		  xlog_in_core_t *iclog,
3490 		  int		 count,
3491 		  boolean_t	 syncing)
3492 {
3493 	xlog_op_header_t	*ophead;
3494 	xlog_in_core_t		*icptr;
3495 	xlog_in_core_2_t	*xhdr;
3496 	xfs_caddr_t		ptr;
3497 	xfs_caddr_t		base_ptr;
3498 	__psint_t		field_offset;
3499 	__uint8_t		clientid;
3500 	int			len, i, j, k, op_len;
3501 	int			idx;
3502 
3503 	/* check validity of iclog pointers */
3504 	spin_lock(&log->l_icloglock);
3505 	icptr = log->l_iclog;
3506 	for (i=0; i < log->l_iclog_bufs; i++) {
3507 		if (icptr == NULL)
3508 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3509 		icptr = icptr->ic_next;
3510 	}
3511 	if (icptr != log->l_iclog)
3512 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3513 	spin_unlock(&log->l_icloglock);
3514 
3515 	/* check log magic numbers */
3516 	if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM)
3517 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3518 
3519 	ptr = (xfs_caddr_t) &iclog->ic_header;
3520 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3521 	     ptr += BBSIZE) {
3522 		if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM)
3523 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3524 				__func__);
3525 	}
3526 
3527 	/* check fields */
3528 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3529 	ptr = iclog->ic_datap;
3530 	base_ptr = ptr;
3531 	ophead = (xlog_op_header_t *)ptr;
3532 	xhdr = iclog->ic_data;
3533 	for (i = 0; i < len; i++) {
3534 		ophead = (xlog_op_header_t *)ptr;
3535 
3536 		/* clientid is only 1 byte */
3537 		field_offset = (__psint_t)
3538 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3539 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3540 			clientid = ophead->oh_clientid;
3541 		} else {
3542 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3543 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3544 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3545 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3546 				clientid = xlog_get_client_id(
3547 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3548 			} else {
3549 				clientid = xlog_get_client_id(
3550 					iclog->ic_header.h_cycle_data[idx]);
3551 			}
3552 		}
3553 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3554 			xfs_warn(log->l_mp,
3555 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3556 				__func__, clientid, ophead,
3557 				(unsigned long)field_offset);
3558 
3559 		/* check length */
3560 		field_offset = (__psint_t)
3561 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3562 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3563 			op_len = be32_to_cpu(ophead->oh_len);
3564 		} else {
3565 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3566 				    (__psint_t)iclog->ic_datap);
3567 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3568 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3569 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3570 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3571 			} else {
3572 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3573 			}
3574 		}
3575 		ptr += sizeof(xlog_op_header_t) + op_len;
3576 	}
3577 }	/* xlog_verify_iclog */
3578 #endif
3579 
3580 /*
3581  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3582  */
3583 STATIC int
xlog_state_ioerror(xlog_t * log)3584 xlog_state_ioerror(
3585 	xlog_t	*log)
3586 {
3587 	xlog_in_core_t	*iclog, *ic;
3588 
3589 	iclog = log->l_iclog;
3590 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3591 		/*
3592 		 * Mark all the incore logs IOERROR.
3593 		 * From now on, no log flushes will result.
3594 		 */
3595 		ic = iclog;
3596 		do {
3597 			ic->ic_state = XLOG_STATE_IOERROR;
3598 			ic = ic->ic_next;
3599 		} while (ic != iclog);
3600 		return 0;
3601 	}
3602 	/*
3603 	 * Return non-zero, if state transition has already happened.
3604 	 */
3605 	return 1;
3606 }
3607 
3608 /*
3609  * This is called from xfs_force_shutdown, when we're forcibly
3610  * shutting down the filesystem, typically because of an IO error.
3611  * Our main objectives here are to make sure that:
3612  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3613  *	   parties to find out, 'atomically'.
3614  *	b. those who're sleeping on log reservations, pinned objects and
3615  *	    other resources get woken up, and be told the bad news.
3616  *	c. nothing new gets queued up after (a) and (b) are done.
3617  *	d. if !logerror, flush the iclogs to disk, then seal them off
3618  *	   for business.
3619  *
3620  * Note: for delayed logging the !logerror case needs to flush the regions
3621  * held in memory out to the iclogs before flushing them to disk. This needs
3622  * to be done before the log is marked as shutdown, otherwise the flush to the
3623  * iclogs will fail.
3624  */
3625 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3626 xfs_log_force_umount(
3627 	struct xfs_mount	*mp,
3628 	int			logerror)
3629 {
3630 	xlog_ticket_t	*tic;
3631 	xlog_t		*log;
3632 	int		retval;
3633 
3634 	log = mp->m_log;
3635 
3636 	/*
3637 	 * If this happens during log recovery, don't worry about
3638 	 * locking; the log isn't open for business yet.
3639 	 */
3640 	if (!log ||
3641 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3642 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3643 		if (mp->m_sb_bp)
3644 			XFS_BUF_DONE(mp->m_sb_bp);
3645 		return 0;
3646 	}
3647 
3648 	/*
3649 	 * Somebody could've already done the hard work for us.
3650 	 * No need to get locks for this.
3651 	 */
3652 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3653 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3654 		return 1;
3655 	}
3656 	retval = 0;
3657 
3658 	/*
3659 	 * Flush the in memory commit item list before marking the log as
3660 	 * being shut down. We need to do it in this order to ensure all the
3661 	 * completed transactions are flushed to disk with the xfs_log_force()
3662 	 * call below.
3663 	 */
3664 	if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3665 		xlog_cil_force(log);
3666 
3667 	/*
3668 	 * mark the filesystem and the as in a shutdown state and wake
3669 	 * everybody up to tell them the bad news.
3670 	 */
3671 	spin_lock(&log->l_icloglock);
3672 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3673 	if (mp->m_sb_bp)
3674 		XFS_BUF_DONE(mp->m_sb_bp);
3675 
3676 	/*
3677 	 * This flag is sort of redundant because of the mount flag, but
3678 	 * it's good to maintain the separation between the log and the rest
3679 	 * of XFS.
3680 	 */
3681 	log->l_flags |= XLOG_IO_ERROR;
3682 
3683 	/*
3684 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3685 	 * while we're still holding the loglock.
3686 	 */
3687 	if (logerror)
3688 		retval = xlog_state_ioerror(log);
3689 	spin_unlock(&log->l_icloglock);
3690 
3691 	/*
3692 	 * We don't want anybody waiting for log reservations after this. That
3693 	 * means we have to wake up everybody queued up on reserveq as well as
3694 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3695 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3696 	 * action is protected by the grant locks.
3697 	 */
3698 	spin_lock(&log->l_grant_reserve_lock);
3699 	list_for_each_entry(tic, &log->l_reserveq, t_queue)
3700 		wake_up(&tic->t_wait);
3701 	spin_unlock(&log->l_grant_reserve_lock);
3702 
3703 	spin_lock(&log->l_grant_write_lock);
3704 	list_for_each_entry(tic, &log->l_writeq, t_queue)
3705 		wake_up(&tic->t_wait);
3706 	spin_unlock(&log->l_grant_write_lock);
3707 
3708 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3709 		ASSERT(!logerror);
3710 		/*
3711 		 * Force the incore logs to disk before shutting the
3712 		 * log down completely.
3713 		 */
3714 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3715 
3716 		spin_lock(&log->l_icloglock);
3717 		retval = xlog_state_ioerror(log);
3718 		spin_unlock(&log->l_icloglock);
3719 	}
3720 	/*
3721 	 * Wake up everybody waiting on xfs_log_force.
3722 	 * Callback all log item committed functions as if the
3723 	 * log writes were completed.
3724 	 */
3725 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3726 
3727 #ifdef XFSERRORDEBUG
3728 	{
3729 		xlog_in_core_t	*iclog;
3730 
3731 		spin_lock(&log->l_icloglock);
3732 		iclog = log->l_iclog;
3733 		do {
3734 			ASSERT(iclog->ic_callback == 0);
3735 			iclog = iclog->ic_next;
3736 		} while (iclog != log->l_iclog);
3737 		spin_unlock(&log->l_icloglock);
3738 	}
3739 #endif
3740 	/* return non-zero if log IOERROR transition had already happened */
3741 	return retval;
3742 }
3743 
3744 STATIC int
xlog_iclogs_empty(xlog_t * log)3745 xlog_iclogs_empty(xlog_t *log)
3746 {
3747 	xlog_in_core_t	*iclog;
3748 
3749 	iclog = log->l_iclog;
3750 	do {
3751 		/* endianness does not matter here, zero is zero in
3752 		 * any language.
3753 		 */
3754 		if (iclog->ic_header.h_num_logops)
3755 			return 0;
3756 		iclog = iclog->ic_next;
3757 	} while (iclog != log->l_iclog);
3758 	return 1;
3759 }
3760