1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40 
41 kmem_zone_t	*xfs_log_ticket_zone;
42 
43 /* Local miscellaneous function prototypes */
44 STATIC int	 xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 				    xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t *  xlog_alloc_log(xfs_mount_t	*mp,
47 				xfs_buftarg_t	*log_target,
48 				xfs_daddr_t	blk_offset,
49 				int		num_bblks);
50 STATIC int	 xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int	 xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void	 xlog_dealloc_log(xlog_t *log);
53 
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int  xlog_state_get_iclog_space(xlog_t		*log,
58 				       int		len,
59 				       xlog_in_core_t	**iclog,
60 				       xlog_ticket_t	*ticket,
61 				       int		*continued_write,
62 				       int		*logoffsetp);
63 STATIC int  xlog_state_release_iclog(xlog_t		*log,
64 				     xlog_in_core_t	*iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t		*log,
66 				     xlog_in_core_t *iclog,
67 				     int		eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t	*log, xlog_in_core_t *iclog);
69 
70 STATIC void xlog_grant_push_ail(struct log	*log,
71 				int		need_bytes);
72 STATIC void xlog_regrant_reserve_log_space(xlog_t	 *log,
73 					   xlog_ticket_t *ticket);
74 STATIC void xlog_ungrant_log_space(xlog_t	 *log,
75 				   xlog_ticket_t *ticket);
76 
77 #if defined(DEBUG)
78 STATIC void	xlog_verify_dest_ptr(xlog_t *log, char *ptr);
79 STATIC void	xlog_verify_grant_tail(struct log *log);
80 STATIC void	xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
81 				  int count, boolean_t syncing);
82 STATIC void	xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
83 				     xfs_lsn_t tail_lsn);
84 #else
85 #define xlog_verify_dest_ptr(a,b)
86 #define xlog_verify_grant_tail(a)
87 #define xlog_verify_iclog(a,b,c,d)
88 #define xlog_verify_tail_lsn(a,b,c)
89 #endif
90 
91 STATIC int	xlog_iclogs_empty(xlog_t *log);
92 
93 static void
xlog_grant_sub_space(struct log * log,atomic64_t * head,int bytes)94 xlog_grant_sub_space(
95 	struct log	*log,
96 	atomic64_t	*head,
97 	int		bytes)
98 {
99 	int64_t	head_val = atomic64_read(head);
100 	int64_t new, old;
101 
102 	do {
103 		int	cycle, space;
104 
105 		xlog_crack_grant_head_val(head_val, &cycle, &space);
106 
107 		space -= bytes;
108 		if (space < 0) {
109 			space += log->l_logsize;
110 			cycle--;
111 		}
112 
113 		old = head_val;
114 		new = xlog_assign_grant_head_val(cycle, space);
115 		head_val = atomic64_cmpxchg(head, old, new);
116 	} while (head_val != old);
117 }
118 
119 static void
xlog_grant_add_space(struct log * log,atomic64_t * head,int bytes)120 xlog_grant_add_space(
121 	struct log	*log,
122 	atomic64_t	*head,
123 	int		bytes)
124 {
125 	int64_t	head_val = atomic64_read(head);
126 	int64_t new, old;
127 
128 	do {
129 		int		tmp;
130 		int		cycle, space;
131 
132 		xlog_crack_grant_head_val(head_val, &cycle, &space);
133 
134 		tmp = log->l_logsize - space;
135 		if (tmp > bytes)
136 			space += bytes;
137 		else {
138 			space = bytes - tmp;
139 			cycle++;
140 		}
141 
142 		old = head_val;
143 		new = xlog_assign_grant_head_val(cycle, space);
144 		head_val = atomic64_cmpxchg(head, old, new);
145 	} while (head_val != old);
146 }
147 
148 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)149 xlog_grant_head_init(
150 	struct xlog_grant_head	*head)
151 {
152 	xlog_assign_grant_head(&head->grant, 1, 0);
153 	INIT_LIST_HEAD(&head->waiters);
154 	spin_lock_init(&head->lock);
155 }
156 
157 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)158 xlog_grant_head_wake_all(
159 	struct xlog_grant_head	*head)
160 {
161 	struct xlog_ticket	*tic;
162 
163 	spin_lock(&head->lock);
164 	list_for_each_entry(tic, &head->waiters, t_queue)
165 		wake_up_process(tic->t_task);
166 	spin_unlock(&head->lock);
167 }
168 
169 static inline int
xlog_ticket_reservation(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic)170 xlog_ticket_reservation(
171 	struct log		*log,
172 	struct xlog_grant_head	*head,
173 	struct xlog_ticket	*tic)
174 {
175 	if (head == &log->l_write_head) {
176 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 		return tic->t_unit_res;
178 	} else {
179 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 			return tic->t_unit_res * tic->t_cnt;
181 		else
182 			return tic->t_unit_res;
183 	}
184 }
185 
186 STATIC bool
xlog_grant_head_wake(struct log * log,struct xlog_grant_head * head,int * free_bytes)187 xlog_grant_head_wake(
188 	struct log		*log,
189 	struct xlog_grant_head	*head,
190 	int			*free_bytes)
191 {
192 	struct xlog_ticket	*tic;
193 	int			need_bytes;
194 
195 	list_for_each_entry(tic, &head->waiters, t_queue) {
196 		need_bytes = xlog_ticket_reservation(log, head, tic);
197 		if (*free_bytes < need_bytes)
198 			return false;
199 
200 		*free_bytes -= need_bytes;
201 		trace_xfs_log_grant_wake_up(log, tic);
202 		wake_up_process(tic->t_task);
203 	}
204 
205 	return true;
206 }
207 
208 STATIC int
xlog_grant_head_wait(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)209 xlog_grant_head_wait(
210 	struct log		*log,
211 	struct xlog_grant_head	*head,
212 	struct xlog_ticket	*tic,
213 	int			need_bytes)
214 {
215 	list_add_tail(&tic->t_queue, &head->waiters);
216 
217 	do {
218 		if (XLOG_FORCED_SHUTDOWN(log))
219 			goto shutdown;
220 		xlog_grant_push_ail(log, need_bytes);
221 
222 		__set_current_state(TASK_UNINTERRUPTIBLE);
223 		spin_unlock(&head->lock);
224 
225 		XFS_STATS_INC(xs_sleep_logspace);
226 
227 		trace_xfs_log_grant_sleep(log, tic);
228 		schedule();
229 		trace_xfs_log_grant_wake(log, tic);
230 
231 		spin_lock(&head->lock);
232 		if (XLOG_FORCED_SHUTDOWN(log))
233 			goto shutdown;
234 	} while (xlog_space_left(log, &head->grant) < need_bytes);
235 
236 	list_del_init(&tic->t_queue);
237 	return 0;
238 shutdown:
239 	list_del_init(&tic->t_queue);
240 	return XFS_ERROR(EIO);
241 }
242 
243 /*
244  * Atomically get the log space required for a log ticket.
245  *
246  * Once a ticket gets put onto head->waiters, it will only return after the
247  * needed reservation is satisfied.
248  *
249  * This function is structured so that it has a lock free fast path. This is
250  * necessary because every new transaction reservation will come through this
251  * path. Hence any lock will be globally hot if we take it unconditionally on
252  * every pass.
253  *
254  * As tickets are only ever moved on and off head->waiters under head->lock, we
255  * only need to take that lock if we are going to add the ticket to the queue
256  * and sleep. We can avoid taking the lock if the ticket was never added to
257  * head->waiters because the t_queue list head will be empty and we hold the
258  * only reference to it so it can safely be checked unlocked.
259  */
260 STATIC int
xlog_grant_head_check(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)261 xlog_grant_head_check(
262 	struct log		*log,
263 	struct xlog_grant_head	*head,
264 	struct xlog_ticket	*tic,
265 	int			*need_bytes)
266 {
267 	int			free_bytes;
268 	int			error = 0;
269 
270 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
271 
272 	/*
273 	 * If there are other waiters on the queue then give them a chance at
274 	 * logspace before us.  Wake up the first waiters, if we do not wake
275 	 * up all the waiters then go to sleep waiting for more free space,
276 	 * otherwise try to get some space for this transaction.
277 	 */
278 	*need_bytes = xlog_ticket_reservation(log, head, tic);
279 	free_bytes = xlog_space_left(log, &head->grant);
280 	if (!list_empty_careful(&head->waiters)) {
281 		spin_lock(&head->lock);
282 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
283 		    free_bytes < *need_bytes) {
284 			error = xlog_grant_head_wait(log, head, tic,
285 						     *need_bytes);
286 		}
287 		spin_unlock(&head->lock);
288 	} else if (free_bytes < *need_bytes) {
289 		spin_lock(&head->lock);
290 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
291 		spin_unlock(&head->lock);
292 	}
293 
294 	return error;
295 }
296 
297 static void
xlog_tic_reset_res(xlog_ticket_t * tic)298 xlog_tic_reset_res(xlog_ticket_t *tic)
299 {
300 	tic->t_res_num = 0;
301 	tic->t_res_arr_sum = 0;
302 	tic->t_res_num_ophdrs = 0;
303 }
304 
305 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)306 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
307 {
308 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
309 		/* add to overflow and start again */
310 		tic->t_res_o_flow += tic->t_res_arr_sum;
311 		tic->t_res_num = 0;
312 		tic->t_res_arr_sum = 0;
313 	}
314 
315 	tic->t_res_arr[tic->t_res_num].r_len = len;
316 	tic->t_res_arr[tic->t_res_num].r_type = type;
317 	tic->t_res_arr_sum += len;
318 	tic->t_res_num++;
319 }
320 
321 /*
322  * Replenish the byte reservation required by moving the grant write head.
323  */
324 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)325 xfs_log_regrant(
326 	struct xfs_mount	*mp,
327 	struct xlog_ticket	*tic)
328 {
329 	struct log		*log = mp->m_log;
330 	int			need_bytes;
331 	int			error = 0;
332 
333 	if (XLOG_FORCED_SHUTDOWN(log))
334 		return XFS_ERROR(EIO);
335 
336 	XFS_STATS_INC(xs_try_logspace);
337 
338 	/*
339 	 * This is a new transaction on the ticket, so we need to change the
340 	 * transaction ID so that the next transaction has a different TID in
341 	 * the log. Just add one to the existing tid so that we can see chains
342 	 * of rolling transactions in the log easily.
343 	 */
344 	tic->t_tid++;
345 
346 	xlog_grant_push_ail(log, tic->t_unit_res);
347 
348 	tic->t_curr_res = tic->t_unit_res;
349 	xlog_tic_reset_res(tic);
350 
351 	if (tic->t_cnt > 0)
352 		return 0;
353 
354 	trace_xfs_log_regrant(log, tic);
355 
356 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
357 				      &need_bytes);
358 	if (error)
359 		goto out_error;
360 
361 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
362 	trace_xfs_log_regrant_exit(log, tic);
363 	xlog_verify_grant_tail(log);
364 	return 0;
365 
366 out_error:
367 	/*
368 	 * If we are failing, make sure the ticket doesn't have any current
369 	 * reservations.  We don't want to add this back when the ticket/
370 	 * transaction gets cancelled.
371 	 */
372 	tic->t_curr_res = 0;
373 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
374 	return error;
375 }
376 
377 /*
378  * Reserve log space and return a ticket corresponding the reservation.
379  *
380  * Each reservation is going to reserve extra space for a log record header.
381  * When writes happen to the on-disk log, we don't subtract the length of the
382  * log record header from any reservation.  By wasting space in each
383  * reservation, we prevent over allocation problems.
384  */
385 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent,uint t_type)386 xfs_log_reserve(
387 	struct xfs_mount	*mp,
388 	int		 	unit_bytes,
389 	int		 	cnt,
390 	struct xlog_ticket	**ticp,
391 	__uint8_t	 	client,
392 	bool			permanent,
393 	uint		 	t_type)
394 {
395 	struct log		*log = mp->m_log;
396 	struct xlog_ticket	*tic;
397 	int			need_bytes;
398 	int			error = 0;
399 
400 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
401 
402 	if (XLOG_FORCED_SHUTDOWN(log))
403 		return XFS_ERROR(EIO);
404 
405 	XFS_STATS_INC(xs_try_logspace);
406 
407 	ASSERT(*ticp == NULL);
408 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
409 				KM_SLEEP | KM_MAYFAIL);
410 	if (!tic)
411 		return XFS_ERROR(ENOMEM);
412 
413 	tic->t_trans_type = t_type;
414 	*ticp = tic;
415 
416 	xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
417 
418 	trace_xfs_log_reserve(log, tic);
419 
420 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
421 				      &need_bytes);
422 	if (error)
423 		goto out_error;
424 
425 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
426 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
427 	trace_xfs_log_reserve_exit(log, tic);
428 	xlog_verify_grant_tail(log);
429 	return 0;
430 
431 out_error:
432 	/*
433 	 * If we are failing, make sure the ticket doesn't have any current
434 	 * reservations.  We don't want to add this back when the ticket/
435 	 * transaction gets cancelled.
436 	 */
437 	tic->t_curr_res = 0;
438 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
439 	return error;
440 }
441 
442 
443 /*
444  * NOTES:
445  *
446  *	1. currblock field gets updated at startup and after in-core logs
447  *		marked as with WANT_SYNC.
448  */
449 
450 /*
451  * This routine is called when a user of a log manager ticket is done with
452  * the reservation.  If the ticket was ever used, then a commit record for
453  * the associated transaction is written out as a log operation header with
454  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
455  * a given ticket.  If the ticket was one with a permanent reservation, then
456  * a few operations are done differently.  Permanent reservation tickets by
457  * default don't release the reservation.  They just commit the current
458  * transaction with the belief that the reservation is still needed.  A flag
459  * must be passed in before permanent reservations are actually released.
460  * When these type of tickets are not released, they need to be set into
461  * the inited state again.  By doing this, a start record will be written
462  * out when the next write occurs.
463  */
464 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,uint flags)465 xfs_log_done(
466 	struct xfs_mount	*mp,
467 	struct xlog_ticket	*ticket,
468 	struct xlog_in_core	**iclog,
469 	uint			flags)
470 {
471 	struct log		*log = mp->m_log;
472 	xfs_lsn_t		lsn = 0;
473 
474 	if (XLOG_FORCED_SHUTDOWN(log) ||
475 	    /*
476 	     * If nothing was ever written, don't write out commit record.
477 	     * If we get an error, just continue and give back the log ticket.
478 	     */
479 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
480 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
481 		lsn = (xfs_lsn_t) -1;
482 		if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
483 			flags |= XFS_LOG_REL_PERM_RESERV;
484 		}
485 	}
486 
487 
488 	if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
489 	    (flags & XFS_LOG_REL_PERM_RESERV)) {
490 		trace_xfs_log_done_nonperm(log, ticket);
491 
492 		/*
493 		 * Release ticket if not permanent reservation or a specific
494 		 * request has been made to release a permanent reservation.
495 		 */
496 		xlog_ungrant_log_space(log, ticket);
497 		xfs_log_ticket_put(ticket);
498 	} else {
499 		trace_xfs_log_done_perm(log, ticket);
500 
501 		xlog_regrant_reserve_log_space(log, ticket);
502 		/* If this ticket was a permanent reservation and we aren't
503 		 * trying to release it, reset the inited flags; so next time
504 		 * we write, a start record will be written out.
505 		 */
506 		ticket->t_flags |= XLOG_TIC_INITED;
507 	}
508 
509 	return lsn;
510 }
511 
512 /*
513  * Attaches a new iclog I/O completion callback routine during
514  * transaction commit.  If the log is in error state, a non-zero
515  * return code is handed back and the caller is responsible for
516  * executing the callback at an appropriate time.
517  */
518 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)519 xfs_log_notify(
520 	struct xfs_mount	*mp,
521 	struct xlog_in_core	*iclog,
522 	xfs_log_callback_t	*cb)
523 {
524 	int	abortflg;
525 
526 	spin_lock(&iclog->ic_callback_lock);
527 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
528 	if (!abortflg) {
529 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
530 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
531 		cb->cb_next = NULL;
532 		*(iclog->ic_callback_tail) = cb;
533 		iclog->ic_callback_tail = &(cb->cb_next);
534 	}
535 	spin_unlock(&iclog->ic_callback_lock);
536 	return abortflg;
537 }
538 
539 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)540 xfs_log_release_iclog(
541 	struct xfs_mount	*mp,
542 	struct xlog_in_core	*iclog)
543 {
544 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
545 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
546 		return EIO;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * Mount a log filesystem
554  *
555  * mp		- ubiquitous xfs mount point structure
556  * log_target	- buftarg of on-disk log device
557  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
558  * num_bblocks	- Number of BBSIZE blocks in on-disk log
559  *
560  * Return error or zero.
561  */
562 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)563 xfs_log_mount(
564 	xfs_mount_t	*mp,
565 	xfs_buftarg_t	*log_target,
566 	xfs_daddr_t	blk_offset,
567 	int		num_bblks)
568 {
569 	int		error;
570 
571 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
572 		xfs_notice(mp, "Mounting Filesystem");
573 	else {
574 		xfs_notice(mp,
575 "Mounting filesystem in no-recovery mode.  Filesystem will be inconsistent.");
576 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
577 	}
578 
579 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
580 	if (IS_ERR(mp->m_log)) {
581 		error = -PTR_ERR(mp->m_log);
582 		goto out;
583 	}
584 
585 	/*
586 	 * Initialize the AIL now we have a log.
587 	 */
588 	error = xfs_trans_ail_init(mp);
589 	if (error) {
590 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
591 		goto out_free_log;
592 	}
593 	mp->m_log->l_ailp = mp->m_ail;
594 
595 	/*
596 	 * skip log recovery on a norecovery mount.  pretend it all
597 	 * just worked.
598 	 */
599 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
600 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
601 
602 		if (readonly)
603 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
604 
605 		error = xlog_recover(mp->m_log);
606 
607 		if (readonly)
608 			mp->m_flags |= XFS_MOUNT_RDONLY;
609 		if (error) {
610 			xfs_warn(mp, "log mount/recovery failed: error %d",
611 				error);
612 			goto out_destroy_ail;
613 		}
614 	}
615 
616 	/* Normal transactions can now occur */
617 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
618 
619 	/*
620 	 * Now the log has been fully initialised and we know were our
621 	 * space grant counters are, we can initialise the permanent ticket
622 	 * needed for delayed logging to work.
623 	 */
624 	xlog_cil_init_post_recovery(mp->m_log);
625 
626 	return 0;
627 
628 out_destroy_ail:
629 	xfs_trans_ail_destroy(mp);
630 out_free_log:
631 	xlog_dealloc_log(mp->m_log);
632 out:
633 	return error;
634 }
635 
636 /*
637  * Finish the recovery of the file system.  This is separate from
638  * the xfs_log_mount() call, because it depends on the code in
639  * xfs_mountfs() to read in the root and real-time bitmap inodes
640  * between calling xfs_log_mount() and here.
641  *
642  * mp		- ubiquitous xfs mount point structure
643  */
644 int
xfs_log_mount_finish(xfs_mount_t * mp)645 xfs_log_mount_finish(xfs_mount_t *mp)
646 {
647 	int	error;
648 
649 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
650 		error = xlog_recover_finish(mp->m_log);
651 	else {
652 		error = 0;
653 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
654 	}
655 
656 	return error;
657 }
658 
659 /*
660  * Final log writes as part of unmount.
661  *
662  * Mark the filesystem clean as unmount happens.  Note that during relocation
663  * this routine needs to be executed as part of source-bag while the
664  * deallocation must not be done until source-end.
665  */
666 
667 /*
668  * Unmount record used to have a string "Unmount filesystem--" in the
669  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
670  * We just write the magic number now since that particular field isn't
671  * currently architecture converted and "nUmount" is a bit foo.
672  * As far as I know, there weren't any dependencies on the old behaviour.
673  */
674 
675 int
xfs_log_unmount_write(xfs_mount_t * mp)676 xfs_log_unmount_write(xfs_mount_t *mp)
677 {
678 	xlog_t		 *log = mp->m_log;
679 	xlog_in_core_t	 *iclog;
680 #ifdef DEBUG
681 	xlog_in_core_t	 *first_iclog;
682 #endif
683 	xlog_ticket_t	*tic = NULL;
684 	xfs_lsn_t	 lsn;
685 	int		 error;
686 
687 	/*
688 	 * Don't write out unmount record on read-only mounts.
689 	 * Or, if we are doing a forced umount (typically because of IO errors).
690 	 */
691 	if (mp->m_flags & XFS_MOUNT_RDONLY)
692 		return 0;
693 
694 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
695 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
696 
697 #ifdef DEBUG
698 	first_iclog = iclog = log->l_iclog;
699 	do {
700 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
701 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
702 			ASSERT(iclog->ic_offset == 0);
703 		}
704 		iclog = iclog->ic_next;
705 	} while (iclog != first_iclog);
706 #endif
707 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
708 		error = xfs_log_reserve(mp, 600, 1, &tic,
709 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
710 		if (!error) {
711 			/* the data section must be 32 bit size aligned */
712 			struct {
713 			    __uint16_t magic;
714 			    __uint16_t pad1;
715 			    __uint32_t pad2; /* may as well make it 64 bits */
716 			} magic = {
717 				.magic = XLOG_UNMOUNT_TYPE,
718 			};
719 			struct xfs_log_iovec reg = {
720 				.i_addr = &magic,
721 				.i_len = sizeof(magic),
722 				.i_type = XLOG_REG_TYPE_UNMOUNT,
723 			};
724 			struct xfs_log_vec vec = {
725 				.lv_niovecs = 1,
726 				.lv_iovecp = &reg,
727 			};
728 
729 			/* remove inited flag, and account for space used */
730 			tic->t_flags = 0;
731 			tic->t_curr_res -= sizeof(magic);
732 			error = xlog_write(log, &vec, tic, &lsn,
733 					   NULL, XLOG_UNMOUNT_TRANS);
734 			/*
735 			 * At this point, we're umounting anyway,
736 			 * so there's no point in transitioning log state
737 			 * to IOERROR. Just continue...
738 			 */
739 		}
740 
741 		if (error)
742 			xfs_alert(mp, "%s: unmount record failed", __func__);
743 
744 
745 		spin_lock(&log->l_icloglock);
746 		iclog = log->l_iclog;
747 		atomic_inc(&iclog->ic_refcnt);
748 		xlog_state_want_sync(log, iclog);
749 		spin_unlock(&log->l_icloglock);
750 		error = xlog_state_release_iclog(log, iclog);
751 
752 		spin_lock(&log->l_icloglock);
753 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
754 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
755 			if (!XLOG_FORCED_SHUTDOWN(log)) {
756 				xlog_wait(&iclog->ic_force_wait,
757 							&log->l_icloglock);
758 			} else {
759 				spin_unlock(&log->l_icloglock);
760 			}
761 		} else {
762 			spin_unlock(&log->l_icloglock);
763 		}
764 		if (tic) {
765 			trace_xfs_log_umount_write(log, tic);
766 			xlog_ungrant_log_space(log, tic);
767 			xfs_log_ticket_put(tic);
768 		}
769 	} else {
770 		/*
771 		 * We're already in forced_shutdown mode, couldn't
772 		 * even attempt to write out the unmount transaction.
773 		 *
774 		 * Go through the motions of sync'ing and releasing
775 		 * the iclog, even though no I/O will actually happen,
776 		 * we need to wait for other log I/Os that may already
777 		 * be in progress.  Do this as a separate section of
778 		 * code so we'll know if we ever get stuck here that
779 		 * we're in this odd situation of trying to unmount
780 		 * a file system that went into forced_shutdown as
781 		 * the result of an unmount..
782 		 */
783 		spin_lock(&log->l_icloglock);
784 		iclog = log->l_iclog;
785 		atomic_inc(&iclog->ic_refcnt);
786 
787 		xlog_state_want_sync(log, iclog);
788 		spin_unlock(&log->l_icloglock);
789 		error =  xlog_state_release_iclog(log, iclog);
790 
791 		spin_lock(&log->l_icloglock);
792 
793 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
794 			|| iclog->ic_state == XLOG_STATE_DIRTY
795 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
796 
797 				xlog_wait(&iclog->ic_force_wait,
798 							&log->l_icloglock);
799 		} else {
800 			spin_unlock(&log->l_icloglock);
801 		}
802 	}
803 
804 	return error;
805 }	/* xfs_log_unmount_write */
806 
807 /*
808  * Deallocate log structures for unmount/relocation.
809  *
810  * We need to stop the aild from running before we destroy
811  * and deallocate the log as the aild references the log.
812  */
813 void
xfs_log_unmount(xfs_mount_t * mp)814 xfs_log_unmount(xfs_mount_t *mp)
815 {
816 	xfs_trans_ail_destroy(mp);
817 	xlog_dealloc_log(mp->m_log);
818 }
819 
820 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)821 xfs_log_item_init(
822 	struct xfs_mount	*mp,
823 	struct xfs_log_item	*item,
824 	int			type,
825 	const struct xfs_item_ops *ops)
826 {
827 	item->li_mountp = mp;
828 	item->li_ailp = mp->m_ail;
829 	item->li_type = type;
830 	item->li_ops = ops;
831 	item->li_lv = NULL;
832 
833 	INIT_LIST_HEAD(&item->li_ail);
834 	INIT_LIST_HEAD(&item->li_cil);
835 }
836 
837 /*
838  * Wake up processes waiting for log space after we have moved the log tail.
839  */
840 void
xfs_log_space_wake(struct xfs_mount * mp)841 xfs_log_space_wake(
842 	struct xfs_mount	*mp)
843 {
844 	struct log		*log = mp->m_log;
845 	int			free_bytes;
846 
847 	if (XLOG_FORCED_SHUTDOWN(log))
848 		return;
849 
850 	if (!list_empty_careful(&log->l_write_head.waiters)) {
851 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
852 
853 		spin_lock(&log->l_write_head.lock);
854 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
855 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
856 		spin_unlock(&log->l_write_head.lock);
857 	}
858 
859 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
860 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
861 
862 		spin_lock(&log->l_reserve_head.lock);
863 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
864 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
865 		spin_unlock(&log->l_reserve_head.lock);
866 	}
867 }
868 
869 /*
870  * Determine if we have a transaction that has gone to disk
871  * that needs to be covered. To begin the transition to the idle state
872  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
873  * If we are then in a state where covering is needed, the caller is informed
874  * that dummy transactions are required to move the log into the idle state.
875  *
876  * Because this is called as part of the sync process, we should also indicate
877  * that dummy transactions should be issued in anything but the covered or
878  * idle states. This ensures that the log tail is accurately reflected in
879  * the log at the end of the sync, hence if a crash occurrs avoids replay
880  * of transactions where the metadata is already on disk.
881  */
882 int
xfs_log_need_covered(xfs_mount_t * mp)883 xfs_log_need_covered(xfs_mount_t *mp)
884 {
885 	int		needed = 0;
886 	xlog_t		*log = mp->m_log;
887 
888 	if (!xfs_fs_writable(mp))
889 		return 0;
890 
891 	spin_lock(&log->l_icloglock);
892 	switch (log->l_covered_state) {
893 	case XLOG_STATE_COVER_DONE:
894 	case XLOG_STATE_COVER_DONE2:
895 	case XLOG_STATE_COVER_IDLE:
896 		break;
897 	case XLOG_STATE_COVER_NEED:
898 	case XLOG_STATE_COVER_NEED2:
899 		if (!xfs_ail_min_lsn(log->l_ailp) &&
900 		    xlog_iclogs_empty(log)) {
901 			if (log->l_covered_state == XLOG_STATE_COVER_NEED)
902 				log->l_covered_state = XLOG_STATE_COVER_DONE;
903 			else
904 				log->l_covered_state = XLOG_STATE_COVER_DONE2;
905 		}
906 		/* FALLTHRU */
907 	default:
908 		needed = 1;
909 		break;
910 	}
911 	spin_unlock(&log->l_icloglock);
912 	return needed;
913 }
914 
915 /*
916  * We may be holding the log iclog lock upon entering this routine.
917  */
918 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)919 xlog_assign_tail_lsn(
920 	struct xfs_mount	*mp)
921 {
922 	xfs_lsn_t		tail_lsn;
923 	struct log		*log = mp->m_log;
924 
925 	/*
926 	 * To make sure we always have a valid LSN for the log tail we keep
927 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
928 	 * and use that when the AIL was empty and xfs_ail_min_lsn returns 0.
929 	 *
930 	 * If the AIL has been emptied we also need to wake any process
931 	 * waiting for this condition.
932 	 */
933 	tail_lsn = xfs_ail_min_lsn(mp->m_ail);
934 	if (!tail_lsn)
935 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
936 	atomic64_set(&log->l_tail_lsn, tail_lsn);
937 	return tail_lsn;
938 }
939 
940 /*
941  * Return the space in the log between the tail and the head.  The head
942  * is passed in the cycle/bytes formal parms.  In the special case where
943  * the reserve head has wrapped passed the tail, this calculation is no
944  * longer valid.  In this case, just return 0 which means there is no space
945  * in the log.  This works for all places where this function is called
946  * with the reserve head.  Of course, if the write head were to ever
947  * wrap the tail, we should blow up.  Rather than catch this case here,
948  * we depend on other ASSERTions in other parts of the code.   XXXmiken
949  *
950  * This code also handles the case where the reservation head is behind
951  * the tail.  The details of this case are described below, but the end
952  * result is that we return the size of the log as the amount of space left.
953  */
954 STATIC int
xlog_space_left(struct log * log,atomic64_t * head)955 xlog_space_left(
956 	struct log	*log,
957 	atomic64_t	*head)
958 {
959 	int		free_bytes;
960 	int		tail_bytes;
961 	int		tail_cycle;
962 	int		head_cycle;
963 	int		head_bytes;
964 
965 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
966 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
967 	tail_bytes = BBTOB(tail_bytes);
968 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
969 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
970 	else if (tail_cycle + 1 < head_cycle)
971 		return 0;
972 	else if (tail_cycle < head_cycle) {
973 		ASSERT(tail_cycle == (head_cycle - 1));
974 		free_bytes = tail_bytes - head_bytes;
975 	} else {
976 		/*
977 		 * The reservation head is behind the tail.
978 		 * In this case we just want to return the size of the
979 		 * log as the amount of space left.
980 		 */
981 		xfs_alert(log->l_mp,
982 			"xlog_space_left: head behind tail\n"
983 			"  tail_cycle = %d, tail_bytes = %d\n"
984 			"  GH   cycle = %d, GH   bytes = %d",
985 			tail_cycle, tail_bytes, head_cycle, head_bytes);
986 		ASSERT(0);
987 		free_bytes = log->l_logsize;
988 	}
989 	return free_bytes;
990 }
991 
992 
993 /*
994  * Log function which is called when an io completes.
995  *
996  * The log manager needs its own routine, in order to control what
997  * happens with the buffer after the write completes.
998  */
999 void
xlog_iodone(xfs_buf_t * bp)1000 xlog_iodone(xfs_buf_t *bp)
1001 {
1002 	xlog_in_core_t	*iclog = bp->b_fspriv;
1003 	xlog_t		*l = iclog->ic_log;
1004 	int		aborted = 0;
1005 
1006 	/*
1007 	 * Race to shutdown the filesystem if we see an error.
1008 	 */
1009 	if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1010 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1011 		xfs_buf_ioerror_alert(bp, __func__);
1012 		xfs_buf_stale(bp);
1013 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1014 		/*
1015 		 * This flag will be propagated to the trans-committed
1016 		 * callback routines to let them know that the log-commit
1017 		 * didn't succeed.
1018 		 */
1019 		aborted = XFS_LI_ABORTED;
1020 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1021 		aborted = XFS_LI_ABORTED;
1022 	}
1023 
1024 	/* log I/O is always issued ASYNC */
1025 	ASSERT(XFS_BUF_ISASYNC(bp));
1026 	xlog_state_done_syncing(iclog, aborted);
1027 	/*
1028 	 * do not reference the buffer (bp) here as we could race
1029 	 * with it being freed after writing the unmount record to the
1030 	 * log.
1031 	 */
1032 
1033 }	/* xlog_iodone */
1034 
1035 /*
1036  * Return size of each in-core log record buffer.
1037  *
1038  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1039  *
1040  * If the filesystem blocksize is too large, we may need to choose a
1041  * larger size since the directory code currently logs entire blocks.
1042  */
1043 
1044 STATIC void
xlog_get_iclog_buffer_size(xfs_mount_t * mp,xlog_t * log)1045 xlog_get_iclog_buffer_size(xfs_mount_t	*mp,
1046 			   xlog_t	*log)
1047 {
1048 	int size;
1049 	int xhdrs;
1050 
1051 	if (mp->m_logbufs <= 0)
1052 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1053 	else
1054 		log->l_iclog_bufs = mp->m_logbufs;
1055 
1056 	/*
1057 	 * Buffer size passed in from mount system call.
1058 	 */
1059 	if (mp->m_logbsize > 0) {
1060 		size = log->l_iclog_size = mp->m_logbsize;
1061 		log->l_iclog_size_log = 0;
1062 		while (size != 1) {
1063 			log->l_iclog_size_log++;
1064 			size >>= 1;
1065 		}
1066 
1067 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1068 			/* # headers = size / 32k
1069 			 * one header holds cycles from 32k of data
1070 			 */
1071 
1072 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1073 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1074 				xhdrs++;
1075 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1076 			log->l_iclog_heads = xhdrs;
1077 		} else {
1078 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1079 			log->l_iclog_hsize = BBSIZE;
1080 			log->l_iclog_heads = 1;
1081 		}
1082 		goto done;
1083 	}
1084 
1085 	/* All machines use 32kB buffers by default. */
1086 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1087 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1088 
1089 	/* the default log size is 16k or 32k which is one header sector */
1090 	log->l_iclog_hsize = BBSIZE;
1091 	log->l_iclog_heads = 1;
1092 
1093 done:
1094 	/* are we being asked to make the sizes selected above visible? */
1095 	if (mp->m_logbufs == 0)
1096 		mp->m_logbufs = log->l_iclog_bufs;
1097 	if (mp->m_logbsize == 0)
1098 		mp->m_logbsize = log->l_iclog_size;
1099 }	/* xlog_get_iclog_buffer_size */
1100 
1101 
1102 /*
1103  * This routine initializes some of the log structure for a given mount point.
1104  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1105  * some other stuff may be filled in too.
1106  */
1107 STATIC xlog_t *
xlog_alloc_log(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)1108 xlog_alloc_log(xfs_mount_t	*mp,
1109 	       xfs_buftarg_t	*log_target,
1110 	       xfs_daddr_t	blk_offset,
1111 	       int		num_bblks)
1112 {
1113 	xlog_t			*log;
1114 	xlog_rec_header_t	*head;
1115 	xlog_in_core_t		**iclogp;
1116 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1117 	xfs_buf_t		*bp;
1118 	int			i;
1119 	int			error = ENOMEM;
1120 	uint			log2_size = 0;
1121 
1122 	log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1123 	if (!log) {
1124 		xfs_warn(mp, "Log allocation failed: No memory!");
1125 		goto out;
1126 	}
1127 
1128 	log->l_mp	   = mp;
1129 	log->l_targ	   = log_target;
1130 	log->l_logsize     = BBTOB(num_bblks);
1131 	log->l_logBBstart  = blk_offset;
1132 	log->l_logBBsize   = num_bblks;
1133 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1134 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1135 
1136 	log->l_prev_block  = -1;
1137 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1138 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1139 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1140 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1141 
1142 	xlog_grant_head_init(&log->l_reserve_head);
1143 	xlog_grant_head_init(&log->l_write_head);
1144 
1145 	error = EFSCORRUPTED;
1146 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1147 	        log2_size = mp->m_sb.sb_logsectlog;
1148 		if (log2_size < BBSHIFT) {
1149 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1150 				log2_size, BBSHIFT);
1151 			goto out_free_log;
1152 		}
1153 
1154 	        log2_size -= BBSHIFT;
1155 		if (log2_size > mp->m_sectbb_log) {
1156 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1157 				log2_size, mp->m_sectbb_log);
1158 			goto out_free_log;
1159 		}
1160 
1161 		/* for larger sector sizes, must have v2 or external log */
1162 		if (log2_size && log->l_logBBstart > 0 &&
1163 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1164 			xfs_warn(mp,
1165 		"log sector size (0x%x) invalid for configuration.",
1166 				log2_size);
1167 			goto out_free_log;
1168 		}
1169 	}
1170 	log->l_sectBBsize = 1 << log2_size;
1171 
1172 	xlog_get_iclog_buffer_size(mp, log);
1173 
1174 	error = ENOMEM;
1175 	bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1176 	if (!bp)
1177 		goto out_free_log;
1178 	bp->b_iodone = xlog_iodone;
1179 	ASSERT(xfs_buf_islocked(bp));
1180 	log->l_xbuf = bp;
1181 
1182 	spin_lock_init(&log->l_icloglock);
1183 	init_waitqueue_head(&log->l_flush_wait);
1184 
1185 	/* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1186 	ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1187 
1188 	iclogp = &log->l_iclog;
1189 	/*
1190 	 * The amount of memory to allocate for the iclog structure is
1191 	 * rather funky due to the way the structure is defined.  It is
1192 	 * done this way so that we can use different sizes for machines
1193 	 * with different amounts of memory.  See the definition of
1194 	 * xlog_in_core_t in xfs_log_priv.h for details.
1195 	 */
1196 	ASSERT(log->l_iclog_size >= 4096);
1197 	for (i=0; i < log->l_iclog_bufs; i++) {
1198 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1199 		if (!*iclogp)
1200 			goto out_free_iclog;
1201 
1202 		iclog = *iclogp;
1203 		iclog->ic_prev = prev_iclog;
1204 		prev_iclog = iclog;
1205 
1206 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1207 						log->l_iclog_size, 0);
1208 		if (!bp)
1209 			goto out_free_iclog;
1210 
1211 		bp->b_iodone = xlog_iodone;
1212 		iclog->ic_bp = bp;
1213 		iclog->ic_data = bp->b_addr;
1214 #ifdef DEBUG
1215 		log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1216 #endif
1217 		head = &iclog->ic_header;
1218 		memset(head, 0, sizeof(xlog_rec_header_t));
1219 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 		head->h_version = cpu_to_be32(
1221 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1222 		head->h_size = cpu_to_be32(log->l_iclog_size);
1223 		/* new fields */
1224 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1225 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1226 
1227 		iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1228 		iclog->ic_state = XLOG_STATE_ACTIVE;
1229 		iclog->ic_log = log;
1230 		atomic_set(&iclog->ic_refcnt, 0);
1231 		spin_lock_init(&iclog->ic_callback_lock);
1232 		iclog->ic_callback_tail = &(iclog->ic_callback);
1233 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1234 
1235 		ASSERT(xfs_buf_islocked(iclog->ic_bp));
1236 		init_waitqueue_head(&iclog->ic_force_wait);
1237 		init_waitqueue_head(&iclog->ic_write_wait);
1238 
1239 		iclogp = &iclog->ic_next;
1240 	}
1241 	*iclogp = log->l_iclog;			/* complete ring */
1242 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1243 
1244 	error = xlog_cil_init(log);
1245 	if (error)
1246 		goto out_free_iclog;
1247 	return log;
1248 
1249 out_free_iclog:
1250 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1251 		prev_iclog = iclog->ic_next;
1252 		if (iclog->ic_bp)
1253 			xfs_buf_free(iclog->ic_bp);
1254 		kmem_free(iclog);
1255 	}
1256 	spinlock_destroy(&log->l_icloglock);
1257 	xfs_buf_free(log->l_xbuf);
1258 out_free_log:
1259 	kmem_free(log);
1260 out:
1261 	return ERR_PTR(-error);
1262 }	/* xlog_alloc_log */
1263 
1264 
1265 /*
1266  * Write out the commit record of a transaction associated with the given
1267  * ticket.  Return the lsn of the commit record.
1268  */
1269 STATIC int
xlog_commit_record(struct log * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1270 xlog_commit_record(
1271 	struct log		*log,
1272 	struct xlog_ticket	*ticket,
1273 	struct xlog_in_core	**iclog,
1274 	xfs_lsn_t		*commitlsnp)
1275 {
1276 	struct xfs_mount *mp = log->l_mp;
1277 	int	error;
1278 	struct xfs_log_iovec reg = {
1279 		.i_addr = NULL,
1280 		.i_len = 0,
1281 		.i_type = XLOG_REG_TYPE_COMMIT,
1282 	};
1283 	struct xfs_log_vec vec = {
1284 		.lv_niovecs = 1,
1285 		.lv_iovecp = &reg,
1286 	};
1287 
1288 	ASSERT_ALWAYS(iclog);
1289 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1290 					XLOG_COMMIT_TRANS);
1291 	if (error)
1292 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1293 	return error;
1294 }
1295 
1296 /*
1297  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1298  * log space.  This code pushes on the lsn which would supposedly free up
1299  * the 25% which we want to leave free.  We may need to adopt a policy which
1300  * pushes on an lsn which is further along in the log once we reach the high
1301  * water mark.  In this manner, we would be creating a low water mark.
1302  */
1303 STATIC void
xlog_grant_push_ail(struct log * log,int need_bytes)1304 xlog_grant_push_ail(
1305 	struct log	*log,
1306 	int		need_bytes)
1307 {
1308 	xfs_lsn_t	threshold_lsn = 0;
1309 	xfs_lsn_t	last_sync_lsn;
1310 	int		free_blocks;
1311 	int		free_bytes;
1312 	int		threshold_block;
1313 	int		threshold_cycle;
1314 	int		free_threshold;
1315 
1316 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1317 
1318 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1319 	free_blocks = BTOBBT(free_bytes);
1320 
1321 	/*
1322 	 * Set the threshold for the minimum number of free blocks in the
1323 	 * log to the maximum of what the caller needs, one quarter of the
1324 	 * log, and 256 blocks.
1325 	 */
1326 	free_threshold = BTOBB(need_bytes);
1327 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1328 	free_threshold = MAX(free_threshold, 256);
1329 	if (free_blocks >= free_threshold)
1330 		return;
1331 
1332 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1333 						&threshold_block);
1334 	threshold_block += free_threshold;
1335 	if (threshold_block >= log->l_logBBsize) {
1336 		threshold_block -= log->l_logBBsize;
1337 		threshold_cycle += 1;
1338 	}
1339 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1340 					threshold_block);
1341 	/*
1342 	 * Don't pass in an lsn greater than the lsn of the last
1343 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1344 	 * so that it doesn't change between the compare and the set.
1345 	 */
1346 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1347 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1348 		threshold_lsn = last_sync_lsn;
1349 
1350 	/*
1351 	 * Get the transaction layer to kick the dirty buffers out to
1352 	 * disk asynchronously. No point in trying to do this if
1353 	 * the filesystem is shutting down.
1354 	 */
1355 	if (!XLOG_FORCED_SHUTDOWN(log))
1356 		xfs_ail_push(log->l_ailp, threshold_lsn);
1357 }
1358 
1359 /*
1360  * The bdstrat callback function for log bufs. This gives us a central
1361  * place to trap bufs in case we get hit by a log I/O error and need to
1362  * shutdown. Actually, in practice, even when we didn't get a log error,
1363  * we transition the iclogs to IOERROR state *after* flushing all existing
1364  * iclogs to disk. This is because we don't want anymore new transactions to be
1365  * started or completed afterwards.
1366  */
1367 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1368 xlog_bdstrat(
1369 	struct xfs_buf		*bp)
1370 {
1371 	struct xlog_in_core	*iclog = bp->b_fspriv;
1372 
1373 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1374 		xfs_buf_ioerror(bp, EIO);
1375 		xfs_buf_stale(bp);
1376 		xfs_buf_ioend(bp, 0);
1377 		/*
1378 		 * It would seem logical to return EIO here, but we rely on
1379 		 * the log state machine to propagate I/O errors instead of
1380 		 * doing it here.
1381 		 */
1382 		return 0;
1383 	}
1384 
1385 	xfs_buf_iorequest(bp);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1391  * fashion.  Previously, we should have moved the current iclog
1392  * ptr in the log to point to the next available iclog.  This allows further
1393  * write to continue while this code syncs out an iclog ready to go.
1394  * Before an in-core log can be written out, the data section must be scanned
1395  * to save away the 1st word of each BBSIZE block into the header.  We replace
1396  * it with the current cycle count.  Each BBSIZE block is tagged with the
1397  * cycle count because there in an implicit assumption that drives will
1398  * guarantee that entire 512 byte blocks get written at once.  In other words,
1399  * we can't have part of a 512 byte block written and part not written.  By
1400  * tagging each block, we will know which blocks are valid when recovering
1401  * after an unclean shutdown.
1402  *
1403  * This routine is single threaded on the iclog.  No other thread can be in
1404  * this routine with the same iclog.  Changing contents of iclog can there-
1405  * fore be done without grabbing the state machine lock.  Updating the global
1406  * log will require grabbing the lock though.
1407  *
1408  * The entire log manager uses a logical block numbering scheme.  Only
1409  * log_sync (and then only bwrite()) know about the fact that the log may
1410  * not start with block zero on a given device.  The log block start offset
1411  * is added immediately before calling bwrite().
1412  */
1413 
1414 STATIC int
xlog_sync(xlog_t * log,xlog_in_core_t * iclog)1415 xlog_sync(xlog_t		*log,
1416 	  xlog_in_core_t	*iclog)
1417 {
1418 	xfs_caddr_t	dptr;		/* pointer to byte sized element */
1419 	xfs_buf_t	*bp;
1420 	int		i;
1421 	uint		count;		/* byte count of bwrite */
1422 	uint		count_init;	/* initial count before roundup */
1423 	int		roundoff;       /* roundoff to BB or stripe */
1424 	int		split = 0;	/* split write into two regions */
1425 	int		error;
1426 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1427 
1428 	XFS_STATS_INC(xs_log_writes);
1429 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1430 
1431 	/* Add for LR header */
1432 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1433 
1434 	/* Round out the log write size */
1435 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1436 		/* we have a v2 stripe unit to use */
1437 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1438 	} else {
1439 		count = BBTOB(BTOBB(count_init));
1440 	}
1441 	roundoff = count - count_init;
1442 	ASSERT(roundoff >= 0);
1443 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1444                 roundoff < log->l_mp->m_sb.sb_logsunit)
1445 		||
1446 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1447 		 roundoff < BBTOB(1)));
1448 
1449 	/* move grant heads by roundoff in sync */
1450 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1451 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1452 
1453 	/* put cycle number in every block */
1454 	xlog_pack_data(log, iclog, roundoff);
1455 
1456 	/* real byte length */
1457 	if (v2) {
1458 		iclog->ic_header.h_len =
1459 			cpu_to_be32(iclog->ic_offset + roundoff);
1460 	} else {
1461 		iclog->ic_header.h_len =
1462 			cpu_to_be32(iclog->ic_offset);
1463 	}
1464 
1465 	bp = iclog->ic_bp;
1466 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1467 
1468 	XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1469 
1470 	/* Do we need to split this write into 2 parts? */
1471 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1472 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1473 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1474 		iclog->ic_bwritecnt = 2;	/* split into 2 writes */
1475 	} else {
1476 		iclog->ic_bwritecnt = 1;
1477 	}
1478 	XFS_BUF_SET_COUNT(bp, count);
1479 	bp->b_fspriv = iclog;
1480 	XFS_BUF_ZEROFLAGS(bp);
1481 	XFS_BUF_ASYNC(bp);
1482 	bp->b_flags |= XBF_SYNCIO;
1483 
1484 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1485 		bp->b_flags |= XBF_FUA;
1486 
1487 		/*
1488 		 * Flush the data device before flushing the log to make
1489 		 * sure all meta data written back from the AIL actually made
1490 		 * it to disk before stamping the new log tail LSN into the
1491 		 * log buffer.  For an external log we need to issue the
1492 		 * flush explicitly, and unfortunately synchronously here;
1493 		 * for an internal log we can simply use the block layer
1494 		 * state machine for preflushes.
1495 		 */
1496 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1497 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1498 		else
1499 			bp->b_flags |= XBF_FLUSH;
1500 	}
1501 
1502 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1503 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1504 
1505 	xlog_verify_iclog(log, iclog, count, B_TRUE);
1506 
1507 	/* account for log which doesn't start at block #0 */
1508 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1509 	/*
1510 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1511 	 * is shutting down.
1512 	 */
1513 	XFS_BUF_WRITE(bp);
1514 
1515 	error = xlog_bdstrat(bp);
1516 	if (error) {
1517 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1518 		return error;
1519 	}
1520 	if (split) {
1521 		bp = iclog->ic_log->l_xbuf;
1522 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1523 		xfs_buf_associate_memory(bp,
1524 				(char *)&iclog->ic_header + count, split);
1525 		bp->b_fspriv = iclog;
1526 		XFS_BUF_ZEROFLAGS(bp);
1527 		XFS_BUF_ASYNC(bp);
1528 		bp->b_flags |= XBF_SYNCIO;
1529 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1530 			bp->b_flags |= XBF_FUA;
1531 		dptr = bp->b_addr;
1532 		/*
1533 		 * Bump the cycle numbers at the start of each block
1534 		 * since this part of the buffer is at the start of
1535 		 * a new cycle.  Watch out for the header magic number
1536 		 * case, though.
1537 		 */
1538 		for (i = 0; i < split; i += BBSIZE) {
1539 			be32_add_cpu((__be32 *)dptr, 1);
1540 			if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1541 				be32_add_cpu((__be32 *)dptr, 1);
1542 			dptr += BBSIZE;
1543 		}
1544 
1545 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1546 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1547 
1548 		/* account for internal log which doesn't start at block #0 */
1549 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1550 		XFS_BUF_WRITE(bp);
1551 		error = xlog_bdstrat(bp);
1552 		if (error) {
1553 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1554 			return error;
1555 		}
1556 	}
1557 	return 0;
1558 }	/* xlog_sync */
1559 
1560 
1561 /*
1562  * Deallocate a log structure
1563  */
1564 STATIC void
xlog_dealloc_log(xlog_t * log)1565 xlog_dealloc_log(xlog_t *log)
1566 {
1567 	xlog_in_core_t	*iclog, *next_iclog;
1568 	int		i;
1569 
1570 	xlog_cil_destroy(log);
1571 
1572 	/*
1573 	 * always need to ensure that the extra buffer does not point to memory
1574 	 * owned by another log buffer before we free it.
1575 	 */
1576 	xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1577 	xfs_buf_free(log->l_xbuf);
1578 
1579 	iclog = log->l_iclog;
1580 	for (i=0; i<log->l_iclog_bufs; i++) {
1581 		xfs_buf_free(iclog->ic_bp);
1582 		next_iclog = iclog->ic_next;
1583 		kmem_free(iclog);
1584 		iclog = next_iclog;
1585 	}
1586 	spinlock_destroy(&log->l_icloglock);
1587 
1588 	log->l_mp->m_log = NULL;
1589 	kmem_free(log);
1590 }	/* xlog_dealloc_log */
1591 
1592 /*
1593  * Update counters atomically now that memcpy is done.
1594  */
1595 /* ARGSUSED */
1596 static inline void
xlog_state_finish_copy(xlog_t * log,xlog_in_core_t * iclog,int record_cnt,int copy_bytes)1597 xlog_state_finish_copy(xlog_t		*log,
1598 		       xlog_in_core_t	*iclog,
1599 		       int		record_cnt,
1600 		       int		copy_bytes)
1601 {
1602 	spin_lock(&log->l_icloglock);
1603 
1604 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1605 	iclog->ic_offset += copy_bytes;
1606 
1607 	spin_unlock(&log->l_icloglock);
1608 }	/* xlog_state_finish_copy */
1609 
1610 
1611 
1612 
1613 /*
1614  * print out info relating to regions written which consume
1615  * the reservation
1616  */
1617 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1618 xlog_print_tic_res(
1619 	struct xfs_mount	*mp,
1620 	struct xlog_ticket	*ticket)
1621 {
1622 	uint i;
1623 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1624 
1625 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1626 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1627 	    "bformat",
1628 	    "bchunk",
1629 	    "efi_format",
1630 	    "efd_format",
1631 	    "iformat",
1632 	    "icore",
1633 	    "iext",
1634 	    "ibroot",
1635 	    "ilocal",
1636 	    "iattr_ext",
1637 	    "iattr_broot",
1638 	    "iattr_local",
1639 	    "qformat",
1640 	    "dquot",
1641 	    "quotaoff",
1642 	    "LR header",
1643 	    "unmount",
1644 	    "commit",
1645 	    "trans header"
1646 	};
1647 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1648 	    "SETATTR_NOT_SIZE",
1649 	    "SETATTR_SIZE",
1650 	    "INACTIVE",
1651 	    "CREATE",
1652 	    "CREATE_TRUNC",
1653 	    "TRUNCATE_FILE",
1654 	    "REMOVE",
1655 	    "LINK",
1656 	    "RENAME",
1657 	    "MKDIR",
1658 	    "RMDIR",
1659 	    "SYMLINK",
1660 	    "SET_DMATTRS",
1661 	    "GROWFS",
1662 	    "STRAT_WRITE",
1663 	    "DIOSTRAT",
1664 	    "WRITE_SYNC",
1665 	    "WRITEID",
1666 	    "ADDAFORK",
1667 	    "ATTRINVAL",
1668 	    "ATRUNCATE",
1669 	    "ATTR_SET",
1670 	    "ATTR_RM",
1671 	    "ATTR_FLAG",
1672 	    "CLEAR_AGI_BUCKET",
1673 	    "QM_SBCHANGE",
1674 	    "DUMMY1",
1675 	    "DUMMY2",
1676 	    "QM_QUOTAOFF",
1677 	    "QM_DQALLOC",
1678 	    "QM_SETQLIM",
1679 	    "QM_DQCLUSTER",
1680 	    "QM_QINOCREATE",
1681 	    "QM_QUOTAOFF_END",
1682 	    "SB_UNIT",
1683 	    "FSYNC_TS",
1684 	    "GROWFSRT_ALLOC",
1685 	    "GROWFSRT_ZERO",
1686 	    "GROWFSRT_FREE",
1687 	    "SWAPEXT"
1688 	};
1689 
1690 	xfs_warn(mp,
1691 		"xlog_write: reservation summary:\n"
1692 		"  trans type  = %s (%u)\n"
1693 		"  unit res    = %d bytes\n"
1694 		"  current res = %d bytes\n"
1695 		"  total reg   = %u bytes (o/flow = %u bytes)\n"
1696 		"  ophdrs      = %u (ophdr space = %u bytes)\n"
1697 		"  ophdr + reg = %u bytes\n"
1698 		"  num regions = %u\n",
1699 		((ticket->t_trans_type <= 0 ||
1700 		  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1701 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1702 		ticket->t_trans_type,
1703 		ticket->t_unit_res,
1704 		ticket->t_curr_res,
1705 		ticket->t_res_arr_sum, ticket->t_res_o_flow,
1706 		ticket->t_res_num_ophdrs, ophdr_spc,
1707 		ticket->t_res_arr_sum +
1708 		ticket->t_res_o_flow + ophdr_spc,
1709 		ticket->t_res_num);
1710 
1711 	for (i = 0; i < ticket->t_res_num; i++) {
1712 		uint r_type = ticket->t_res_arr[i].r_type;
1713 		xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1714 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1715 			    "bad-rtype" : res_type_str[r_type-1]),
1716 			    ticket->t_res_arr[i].r_len);
1717 	}
1718 
1719 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1720 		"xlog_write: reservation ran out. Need to up reservation");
1721 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1722 }
1723 
1724 /*
1725  * Calculate the potential space needed by the log vector.  Each region gets
1726  * its own xlog_op_header_t and may need to be double word aligned.
1727  */
1728 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)1729 xlog_write_calc_vec_length(
1730 	struct xlog_ticket	*ticket,
1731 	struct xfs_log_vec	*log_vector)
1732 {
1733 	struct xfs_log_vec	*lv;
1734 	int			headers = 0;
1735 	int			len = 0;
1736 	int			i;
1737 
1738 	/* acct for start rec of xact */
1739 	if (ticket->t_flags & XLOG_TIC_INITED)
1740 		headers++;
1741 
1742 	for (lv = log_vector; lv; lv = lv->lv_next) {
1743 		headers += lv->lv_niovecs;
1744 
1745 		for (i = 0; i < lv->lv_niovecs; i++) {
1746 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
1747 
1748 			len += vecp->i_len;
1749 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1750 		}
1751 	}
1752 
1753 	ticket->t_res_num_ophdrs += headers;
1754 	len += headers * sizeof(struct xlog_op_header);
1755 
1756 	return len;
1757 }
1758 
1759 /*
1760  * If first write for transaction, insert start record  We can't be trying to
1761  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
1762  */
1763 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)1764 xlog_write_start_rec(
1765 	struct xlog_op_header	*ophdr,
1766 	struct xlog_ticket	*ticket)
1767 {
1768 	if (!(ticket->t_flags & XLOG_TIC_INITED))
1769 		return 0;
1770 
1771 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
1772 	ophdr->oh_clientid = ticket->t_clientid;
1773 	ophdr->oh_len = 0;
1774 	ophdr->oh_flags = XLOG_START_TRANS;
1775 	ophdr->oh_res2 = 0;
1776 
1777 	ticket->t_flags &= ~XLOG_TIC_INITED;
1778 
1779 	return sizeof(struct xlog_op_header);
1780 }
1781 
1782 static xlog_op_header_t *
xlog_write_setup_ophdr(struct log * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)1783 xlog_write_setup_ophdr(
1784 	struct log		*log,
1785 	struct xlog_op_header	*ophdr,
1786 	struct xlog_ticket	*ticket,
1787 	uint			flags)
1788 {
1789 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1790 	ophdr->oh_clientid = ticket->t_clientid;
1791 	ophdr->oh_res2 = 0;
1792 
1793 	/* are we copying a commit or unmount record? */
1794 	ophdr->oh_flags = flags;
1795 
1796 	/*
1797 	 * We've seen logs corrupted with bad transaction client ids.  This
1798 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
1799 	 * and shut down the filesystem.
1800 	 */
1801 	switch (ophdr->oh_clientid)  {
1802 	case XFS_TRANSACTION:
1803 	case XFS_VOLUME:
1804 	case XFS_LOG:
1805 		break;
1806 	default:
1807 		xfs_warn(log->l_mp,
1808 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
1809 			ophdr->oh_clientid, ticket);
1810 		return NULL;
1811 	}
1812 
1813 	return ophdr;
1814 }
1815 
1816 /*
1817  * Set up the parameters of the region copy into the log. This has
1818  * to handle region write split across multiple log buffers - this
1819  * state is kept external to this function so that this code can
1820  * can be written in an obvious, self documenting manner.
1821  */
1822 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)1823 xlog_write_setup_copy(
1824 	struct xlog_ticket	*ticket,
1825 	struct xlog_op_header	*ophdr,
1826 	int			space_available,
1827 	int			space_required,
1828 	int			*copy_off,
1829 	int			*copy_len,
1830 	int			*last_was_partial_copy,
1831 	int			*bytes_consumed)
1832 {
1833 	int			still_to_copy;
1834 
1835 	still_to_copy = space_required - *bytes_consumed;
1836 	*copy_off = *bytes_consumed;
1837 
1838 	if (still_to_copy <= space_available) {
1839 		/* write of region completes here */
1840 		*copy_len = still_to_copy;
1841 		ophdr->oh_len = cpu_to_be32(*copy_len);
1842 		if (*last_was_partial_copy)
1843 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1844 		*last_was_partial_copy = 0;
1845 		*bytes_consumed = 0;
1846 		return 0;
1847 	}
1848 
1849 	/* partial write of region, needs extra log op header reservation */
1850 	*copy_len = space_available;
1851 	ophdr->oh_len = cpu_to_be32(*copy_len);
1852 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1853 	if (*last_was_partial_copy)
1854 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1855 	*bytes_consumed += *copy_len;
1856 	(*last_was_partial_copy)++;
1857 
1858 	/* account for new log op header */
1859 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
1860 	ticket->t_res_num_ophdrs++;
1861 
1862 	return sizeof(struct xlog_op_header);
1863 }
1864 
1865 static int
xlog_write_copy_finish(struct log * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)1866 xlog_write_copy_finish(
1867 	struct log		*log,
1868 	struct xlog_in_core	*iclog,
1869 	uint			flags,
1870 	int			*record_cnt,
1871 	int			*data_cnt,
1872 	int			*partial_copy,
1873 	int			*partial_copy_len,
1874 	int			log_offset,
1875 	struct xlog_in_core	**commit_iclog)
1876 {
1877 	if (*partial_copy) {
1878 		/*
1879 		 * This iclog has already been marked WANT_SYNC by
1880 		 * xlog_state_get_iclog_space.
1881 		 */
1882 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1883 		*record_cnt = 0;
1884 		*data_cnt = 0;
1885 		return xlog_state_release_iclog(log, iclog);
1886 	}
1887 
1888 	*partial_copy = 0;
1889 	*partial_copy_len = 0;
1890 
1891 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1892 		/* no more space in this iclog - push it. */
1893 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1894 		*record_cnt = 0;
1895 		*data_cnt = 0;
1896 
1897 		spin_lock(&log->l_icloglock);
1898 		xlog_state_want_sync(log, iclog);
1899 		spin_unlock(&log->l_icloglock);
1900 
1901 		if (!commit_iclog)
1902 			return xlog_state_release_iclog(log, iclog);
1903 		ASSERT(flags & XLOG_COMMIT_TRANS);
1904 		*commit_iclog = iclog;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 /*
1911  * Write some region out to in-core log
1912  *
1913  * This will be called when writing externally provided regions or when
1914  * writing out a commit record for a given transaction.
1915  *
1916  * General algorithm:
1917  *	1. Find total length of this write.  This may include adding to the
1918  *		lengths passed in.
1919  *	2. Check whether we violate the tickets reservation.
1920  *	3. While writing to this iclog
1921  *	    A. Reserve as much space in this iclog as can get
1922  *	    B. If this is first write, save away start lsn
1923  *	    C. While writing this region:
1924  *		1. If first write of transaction, write start record
1925  *		2. Write log operation header (header per region)
1926  *		3. Find out if we can fit entire region into this iclog
1927  *		4. Potentially, verify destination memcpy ptr
1928  *		5. Memcpy (partial) region
1929  *		6. If partial copy, release iclog; otherwise, continue
1930  *			copying more regions into current iclog
1931  *	4. Mark want sync bit (in simulation mode)
1932  *	5. Release iclog for potential flush to on-disk log.
1933  *
1934  * ERRORS:
1935  * 1.	Panic if reservation is overrun.  This should never happen since
1936  *	reservation amounts are generated internal to the filesystem.
1937  * NOTES:
1938  * 1. Tickets are single threaded data structures.
1939  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1940  *	syncing routine.  When a single log_write region needs to span
1941  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1942  *	on all log operation writes which don't contain the end of the
1943  *	region.  The XLOG_END_TRANS bit is used for the in-core log
1944  *	operation which contains the end of the continued log_write region.
1945  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1946  *	we don't really know exactly how much space will be used.  As a result,
1947  *	we don't update ic_offset until the end when we know exactly how many
1948  *	bytes have been written out.
1949  */
1950 int
xlog_write(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)1951 xlog_write(
1952 	struct log		*log,
1953 	struct xfs_log_vec	*log_vector,
1954 	struct xlog_ticket	*ticket,
1955 	xfs_lsn_t		*start_lsn,
1956 	struct xlog_in_core	**commit_iclog,
1957 	uint			flags)
1958 {
1959 	struct xlog_in_core	*iclog = NULL;
1960 	struct xfs_log_iovec	*vecp;
1961 	struct xfs_log_vec	*lv;
1962 	int			len;
1963 	int			index;
1964 	int			partial_copy = 0;
1965 	int			partial_copy_len = 0;
1966 	int			contwr = 0;
1967 	int			record_cnt = 0;
1968 	int			data_cnt = 0;
1969 	int			error;
1970 
1971 	*start_lsn = 0;
1972 
1973 	len = xlog_write_calc_vec_length(ticket, log_vector);
1974 
1975 	/*
1976 	 * Region headers and bytes are already accounted for.
1977 	 * We only need to take into account start records and
1978 	 * split regions in this function.
1979 	 */
1980 	if (ticket->t_flags & XLOG_TIC_INITED)
1981 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
1982 
1983 	/*
1984 	 * Commit record headers need to be accounted for. These
1985 	 * come in as separate writes so are easy to detect.
1986 	 */
1987 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1988 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
1989 
1990 	if (ticket->t_curr_res < 0)
1991 		xlog_print_tic_res(log->l_mp, ticket);
1992 
1993 	index = 0;
1994 	lv = log_vector;
1995 	vecp = lv->lv_iovecp;
1996 	while (lv && index < lv->lv_niovecs) {
1997 		void		*ptr;
1998 		int		log_offset;
1999 
2000 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2001 						   &contwr, &log_offset);
2002 		if (error)
2003 			return error;
2004 
2005 		ASSERT(log_offset <= iclog->ic_size - 1);
2006 		ptr = iclog->ic_datap + log_offset;
2007 
2008 		/* start_lsn is the first lsn written to. That's all we need. */
2009 		if (!*start_lsn)
2010 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2011 
2012 		/*
2013 		 * This loop writes out as many regions as can fit in the amount
2014 		 * of space which was allocated by xlog_state_get_iclog_space().
2015 		 */
2016 		while (lv && index < lv->lv_niovecs) {
2017 			struct xfs_log_iovec	*reg = &vecp[index];
2018 			struct xlog_op_header	*ophdr;
2019 			int			start_rec_copy;
2020 			int			copy_len;
2021 			int			copy_off;
2022 
2023 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2024 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2025 
2026 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2027 			if (start_rec_copy) {
2028 				record_cnt++;
2029 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2030 						   start_rec_copy);
2031 			}
2032 
2033 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2034 			if (!ophdr)
2035 				return XFS_ERROR(EIO);
2036 
2037 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2038 					   sizeof(struct xlog_op_header));
2039 
2040 			len += xlog_write_setup_copy(ticket, ophdr,
2041 						     iclog->ic_size-log_offset,
2042 						     reg->i_len,
2043 						     &copy_off, &copy_len,
2044 						     &partial_copy,
2045 						     &partial_copy_len);
2046 			xlog_verify_dest_ptr(log, ptr);
2047 
2048 			/* copy region */
2049 			ASSERT(copy_len >= 0);
2050 			memcpy(ptr, reg->i_addr + copy_off, copy_len);
2051 			xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2052 
2053 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2054 			record_cnt++;
2055 			data_cnt += contwr ? copy_len : 0;
2056 
2057 			error = xlog_write_copy_finish(log, iclog, flags,
2058 						       &record_cnt, &data_cnt,
2059 						       &partial_copy,
2060 						       &partial_copy_len,
2061 						       log_offset,
2062 						       commit_iclog);
2063 			if (error)
2064 				return error;
2065 
2066 			/*
2067 			 * if we had a partial copy, we need to get more iclog
2068 			 * space but we don't want to increment the region
2069 			 * index because there is still more is this region to
2070 			 * write.
2071 			 *
2072 			 * If we completed writing this region, and we flushed
2073 			 * the iclog (indicated by resetting of the record
2074 			 * count), then we also need to get more log space. If
2075 			 * this was the last record, though, we are done and
2076 			 * can just return.
2077 			 */
2078 			if (partial_copy)
2079 				break;
2080 
2081 			if (++index == lv->lv_niovecs) {
2082 				lv = lv->lv_next;
2083 				index = 0;
2084 				if (lv)
2085 					vecp = lv->lv_iovecp;
2086 			}
2087 			if (record_cnt == 0) {
2088 				if (!lv)
2089 					return 0;
2090 				break;
2091 			}
2092 		}
2093 	}
2094 
2095 	ASSERT(len == 0);
2096 
2097 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2098 	if (!commit_iclog)
2099 		return xlog_state_release_iclog(log, iclog);
2100 
2101 	ASSERT(flags & XLOG_COMMIT_TRANS);
2102 	*commit_iclog = iclog;
2103 	return 0;
2104 }
2105 
2106 
2107 /*****************************************************************************
2108  *
2109  *		State Machine functions
2110  *
2111  *****************************************************************************
2112  */
2113 
2114 /* Clean iclogs starting from the head.  This ordering must be
2115  * maintained, so an iclog doesn't become ACTIVE beyond one that
2116  * is SYNCING.  This is also required to maintain the notion that we use
2117  * a ordered wait queue to hold off would be writers to the log when every
2118  * iclog is trying to sync to disk.
2119  *
2120  * State Change: DIRTY -> ACTIVE
2121  */
2122 STATIC void
xlog_state_clean_log(xlog_t * log)2123 xlog_state_clean_log(xlog_t *log)
2124 {
2125 	xlog_in_core_t	*iclog;
2126 	int changed = 0;
2127 
2128 	iclog = log->l_iclog;
2129 	do {
2130 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2131 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2132 			iclog->ic_offset       = 0;
2133 			ASSERT(iclog->ic_callback == NULL);
2134 			/*
2135 			 * If the number of ops in this iclog indicate it just
2136 			 * contains the dummy transaction, we can
2137 			 * change state into IDLE (the second time around).
2138 			 * Otherwise we should change the state into
2139 			 * NEED a dummy.
2140 			 * We don't need to cover the dummy.
2141 			 */
2142 			if (!changed &&
2143 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2144 			   		XLOG_COVER_OPS)) {
2145 				changed = 1;
2146 			} else {
2147 				/*
2148 				 * We have two dirty iclogs so start over
2149 				 * This could also be num of ops indicates
2150 				 * this is not the dummy going out.
2151 				 */
2152 				changed = 2;
2153 			}
2154 			iclog->ic_header.h_num_logops = 0;
2155 			memset(iclog->ic_header.h_cycle_data, 0,
2156 			      sizeof(iclog->ic_header.h_cycle_data));
2157 			iclog->ic_header.h_lsn = 0;
2158 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2159 			/* do nothing */;
2160 		else
2161 			break;	/* stop cleaning */
2162 		iclog = iclog->ic_next;
2163 	} while (iclog != log->l_iclog);
2164 
2165 	/* log is locked when we are called */
2166 	/*
2167 	 * Change state for the dummy log recording.
2168 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2169 	 * we are done writing the dummy record.
2170 	 * If we are done with the second dummy recored (DONE2), then
2171 	 * we go to IDLE.
2172 	 */
2173 	if (changed) {
2174 		switch (log->l_covered_state) {
2175 		case XLOG_STATE_COVER_IDLE:
2176 		case XLOG_STATE_COVER_NEED:
2177 		case XLOG_STATE_COVER_NEED2:
2178 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2179 			break;
2180 
2181 		case XLOG_STATE_COVER_DONE:
2182 			if (changed == 1)
2183 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2184 			else
2185 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2186 			break;
2187 
2188 		case XLOG_STATE_COVER_DONE2:
2189 			if (changed == 1)
2190 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2191 			else
2192 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2193 			break;
2194 
2195 		default:
2196 			ASSERT(0);
2197 		}
2198 	}
2199 }	/* xlog_state_clean_log */
2200 
2201 STATIC xfs_lsn_t
xlog_get_lowest_lsn(xlog_t * log)2202 xlog_get_lowest_lsn(
2203 	xlog_t		*log)
2204 {
2205 	xlog_in_core_t  *lsn_log;
2206 	xfs_lsn_t	lowest_lsn, lsn;
2207 
2208 	lsn_log = log->l_iclog;
2209 	lowest_lsn = 0;
2210 	do {
2211 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2212 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2213 		if ((lsn && !lowest_lsn) ||
2214 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2215 			lowest_lsn = lsn;
2216 		}
2217 	    }
2218 	    lsn_log = lsn_log->ic_next;
2219 	} while (lsn_log != log->l_iclog);
2220 	return lowest_lsn;
2221 }
2222 
2223 
2224 STATIC void
xlog_state_do_callback(xlog_t * log,int aborted,xlog_in_core_t * ciclog)2225 xlog_state_do_callback(
2226 	xlog_t		*log,
2227 	int		aborted,
2228 	xlog_in_core_t	*ciclog)
2229 {
2230 	xlog_in_core_t	   *iclog;
2231 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2232 						 * processed all iclogs once */
2233 	xfs_log_callback_t *cb, *cb_next;
2234 	int		   flushcnt = 0;
2235 	xfs_lsn_t	   lowest_lsn;
2236 	int		   ioerrors;	/* counter: iclogs with errors */
2237 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2238 	int		   funcdidcallbacks; /* flag: function did callbacks */
2239 	int		   repeats;	/* for issuing console warnings if
2240 					 * looping too many times */
2241 	int		   wake = 0;
2242 
2243 	spin_lock(&log->l_icloglock);
2244 	first_iclog = iclog = log->l_iclog;
2245 	ioerrors = 0;
2246 	funcdidcallbacks = 0;
2247 	repeats = 0;
2248 
2249 	do {
2250 		/*
2251 		 * Scan all iclogs starting with the one pointed to by the
2252 		 * log.  Reset this starting point each time the log is
2253 		 * unlocked (during callbacks).
2254 		 *
2255 		 * Keep looping through iclogs until one full pass is made
2256 		 * without running any callbacks.
2257 		 */
2258 		first_iclog = log->l_iclog;
2259 		iclog = log->l_iclog;
2260 		loopdidcallbacks = 0;
2261 		repeats++;
2262 
2263 		do {
2264 
2265 			/* skip all iclogs in the ACTIVE & DIRTY states */
2266 			if (iclog->ic_state &
2267 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2268 				iclog = iclog->ic_next;
2269 				continue;
2270 			}
2271 
2272 			/*
2273 			 * Between marking a filesystem SHUTDOWN and stopping
2274 			 * the log, we do flush all iclogs to disk (if there
2275 			 * wasn't a log I/O error). So, we do want things to
2276 			 * go smoothly in case of just a SHUTDOWN  w/o a
2277 			 * LOG_IO_ERROR.
2278 			 */
2279 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2280 				/*
2281 				 * Can only perform callbacks in order.  Since
2282 				 * this iclog is not in the DONE_SYNC/
2283 				 * DO_CALLBACK state, we skip the rest and
2284 				 * just try to clean up.  If we set our iclog
2285 				 * to DO_CALLBACK, we will not process it when
2286 				 * we retry since a previous iclog is in the
2287 				 * CALLBACK and the state cannot change since
2288 				 * we are holding the l_icloglock.
2289 				 */
2290 				if (!(iclog->ic_state &
2291 					(XLOG_STATE_DONE_SYNC |
2292 						 XLOG_STATE_DO_CALLBACK))) {
2293 					if (ciclog && (ciclog->ic_state ==
2294 							XLOG_STATE_DONE_SYNC)) {
2295 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2296 					}
2297 					break;
2298 				}
2299 				/*
2300 				 * We now have an iclog that is in either the
2301 				 * DO_CALLBACK or DONE_SYNC states. The other
2302 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2303 				 * caught by the above if and are going to
2304 				 * clean (i.e. we aren't doing their callbacks)
2305 				 * see the above if.
2306 				 */
2307 
2308 				/*
2309 				 * We will do one more check here to see if we
2310 				 * have chased our tail around.
2311 				 */
2312 
2313 				lowest_lsn = xlog_get_lowest_lsn(log);
2314 				if (lowest_lsn &&
2315 				    XFS_LSN_CMP(lowest_lsn,
2316 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2317 					iclog = iclog->ic_next;
2318 					continue; /* Leave this iclog for
2319 						   * another thread */
2320 				}
2321 
2322 				iclog->ic_state = XLOG_STATE_CALLBACK;
2323 
2324 
2325 				/*
2326 				 * update the last_sync_lsn before we drop the
2327 				 * icloglock to ensure we are the only one that
2328 				 * can update it.
2329 				 */
2330 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2331 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2332 				atomic64_set(&log->l_last_sync_lsn,
2333 					be64_to_cpu(iclog->ic_header.h_lsn));
2334 
2335 			} else
2336 				ioerrors++;
2337 
2338 			spin_unlock(&log->l_icloglock);
2339 
2340 			/*
2341 			 * Keep processing entries in the callback list until
2342 			 * we come around and it is empty.  We need to
2343 			 * atomically see that the list is empty and change the
2344 			 * state to DIRTY so that we don't miss any more
2345 			 * callbacks being added.
2346 			 */
2347 			spin_lock(&iclog->ic_callback_lock);
2348 			cb = iclog->ic_callback;
2349 			while (cb) {
2350 				iclog->ic_callback_tail = &(iclog->ic_callback);
2351 				iclog->ic_callback = NULL;
2352 				spin_unlock(&iclog->ic_callback_lock);
2353 
2354 				/* perform callbacks in the order given */
2355 				for (; cb; cb = cb_next) {
2356 					cb_next = cb->cb_next;
2357 					cb->cb_func(cb->cb_arg, aborted);
2358 				}
2359 				spin_lock(&iclog->ic_callback_lock);
2360 				cb = iclog->ic_callback;
2361 			}
2362 
2363 			loopdidcallbacks++;
2364 			funcdidcallbacks++;
2365 
2366 			spin_lock(&log->l_icloglock);
2367 			ASSERT(iclog->ic_callback == NULL);
2368 			spin_unlock(&iclog->ic_callback_lock);
2369 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2370 				iclog->ic_state = XLOG_STATE_DIRTY;
2371 
2372 			/*
2373 			 * Transition from DIRTY to ACTIVE if applicable.
2374 			 * NOP if STATE_IOERROR.
2375 			 */
2376 			xlog_state_clean_log(log);
2377 
2378 			/* wake up threads waiting in xfs_log_force() */
2379 			wake_up_all(&iclog->ic_force_wait);
2380 
2381 			iclog = iclog->ic_next;
2382 		} while (first_iclog != iclog);
2383 
2384 		if (repeats > 5000) {
2385 			flushcnt += repeats;
2386 			repeats = 0;
2387 			xfs_warn(log->l_mp,
2388 				"%s: possible infinite loop (%d iterations)",
2389 				__func__, flushcnt);
2390 		}
2391 	} while (!ioerrors && loopdidcallbacks);
2392 
2393 	/*
2394 	 * make one last gasp attempt to see if iclogs are being left in
2395 	 * limbo..
2396 	 */
2397 #ifdef DEBUG
2398 	if (funcdidcallbacks) {
2399 		first_iclog = iclog = log->l_iclog;
2400 		do {
2401 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2402 			/*
2403 			 * Terminate the loop if iclogs are found in states
2404 			 * which will cause other threads to clean up iclogs.
2405 			 *
2406 			 * SYNCING - i/o completion will go through logs
2407 			 * DONE_SYNC - interrupt thread should be waiting for
2408 			 *              l_icloglock
2409 			 * IOERROR - give up hope all ye who enter here
2410 			 */
2411 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2412 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2413 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2414 			    iclog->ic_state == XLOG_STATE_IOERROR )
2415 				break;
2416 			iclog = iclog->ic_next;
2417 		} while (first_iclog != iclog);
2418 	}
2419 #endif
2420 
2421 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2422 		wake = 1;
2423 	spin_unlock(&log->l_icloglock);
2424 
2425 	if (wake)
2426 		wake_up_all(&log->l_flush_wait);
2427 }
2428 
2429 
2430 /*
2431  * Finish transitioning this iclog to the dirty state.
2432  *
2433  * Make sure that we completely execute this routine only when this is
2434  * the last call to the iclog.  There is a good chance that iclog flushes,
2435  * when we reach the end of the physical log, get turned into 2 separate
2436  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2437  * routine.  By using the reference count bwritecnt, we guarantee that only
2438  * the second completion goes through.
2439  *
2440  * Callbacks could take time, so they are done outside the scope of the
2441  * global state machine log lock.
2442  */
2443 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2444 xlog_state_done_syncing(
2445 	xlog_in_core_t	*iclog,
2446 	int		aborted)
2447 {
2448 	xlog_t		   *log = iclog->ic_log;
2449 
2450 	spin_lock(&log->l_icloglock);
2451 
2452 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2453 	       iclog->ic_state == XLOG_STATE_IOERROR);
2454 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2455 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2456 
2457 
2458 	/*
2459 	 * If we got an error, either on the first buffer, or in the case of
2460 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2461 	 * and none should ever be attempted to be written to disk
2462 	 * again.
2463 	 */
2464 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2465 		if (--iclog->ic_bwritecnt == 1) {
2466 			spin_unlock(&log->l_icloglock);
2467 			return;
2468 		}
2469 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2470 	}
2471 
2472 	/*
2473 	 * Someone could be sleeping prior to writing out the next
2474 	 * iclog buffer, we wake them all, one will get to do the
2475 	 * I/O, the others get to wait for the result.
2476 	 */
2477 	wake_up_all(&iclog->ic_write_wait);
2478 	spin_unlock(&log->l_icloglock);
2479 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2480 }	/* xlog_state_done_syncing */
2481 
2482 
2483 /*
2484  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2485  * sleep.  We wait on the flush queue on the head iclog as that should be
2486  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2487  * we will wait here and all new writes will sleep until a sync completes.
2488  *
2489  * The in-core logs are used in a circular fashion. They are not used
2490  * out-of-order even when an iclog past the head is free.
2491  *
2492  * return:
2493  *	* log_offset where xlog_write() can start writing into the in-core
2494  *		log's data space.
2495  *	* in-core log pointer to which xlog_write() should write.
2496  *	* boolean indicating this is a continued write to an in-core log.
2497  *		If this is the last write, then the in-core log's offset field
2498  *		needs to be incremented, depending on the amount of data which
2499  *		is copied.
2500  */
2501 STATIC int
xlog_state_get_iclog_space(xlog_t * log,int len,xlog_in_core_t ** iclogp,xlog_ticket_t * ticket,int * continued_write,int * logoffsetp)2502 xlog_state_get_iclog_space(xlog_t	  *log,
2503 			   int		  len,
2504 			   xlog_in_core_t **iclogp,
2505 			   xlog_ticket_t  *ticket,
2506 			   int		  *continued_write,
2507 			   int		  *logoffsetp)
2508 {
2509 	int		  log_offset;
2510 	xlog_rec_header_t *head;
2511 	xlog_in_core_t	  *iclog;
2512 	int		  error;
2513 
2514 restart:
2515 	spin_lock(&log->l_icloglock);
2516 	if (XLOG_FORCED_SHUTDOWN(log)) {
2517 		spin_unlock(&log->l_icloglock);
2518 		return XFS_ERROR(EIO);
2519 	}
2520 
2521 	iclog = log->l_iclog;
2522 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2523 		XFS_STATS_INC(xs_log_noiclogs);
2524 
2525 		/* Wait for log writes to have flushed */
2526 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2527 		goto restart;
2528 	}
2529 
2530 	head = &iclog->ic_header;
2531 
2532 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2533 	log_offset = iclog->ic_offset;
2534 
2535 	/* On the 1st write to an iclog, figure out lsn.  This works
2536 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2537 	 * committing to.  If the offset is set, that's how many blocks
2538 	 * must be written.
2539 	 */
2540 	if (log_offset == 0) {
2541 		ticket->t_curr_res -= log->l_iclog_hsize;
2542 		xlog_tic_add_region(ticket,
2543 				    log->l_iclog_hsize,
2544 				    XLOG_REG_TYPE_LRHEADER);
2545 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2546 		head->h_lsn = cpu_to_be64(
2547 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2548 		ASSERT(log->l_curr_block >= 0);
2549 	}
2550 
2551 	/* If there is enough room to write everything, then do it.  Otherwise,
2552 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2553 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2554 	 * until you know exactly how many bytes get copied.  Therefore, wait
2555 	 * until later to update ic_offset.
2556 	 *
2557 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2558 	 * can fit into remaining data section.
2559 	 */
2560 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2561 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2562 
2563 		/*
2564 		 * If I'm the only one writing to this iclog, sync it to disk.
2565 		 * We need to do an atomic compare and decrement here to avoid
2566 		 * racing with concurrent atomic_dec_and_lock() calls in
2567 		 * xlog_state_release_iclog() when there is more than one
2568 		 * reference to the iclog.
2569 		 */
2570 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2571 			/* we are the only one */
2572 			spin_unlock(&log->l_icloglock);
2573 			error = xlog_state_release_iclog(log, iclog);
2574 			if (error)
2575 				return error;
2576 		} else {
2577 			spin_unlock(&log->l_icloglock);
2578 		}
2579 		goto restart;
2580 	}
2581 
2582 	/* Do we have enough room to write the full amount in the remainder
2583 	 * of this iclog?  Or must we continue a write on the next iclog and
2584 	 * mark this iclog as completely taken?  In the case where we switch
2585 	 * iclogs (to mark it taken), this particular iclog will release/sync
2586 	 * to disk in xlog_write().
2587 	 */
2588 	if (len <= iclog->ic_size - iclog->ic_offset) {
2589 		*continued_write = 0;
2590 		iclog->ic_offset += len;
2591 	} else {
2592 		*continued_write = 1;
2593 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2594 	}
2595 	*iclogp = iclog;
2596 
2597 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2598 	spin_unlock(&log->l_icloglock);
2599 
2600 	*logoffsetp = log_offset;
2601 	return 0;
2602 }	/* xlog_state_get_iclog_space */
2603 
2604 /* The first cnt-1 times through here we don't need to
2605  * move the grant write head because the permanent
2606  * reservation has reserved cnt times the unit amount.
2607  * Release part of current permanent unit reservation and
2608  * reset current reservation to be one units worth.  Also
2609  * move grant reservation head forward.
2610  */
2611 STATIC void
xlog_regrant_reserve_log_space(xlog_t * log,xlog_ticket_t * ticket)2612 xlog_regrant_reserve_log_space(xlog_t	     *log,
2613 			       xlog_ticket_t *ticket)
2614 {
2615 	trace_xfs_log_regrant_reserve_enter(log, ticket);
2616 
2617 	if (ticket->t_cnt > 0)
2618 		ticket->t_cnt--;
2619 
2620 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2621 					ticket->t_curr_res);
2622 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2623 					ticket->t_curr_res);
2624 	ticket->t_curr_res = ticket->t_unit_res;
2625 	xlog_tic_reset_res(ticket);
2626 
2627 	trace_xfs_log_regrant_reserve_sub(log, ticket);
2628 
2629 	/* just return if we still have some of the pre-reserved space */
2630 	if (ticket->t_cnt > 0)
2631 		return;
2632 
2633 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
2634 					ticket->t_unit_res);
2635 
2636 	trace_xfs_log_regrant_reserve_exit(log, ticket);
2637 
2638 	ticket->t_curr_res = ticket->t_unit_res;
2639 	xlog_tic_reset_res(ticket);
2640 }	/* xlog_regrant_reserve_log_space */
2641 
2642 
2643 /*
2644  * Give back the space left from a reservation.
2645  *
2646  * All the information we need to make a correct determination of space left
2647  * is present.  For non-permanent reservations, things are quite easy.  The
2648  * count should have been decremented to zero.  We only need to deal with the
2649  * space remaining in the current reservation part of the ticket.  If the
2650  * ticket contains a permanent reservation, there may be left over space which
2651  * needs to be released.  A count of N means that N-1 refills of the current
2652  * reservation can be done before we need to ask for more space.  The first
2653  * one goes to fill up the first current reservation.  Once we run out of
2654  * space, the count will stay at zero and the only space remaining will be
2655  * in the current reservation field.
2656  */
2657 STATIC void
xlog_ungrant_log_space(xlog_t * log,xlog_ticket_t * ticket)2658 xlog_ungrant_log_space(xlog_t	     *log,
2659 		       xlog_ticket_t *ticket)
2660 {
2661 	int	bytes;
2662 
2663 	if (ticket->t_cnt > 0)
2664 		ticket->t_cnt--;
2665 
2666 	trace_xfs_log_ungrant_enter(log, ticket);
2667 	trace_xfs_log_ungrant_sub(log, ticket);
2668 
2669 	/*
2670 	 * If this is a permanent reservation ticket, we may be able to free
2671 	 * up more space based on the remaining count.
2672 	 */
2673 	bytes = ticket->t_curr_res;
2674 	if (ticket->t_cnt > 0) {
2675 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2676 		bytes += ticket->t_unit_res*ticket->t_cnt;
2677 	}
2678 
2679 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2680 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2681 
2682 	trace_xfs_log_ungrant_exit(log, ticket);
2683 
2684 	xfs_log_space_wake(log->l_mp);
2685 }
2686 
2687 /*
2688  * Flush iclog to disk if this is the last reference to the given iclog and
2689  * the WANT_SYNC bit is set.
2690  *
2691  * When this function is entered, the iclog is not necessarily in the
2692  * WANT_SYNC state.  It may be sitting around waiting to get filled.
2693  *
2694  *
2695  */
2696 STATIC int
xlog_state_release_iclog(xlog_t * log,xlog_in_core_t * iclog)2697 xlog_state_release_iclog(
2698 	xlog_t		*log,
2699 	xlog_in_core_t	*iclog)
2700 {
2701 	int		sync = 0;	/* do we sync? */
2702 
2703 	if (iclog->ic_state & XLOG_STATE_IOERROR)
2704 		return XFS_ERROR(EIO);
2705 
2706 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2707 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2708 		return 0;
2709 
2710 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2711 		spin_unlock(&log->l_icloglock);
2712 		return XFS_ERROR(EIO);
2713 	}
2714 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2715 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
2716 
2717 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2718 		/* update tail before writing to iclog */
2719 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2720 		sync++;
2721 		iclog->ic_state = XLOG_STATE_SYNCING;
2722 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2723 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
2724 		/* cycle incremented when incrementing curr_block */
2725 	}
2726 	spin_unlock(&log->l_icloglock);
2727 
2728 	/*
2729 	 * We let the log lock go, so it's possible that we hit a log I/O
2730 	 * error or some other SHUTDOWN condition that marks the iclog
2731 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2732 	 * this iclog has consistent data, so we ignore IOERROR
2733 	 * flags after this point.
2734 	 */
2735 	if (sync)
2736 		return xlog_sync(log, iclog);
2737 	return 0;
2738 }	/* xlog_state_release_iclog */
2739 
2740 
2741 /*
2742  * This routine will mark the current iclog in the ring as WANT_SYNC
2743  * and move the current iclog pointer to the next iclog in the ring.
2744  * When this routine is called from xlog_state_get_iclog_space(), the
2745  * exact size of the iclog has not yet been determined.  All we know is
2746  * that every data block.  We have run out of space in this log record.
2747  */
2748 STATIC void
xlog_state_switch_iclogs(xlog_t * log,xlog_in_core_t * iclog,int eventual_size)2749 xlog_state_switch_iclogs(xlog_t		*log,
2750 			 xlog_in_core_t *iclog,
2751 			 int		eventual_size)
2752 {
2753 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2754 	if (!eventual_size)
2755 		eventual_size = iclog->ic_offset;
2756 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
2757 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2758 	log->l_prev_block = log->l_curr_block;
2759 	log->l_prev_cycle = log->l_curr_cycle;
2760 
2761 	/* roll log?: ic_offset changed later */
2762 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2763 
2764 	/* Round up to next log-sunit */
2765 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2766 	    log->l_mp->m_sb.sb_logsunit > 1) {
2767 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2768 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2769 	}
2770 
2771 	if (log->l_curr_block >= log->l_logBBsize) {
2772 		log->l_curr_cycle++;
2773 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2774 			log->l_curr_cycle++;
2775 		log->l_curr_block -= log->l_logBBsize;
2776 		ASSERT(log->l_curr_block >= 0);
2777 	}
2778 	ASSERT(iclog == log->l_iclog);
2779 	log->l_iclog = iclog->ic_next;
2780 }	/* xlog_state_switch_iclogs */
2781 
2782 /*
2783  * Write out all data in the in-core log as of this exact moment in time.
2784  *
2785  * Data may be written to the in-core log during this call.  However,
2786  * we don't guarantee this data will be written out.  A change from past
2787  * implementation means this routine will *not* write out zero length LRs.
2788  *
2789  * Basically, we try and perform an intelligent scan of the in-core logs.
2790  * If we determine there is no flushable data, we just return.  There is no
2791  * flushable data if:
2792  *
2793  *	1. the current iclog is active and has no data; the previous iclog
2794  *		is in the active or dirty state.
2795  *	2. the current iclog is drity, and the previous iclog is in the
2796  *		active or dirty state.
2797  *
2798  * We may sleep if:
2799  *
2800  *	1. the current iclog is not in the active nor dirty state.
2801  *	2. the current iclog dirty, and the previous iclog is not in the
2802  *		active nor dirty state.
2803  *	3. the current iclog is active, and there is another thread writing
2804  *		to this particular iclog.
2805  *	4. a) the current iclog is active and has no other writers
2806  *	   b) when we return from flushing out this iclog, it is still
2807  *		not in the active nor dirty state.
2808  */
2809 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)2810 _xfs_log_force(
2811 	struct xfs_mount	*mp,
2812 	uint			flags,
2813 	int			*log_flushed)
2814 {
2815 	struct log		*log = mp->m_log;
2816 	struct xlog_in_core	*iclog;
2817 	xfs_lsn_t		lsn;
2818 
2819 	XFS_STATS_INC(xs_log_force);
2820 
2821 	xlog_cil_force(log);
2822 
2823 	spin_lock(&log->l_icloglock);
2824 
2825 	iclog = log->l_iclog;
2826 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2827 		spin_unlock(&log->l_icloglock);
2828 		return XFS_ERROR(EIO);
2829 	}
2830 
2831 	/* If the head iclog is not active nor dirty, we just attach
2832 	 * ourselves to the head and go to sleep.
2833 	 */
2834 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2835 	    iclog->ic_state == XLOG_STATE_DIRTY) {
2836 		/*
2837 		 * If the head is dirty or (active and empty), then
2838 		 * we need to look at the previous iclog.  If the previous
2839 		 * iclog is active or dirty we are done.  There is nothing
2840 		 * to sync out.  Otherwise, we attach ourselves to the
2841 		 * previous iclog and go to sleep.
2842 		 */
2843 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
2844 		    (atomic_read(&iclog->ic_refcnt) == 0
2845 		     && iclog->ic_offset == 0)) {
2846 			iclog = iclog->ic_prev;
2847 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2848 			    iclog->ic_state == XLOG_STATE_DIRTY)
2849 				goto no_sleep;
2850 			else
2851 				goto maybe_sleep;
2852 		} else {
2853 			if (atomic_read(&iclog->ic_refcnt) == 0) {
2854 				/* We are the only one with access to this
2855 				 * iclog.  Flush it out now.  There should
2856 				 * be a roundoff of zero to show that someone
2857 				 * has already taken care of the roundoff from
2858 				 * the previous sync.
2859 				 */
2860 				atomic_inc(&iclog->ic_refcnt);
2861 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2862 				xlog_state_switch_iclogs(log, iclog, 0);
2863 				spin_unlock(&log->l_icloglock);
2864 
2865 				if (xlog_state_release_iclog(log, iclog))
2866 					return XFS_ERROR(EIO);
2867 
2868 				if (log_flushed)
2869 					*log_flushed = 1;
2870 				spin_lock(&log->l_icloglock);
2871 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2872 				    iclog->ic_state != XLOG_STATE_DIRTY)
2873 					goto maybe_sleep;
2874 				else
2875 					goto no_sleep;
2876 			} else {
2877 				/* Someone else is writing to this iclog.
2878 				 * Use its call to flush out the data.  However,
2879 				 * the other thread may not force out this LR,
2880 				 * so we mark it WANT_SYNC.
2881 				 */
2882 				xlog_state_switch_iclogs(log, iclog, 0);
2883 				goto maybe_sleep;
2884 			}
2885 		}
2886 	}
2887 
2888 	/* By the time we come around again, the iclog could've been filled
2889 	 * which would give it another lsn.  If we have a new lsn, just
2890 	 * return because the relevant data has been flushed.
2891 	 */
2892 maybe_sleep:
2893 	if (flags & XFS_LOG_SYNC) {
2894 		/*
2895 		 * We must check if we're shutting down here, before
2896 		 * we wait, while we're holding the l_icloglock.
2897 		 * Then we check again after waking up, in case our
2898 		 * sleep was disturbed by a bad news.
2899 		 */
2900 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
2901 			spin_unlock(&log->l_icloglock);
2902 			return XFS_ERROR(EIO);
2903 		}
2904 		XFS_STATS_INC(xs_log_force_sleep);
2905 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2906 		/*
2907 		 * No need to grab the log lock here since we're
2908 		 * only deciding whether or not to return EIO
2909 		 * and the memory read should be atomic.
2910 		 */
2911 		if (iclog->ic_state & XLOG_STATE_IOERROR)
2912 			return XFS_ERROR(EIO);
2913 		if (log_flushed)
2914 			*log_flushed = 1;
2915 	} else {
2916 
2917 no_sleep:
2918 		spin_unlock(&log->l_icloglock);
2919 	}
2920 	return 0;
2921 }
2922 
2923 /*
2924  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2925  * about errors or whether the log was flushed or not. This is the normal
2926  * interface to use when trying to unpin items or move the log forward.
2927  */
2928 void
xfs_log_force(xfs_mount_t * mp,uint flags)2929 xfs_log_force(
2930 	xfs_mount_t	*mp,
2931 	uint		flags)
2932 {
2933 	int	error;
2934 
2935 	error = _xfs_log_force(mp, flags, NULL);
2936 	if (error)
2937 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
2938 }
2939 
2940 /*
2941  * Force the in-core log to disk for a specific LSN.
2942  *
2943  * Find in-core log with lsn.
2944  *	If it is in the DIRTY state, just return.
2945  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2946  *		state and go to sleep or return.
2947  *	If it is in any other state, go to sleep or return.
2948  *
2949  * Synchronous forces are implemented with a signal variable. All callers
2950  * to force a given lsn to disk will wait on a the sv attached to the
2951  * specific in-core log.  When given in-core log finally completes its
2952  * write to disk, that thread will wake up all threads waiting on the
2953  * sv.
2954  */
2955 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)2956 _xfs_log_force_lsn(
2957 	struct xfs_mount	*mp,
2958 	xfs_lsn_t		lsn,
2959 	uint			flags,
2960 	int			*log_flushed)
2961 {
2962 	struct log		*log = mp->m_log;
2963 	struct xlog_in_core	*iclog;
2964 	int			already_slept = 0;
2965 
2966 	ASSERT(lsn != 0);
2967 
2968 	XFS_STATS_INC(xs_log_force);
2969 
2970 	lsn = xlog_cil_force_lsn(log, lsn);
2971 	if (lsn == NULLCOMMITLSN)
2972 		return 0;
2973 
2974 try_again:
2975 	spin_lock(&log->l_icloglock);
2976 	iclog = log->l_iclog;
2977 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2978 		spin_unlock(&log->l_icloglock);
2979 		return XFS_ERROR(EIO);
2980 	}
2981 
2982 	do {
2983 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
2984 			iclog = iclog->ic_next;
2985 			continue;
2986 		}
2987 
2988 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2989 			spin_unlock(&log->l_icloglock);
2990 			return 0;
2991 		}
2992 
2993 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2994 			/*
2995 			 * We sleep here if we haven't already slept (e.g.
2996 			 * this is the first time we've looked at the correct
2997 			 * iclog buf) and the buffer before us is going to
2998 			 * be sync'ed. The reason for this is that if we
2999 			 * are doing sync transactions here, by waiting for
3000 			 * the previous I/O to complete, we can allow a few
3001 			 * more transactions into this iclog before we close
3002 			 * it down.
3003 			 *
3004 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3005 			 * up the refcnt so we can release the log (which
3006 			 * drops the ref count).  The state switch keeps new
3007 			 * transaction commits from using this buffer.  When
3008 			 * the current commits finish writing into the buffer,
3009 			 * the refcount will drop to zero and the buffer will
3010 			 * go out then.
3011 			 */
3012 			if (!already_slept &&
3013 			    (iclog->ic_prev->ic_state &
3014 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3015 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3016 
3017 				XFS_STATS_INC(xs_log_force_sleep);
3018 
3019 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3020 							&log->l_icloglock);
3021 				if (log_flushed)
3022 					*log_flushed = 1;
3023 				already_slept = 1;
3024 				goto try_again;
3025 			}
3026 			atomic_inc(&iclog->ic_refcnt);
3027 			xlog_state_switch_iclogs(log, iclog, 0);
3028 			spin_unlock(&log->l_icloglock);
3029 			if (xlog_state_release_iclog(log, iclog))
3030 				return XFS_ERROR(EIO);
3031 			if (log_flushed)
3032 				*log_flushed = 1;
3033 			spin_lock(&log->l_icloglock);
3034 		}
3035 
3036 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3037 		    !(iclog->ic_state &
3038 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3039 			/*
3040 			 * Don't wait on completion if we know that we've
3041 			 * gotten a log write error.
3042 			 */
3043 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3044 				spin_unlock(&log->l_icloglock);
3045 				return XFS_ERROR(EIO);
3046 			}
3047 			XFS_STATS_INC(xs_log_force_sleep);
3048 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3049 			/*
3050 			 * No need to grab the log lock here since we're
3051 			 * only deciding whether or not to return EIO
3052 			 * and the memory read should be atomic.
3053 			 */
3054 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3055 				return XFS_ERROR(EIO);
3056 
3057 			if (log_flushed)
3058 				*log_flushed = 1;
3059 		} else {		/* just return */
3060 			spin_unlock(&log->l_icloglock);
3061 		}
3062 
3063 		return 0;
3064 	} while (iclog != log->l_iclog);
3065 
3066 	spin_unlock(&log->l_icloglock);
3067 	return 0;
3068 }
3069 
3070 /*
3071  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3072  * about errors or whether the log was flushed or not. This is the normal
3073  * interface to use when trying to unpin items or move the log forward.
3074  */
3075 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3076 xfs_log_force_lsn(
3077 	xfs_mount_t	*mp,
3078 	xfs_lsn_t	lsn,
3079 	uint		flags)
3080 {
3081 	int	error;
3082 
3083 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3084 	if (error)
3085 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3086 }
3087 
3088 /*
3089  * Called when we want to mark the current iclog as being ready to sync to
3090  * disk.
3091  */
3092 STATIC void
xlog_state_want_sync(xlog_t * log,xlog_in_core_t * iclog)3093 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3094 {
3095 	assert_spin_locked(&log->l_icloglock);
3096 
3097 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3098 		xlog_state_switch_iclogs(log, iclog, 0);
3099 	} else {
3100 		ASSERT(iclog->ic_state &
3101 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3102 	}
3103 }
3104 
3105 
3106 /*****************************************************************************
3107  *
3108  *		TICKET functions
3109  *
3110  *****************************************************************************
3111  */
3112 
3113 /*
3114  * Free a used ticket when its refcount falls to zero.
3115  */
3116 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3117 xfs_log_ticket_put(
3118 	xlog_ticket_t	*ticket)
3119 {
3120 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3121 	if (atomic_dec_and_test(&ticket->t_ref))
3122 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3123 }
3124 
3125 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3126 xfs_log_ticket_get(
3127 	xlog_ticket_t	*ticket)
3128 {
3129 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3130 	atomic_inc(&ticket->t_ref);
3131 	return ticket;
3132 }
3133 
3134 /*
3135  * Allocate and initialise a new log ticket.
3136  */
3137 xlog_ticket_t *
xlog_ticket_alloc(struct log * log,int unit_bytes,int cnt,char client,bool permanent,int alloc_flags)3138 xlog_ticket_alloc(
3139 	struct log	*log,
3140 	int		unit_bytes,
3141 	int		cnt,
3142 	char		client,
3143 	bool		permanent,
3144 	int		alloc_flags)
3145 {
3146 	struct xlog_ticket *tic;
3147 	uint		num_headers;
3148 	int		iclog_space;
3149 
3150 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3151 	if (!tic)
3152 		return NULL;
3153 
3154 	/*
3155 	 * Permanent reservations have up to 'cnt'-1 active log operations
3156 	 * in the log.  A unit in this case is the amount of space for one
3157 	 * of these log operations.  Normal reservations have a cnt of 1
3158 	 * and their unit amount is the total amount of space required.
3159 	 *
3160 	 * The following lines of code account for non-transaction data
3161 	 * which occupy space in the on-disk log.
3162 	 *
3163 	 * Normal form of a transaction is:
3164 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3165 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3166 	 *
3167 	 * We need to account for all the leadup data and trailer data
3168 	 * around the transaction data.
3169 	 * And then we need to account for the worst case in terms of using
3170 	 * more space.
3171 	 * The worst case will happen if:
3172 	 * - the placement of the transaction happens to be such that the
3173 	 *   roundoff is at its maximum
3174 	 * - the transaction data is synced before the commit record is synced
3175 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3176 	 *   Therefore the commit record is in its own Log Record.
3177 	 *   This can happen as the commit record is called with its
3178 	 *   own region to xlog_write().
3179 	 *   This then means that in the worst case, roundoff can happen for
3180 	 *   the commit-rec as well.
3181 	 *   The commit-rec is smaller than padding in this scenario and so it is
3182 	 *   not added separately.
3183 	 */
3184 
3185 	/* for trans header */
3186 	unit_bytes += sizeof(xlog_op_header_t);
3187 	unit_bytes += sizeof(xfs_trans_header_t);
3188 
3189 	/* for start-rec */
3190 	unit_bytes += sizeof(xlog_op_header_t);
3191 
3192 	/*
3193 	 * for LR headers - the space for data in an iclog is the size minus
3194 	 * the space used for the headers. If we use the iclog size, then we
3195 	 * undercalculate the number of headers required.
3196 	 *
3197 	 * Furthermore - the addition of op headers for split-recs might
3198 	 * increase the space required enough to require more log and op
3199 	 * headers, so take that into account too.
3200 	 *
3201 	 * IMPORTANT: This reservation makes the assumption that if this
3202 	 * transaction is the first in an iclog and hence has the LR headers
3203 	 * accounted to it, then the remaining space in the iclog is
3204 	 * exclusively for this transaction.  i.e. if the transaction is larger
3205 	 * than the iclog, it will be the only thing in that iclog.
3206 	 * Fundamentally, this means we must pass the entire log vector to
3207 	 * xlog_write to guarantee this.
3208 	 */
3209 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3210 	num_headers = howmany(unit_bytes, iclog_space);
3211 
3212 	/* for split-recs - ophdrs added when data split over LRs */
3213 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3214 
3215 	/* add extra header reservations if we overrun */
3216 	while (!num_headers ||
3217 	       howmany(unit_bytes, iclog_space) > num_headers) {
3218 		unit_bytes += sizeof(xlog_op_header_t);
3219 		num_headers++;
3220 	}
3221 	unit_bytes += log->l_iclog_hsize * num_headers;
3222 
3223 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3224 	unit_bytes += log->l_iclog_hsize;
3225 
3226 	/* for roundoff padding for transaction data and one for commit record */
3227 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3228 	    log->l_mp->m_sb.sb_logsunit > 1) {
3229 		/* log su roundoff */
3230 		unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3231 	} else {
3232 		/* BB roundoff */
3233 		unit_bytes += 2*BBSIZE;
3234         }
3235 
3236 	atomic_set(&tic->t_ref, 1);
3237 	tic->t_task		= current;
3238 	INIT_LIST_HEAD(&tic->t_queue);
3239 	tic->t_unit_res		= unit_bytes;
3240 	tic->t_curr_res		= unit_bytes;
3241 	tic->t_cnt		= cnt;
3242 	tic->t_ocnt		= cnt;
3243 	tic->t_tid		= random32();
3244 	tic->t_clientid		= client;
3245 	tic->t_flags		= XLOG_TIC_INITED;
3246 	tic->t_trans_type	= 0;
3247 	if (permanent)
3248 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3249 
3250 	xlog_tic_reset_res(tic);
3251 
3252 	return tic;
3253 }
3254 
3255 
3256 /******************************************************************************
3257  *
3258  *		Log debug routines
3259  *
3260  ******************************************************************************
3261  */
3262 #if defined(DEBUG)
3263 /*
3264  * Make sure that the destination ptr is within the valid data region of
3265  * one of the iclogs.  This uses backup pointers stored in a different
3266  * part of the log in case we trash the log structure.
3267  */
3268 void
xlog_verify_dest_ptr(struct log * log,char * ptr)3269 xlog_verify_dest_ptr(
3270 	struct log	*log,
3271 	char		*ptr)
3272 {
3273 	int i;
3274 	int good_ptr = 0;
3275 
3276 	for (i = 0; i < log->l_iclog_bufs; i++) {
3277 		if (ptr >= log->l_iclog_bak[i] &&
3278 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3279 			good_ptr++;
3280 	}
3281 
3282 	if (!good_ptr)
3283 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3284 }
3285 
3286 /*
3287  * Check to make sure the grant write head didn't just over lap the tail.  If
3288  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3289  * the cycles differ by exactly one and check the byte count.
3290  *
3291  * This check is run unlocked, so can give false positives. Rather than assert
3292  * on failures, use a warn-once flag and a panic tag to allow the admin to
3293  * determine if they want to panic the machine when such an error occurs. For
3294  * debug kernels this will have the same effect as using an assert but, unlinke
3295  * an assert, it can be turned off at runtime.
3296  */
3297 STATIC void
xlog_verify_grant_tail(struct log * log)3298 xlog_verify_grant_tail(
3299 	struct log	*log)
3300 {
3301 	int		tail_cycle, tail_blocks;
3302 	int		cycle, space;
3303 
3304 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3305 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3306 	if (tail_cycle != cycle) {
3307 		if (cycle - 1 != tail_cycle &&
3308 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3309 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3310 				"%s: cycle - 1 != tail_cycle", __func__);
3311 			log->l_flags |= XLOG_TAIL_WARN;
3312 		}
3313 
3314 		if (space > BBTOB(tail_blocks) &&
3315 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3316 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3317 				"%s: space > BBTOB(tail_blocks)", __func__);
3318 			log->l_flags |= XLOG_TAIL_WARN;
3319 		}
3320 	}
3321 }
3322 
3323 /* check if it will fit */
3324 STATIC void
xlog_verify_tail_lsn(xlog_t * log,xlog_in_core_t * iclog,xfs_lsn_t tail_lsn)3325 xlog_verify_tail_lsn(xlog_t	    *log,
3326 		     xlog_in_core_t *iclog,
3327 		     xfs_lsn_t	    tail_lsn)
3328 {
3329     int blocks;
3330 
3331     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3332 	blocks =
3333 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3334 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3335 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3336     } else {
3337 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3338 
3339 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3340 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3341 
3342 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3343 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3344 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3345     }
3346 }	/* xlog_verify_tail_lsn */
3347 
3348 /*
3349  * Perform a number of checks on the iclog before writing to disk.
3350  *
3351  * 1. Make sure the iclogs are still circular
3352  * 2. Make sure we have a good magic number
3353  * 3. Make sure we don't have magic numbers in the data
3354  * 4. Check fields of each log operation header for:
3355  *	A. Valid client identifier
3356  *	B. tid ptr value falls in valid ptr space (user space code)
3357  *	C. Length in log record header is correct according to the
3358  *		individual operation headers within record.
3359  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3360  *	log, check the preceding blocks of the physical log to make sure all
3361  *	the cycle numbers agree with the current cycle number.
3362  */
3363 STATIC void
xlog_verify_iclog(xlog_t * log,xlog_in_core_t * iclog,int count,boolean_t syncing)3364 xlog_verify_iclog(xlog_t	 *log,
3365 		  xlog_in_core_t *iclog,
3366 		  int		 count,
3367 		  boolean_t	 syncing)
3368 {
3369 	xlog_op_header_t	*ophead;
3370 	xlog_in_core_t		*icptr;
3371 	xlog_in_core_2_t	*xhdr;
3372 	xfs_caddr_t		ptr;
3373 	xfs_caddr_t		base_ptr;
3374 	__psint_t		field_offset;
3375 	__uint8_t		clientid;
3376 	int			len, i, j, k, op_len;
3377 	int			idx;
3378 
3379 	/* check validity of iclog pointers */
3380 	spin_lock(&log->l_icloglock);
3381 	icptr = log->l_iclog;
3382 	for (i=0; i < log->l_iclog_bufs; i++) {
3383 		if (icptr == NULL)
3384 			xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3385 		icptr = icptr->ic_next;
3386 	}
3387 	if (icptr != log->l_iclog)
3388 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3389 	spin_unlock(&log->l_icloglock);
3390 
3391 	/* check log magic numbers */
3392 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3393 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3394 
3395 	ptr = (xfs_caddr_t) &iclog->ic_header;
3396 	for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3397 	     ptr += BBSIZE) {
3398 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3399 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3400 				__func__);
3401 	}
3402 
3403 	/* check fields */
3404 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3405 	ptr = iclog->ic_datap;
3406 	base_ptr = ptr;
3407 	ophead = (xlog_op_header_t *)ptr;
3408 	xhdr = iclog->ic_data;
3409 	for (i = 0; i < len; i++) {
3410 		ophead = (xlog_op_header_t *)ptr;
3411 
3412 		/* clientid is only 1 byte */
3413 		field_offset = (__psint_t)
3414 			       ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3415 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3416 			clientid = ophead->oh_clientid;
3417 		} else {
3418 			idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3419 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3420 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3421 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3422 				clientid = xlog_get_client_id(
3423 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3424 			} else {
3425 				clientid = xlog_get_client_id(
3426 					iclog->ic_header.h_cycle_data[idx]);
3427 			}
3428 		}
3429 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3430 			xfs_warn(log->l_mp,
3431 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3432 				__func__, clientid, ophead,
3433 				(unsigned long)field_offset);
3434 
3435 		/* check length */
3436 		field_offset = (__psint_t)
3437 			       ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3438 		if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3439 			op_len = be32_to_cpu(ophead->oh_len);
3440 		} else {
3441 			idx = BTOBBT((__psint_t)&ophead->oh_len -
3442 				    (__psint_t)iclog->ic_datap);
3443 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3447 			} else {
3448 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3449 			}
3450 		}
3451 		ptr += sizeof(xlog_op_header_t) + op_len;
3452 	}
3453 }	/* xlog_verify_iclog */
3454 #endif
3455 
3456 /*
3457  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3458  */
3459 STATIC int
xlog_state_ioerror(xlog_t * log)3460 xlog_state_ioerror(
3461 	xlog_t	*log)
3462 {
3463 	xlog_in_core_t	*iclog, *ic;
3464 
3465 	iclog = log->l_iclog;
3466 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3467 		/*
3468 		 * Mark all the incore logs IOERROR.
3469 		 * From now on, no log flushes will result.
3470 		 */
3471 		ic = iclog;
3472 		do {
3473 			ic->ic_state = XLOG_STATE_IOERROR;
3474 			ic = ic->ic_next;
3475 		} while (ic != iclog);
3476 		return 0;
3477 	}
3478 	/*
3479 	 * Return non-zero, if state transition has already happened.
3480 	 */
3481 	return 1;
3482 }
3483 
3484 /*
3485  * This is called from xfs_force_shutdown, when we're forcibly
3486  * shutting down the filesystem, typically because of an IO error.
3487  * Our main objectives here are to make sure that:
3488  *	a. the filesystem gets marked 'SHUTDOWN' for all interested
3489  *	   parties to find out, 'atomically'.
3490  *	b. those who're sleeping on log reservations, pinned objects and
3491  *	    other resources get woken up, and be told the bad news.
3492  *	c. nothing new gets queued up after (a) and (b) are done.
3493  *	d. if !logerror, flush the iclogs to disk, then seal them off
3494  *	   for business.
3495  *
3496  * Note: for delayed logging the !logerror case needs to flush the regions
3497  * held in memory out to the iclogs before flushing them to disk. This needs
3498  * to be done before the log is marked as shutdown, otherwise the flush to the
3499  * iclogs will fail.
3500  */
3501 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3502 xfs_log_force_umount(
3503 	struct xfs_mount	*mp,
3504 	int			logerror)
3505 {
3506 	xlog_t		*log;
3507 	int		retval;
3508 
3509 	log = mp->m_log;
3510 
3511 	/*
3512 	 * If this happens during log recovery, don't worry about
3513 	 * locking; the log isn't open for business yet.
3514 	 */
3515 	if (!log ||
3516 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3517 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3518 		if (mp->m_sb_bp)
3519 			XFS_BUF_DONE(mp->m_sb_bp);
3520 		return 0;
3521 	}
3522 
3523 	/*
3524 	 * Somebody could've already done the hard work for us.
3525 	 * No need to get locks for this.
3526 	 */
3527 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3528 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3529 		return 1;
3530 	}
3531 	retval = 0;
3532 
3533 	/*
3534 	 * Flush the in memory commit item list before marking the log as
3535 	 * being shut down. We need to do it in this order to ensure all the
3536 	 * completed transactions are flushed to disk with the xfs_log_force()
3537 	 * call below.
3538 	 */
3539 	if (!logerror)
3540 		xlog_cil_force(log);
3541 
3542 	/*
3543 	 * mark the filesystem and the as in a shutdown state and wake
3544 	 * everybody up to tell them the bad news.
3545 	 */
3546 	spin_lock(&log->l_icloglock);
3547 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3548 	if (mp->m_sb_bp)
3549 		XFS_BUF_DONE(mp->m_sb_bp);
3550 
3551 	/*
3552 	 * This flag is sort of redundant because of the mount flag, but
3553 	 * it's good to maintain the separation between the log and the rest
3554 	 * of XFS.
3555 	 */
3556 	log->l_flags |= XLOG_IO_ERROR;
3557 
3558 	/*
3559 	 * If we hit a log error, we want to mark all the iclogs IOERROR
3560 	 * while we're still holding the loglock.
3561 	 */
3562 	if (logerror)
3563 		retval = xlog_state_ioerror(log);
3564 	spin_unlock(&log->l_icloglock);
3565 
3566 	/*
3567 	 * We don't want anybody waiting for log reservations after this. That
3568 	 * means we have to wake up everybody queued up on reserveq as well as
3569 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3570 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3571 	 * action is protected by the grant locks.
3572 	 */
3573 	xlog_grant_head_wake_all(&log->l_reserve_head);
3574 	xlog_grant_head_wake_all(&log->l_write_head);
3575 
3576 	if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3577 		ASSERT(!logerror);
3578 		/*
3579 		 * Force the incore logs to disk before shutting the
3580 		 * log down completely.
3581 		 */
3582 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3583 
3584 		spin_lock(&log->l_icloglock);
3585 		retval = xlog_state_ioerror(log);
3586 		spin_unlock(&log->l_icloglock);
3587 	}
3588 	/*
3589 	 * Wake up everybody waiting on xfs_log_force.
3590 	 * Callback all log item committed functions as if the
3591 	 * log writes were completed.
3592 	 */
3593 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3594 
3595 #ifdef XFSERRORDEBUG
3596 	{
3597 		xlog_in_core_t	*iclog;
3598 
3599 		spin_lock(&log->l_icloglock);
3600 		iclog = log->l_iclog;
3601 		do {
3602 			ASSERT(iclog->ic_callback == 0);
3603 			iclog = iclog->ic_next;
3604 		} while (iclog != log->l_iclog);
3605 		spin_unlock(&log->l_icloglock);
3606 	}
3607 #endif
3608 	/* return non-zero if log IOERROR transition had already happened */
3609 	return retval;
3610 }
3611 
3612 STATIC int
xlog_iclogs_empty(xlog_t * log)3613 xlog_iclogs_empty(xlog_t *log)
3614 {
3615 	xlog_in_core_t	*iclog;
3616 
3617 	iclog = log->l_iclog;
3618 	do {
3619 		/* endianness does not matter here, zero is zero in
3620 		 * any language.
3621 		 */
3622 		if (iclog->ic_header.h_num_logops)
3623 			return 0;
3624 		iclog = iclog->ic_next;
3625 	} while (iclog != log->l_iclog);
3626 	return 1;
3627 }
3628